Published as a conference paper at ICLR 2024

SHARPNESS-AWARE MINIMIZATION ENHANCES
FEATURE QUALITY VIA BALANCED LEARNING

Jacob Mitchell Springer!, Vaishnavh Nagarajan? & Aditi Raghunathan'
!Carnegie Mellon University 2Google Research

{jspringer, raditi}@cmu. edu! vaishnavh@google. com?

ABSTRACT

Sharpness-Aware Minimization (SAM) has emerged as a promising alternative op-
timizer to stochastic gradient descent (SGD). The originally-proposed motivation
behind SAM was to bias neural networks towards flatter minima that are believed
to generalize better. However, recent studies have shown conflicting evidence on
the relationship between flatness and generalization, suggesting that flatness does
fully explain SAM’s success. Sidestepping this debate, we identify an orthogonal
effect of SAM that is beneficial out-of-distribution: we argue that SAM implicitly
balances the quality of diverse features. SAM achieves this effect by adaptively
suppressing well-learned features which gives remaining features opportunity to
be learned. We show that this mechanism is beneficial in datasets that contain
redundant or spurious features where SGD falls for the simplicity bias and would
not otherwise learn all available features. Our insights are supported by experi-
ments on real data: we demonstrate that SAM improves the quality of features in
datasets containing redundant or spurious features, including CelebA, Waterbirds,
CIFAR-MNIST, and DomainBed.

1 INTRODUCTION

Sharpness-Aware Minimization (SAM) has emerged as a compelling alternative to stochastic gra-
dient descent (SGD) as an optimizer for neural networks (Bahri et al.,[2021). The core motivation
of SAM is to not just to minimize the original training objective, but to also find a minimum with
small Hessian norm (Wen et al., [2022)). This motivation has been inspired by conventional wisdom
that “flat” minima may correspond to better in-distribution generalization in comparison to sharper
minima (Keskar et al.l 2016} Jiang et al., 2019)) (Foret et al.} 2020). However, there has been a long-
standing debate on whether this flatness is even a reliable predictor of generalization (Dinh et al.,
2017; Kaddour et al.l [2022; |/Andriushchenko et al., [2023b; /'Wen et al., [2023; [Kaur et al., [2023). To
this end, alternative theories about SAM have been put forth to explain its performance gains, typ-
ically by studying specific inductive biases of SAM in simple theoretical settings (Andriushchenko
& Flammarion, 2022; /Andriushchenko et al., [2023a; |Behdin & Mazumder, 2023)).

In this paper, we provide a complementary perspective to the discussion relating flatness to SAM’s
in-distribution gains. We argue that SAM can lead to certain out-of-distribution gains via a feature
diversifying effect. Specifically, we consider datasets with multiple redundant features (e.g., an
image of a cat may be recognized by its fur or eyes or tail, or of a truck by its wheels or its front or
side doors). In such datasets, SGD is known to suffer from a “simplicity bias” towards learning only
the simplest features that suffice for the task, over a range of datasets (Shah et al., 2020). However,
we show that SAM overcomes this bias to learn multiple highly correlated features. Remarkably,
this happens even though the SAM objective was not explicitly designed with this anti-simplicity,
diversity bias. This bias makes SAM favorable in downstream tasks with distributed shifts where a
diverse set of features become relevant for prediction.

Why does SAM lead to this feature-diversifying effect, even when learning only one of the features
would suffice to minimize the objective? We construct a minimal toy setting with a simple and a
complex feature to address this question. In the toy setting, SGD fails to capture an informative
representation of the complex feature due to the simplicity bias. By contrast, SAM is able to learn
a high-quality representation of both the simple and the complex feature. We argue that the key
difference between the two algorithms can be seen directly in their respective gradient update steps.
By decomposing the SAM gradient update step into two terms, we are able to identify two separate
effects of SAM that lead to the feature-diversifying effect. The first effect is a balancing of the

Published as a conference paper at ICLR 2024

weight of the training examples during each update step, leading to a more uniform update across
the dataset. This effect is similar to other methods that explicitly re-weight examples to promote
complex-feature learning such as GroupDRO (Sagawa et al.,2019) and Just Train Twice (Liu et al.,
2021). Unlike these methods, SAM re-weights points implicitly through its update step. The second
effect is a balancing of the effective step size taken to learn each feature: the effective learning rates
of well-learned features are suppressed. These effects lead to balanced learning of all features, and
thus a more diverse representation. SGD, by contrast, does not exhibit these balancing effects.

The feature diversity induced by SAM is particularly important in the setting in which the features
which are redundant in the training distribution are not all necessarily predictive of the label in
a downstream distribution. For example, the Waterbirds dataset (Sagawa et al., [2019) consists of
images of water birds and land birds on backgrounds of water and land. In the training distribution,
the background and bird type are highly correlated, but downstream, the background is not predictive
of the bird type and vice versa. Ideally, we learn a representation amenable to adaptation to predict
bird type, or background. We find that SAM indeed improves the performance of transfer learning
with last-layer retraining on the downstream Waterbirds tasks, and on other similar datasets, include
CelebA, CIFAR-MNIST, and DomainBed.

Our perspective is complementary to the large body of existing literature that discusses the in-
distribution improvements of SAM and variants (Foret et al.| [2020; Na et al., [2022; |[Zhang et al.,
2023; [Zhao et al., [2022; Rangwani et al., 2022; Wang et al., 2022; Meng et al., [2023)). Importantly,
this finding allows us to contextualize the small set of prior work that has discovered that SAM helps
out-of-distribution performance (Wang et al., [2023; |Cha et al, |2021; [Bahri et al.l [2021). We hope
that this work will inspire future work to further understand the mechanisms of SAM and will mo-
tivate new algorithms for improving downstream performance on out-of-distribution data in similar
contexts.

In summary, our contributions are as follows:

1. We identify a feature diversifying effect of SAM in settings in which data has multiple redundant
features, and verify that this effect improves feature representation quality.

2. We construct and analyze a minimal toy setting consisting of multiple redundant features where
SGD fails to capture an informative representation of all features, but SAM succeeds.

3. We demonstrate that the feature diversifying effect of SAM arises from two interpretable bal-
ancing effects: a balancing effect that reweights the training examples to be more uniform and a
balancing effect that suppresses the effective learning rate of well-learned features.

4. We verify that the improved feature representations can be used to improve performance on out-
of-distribution downstream tasks in realistic settings.

2 RELATED WORK

Understanding Sharpness-Aware Minimization. The success of SAM is commonly explained
by the connection between the flatness of the landscape and improved generalization (see Section 5
of [Foret et al.[(2020)). The connection continues to inspire flatness-optimizing objectives for a wide
range of tasks (Abbas et al.,[2022}; Na et al., [2022}; 'Wang et al., 2023; Zhang et al., [2023} Zhao et al.,
2022;|Rangwani et al.,[2022; Wang et al., 2022} Meng et al., 2023]).

However, recent work has questioned whether sharpness and generalization are as linked as pre-
viously thought. On the one hand, it appears that sharper minima can generalize well after all,
and on the other, even flat minima may sometimes generalize poorly (Dinh et al. |2017; [Kaddour
et al., 2022; |Andriushchenko et al., 2023b; Wen et al., 2023} [Kaur et al., |2023)). In this backdrop,
some works on understanding SAM have departed from flatness. These explicitly characterize the
implicit bias of SAM in simple theoretical settings to show that it can improve in-distribution gen-
eralization (Andriushchenko & Flammarion, 2022; |Behdin & Mazumder, 2023). Our work takes a
different approach departing from both flatness and deriving the implicit regularization by looking
at how the SAM perturbation changes each gradient step along the trajectory. Further, while these
works focus on in-distribution generalization, we focus on the feature-diversifying effect of SAM in
out-of-distribution and transfer learning settings.

Benefits of SAM beyond in-distribution generalization. SAM has been shown to improve per-
formance in across various other settings such as meta learning (Abbas et al.| [2022), domain gen-
eralization (Wang et al., 2023; |Cha et al.} 2021), label noise (Foret et al., [2020), transfer learning

Published as a conference paper at ICLR 2024

in language models (Bahri et al., 2021)). Our work augments these findings by offering one unify-
ing factor that can explain SAM’s gains beyond in-distribution generalization—SAM learns higher
quality representations of hard-to-learn features.

Feature learning in the presence of multiple predictive features. It has been shown that neural
networks learn some features more easily than others, a tendency that is dubbed as a “simplicity
bias” (Shah et al., [2020; Kalimeris et al.,|2019; Morwant et al., 2023; [Rahaman et al., 2019). Besides
different learning speeds, the presence of one feature also impacts the quality (i.e. probing error) of
another feature in the learned representation as shown in (Pezeshki et al.l [2021)). This has inspired
various fixes such as regularizers (Pezeshki et al., [2021)), selecting freezing of parameters (Ye et al.,
2023)) and data augmentation (Plumb et al.,|2021). This problem has also been addressed in a line of
work aiming to improve worst-group error in the presence of spurious correlations, notably [Sagawa
et al. (2019), but we defer a detailed discussion to Appendix [Al In contrast to these algorithms that
are explicitly designed to address the simplicity bias, we show that SAM does so without being
explicitly incentivized to do so.

We elaborate on further related work including the broader literature on shortcut learning and spuri-
ous correlations, feature diversity and finetuning, and variants of the SAM algorithm in Appendix[A]

3 SETUP AND PRELIMINARIES

Task. We consider the setting of classification where we map input z € X to output y €).
Given training data (z1,y1), (2,y2), - - . (Xn, Yn) Where x;, y; ~ Diyain, our goal is to learn a neural
network classifier f : X —). We are interested in the diversity of the representations used by a
classifier. Hence it is convenient to parameterize the neural network classifiers f as linear classifiers
on top of feature representations, i.e. f(v,0;x) = argmax(v'®g(z)), where v € RF*IVI and
®y : R — RF. Note that the feature map ®y is itself a neural network. We use w = (v, 0) to
denote the weights of the network when we do not need to discuss the features explicitly.

Multiple predictive features. In our setting, there are several predictive features. As an example,
inspired by |Sagawa et al.| (2019), we consider the CelebA inputs as having two redundant features:
a gender feature {male, female} and hair color {blond, dark}, both, in part, predictive of the label.
Formally, each input x has a set of features a; (), as(x), . . . am, (x) where each a;(x) € A; denotes
the discrete (ground truth) value associated with the i feature. We are particularly interested in the
setting where several features are correlated with the label y at varying strengths.

3.1 EVALUATING FEATURE QUALITY

In this work, we seek to compare the feature quality of the representations learned by different meth-
ods. To measure feature quality, our idea is to train a linear probe on the representation to discrim-
inate the corresponding feature, and measure its performance (Rosenfeld et al.l 2022; |Kirichenko
et al., 2022). Importantly, the training must be done on a dataset only the desired feature is corre-
lated with the label, so that probe only picks up only this feature from the representation.

Formally, we construct the linear probe dataset as follows. Consider a balanced distribution Dy,
where there is an equal number of points from each configuration of the features, i.e., there are
|A1| x |A2] X ...|A| subpopulations that have equal probability masses in Dyy. Then, for any
feature ¢, we define the feature-probing error for this representation in terms the error of a linear
probe w in predicting the true feature value a;(x) when trained on Dy, . Formally,

ProErr; (6) def Er Doy [lo1 (1 ¢9(2), as(x))], for u = argmin B, p,, [((u"a;(z))], (1)

where ExN Dy, cOrresponds to the empirical distribution over training data from Dy, used to train
the linear probe and ¢ is some suitable classification loss such as the logistic loss.

3.2 TRAINING ALGORITHMS

Empirical risk minimization via Stochastic Gradient Descent (SGD). Stochastic gradient de-
scent (SGD) is the de facto approach to minimizing the empirical risk over training data. Given a
batch of training samples, {(z1,¥1),...(zp,y5)}, a loss function ¢, and model w = (V,), we

. B
define the empirical batch loss £(w) e (1/B) > ¢(f(w;x;),y;). The SGD update is:
i=1

w4 w =V, L(w),)

Published as a conference paper at ICLR 2024

Table 1: Comparing the in-distribution testing error and balanced distribution probing error for
each feature for SAM and SGD, as defined in Section E} For CelebA, the hard feature is gender,
for Waterbirds, it is background, for CIFAR-MNIST, it is CIFAR, and for FMNIST-MNIST, it is
FMNIST.

Test Easy ft. probe Hard ft. probe Test Easy ft. probe ~ Hard ft. probe

CelebA Waterbirds
SGD 4.7 +£0.07 109+ 1.15 20.9 +0.93 5.240.13 11.7 £2.28 21.8 +£0.99
SAM 4.3+0.10 8.7+ 0.51 151 +1.10 4.6 +0.12 7.8 4+0.50 19.7 +£2.00
CIFAR-MNIST FMNIST-MNIST

SGD 0.14+0.02 0.1+0.02 12.7£1.05 0.5+0.52 5.8+4.15 11.6 £1.93
SAM 0.0£0.01 0.1+0.03 10.2£0.51 0.0 £0.02 0.3 +£0.10 10.5£0.36

where 7 > 0 is the learning rate. Unless otherwise mentioned, we use the cross-entropy loss for
multi-class classification and logistic loss for binary classification.

Sharpness-Aware Minimization (SAM). In recent years, SAM has been proposed as an alterna-
tive to SGD. For model weights w, the SAM update is:

B
wew—1Y Vulw)],, where @ ¥ w + p¥V, L(w)/|VwLl(w)]2, 3)

i=1
for some perturbation radius p > 0. We refer the reader to [Foret et al.|(2020) for a derivation.

The SAM phantom parameter. Comparing SGD (Equation[2) and SAM (Equation[3), notice that
SAM takes a descent step in the direction of the gradient computed at different point: w, which we
call the phantom parameter. The phantom parameter is computed by taking a ascent step of fixed
norm in the direction of the gradient at the current parameter w. This is an important characterization
which we exploit in the rest of this paper. By studying how the phantom parameter w relates to the
real parameter w, we can study how SAM changes the learning trajectory directly.

4 SAM IMPROVES FEATURE DIVERSITY

In this section, we demonstrate that SAM can empirically improve the quality of multiple redundant
features, even when SGD would fail as a result of the simplicity bias (Shah et al.,2020). This quality
is particularly important when the features relevant to downstream performance are unknown at
training time, and thus necessary to learn a high quality representation of all available features. We
evaluate SAM on datasets in which multiple features have been labeled, where SGD tends to learn
a higher quality representation of the easier feature. With multiple labeled features, we can evaluate
the quality of the representation of each feature individually. We first describe our experimental
setup, and then present our results in which we compare the feature quality of SAM and SGD.

4.1 DATASETS AND MODELS

Datasets. We use four datasets in our experiments each annotated by two features: CelebA (Liu
et al.l 2015), Waterbirds (Sagawa et al.l 2019)), CIFAR-MNIST (binary) (Shah et al.| 2020), and
FMNIST-MNIST (5-class) (Kirichenko et al., 2022). The simplicity bias of SGD suggests that the
easier of the two features will be learned better. Thus, we refer to the feature which attains the lower
probing error for SGD trained models as the “easy” feature and the other has the “hard” feature. We
describe the datasets in detail in Appendix

Training setup. Following prior work (Kirichenko et al.| 2022} |Sagawa et al.| 2019), we train an
ImageNet-pretrained ResNet-18 on CelebA and Waterbirds that has been initialized with weights
pretrained on ImageNet. For CIFAR-MNIST, we train a three-layer MLP from scratch. We apply
standard data augmentation and weight decay (detailed in Appendix [B]), and we tune both algorithms
over different learning rates, and for SAM, we tune over the p parameter. We select the optimal hy-
perparameters based on the validation set. For CIFAR-MNIST and CelebA, we train for 20 epochs,
and for Waterbirds we train for 100 epochs. We repeat each experiment four times using different
random seeds, and report the mean and standard deviation of the errors.

Published as a conference paper at ICLR 2024

4.2 COMPARING SAM AND SGD

Our goal is to quantify the quality of the features learned by SGD-trained models vs. SAM-trained
models. To this end, in all our datasets, we evaluate both the easy and hard features each model in
terms of their feature probing error. As described in Section (3| we compute the probing error by
training a last-layer probe on a small dataset in which the feature of interest is uncorrelated with
the other feature. Then, we report the accuracy of this probe on a holdout test dataset in which
the feature of interest is again uncorrelated with the other feature. In accordance with our main
hypothesis, we find that SAM consistently achieves lower probing error for both features on all our
datasets, in comparison to SGD (Table[I)). We have thus verified that SAM implicitly improves the
quality of multiple redundant features.

This suggests that even though SAM tries to optimize for the loss (and its sharpness) on the training
distribution—and it does so successfully—under the hood, it also somehow improves feature quality
on multiple different, balanced distributions in which the correlation between features is broken and
examples are labeled by a feature of interest. We are interested in understanding how this unexpected
“under the hood” improvement of the feature quality arises in SAM.

5 UNDERSTANDING SAM FEATURE LEARNING IN A TOY SETUP

=

In this section, we design a minimal, controlled setup that helps
us isolate two core mechanisms within SAM. In our setup, data
has an easier and a harder feature that are both predictive of
the label. SGD exhibits the simplicity bias and learns a poor
quality representation of the harder feature. In contrast, we
show that SAM learns a good representation of both features.

Easy ft. Hard ft.

@ IX@

Figure 1: Illustration of the toy ex-
ample. (i) The toy data distribu-
tion. We vary the complexity of
the spiral component of the data by
tightening the spiral. (ii) Decision
boundary of classifiers trained with
SGD and with LSAM along a 2D
slice where the other feature.

GD

Varying complexity — ~
S

LSAM

5.1 A MINIMAL SETUP

Feature distribution. We consider a 4D setup X = R*
where the first two coordinates correspond to a linear feature
(the “easier” feature) and the second two coordinates corre-
spond to a spiral feature (the “harder” feature). We denote the
individual components & = [Zeasy, Thara). The associated at-
tributes (see Section [3) for each feature a;(x), as(x) are such
that a;(x) = 1 if « resides on the right branch of the linear
feature, and zero otherwise; similarly, as(x) = 1 if x resides
on the right spiral, and zero otherwise. We assume a binary label y € {—1, 1} such that each feature
independently is fully predictive of it i.e., y = a1 (z) and y = ao(x). We can vary the complexity of
the spiral feature by varying the number of rotations of the spiral. Here, the complexity refers to the
amount of rotation of the spiral, in degrees.

Disentangled architecture. We are interested in a setting where it is possible to precisely measure
the quality of representations. To this end, we create a network with an explicitly disentangled
representation space (rather than hoping that a trained linear probe would precisely disentangle it).
Specifically, we define an architecture whose last-layer representation takes the form

‘1’9(33) o [‘I)easy(x)v ‘I’hard(x)] o [

where ®y: R* to R is a three-layer neural network. This is followed by last layer weights v =
[Vsasy, Unard) such that the final classification takes the form, sign(f,,(z)) = sign(veasyPeasy(z) +
UhardPhard (z)). where w = (v, 0) are the parameters of the neural network. Then, we can think of
our feature probe for either features as simply ®easy and Pharg rEspectively.

‘I’e([%asy,0])7®9([0>$hard])]a “4)

Probing error. Since we have a disentangled representation space, measuring the probing error
is easy—there is no need to train a linear probe, since each feature is represented separately in the
last layer. We can simply measure the error £o.;(Peasy(x),y) or £o.1(Phard(2),y) to compute the
probing error for the easy and hard feature, respectively.

LSAM: A simplification of SAM. For this controlled study, we consider a minimal version
of SAM where we only perturb the last layer V'; we call this LSAM. While the final descent of
LSAM still updates all parameters; it is only the phantom ascent that is restricted to the last layer.

Published as a conference paper at ICLR 2024

Specifically, following the Section [3] notation, the phantom parameters take the following simple
form:

def 5 def

7 F v+ pV,L(0,0)/||[VoL(v,0)|l2, 6= 6. (5)
This is nearly identical to the SAM phantom parameter described by Equation |3} except that only v
is perturbed, and not 6. As we will shortly see (Section [6)), the above simplified version of SAM is
sufficient (and in fact, helpful) in cleanly identifying our two fundamental mechanisms that can be
linked to improved feature quality.

5.2 LSAM LEARNS THE HARDER SPIRAL FEATURE, WHILE SGD DOES NOT

We note that in this dataset, both
SAM and SGD learn the label y per- A
fectly. However, the behaviors are
starkly different at the feature-level.
In Figure [I} we plot the contour of
Peasy and Pnarg Which correspond to
how the models have learned either
features. We observe, visually, that .
SGD has no trouble learning the lin- O bantom 2 000 025 050 0.75 100
antom parameter (p) Phantom parameter (p)
ear feature but has a poor representa-
tion of the hard spiral feature. How-
ever, LSAM manages to learn a good Figure 2: (A) Test-set probing error of harder feature as a
representation of both features. We function of the phantom parameter p, for multiple complex-
quantify this observation by measur- ities for the hard feature. SGD corresponds with p = 0. (B)
ing the spiral feature’s probing error Phantom weight ratio as a function of p. We plot Tnarq/ Veasy
for varying complexities of the spiral ~(solid lines) and vharqg/ Veasy (dashed lines) for different val-
feature (i.e., varying tightness levels), ues of p when running LSAM. Note that SGD corresponds
and for varying values of the SAM to when p = 0. As p increases, the ratio Ohard/Ueasy in-
perturbation radius p (Figure [JA)). creases.
We find that while the learned spiral
feature’s quality is poorest when p = 0 (i.e., SGD), it progressively improves as we increase p. In
effect, this toy example isolates a core property of SAM that sets it apart from SGD: SAM learns
higher quality representations of hard-to-learn features compared to SGD, even in the presence of
a fully predictive easy feature. This is analogous to the feature-diversifying effect we observe in
real-world datasets in Section

Algorithm ~ Complexity
- * SGD = 400

-

Algorithm Complexity
w400

1/

w
»
«
(2]
o

0.4 1 e LSAM 600 ER o LSAM 600
800

800

%)

Probing error (hard ft.)

-

Ft. weight ratio (Oy,

6 WHY DOES SAM LEARN THE HARD-TO-LEARN FEATURE?

We have so far established that LSAM achieves significantly lower probing error on a hard-to-learn
spiral feature in comparison to SGD (See Figure 2(A)). In this section, we will describe the two
mechanisms by which LSAM offers this feature-diversifying benefit without being explicitly trained
to do so—we will argue that LSAM re-weights the training examples to increase weight on points
that may be helpful for learning the hard feature, and that LSAM increases the effective step size of
updates that fit the hard feature.

6.1 SAM RE-BALANCES PHANTOM PARAMETERS

The first step in understanding this mechanism is to understand how the phantom parameters Ueasy
and Unarq behave as we vary the perturbation radius p. We plot the ratio narg/ Ueasy as a function
of p in Figure [JB), which shows that the ratio increases as we increase p. This implies that as
p is increased, LSAM places more relative weight on the hard feature during the update step, as
described by Equation [3] Note that the re-balancing effect is not the result of the real weight vnarg
and veasy changing, but rather the result of the perturbation applied by LSAM when computing
the phantom parameters. The ratio of the real parameters vharg/ Veasy Temains nearly constant as a
function of the perturbation radius p (Figure[2[B), dashed line).

6.2 THE FEATURE-DIVERSIFYING EFFECTS OF SAM

With knowledge that LSAM reweights the ratio ¥narqg /ﬁeasy, our main idea is to decompose the
gradient update into two terms in which we can interpret the effect of this reweighting. For binary

Published as a conference paper at ICLR 2024

Toy CelebA Waterbirds
1095GD ~i| LSAM 1.095GD A Tsam 1L0956D HEAY
T .
: : T
05] 0.5 ! 05 i
! 1
1 ! ’
) ’ J
00tE==mg=m=] 3 : NS ; SEENES ; ;
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Fraction of training examples Fraction of training examples Fraction of training examples
= SGD (L)SAM == Real parameter =—— Phantom parameter

Figure 3: Lorenz curves for the real and phantom importance weight A; and \;. The dotted diagonal
line represents the Lorenz curve for a uniform distribution. The closer this curve is to this diagonal,
the more equally the importance weights are spread. In blue, we plot the Lorenz curves for an SGD
checkpoint. In orange, we plot the Lorenz curves for an LSAM checkpoint. The update step gradient
is computed at real parameter for SGD, and the phantom parameter for SAM. We include the curves
for the toy (left), CelebA (center), and Waterbirds (right).

classification, logistic loss on sample (x;, y;), we can write the gradient update to parameters 6 as:

(Ueasyve Peasy () + vhard Vo Phard (xz)))

Sum of feature gradients g;

Veﬁ = 0'(_yi(veasy¢)easy($i) + 'Uhardq)hard(xi)) :

Importance weighting A;

(6)
where o is the sigmoid function. If we replace vharq and veasy with the phantom parameters
Uhard, Ueasy. We get analogous terms A; and g; for LSAM. The scalar importance weighting term
\; represents the contribution of each individual example to the final loss gradient. The vector sum
of feature gradients term g; is a weighted combination of the individual feature gradients. The effect
of LSAM on the importance weighting term is example-specific: the degree to which each point is
up-weighted by LSAM \; /\; depends on the example. However, the effect of LSAM on the sum of
feature gradients term is constant across all examples in a batch: the degree to which the effective
learning rate of each feature is up-weighted by LSAM, Thard/Vhard and Teasy/Veasy, 18 the same for
all examples within a batch.

In the remainder of the section, we explore two effects that arise when Oparq/ Ueasy => Uhard / Veasy
that enable LSAM to learn the harder feature.

Effect one: the importance weighting effect. We con- -
sider the effect of increasing ¥hard/Ueasy On the \; term in I

Equation [6] which corresponds to how heavily each point is 6
weighted in the gradient. At a high level, we argue that this @ I

effect leads to two key beneficial behaviors that can be tested A& .
experimentally: first, examples are weighted more uniformly, 24

and second, examples that are poorly fit by the hard feature _‘__

are upweighted, even when they are well-fit by the easy fea- %50 05 10

ture. Both of these effects promote the learning of the harder Learning rate re-weighting factor (;/v;)
feature by encouraging additional points to contribute to the
learning of the harder feature that would otherwise have con-
tributed negligibly. In particular, the second effect leads to the
up-weighting of points that are incorrectly fit by the harder fea-
ture but have a low loss because they are fit well by the easy
feature. The effect of LSAM is similar to the intervention im-
posed by algorithms that explicitly up-weight examples that
belong to the minority class in imbalanced datasets (Liu et al.,
2021;|Sagawa et al.,2019), but it is remarkable that LSAM induces this importance weighting effect
implicitly without being designed to do so.

To verify that points are more uniformly weighted in the update step, we visualize the distribution
of their importance weights as a Lorenz curve, which plots the cumulative fraction of the total
importance contributed by the top k points as a function of & (Figure[3). This means that the closer
the Lorenz curve is to a diagonal line, the more uniformly the importance weights are distributed
across all points. We use the Lorenz curves to compare the behavior of an LSAM step to an SGD

I Easy ft.
Hard ft.

Figure 4: The learning rate re-
weighting factor for the easy fea-
ture Ueasy/Veasy and the hard fea-
ture Dhard/Vhard, plotted as a distri-
bution over batches in the dataset
(see Equation[6).

Published as a conference paper at ICLR 2024

step given fixed model parameters (Figure 3] left, comparing dashed to solid). We also compare the
Lorenz curves of the importance weights computed using the real parameters and computed using
the phantom parameters for a model that has been trained with SGD and one that has been trained
with LSAM (Figure 3] left, comparing solid line in LSAM plot to dashed line in SGD plot). We find
that the importance weights are more uniformly weighted under LSAM in both settings. We plot
additional Lorenz curves corresponding to different points during training in Appendix [G]

To verify that points that are well fit by the easy feature
but poorly fit by the hard feature are upweighted. We
need a metric to measure the the degree to which the easy
and hard features are fit by the model. In our toy setting,
we can compute the contribution of each feature explic-

itly. We can thus measure the degree to which the easy PR e S)

and hard features are fit by the model as their contribu- Ensy ft. contribution Hard ft, contribution
tion signed by the label: y®easy () and yPharg(z). When
either term is positive, the point is classified correctly by
the corresponding feature, with the magnitude of the term
indicating the margin. In order to summarize how points

are weighted as a function of the signed contributions, 0 e 00 (5 -
we partition the points into bins based on y®easy () and Easy ft. contribution Hard ft. contribution
YPhara(x). Thus, we plot the median importance weight — Byl [e
for each bin, which gives us the relationship between the

importance weight of each example and their signed fea-
ture contribution. We see that typical examples that are
poorly-fit by the easy feature (y®easy () is small) are as-
signed less importance by SAM, and examples that are __ .,
poorly-fit by the hard feature (y®Pnarg() is small) are as-
signed more importance by SAM (Figure[5). This verifies
our claim that LSAM up-weights points that are well-fit
by the easy feature but poorly-fit by the hard feature in the
toy setting. We plot additional importance weight plots i< based on the contribution of the

corresponding to different points during training in Ap- easy and hard features (yveasyPeasy and
pendix[G| YVeasyPhard), as defined in Section

Verifying the importance weighting effect in a real- For each of these bins, we plot the me-
world setup. We have thus far shown that LSAM in- dian importance weight term \; for the
duces the importance weighting effect in the toy setting. Points in the bin. We include the corre-
However, what happens when we relax our assumptions Sponding plots for the toy (top), CelebA
and move to a more realistic setting? We aim to test the ~(center), and Waterbirds (bottom).
importance weighting effect when we run the usual SAM algorithm without a disentangled repre-
sentation space on real-world datasets. We can evaluate importance weight uniformity directly. We
plot the Lorenz curve for the importance weights evaluated at both the real parameter and the phan-
tom parameter for CelebA and Waterbirds in Figure |3} We see that the points are more uniformly
weighted under a SAM perturbation, suggesting that the importance weighting effect is present in
the real-world datasets as well.

x10~! x10~1
Easy ft. Hard ft.
5.0

Toy

1
1
1
)
\
1 =
y 25
1]
\

Importance weighting

x107% x107*

SN Easy ft. Hard ft.
\ 1.0

0.5

CelebA

Importance weighting

o

Waterbirds

Importance weighting
o

0 5 10 0 10
Easy ft. contribution Hard ft. contribution

Hard ft. == Real parameter == Phantom parameter

Figure 5: Median importance weight-
ing as a function of the contribution of
each feature. We partition the data into

To verify that LSAM up-weights points that are well-fit by the easy feature but poorly-fit by the
hard feature, we used the disentangled representation space to measure the degree to which the easy
and hard features are fit by the model. However, in the real setting, we cannot directly measure
the contribution of each feature. Instead, we rely on extracting the feature contributions from the
linear probes veasy and vharg that best classifies the respective feature (refer to Section EI) With
these probes, we can define the signed contribution of the easy and hard feature as yveTaSyq)(x) and
ythard ®(x), respectively. Thus, we plot the median importance weight for both features as a function
of yvgasycI)(:c) and yv,,4®(z) for CelebA and Waterbirds. Analogous to the toy experiment, we see
that examples that are poorly-fit by the easy feature are assigned less importance by SAM, and
examples that are poorly-fit by the hard feature are assigned more importance by SAM (Figure [5).

Effect two: the learning rate scaling effect. 'We now turn our attention to the second term, g;,
from Equation [6| The g; term is a weighted combination of the feature gradients with weights
Ugasy and Dnharg corresponding to the easy and hard feature respectively. These weights can be
viewed as the “learning rates” as we take gradients steps in the direction of learning different fea-

Published as a conference paper at ICLR 2024

tures. Notably, these learning rates are constant across points within a batch. When LSAM causes
Dhard/ Ueasy > Uhard / Veasy, g corresponds with a larger effective step size associated with the hard
feature in comparison to g;. As a result the effective learning rate for the hard feature is higher and
leads to more progress on the hard feature. We plot the ratio between the learning rates of the phan-
tom parameters and the real parameters Unard/Vhard and Veasy / Veasy for each feature in Figure We
see that LSAM increases the learning rate for hard features and decreases the learning rate for each
feature. We call this the learning rate scaling effect. Unlike the importance weighting effect which
acts on each data point separately, the learning rate scaling effect is more global across the entire
training batch.

Unfortunately, we cannot directly verify the learning rate scaling effect without a disentangled rep-
resentation space. We discuss this further in Appendix [C.T}

ContribUtion Of eaCh effeCt' TO re- Learning rate effect Importance weighting effect Combined effect
cap, we show that LSAM induces (i) M M —~—w s~ weR
an importance weighting effect and ot = N ot ’
(i1) a learning rate scaling effect, both " \'\ 0 0
of which in turn arise from by re-

balancing the phantom parameters. "ok — "% : R 3 : p
We have verified that each of these ef- Ft. weight ratio (viara/Veasy) Ft. weight ratio (Vhasd/Veasy) Ft. weight ratio (Vhard/Veasy)
fects are present in the toy example,

and we would intuitively expect each Figure 6: Simulations of the learning rate, importance
effect to have a feature-diversifying weighting, and combined effects. Both effects offer gains
effect. But how do these effects com- in hard feature probing accuracy and together account for
pare in improvement in feature qual- all the benefits offered by LSAM in the toy setting. See Ap-
ity, and which effect if any is more pendix [C|for a detailed description of the simulations.
important? Are these effects simply

correlations caused by SAM’s improved features, or do these effects causally improve SAM?

We answer these questions in the toy setting, where it is possible to explicitly add or remove each

effect. To isolate each effect, we train with an algorithm that applies only one effect at a time: either
the importance weighting effect or the learning rate effect.

Probing error (hard i)

To isolate the importance weighting effect, we train with an algorithm in which we fix the ratio
Uhard/Veasy = Vpard / vg‘asy to a constant value in the importance weighting,

A= J(—yi(v;asy@easy(xi) + vﬁardq)hard(xi)) g; is as usual for SGD @)
where vg,g, = 1 and vy, 4 is a hyperparameter.

We similarly isolate the learning rate effect and test the combination of both effects by fixing
Uhard/ Veasy analogously. The details are described precisely in Appendix

In order to compare these algorithms with LSAM, we compute the probing error for the hard feature
against the ratio between the hard feature contribution and the easy feature contribution. For our
algorithms, we have manually set this value v}, .4/vgasy (see Equations . For LSAM, we consider
this value to be the mean value of Vharg/Veasy Over training (From Figure B)). This leaves both
our new algorithms and LSAM to be directly comparable as a function of this ratio, which we plot
(Figure[6). We see that both individual interventions (Figure[6] left and center) improve the probing
error for the hard feature. This suggests that both effects are causal and also significant (offer
comparable gains) in explaining LSAM’s improved spiral probing error in the toy setting. Further,
the combined effect (Figure[6] right) matches the performance of LSAM and thus appears to provide
a complete picture of understanding LSAM in our toy.

7 CONCLUSION

In this work, we offer insight into the dynamics of SAM that lead to the improvement of feature
diversity, in contrast with the usual sharpness-based arguments. We have shown how SAM can pro-
mote balanced feature learning in the presence of multiple redundant features, and that this can lead
to improved performance on out-of-distribution tasks. We have also demonstrated that SAM leads to
improvements in feature quality for transfer learning on real data, including the Waterbirds dataset,
CelebA, CIFAR-MNIST, and DomainBed. We hope that our insights provide a new perspective
on the dynamics of SAM without relying on the flatness-based arguments, and that this work will
inspire future work to further understand the mechanisms of SAM and will foster new algorithms
for improving downstream performance on out-of-distribution data in similar contexts.

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

We would like to thank Christina Baek, Jeremy Cohen, and Suhas Kotha for their feedback.

This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE2140739. Any opinion, findings, and conclusions or recommen-
dations expressed in this material are those of the authors(s) and do not necessarily reflect the views
of the National Science Foundation. This work was supported in part by the AI2050 program at
Schmidt Sciences (Grant #G2264481). We gratefully acknowledge the support of Apple.

REFERENCES

Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, and Tianyi Chen. Sharp-maml: Sharpness-
aware model-agnostic meta learning. In International Conference on Machine Learning, pp.
10-32. PMLR, 2022.

Samira Abnar, Mostafa Dehghani, Behnam Neyshabur, and Hanie Sedghi. Exploring the limits of
large scale pre-training. arXiv preprint arXiv:2110.02095, 2021.

Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku, and Anh Nguyen.
Strike (with) a pose: Neural networks are easily fooled by strange poses of familiar objects. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4845—
4854, 2019.

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
mization. In International Conference on Machine Learning, pp. 639-668. PMLR, 2022.

Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, and Nicolas Flammarion. Sharpness-aware
minimization leads to low-rank features. arXiv preprint arXiv:2305.16292, 2023a.

Maksym Andriushchenko, Francesco Croce, Maximilian Miiller, Matthias Hein, and Nicolas Flam-
marion. A modern look at the relationship between sharpness and generalization. arXiv preprint
arXiv:2302.07011, 2023b.

Saeid Asgari, Aliasghar Khani, Fereshte Khani, Ali Gholami, Linh Tran, Ali Mahdavi Amiri, and
Ghassan Hamarneh. Masktune: Mitigating spurious correlations by forcing to explore. Advances
in Neural Information Processing Systems, 35:23284-23296, 2022.

Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language model
generalization. arXiv preprint arXiv:2110.08529, 2021.

Kayhan Behdin and Rahul Mazumder. Sharpness-aware minimization: An implicit regularization
perspective. arXiv preprint arXiv:2302.11836, 2023.

Wieland Brendel and Matthias Bethge. Approximating cnns with bag-of-local-features models
works surprisingly well on imagenet. arXiv preprint arXiv:1904.00760, 2019.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural Infor-
mation Processing Systems, 34:22405-22418, 2021.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In International Conference on Machine Learning, pp. 1019-1028. PMLR, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
Vincent YF Tan. Efficient sharpness-aware minimization for improved training of neural net-
works. arXiv preprint arXiv:2110.03141, 2021.

Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training
for free. Advances in Neural Information Processing Systems, 35:23439-23451, 2022.

10

Published as a conference paper at ICLR 2024

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias im-
proves accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018.

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665-673, 2020.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization, 2020.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R Bowman,
and Noah A Smith. Annotation artifacts in natural language inference data. arXiv preprint
arXiv:1803.02324, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Katherine Hermann and Andrew Lampinen. What shapes feature representations? exploring
datasets, architectures, and training. Advances in Neural Information Processing Systems, 33:
9995-10006, 2020.

Katherine Hermann, Ting Chen, and Simon Kornblith. The origins and prevalence of texture bias in
convolutional neural networks. Advances in Neural Information Processing Systems, 33:19000—
19015, 2020.

Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What makes imagenet good for transfer learn-
ing? arXiv preprint arXiv:1608.08614, 2016.

Pavel Izmailov, Polina Kirichenko, Nate Gruver, and Andrew G Wilson. On feature learning in
the presence of spurious correlations. Advances in Neural Information Processing Systems, 35:
3851638532, 2022.

Samyak Jain, Sravanti Addepalli, Pawan Sahu, Priyam Dey, and R Venkatesh Babu. Dart:
Diversify-aggregate-repeat training improves generalization of neural networks. arXiv preprint
arXiv:2302.14685, 2023.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt J Kusner. When do flat minima optimizers
work? Advances in Neural Information Processing Systems, 35:16577-16595, 2022.

Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang, Boaz Barak,
and Haofeng Zhang. Sgd on neural networks learns functions of increasing complexity. Advances
in neural information processing systems, 32, 2019.

Simran Kaur, Jeremy Cohen, and Zachary Chase Lipton. On the maximum hessian eigenvalue and
generalization. In Proceedings on, pp. 51-65. PMLR, 2023.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient
for robustness to spurious correlations. arXiv preprint arXiv:2204.02937, 2022.

Alexander Kolesnikov and Christoph H Lampert. Improving weakly-supervised object localization
by micro-annotation. arXiv preprint arXiv:1605.05538, 2016.

11

Published as a conference paper at ICLR 2024

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
and Neil Houlsby. Big transfer (bit): General visual representation learning. In Computer Vision—
ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part
V 16, pp. 491-507. Springer, 2020.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2661—
2671, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. arXiv preprint
arXiv:2202.10054, 2022.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In International Con-
ference on Machine Learning, pp. 5905-5914. PMLR, 2021.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In International Conference on Machine Learning, pp. 6781-6792. PMLR,
2021.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12360-12370, 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li,
Ashwin Bharambe, and Laurens Van Der Maaten. Exploring the limits of weakly supervised
pretraining. In Proceedings of the European conference on computer vision (ECCV), pp. 181-
196, 2018.

R Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. arXiv preprint arXiv:1902.01007, 2019.

Xuran Meng, Yuan Cao, and Difan Zou. Per-example gradient regularization improves learning
signals from noisy data. arXiv preprint arXiv:2303.17940, 2023.

Mazda Moayeri, Phillip Pope, Yogesh Balaji, and Soheil Feizi. A comprehensive study of image
classification model sensitivity to foregrounds, backgrounds, and visual attributes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19087-19097,
2022.

Depen Morwani, Jatin Batra, Prateek Jain, and Praneeth Netrapalli. Simplicity bias in 1-hidden layer
neural networks. arXiv preprint arXiv:2302.00457, 2023.

Clara Na, Sanket Vaibhav Mehta, and Emma Strubell. Train flat, then compress: Sharpness-aware
minimization learns more compressible models. arXiv preprint arXiv:2205.12694, 2022.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learn-
ing? Advances in neural information processing systems, 33:512-523, 2020.

Matteo Pagliardini, Martin Jaggi, Francois Fleuret, and Sai Praneeth Karimireddy. Diversity through
disagreement for better transferability. In NeurIPS 2022 Workshop on Distribution Shifts: Con-
necting Methods and Applications, 2022.

12

Published as a conference paper at ICLR 2024

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning ieee transactions on knowledge and
data engineering. 22 (10), 1345, 2009.

Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, and Guil-
laume Lajoie. Gradient starvation: A learning proclivity in neural networks. Advances in Neural
Information Processing Systems, 34:1256-1272, 2021.

Gregory Plumb, Marco Tulio Ribeiro, and Ameet Talwalkar. Finding and fixing spurious patterns
with explanations. arXiv preprint arXiv:2106.02112,2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Confer-
ence on Machine Learning, pp. 5301-5310. PMLR, 2019.

Harsh Rangwani, Sumukh K Aithal, Mayank Mishra, et al. Escaping saddle points for effective
generalization on class-imbalanced data. Advances in Neural Information Processing Systems,
35:22791-22805, 2022.

Amir Rosenfeld, Richard Zemel, and John K Tsotsos. The elephant in the room. arXiv preprint
arXiv:1808.03305, 2018.

Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. Domain-adjusted regression or: Erm
may already learn features sufficient for out-of-distribution generalization. arXiv preprint
arXiv:2202.06856, 2022.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generaliza-
tion. arXiv preprint arXiv:1911.08731, 2019.

Luca Scimeca, Seong Joon Oh, Sanghyuk Chun, Michael Poli, and Sangdoo Yun. Which short-
cut cues will dnns choose? a study from the parameter-space perspective. arXiv preprint
arXiv:2110.03095, 2021.

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The
pitfalls of simplicity bias in neural networks. Advances in Neural Information Processing Systems,
33:9573-9585, 2020.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features off-
the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pp. 806-813, 2014.

Rakshith Shetty, Bernt Schiele, and Mario Fritz. Not using the car to see the sidewalk—quantifying
and controlling the effects of context in classification and segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8218-8226, 2019.

Sahil Singla and Soheil Feizi. Salient imagenet: How to discover spurious features in deep learning?
arXiv preprint arXiv:2110.04301, 2021.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable ef-
fectiveness of data in deep learning era. In Proceedings of the IEEE international conference on
computer vision, pp. 843-852, 2017.

Hao Sun, Li Shen, Qihuang Zhong, Liang Ding, Shixiang Chen, Jingwei Sun, Jing Li, Guangzhong
Sun, and Dacheng Tao. Adasam: Boosting sharpness-aware minimization with adaptive learning
rate and momentum for training deep neural networks. arXiv preprint arXiv:2303.00565, 2023.

Damien Teney, Ehsan Abbasnejad, Simon Lucey, and Anton Van den Hengel. Evading the simplic-
ity bias: Training a diverse set of models discovers solutions with superior ood generalization.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16761-16772, 2022.

13

Published as a conference paper at ICLR 2024

Dong Wang, Yicheng Liu, Liangji Fang, Fanhua Shang, Yuanyuan Liu, and Hongying Liu. Balanced
gradient penalty improves deep long-tailed learning. In Proceedings of the 30th ACM Interna-
tional Conference on Multimedia, pp. 5093-5101, 2022.

Pengfei Wang, Zhaoxiang Zhang, Zhen Lei, and Lei Zhang. Sharpness-aware gradient matching for
domain generalization. arXiv preprint arXiv:2303.10353, 2023.

Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize
sharpness? arXiv preprint arXiv:2211.05729, 2022.

Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. Sharpness minimization algorithms do not only minimize
sharpness to achieve better generalization. arXiv preprint arXiv:2307.11007, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The role of
image backgrounds in object recognition. arXiv preprint arXiv:2006.09994, 2020.

Yao-Yuan Yang, Chi-Ning Chou, and Kamalika Chaudhuri. Understanding rare spurious correla-
tions in neural networks. arXiv preprint arXiv:2202.05189, 2022.

Haotian Ye, James Zou, and Linjun Zhang. Freeze then train: Towards provable representation
learning under spurious correlations and feature noise. In International Conference on Artificial
Intelligence and Statistics, pp. 8968-8990. PMLR, 2023.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Xingxuan Zhang, Renzhe Xu, Han Yu, Hao Zou, and Peng Cui. Gradient norm aware minimization
seeks first-order flatness and improves generalization. arXiv preprint arXiv:2303.03108, 2023.

Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving gener-
alization in deep learning. In International Conference on Machine Learning, pp. 26982-26992.
PMLR, 2022.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
training. arXiv preprint arXiv:2203.08065, 2022.

A ADDITIONAL RELATED WORK

Shortcut learning and spurious correlations. Many works have demonstrated shortcut learn-
ing in neural networks image and natural language classification tasks (Geirhos et al.| [2018}; 12020
Scimeca et al.,|2021};|Yang et al.||2022; Hermann et al., [2020; Hermann & Lampinen, 2020; Brendel
& Bethge, [2019; |Alcorn et al., [2019; |Shetty et al., 2019; [Singla & Feizi, |2021; [Rosenfeld et al.,
2018 [Kolesnikov & Lampert, [2016; Moayeri et al.l [2022; |Gururangan et al.| [2018; [McCoy et al.,
2019; [Xiao et al., [2020; |Sagawa et al., [2019). In contrast, we focus purely on feature probing error
which looks at how well a feature is captured in the representation irrespective of how much the final
classifier relies on different features. We also care about probing error with respect to all predictive
features and do not delineate specific features as spurious. Recent works (Kirichenko et al., 2022;
Izmailov et al., 2022; [Rosenfeld et al., [2022) have shown that just last layer retraining on a suited
dataset can significantly overcome reliance on spurious correlations suggesting that the non-spurious
features are reasonably well-learnt by the representation.

Feature diversity and finetuning. Multiple methods have been proposed to improve feature di-
versity to evade the simplicity bias (Teney et al., [2022), ignore spurious features (Asgari et al.,|2022),
improve transfer learning (Pagliardini et al.l [2022), and improve generalization (Jain et al., [2023).
Fine-tuning and other retraining has been a popular method to adopt learned features to tasks other
than the pre-training objective (Pan & Yang| 2009). Retraining has been adopted to recover from
failure modes (Rosenfeld et al.| [2022; |[Kirichenko et al., [2022; | Kumar et al., |2022) and to improve

14

Published as a conference paper at ICLR 2024

generalization on novel tasks (Radford et al [2021}; [Sharif Razavian et al., 2014} [Huh et al., 2016
Sun et al., [2017; |Mahajan et al., 2018} [Kolesnikov et al., 2020; Zhai et al., |2019; |Dosovitskiy et al.,
2020; Neyshabur et al., |2020; |Abnar et al.,2021; Kornblith et al., [2019)).

Alternative SAM variants. Multiple variants have been proposed to generalization notions of
flatness (Kwon et al.,|2021; [Zhuang et al., [2022)), to improve the efficiency of SAM (Du et al.| 2022}
2021} |Liu et al.} 2022)), and to generalize SAM to different optimizers (Sun et al., [2023)).

B OMITTED EXPERIMENTAL DETAILS

Description of datasets. CelebA is a large-scale face attributes dataset with 40 binary attributes.
Following Kirichenko et al.| (2022), we train a classifier to predict the “hair color” attribute, with
values {blond, dark-hair}. However, the “gender” attribute, with values {female, male} is highly
correlated with “hair color” due to the imbalance in the dataset, and thus can additionally be useful
to predict the label, for the training distribution. Waterbirds is a synthetic dataset consisting of
images of birds superimposed onto different backgrounds. The data is annotated by “bird type”,
with values {water bird, land bird}, which refers to whether the pictured bird primarily lives in
water or on land. The “background” attribute, with values {water, land}, is highly correlated with
“bird type”. CIFAR-MNIST is a dataset consisting images from MNIST (LeCun et al.l |1998) and
CIFAR-10 (Krizhevsky et al., 2009) that have been concantenated together, where the label of the
CIFAR image and the label of the MNIST image are perfectly correlated for all training examples.
Following Shah et al.|(2020), we restrict the dataset to the binary setting. The “CIFAR” attribute can
attain values {airplane, automobile} and refers to the label of the CIFAR component of the image.
Similarly, the “MNIST” attribute can attain values {0, 1}. For all datasets, we use the standard
train/validation/test split, and when a validation set is not provided, we use a random 90/10 split of
the training set. For computational efficiency, we down-scale the CelebA images to 64 x 64 pixels,
and the Waterbirds images to 96 x 96 pixels. For FashionMNIST-MNIST dataset (Xiao et al.,|2017),
we restrict to the first five classes, associated with the digits 0-5 of MNIST.

Reporting test error. Since the validation and testing datasets of Waterbirds and CelebA differ in
distribution from the training set, to be consistent with |[Kirichenko et al.| (2022) when reporting the
testing error, we weight the testing error of each group by its corresponding frequency in the training
dataset.

Architectures For the experiments involving CIFAR-MNIST and variants, we train on a simple
convolutional architecture including three convolutional layers, followed by ReLUs, with a final
linear decoding layer. The architecture is defined by the following pseudo-PyTorch:

torch .nn. Sequential (
torch.nn.Conv2d(3, 32, kernel_size=5, stride=2, padding=2),
torch.nn.ReLU(inplace=True),
torch .nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
torch.nn.ReLU(inplace=True),
torch .nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
torch .nn.ReLU(inplace=True),
torch.nn. Flatten (),
torch .nn. Linear(n_features , num_classes)

)

For the experiments involving CelebA and Waterbirds, we use an ImageNet-pretrained ResNet-18
as specified by He et al.| (2016)).

For the toy experiments, the representation neural network ®4 had the architecture specified by the
following pseudo-PyTorch:

torch .nn. Sequential (
torch.nn.Linear(n_features , 100),
torch .nn.LayerNorm (100),
torch.nn.RelLU(),
torch.nn.Linear (100, 100),
torch .nn.LayerNorm (100),
torch.nn.RelLU(),

15

Published as a conference paper at ICLR 2024

torch.nn.Linear (100, n_classes)

)

Parameters and sweeps. For the toy experiments, we choose a constant learning rate of 0.01, a
batch size of 5, 300 training points, no momentum, and no weight decay.

For the CIFAR-MNIST and FMNIST-MNIST experiments, we sweep over the learning rates {0.01,
0.05, 0.1} and the phantom hyperparameter p over {0.0, 0.01, 0.03, 0.05, 0.07, 0.1, 0.2}. We
use a batch size of 100, a cosine learning rate schedule, a momentum parameter of 0.9, and no
weight decay. We normalize the images by the mean pixel value. Otherwise, we do not use data
augmentation.

For the CelebA and Waterbirds experiments, we sweep over the learning rates {0.0005, 0.001, 0.005,
0.01} and the p parameter {0.0, 0.01, 0.02, 0.05, 0.07}. We use a batch size of 128, a cosine learning
rate schedule, a momentum parameter of 0.9, and a weight decay of 10~4. We use data augmentation
described by the following pseudo-PyTorch:

WATERBIRDS _TRANSFORMS_AUGMENT = transforms .Compose ([
transforms . RandomResizedCrop (96,
scale=(0.7, 1.0),
ratio=(0.75, 4./3.),
interpolation=InterpolationMode . BILINEAR) ,
transforms . RandomHorizontalFlip (),
transforms . ToTensor (),
transforms . Normalize (WATERBIRDS MEAN, WATERBIRDS_STD)

D

CELEBA_TRANSFORM = transforms .Compose ([
transforms . Resize ((64, 64)),
transforms . ToTensor (),
transforms . Normalize (CELEBA_MEAN, CELEBA_STD)

D

C ADDITIONAL DETAILS FOR THE TOY SETTING

Algorithms for the interventions To simulate only the importance weighting effect, we re-weight
points in the importance weighting term \; to the weight of each point computed as if we had fixed
the feature ratio. Similarly, to simulate the learning-rate effect, we re-weight each feature in the
sum of feature gradients term g; by the weight that would assigned if we had fixed the feature
ratio. In order to verify that each effect is important and to quantify the relative strenght of each
effect, we intervene individually on each effect, separately, by fixing the ratio veasy/Vhard, but only
when computing the term corresponding with that effect. This means that the loss gradient for the
importance weighting intervention is computed as,

B
gi.w.(é’) = Z Oy; (U;asyq)easy(fi) + Uﬁard@hard (fz)) (Ueasyvaq)easy(xi) + Vhard Vo Phard (%)) s
i=1
®)
and the loss gradient for feature gradient effective learning rate intervention is computed as,
B
g1.r.(9) = Z Oy, (Ueasyq)easy(xi) + Vhard Phard (371)) (’U;asyve@easy(l’i) + Uﬁardveq)hard (%)) .
i=1
©))

For both equations, vgsg, and vy, 4 are fixed and do not change during training. We train with SGD,
but we compute the gradient as described in Equations|[8|and [9]

To simulate the effects together, we combine the two interventions by fixing the ratio veasy/vhard in
both terms. This means that the loss gradient for the combined intervention is computed as,
B

9e.(0) = Z Ty; (U;asyq’easy(xi) + VhargPhard (951')) (U;asyvé)q’easy(ﬂfi) + Vharg Vo Phard (Iz‘)) :

i=1
(10)

16

Published as a conference paper at ICLR 2024

C.1 THE LEARNING RATE EFFECT IS DIFFICULT TO VERIFY IN PRACTICE.

Unfortunately, in the absence of explicitly disentangled architecture (like in our toy setting), it is
difficult to estimate the learning rate scaling effect. The key challenge in achieving a similar obser-
vation of the learning-rate effect on real data is understanding precisely how features are represented.
Since, SAM perturbs the weights at every layer (unlike LSAM), we would need to understand how
each feature is represented at every layer of the neural network. Based on the general principle that
SAM perturbs weights as a function of how much they affect the output, we suspect, intuitively, that
well-learned features will be inhibited by SAM at every layer. While we cannot verify the effect
explicitly for a realistic setup, we believe it contributes to SAM’s gains in feature probing error.

D THEORETICAL INTUITION AND ANALYSIS

In this section, we present a brief discussion of the theoretical intuition behind our results. In partic-
ular, we will aim to understand the importance weighting effect.

Preliminaries. For simplicity, we will aim to understand the dynamics when training with a batch
is a single example . We will assume, as is typical, that we have a neural network,

fo(0) = w ' ¢g(x) (11)

parameterized by 0, and where ¢y () is the representation of - under the neural network. We assume
that the neural network is differentiable and well-approximated by a first-order Taylor expansion. We
assume that the loss function £(6) = exp(—yf(0)) is exponential, though note that cross-entropy
is almost identical to exponential, for correctly classified points. Finally, recall from the main body
of the paper that we can separate the loss gradient into two terms,

VoL(0) = —y exp(=yf(0)) Vof(0). (12)

importance weighting term A feature gradient term g

We define the phantom importance weighting parameter) as the importance weighting term evalu-
ated at the phantom parameter 6.

Phantom parameter. Recall that the SAM perturbation with exponential loss is defined as,

=0+ @ (1
AR (9
ML acy (1
=0~ et @l (19

Importance weighting. We first aim to understand the ratio between the phantom and real impor-
tance weighting term A/\. We have,

A = exp (—yf())/exp (—yf(0)) (17)
= exp (—y(f(0) — f(0))) (18)

which arises from plugging in the definition of the importance weighting term with exponential loss.
For convenience, we will consider the log of the ratio,

log (3/X) = ~y(/(8) — £(9)). 19)
The effect is based upon a first-order Taylor expansion of the logit function f(6),
5 Vef()
0)=f(0)—pyVof(®)" o (p? 20
~ [(0) = pylIVefO)]. 21

17

Published as a conference paper at ICLR 2024

We can plug this into the expression for the ratio of importance weighting terms, and we get,

tog (MA) =~y (£(60) = py VoS O)]] ~ 1(6)) 22)
= 01905 (0)] 23)
24

since 42 = 1. We can see that the ratio of importance weighting terms is approximately proportional
to the magnitude of the feature gradient ||V f(0)]|.

For a better sense of the dynamics, we compute ||V f(6)]| for a few different architectures.

Example 1: LSAM. We consider the case of LSAM, in which only the last layer is perturbed to
construct the phantom parameter. Since this is equivalent to considering the representation function
¢ to be a constant, we only need to compute the feature gradient norms with respect to the last layer,
w. We have,

IV f(O)]| = [|do ()] (25)

This implies that the log importance re-weighting factor A /A is proportional to the norm of the
representation ¢g(x).

Example 2: Two-layer linear network. We consider the case of a two-layer linear network, with
a single hidden layer. Let f(0) = v Wz where § = (v, W). For convenience, we will compute the
squared norm of the feature gradient,

Vo fONZ = IV fOI + IV w f(0)]* (26)
= [IWal* + [lo]* [l 27
(28)

Example 3: Multi-layer linear network. We consider the case of a multi-layer linear network.
Let f(0) = v"Wy---Wr_j2 where = (v, Wi, ...,Wr_1). For convenience, we will compute
the squared norm of the feature gradient,

L-1
IVofO)P = IVu fO7 + Y IVw, fO)]? (29)

i=1

L—-1
Wy Woaz|® + Y [Wa e Wiao|*[Wig - Wz (30)
=1

L
2
= a;[[W; - W2 (31
i=1
where a; = ||[W7 -+ W,_1v||? is constant with respect to z. This means that the squared norm of

the feature gradient is proportional to a weighted sum of the squared norms of the representations at
each layer.

Example 4: Multi-layer perceptrons with ReLU. We can also compute the gradient of non-
linear architectures, such as multi-layer perceptrons with ReLU activations. In particular, let
f(0) = v'a(Wig(Wy---o(Wg_17))) be defined by a sequence of layers with the ReL.U acti-
vation function o(x) = max(0, x). For a particular input, we can compute the output of a particular
layer i as,

O’l(l’) = O'(WZ‘O'(WH_l A O’(WL_l.CC))). (32)

observe that for a given input z, if we define the matrix A; = diag(I{o;(x) > 0}), then observe
that the output of the network can be written as,

FO) =vT AW AWy - Ap i Wiy (33)

18

Published as a conference paper at ICLR 2024

For convenience, we will compute the squared norm of the feature gradient,

L1
Vo f @17 = V0 £ @) + > IVw.FO)]? (34)
i=1
= [[AWy - A W |
L1 , NEE)
+ Z AW AsWo - - Ag Wi qv||*[|Aipa Wigr - Ap i W]
i=1
=Y allA4W - A WP (36)
j=1
L
=2 ajllo;@)I? (37)
Jj=1
(38)
where a; = ||AiWi -+ Aj_1W;_1|%. Unlike the multi-layer linear case, this constant depends on

x through A;. This means that the squared norm of the feature gradient is proportional to a weighted
sum of the squared norms of the representations at each layer, but where the weights depend on the
input itself. Due to this, a general interpretation of the importance weighting effect is more difficult
to obtain.

General multi-layer neural networks. In general, mutli-layer neural networks can introduce non-
linearities that can make this gradient difficult to analyze. However, we suspect that the computation
for mutli-layer linear networks will provide a sensible approximation for the feature gradient norm
for multi-layer neural networks.

E DATA DISTRIBUTION

In this section, we describe the data distribution for the toy setup.

The data in the toy setup is a concatenation of two features that are independently drawn conditional
on a label y. Before precisely defining the entire distribution, we will specify the feature distributions
individually.

Easy feature distribution. We sample the easy feature, conditioned on the label y € {—1, 1}, from
a latent variable z. The latent variable z is sampled from the uniform distribution over the interval
[0,1] if y = 1 and from a uniform distribution over the interval [—1, 0] if y = —1. The easy feature
is then defined as the 2-dimensional vector [z, z], and multiplied by a fixed scale parameter deyy-
Together,

U@O, 1) ify=1
Teasy = Qeasy [Zeasy7 Zeasy] (40)

Hard feature distribution. Similarly, we sample the hard feature, conditioned on the label
y € {—1,1}, from a latent variable z. The latent variable z? is sampled from the uniform dis-
tribution over the interval [0, (27ry/360)?] if y = 1 and from a uniform distribution over the interval
[—(27mx/360)2,0] if y = —1, where Y is a fixed scalar representing the complexity. The hard feature
is then defined as the 2-dimensional vector [—z cos z, z sin 2], multiplied by a fixed scale parameter
@nara» and added to some 2-dimensional uniform noise 1 ~ U([0, 0.5] x [0, 0.5]). Together,

Iy U, (2my/360)2) ify =1 an
hard “7) U (—(27x/360)2,0) ify = —1
Thard = Ghard * [—Zhard COS Zhard, Zhard SI Zhara] + 1) (42)

Noise. For the variants that we present in the appendix, we add Gaussian noise ¢ ~ N(0,0?),
feature label noise u ~ R(p), and feature dropout noise v ~ B(q), where R(p) is the Rademacher

19

Published as a conference paper at ICLR 2024

distribution with probability p of —1 and probability 1 —p of 1, and B(q) is the Bernoulli distribution
with probability ¢q. The noise is added to the easy feature after it is scaled by a.

T {ecasy,hard} — € +u-v- Q{easy,hard} [Z{easy,hard}v Z{easy,hard}] 43)

In general, we cho0S€ Geqy = 2 and apag = 0.25.

F DOMAINBED

Table 2: Comparing the domain transfer performance of SAM and SGD on the DomainBed datasets.

OfficeHome PACS
Domain Domain
A C P R A C P S
SGD 0.687 0.716 0.853 0.777 SGD 0910 0.897 0.955 0.893
SAM 0.709 0.745 0.858 0.784 SAM 0914 0921 0.964 0.908
VLCS
Domain
C L S A"

SGD 0993 0.736 0.748 0.812
SAM 0996 0.748 0.776 0.830

In this section, we present comparison of SAM and SGD on DomainBed (Gulrajani & Lopez-Paz,
2020). DomainBed is a benchmark consisting of datasets with realistic domain shifts. Thus, the
results on DomainBed are indicative of SAM’s performance under real-world domain shifts in which
the features that are useful for in-distribution classification may differ from the features that are
useful for out-of-distribution classification. We compare SAM and SGD on three of the DomainBed
datasets: OfficeHome, PACS, and VLCS.

F.1 DATASETS

OfficeHome is a dataset consisting of images from four domains: Art (A), Clipart (C), Product (P),
and Real-World (R).

PACS is a dataset consisting of images from four domains: Art (A), Cartoon (C), Photo (P), and
Sketch (S).

VLCS is a dataset consisting of images from four domains: Caltech101 (C), LabelMe (L), SUN0O9
(S), and VOC2007 (V).

We use the standard test/train splits of each of the datasets.

F.2 EXPERIMENTAL SETUP

To evaluate domain transfer performance for a given dataset and domain, we train a classifier on
the training set of all domains except the target domain. Following the setup of the main paper, we
extract the quality of the representation by training a linear probe on the training dataset of the target
domain.

More precisely, given the representation ¢ of the classifier that has been pre-trained on the other
domains, we aim to minimize the following loss on the training set of the target domain:

L(u) = B y)nDyy [6(2),)] (44)

where Dyyge refers to the training distribution of the target domain, u is the linear probe we are
optimizing, ¢ is cross-entropy loss, and x and y are the input and label of the training example. We
evaluate by measuring the accuracy of the linear probe on the test set of the target domain.

We perform a hyperparameter sweep over p € {0,0.03,0.05,0.1} and the learning rate n €
{0.005,0.01,0.02}. We validate on a small held-out validation set (10% of the training dataset)
selected from the training dataset split. We report the results of the best hyperparameter setting on
the test set of the target domain.

20

Published as a conference paper at ICLR 2024

F.3 RESULTS
We present the results of SAM and SGD on the three datasets in Table 2| We find that SAM out-
performs SGD on all three datasets, confirming that SAM improves the representation quality of the

neural network in a variety of domain transfer settings.

G EXTENDED FIGURES

We provide extended versions of Figures [3| and [5] in Figures [7] and [§] respectively. These figures
show the Lorenz curves for the real and phantom importance weights A; and \; and the median
importance weighting as a function of the contribution of each feature, respectively. We plot each

result over multiple checkpoints over the duration of training.

Results. We observe that the trends discussed in Section are consistent across the duration
of training. The phantom importance weights \; are more uniformly distributed than the real im-
portance weights \;. Further, the median importance weighting is higher for points with a higher
contribution of the easy feature than the hard feature.

Toy CelebA Waterbirds
Epoch 0 Epoch 1 Epoch 11
L01sGD ~i| TLSAM L01sGD Al {sAm L0fsGD | 1SAM
S 0 <
S o o R
1 1 o
0.5 ; 0.5 ! 0.5 R
f 1 ’
1] S
1 . / . Prs R
0.01f=mg=ms] a8 ‘ A 00t] 4 ‘ A 0.01E===T S ; :
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Fraction of training examples Fraction of training examples Fraction of training examples
Epoch 10 Epoch 7 Epoch 41
L07sep il LsAm Lofsep <1 sAm) i1 Tsam
| I S
1 [1
0.5 : 0.57 " 0.5 T
| B . ! . !
7 B B] & . ’
B -7 o K 4 K . o 8
00tF===2=" | : A 00t mm®]y ; N —S ! :
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Fraction of training examples Fraction of training examples Fraction of training examples
Epoch 30 Epoch 13 Epoch 71
1L.01sGD Al {isam L01sGD Al sAM 1.01sGD | TsAM
R H |
R . i H
0.5 A 0.51 Hod 0.5 i
. ; - 1 . H
// ,I 1
B Prag] K ,’
001f==" 4ot : : e = ‘ : e : :
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Fraction of training examples Fraction of training examples Fraction of training examples

—— SGD (L)SAM = === Real parameter = Phantom parameter

Figure 7: Extended version of Figure 3] Lorenz curves for the real and phantom importance weight
A; and)\;. The dotted diagonal line represents the Lorenz curve for a uniform distribution. The
closer this curve is to this diagonal, the more equally the importance weights are spread. In blue,
we plot the Lorenz curves for each SGD checkpoint. In orange, we plot the Lorenz curves for
each LSAM checkpoint. The update step gradient is computed at real parameter for SGD, and
the phantom parameter for SAM. We include the curves for the toy (left), CelebA (center), and
Waterbirds (right). We observe that within the SAM checkpoints, the weights of points evaluated at
the phantom parameter are closer to uniform than when evaluate at the real parameter. Further, in
comparison to an SGD checkpoint, the phantom parameter of SAM weights points more uniformly.
We plot each result over multiple checkpoints over the duration of training (epoch in bold).

H VARIANTS OF THE TOY SETUP

21

Published as a conference paper at ICLR 2024

Easy ft. contribution

Hard ft. contribution

Easy ft. contribution

Hard ft. contribution

Easy ft. contribution

CelebA Waterbirds
x10-* __Epoch 0 %10~ x10-* _Epoch 1 x10- x10-3 Epoch 11 x10~%
N Easy ft. Hard ft. Ss Easy ft.| © Hard ft. \ Easy ft. Hard ft.
\‘ . ‘\ \
N \ \
\
\ A\
\} 2.
R
04 —— =
0 10 2 0 2 0 20 10 0 20).5 0.0 0.5

Hard ft. contribution

x10-1 __ Epoch 10 %1078 x10-3 _Epoch 7 x10- x10~-3 _ Epoch 41 x10~°
! Easy ft. Hard ft. S Easy ft. Hard ft, N Easy ft. Hard ft.
AY
‘l \\
+ \
\ \
1
N
AY
N
04 T = T T T
0 10 0 2 0 10 0 10

0 20 40 —100 0
Easy ft. contribution Hard ft. contribution Easy ft. contribution Hard ft. contribution Easy ft. contribution Hard ft. contribution
%10~ Epoch 30 x10~* x10-3 Epoch 13 X105 x10-3 _ Epoch 71 X104
\ Easy ft. Hard ft. N Easy ft. Hard ft. \ Easy ft. Hard ft.
5
1 \ 5. |
\ N 1
) \ !
14 i \
1 l\
. »
P o W S N
0 10 20 0 2 0 10 0 5 0 5 0 10

Easy ft. contribution

Hard ft. contribution

- SGD

Easy ft. contribution

(L)SAM = === Real parameter

Hard ft. contribution

Easy ft. contribution

= Phantom parameter

Hard ft. contribution

Figure 8: Extended version of Figure [5] Median importance weighting as a function of the con-
tribution of each feature. We partition the data into bins based on the contribution of the easy and
hard features (yveasyPeasy and yveasyPhard), as defined in Section @ For each of these bins, we
plot the median importance weight term \; for the points in the bin. We include the corresponding
plots for the toy (top), CelebA (center), and Waterbirds (bottom). We plot each result over multiple
checkpoints over the duration of training (epoch in bold).

22

Published as a conference paper at ICLR 2024

Label noise 04 Ft. dropout
0.5 —— 00 0.5 —— 00
—~ 0.01 —~ —~ 01
04 —— 003 03 04 —— 02
5 —— 0.05 5 5 —— 03
< — 01 < = — 04
503 5 o] Noise (0) 503
) s —— 0.0 s
202 ® 0.01 202
2 3 011 005 b
01 & —— 01 01
— 05
0.0 0.0 10 0.0
0.0 05 1.0 15 2.0 25 0.0 05 10 15 2.0 25 0.0 05 1.0 L5 2.0 25
A2 Phantom parameter (p) Bz Phantom parameter (p) C2 Phantom parameter (p)
04 0.5 Complex ft.
0.5 dropout
= =04 = g (1)
903 & E 04
° - v o A
5 s L 5 -~ 02
£ £ 034 Complex ft £ \ —— 03
5 (o] Complex ft. s noise (o) 503 — 04
© label noise o 0ol T 00 o
2 —— 00 27 0.01 o2
S o1 001 3 — 005 3
o -— 0.03 Q014 —— 01 o1
—— 005 — 05
00 01 0.0 10 0.0
0.0 05 1.0 15 2.0 25 0.0 05 10 15 20 25 0.0 05 1.0 L5 2.0 25

Phantom parameter (p) Phantom parameter (p) Phantom parameter (p)

Figure 9: Variants of the toy setup to include noise in the feature distributions (compare with Fig-
ure . We include three types of noise distributions: (A) label noise, (B) Gaussian noise, and (C)
feature dropout. For each type of noise, we apply the noise to: (1) both the simple and complex fea-
tures, and (2) only the complex feature. We plot the probing error of the hard feature as a function
of the LSAM phantom parameter p. Note that p = 0 corresponds to the baseline SGD model.

23

Published as a conference paper at ICLR 2024

Batch size

——1
5

0.1 — 10

—— 50

Probing error (hard ft.)

«— 300

0.0 0.5 1.0 1.5 2.0 2.5
Phantom parameter (p)

Figure 10: Variant of the toy setup in which we vary the batch size (compare with Figure 2). We
plot the probing error of the hard feature as a function of the LSAM phantom parameter p. Note that
p = 0 corresponds to the baseline SGD model.

24

Published as a conference paper at ICLR 2024

In this section, we present variants of the toy setup to include noise in the feature distributions and
to vary batch size. In general, our results are consistent with the results from the main paper. We
observe that LSAM is robust to a wide range of noise distributions and batch sizes.

H.1 NOISE DISTRIBUTIONS

In order to explore how LSAM behaves when features include noise, we train classifiers using the
toy setup with three types of noise distributions.

Label noise. We add label noise by randomly flipping the labels of a fraction of the features when
generating the training, as defined precisely in Section [E] Note that this is different from how label
noise is typically defined: we are not flipping the labels of the training examples, but rather the
labels of the features. We vary the fraction of label noise from 0% to 10%.

Gaussian noise. We add Gaussian noise to the features, as defined precisely in Section [E] We vary
the standard deviation of the Gaussian noise from 0 to 1.0.

Feature dropout. We add feature dropout to the features, in which, with some probability, we
replace features with 0, as defined precisely in Section[E] We vary the probability of dropout from 0
to 0.4.

Hard-feature-only noise. For each type of noise, we also consider a variant in which the noise is
only added to the hard feature.

In general, we find that LSAM improves the probing error of the hard feature in comparison to SGD
for all types of noise (Figure[9). This suggests that the mechanisms of LSAM that improve feature
representation quality are robust to noise in the feature distributions.

H.2 BATCH SIZE

We also vary the batch size in the toy setup. We plot the probing error of the hard feature as a
function of the LSAM phantom parameter p in Figure [[0] Note that p = 0 corresponds to the
baseline SGD model. We observe that LSAM is generally robust to a wide range of batch sizes, and
that the optimal value of p is similar across batch sizes. However, as batch size increases to be very
large, the improvement of LSAM degrades, consistent with [CITE]. In addition, we observe that for
large p, the probing error of the hard feature is more sensitive to batch size.

25

	Introduction
	Related work
	Setup and preliminaries
	Evaluating feature quality
	Training algorithms

	SAM improves feature diversity
	Datasets and models
	Comparing SAM and SGD

	Understanding SAM feature learning in a toy setup
	A minimal setup
	LSAM learns the harder spiral feature, while SGD does not

	Why does SAM learn the hard-to-learn feature?
	SAM re-balances phantom parameters
	The feature-diversifying effects of SAM

	Conclusion
	Additional related work
	Omitted experimental details
	Additional details for the toy setting
	The learning rate effect is difficult to verify in practice.

	Theoretical intuition and analysis
	Data distribution
	DomainBed
	Datasets
	Experimental Setup
	Results

	Extended Figures
	Variants of the toy setup
	Noise distributions
	Batch size

