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ABSTRACT

Sharpness-Aware Minimization (SAM) has emerged as a promising alternative op-
timizer to stochastic gradient descent (SGD). The originally-proposed motivation
behind SAM was to bias neural networks towards flatter minima that are believed
to generalize better. However, recent studies have shown conflicting evidence on
the relationship between flatness and generalization, suggesting that flatness does
fully explain SAM’s success. Sidestepping this debate, we identify an orthogonal
effect of SAM that is beneficial out-of-distribution: we argue that SAM implicitly
balances the quality of diverse features. SAM achieves this effect by adaptively
suppressing well-learned features which gives remaining features opportunity to
be learned. We show that this mechanism is beneficial in datasets that contain
redundant or spurious features where SGD falls for the simplicity bias and would
not otherwise learn all available features. Our insights are supported by experi-
ments on real data: we demonstrate that SAM improves the quality of features in
datasets containing redundant or spurious features, including CelebA, Waterbirds,
CIFAR-MNIST, and DomainBed.

1 INTRODUCTION

Sharpness-Aware Minimization (SAM) has emerged as a compelling alternative to stochastic gra-
dient descent (SGD) as an optimizer for neural networks (Bahri et al., 2021). The core motivation
of SAM is to not just to minimize the original training objective, but to also find a minimum with
small Hessian norm (Wen et al., 2022). This motivation has been inspired by conventional wisdom
that “flat” minima may correspond to better in-distribution generalization in comparison to sharper
minima (Keskar et al., 2016; Jiang et al., 2019) (Foret et al., 2020). However, there has been a long-
standing debate on whether this flatness is even a reliable predictor of generalization (Dinh et al.,
2017; Kaddour et al., 2022; Andriushchenko et al., 2023b; Wen et al., 2023; Kaur et al., 2023). To
this end, alternative theories about SAM have been put forth to explain its performance gains, typ-
ically by studying specific inductive biases of SAM in simple theoretical settings (Andriushchenko
& Flammarion, 2022; Andriushchenko et al., 2023a; Behdin & Mazumder, 2023).
In this paper, we provide a complementary perspective to the discussion relating flatness to SAM’s
in-distribution gains. We argue that SAM can lead to certain out-of-distribution gains via a feature
diversifying effect. Specifically, we consider datasets with multiple redundant features (e.g., an
image of a cat may be recognized by its fur or eyes or tail, or of a truck by its wheels or its front or
side doors). In such datasets, SGD is known to suffer from a “simplicity bias” towards learning only
the simplest features that suffice for the task, over a range of datasets (Shah et al., 2020). However,
we show that SAM overcomes this bias to learn multiple highly correlated features. Remarkably,
this happens even though the SAM objective was not explicitly designed with this anti-simplicity,
diversity bias. This bias makes SAM favorable in downstream tasks with distributed shifts where a
diverse set of features become relevant for prediction.
Why does SAM lead to this feature-diversifying effect, even when learning only one of the features
would suffice to minimize the objective? We construct a minimal toy setting with a simple and a
complex feature to address this question. In the toy setting, SGD fails to capture an informative
representation of the complex feature due to the simplicity bias. By contrast, SAM is able to learn
a high-quality representation of both the simple and the complex feature. We argue that the key
difference between the two algorithms can be seen directly in their respective gradient update steps.
By decomposing the SAM gradient update step into two terms, we are able to identify two separate
effects of SAM that lead to the feature-diversifying effect. The first effect is a balancing of the
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weight of the training examples during each update step, leading to a more uniform update across
the dataset. This effect is similar to other methods that explicitly re-weight examples to promote
complex-feature learning such as GroupDRO (Sagawa et al., 2019) and Just Train Twice (Liu et al.,
2021). Unlike these methods, SAM re-weights points implicitly through its update step. The second
effect is a balancing of the effective step size taken to learn each feature: the effective learning rates
of well-learned features are suppressed. These effects lead to balanced learning of all features, and
thus a more diverse representation. SGD, by contrast, does not exhibit these balancing effects.
The feature diversity induced by SAM is particularly important in the setting in which the features
which are redundant in the training distribution are not all necessarily predictive of the label in
a downstream distribution. For example, the Waterbirds dataset (Sagawa et al., 2019) consists of
images of water birds and land birds on backgrounds of water and land. In the training distribution,
the background and bird type are highly correlated, but downstream, the background is not predictive
of the bird type and vice versa. Ideally, we learn a representation amenable to adaptation to predict
bird type, or background. We find that SAM indeed improves the performance of transfer learning
with last-layer retraining on the downstream Waterbirds tasks, and on other similar datasets, include
CelebA, CIFAR-MNIST, and DomainBed.
Our perspective is complementary to the large body of existing literature that discusses the in-
distribution improvements of SAM and variants (Foret et al., 2020; Na et al., 2022; Zhang et al.,
2023; Zhao et al., 2022; Rangwani et al., 2022; Wang et al., 2022; Meng et al., 2023). Importantly,
this finding allows us to contextualize the small set of prior work that has discovered that SAM helps
out-of-distribution performance (Wang et al., 2023; Cha et al., 2021; Bahri et al., 2021). We hope
that this work will inspire future work to further understand the mechanisms of SAM and will mo-
tivate new algorithms for improving downstream performance on out-of-distribution data in similar
contexts.
In summary, our contributions are as follows:
1. We identify a feature diversifying effect of SAM in settings in which data has multiple redundant
features, and verify that this effect improves feature representation quality.
2. We construct and analyze a minimal toy setting consisting of multiple redundant features where
SGD fails to capture an informative representation of all features, but SAM succeeds.
3. We demonstrate that the feature diversifying effect of SAM arises from two interpretable bal-
ancing effects: a balancing effect that reweights the training examples to be more uniform and a
balancing effect that suppresses the effective learning rate of well-learned features.
4. We verify that the improved feature representations can be used to improve performance on out-
of-distribution downstream tasks in realistic settings.

2 RELATED WORK

Understanding Sharpness-Aware Minimization. The success of SAM is commonly explained
by the connection between the flatness of the landscape and improved generalization (see Section 5
of Foret et al. (2020)). The connection continues to inspire flatness-optimizing objectives for a wide
range of tasks (Abbas et al., 2022; Na et al., 2022; Wang et al., 2023; Zhang et al., 2023; Zhao et al.,
2022; Rangwani et al., 2022; Wang et al., 2022; Meng et al., 2023).
However, recent work has questioned whether sharpness and generalization are as linked as pre-
viously thought. On the one hand, it appears that sharper minima can generalize well after all,
and on the other, even flat minima may sometimes generalize poorly (Dinh et al., 2017; Kaddour
et al., 2022; Andriushchenko et al., 2023b; Wen et al., 2023; Kaur et al., 2023). In this backdrop,
some works on understanding SAM have departed from flatness. These explicitly characterize the
implicit bias of SAM in simple theoretical settings to show that it can improve in-distribution gen-
eralization (Andriushchenko & Flammarion, 2022; Behdin & Mazumder, 2023). Our work takes a
different approach departing from both flatness and deriving the implicit regularization by looking
at how the SAM perturbation changes each gradient step along the trajectory. Further, while these
works focus on in-distribution generalization, we focus on the feature-diversifying effect of SAM in
out-of-distribution and transfer learning settings.

Benefits of SAM beyond in-distribution generalization. SAM has been shown to improve per-
formance in across various other settings such as meta learning (Abbas et al., 2022), domain gen-
eralization (Wang et al., 2023; Cha et al., 2021), label noise (Foret et al., 2020), transfer learning
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in language models (Bahri et al., 2021). Our work augments these findings by offering one unify-
ing factor that can explain SAM’s gains beyond in-distribution generalization—SAM learns higher
quality representations of hard-to-learn features.

Feature learning in the presence of multiple predictive features. It has been shown that neural
networks learn some features more easily than others, a tendency that is dubbed as a “simplicity
bias” (Shah et al., 2020; Kalimeris et al., 2019; Morwani et al., 2023; Rahaman et al., 2019). Besides
different learning speeds, the presence of one feature also impacts the quality (i.e. probing error) of
another feature in the learned representation as shown in (Pezeshki et al., 2021). This has inspired
various fixes such as regularizers (Pezeshki et al., 2021), selecting freezing of parameters (Ye et al.,
2023) and data augmentation (Plumb et al., 2021). This problem has also been addressed in a line of
work aiming to improve worst-group error in the presence of spurious correlations, notably Sagawa
et al. (2019), but we defer a detailed discussion to Appendix A. In contrast to these algorithms that
are explicitly designed to address the simplicity bias, we show that SAM does so without being
explicitly incentivized to do so.
We elaborate on further related work including the broader literature on shortcut learning and spuri-
ous correlations, feature diversity and finetuning, and variants of the SAM algorithm in Appendix A.

3 SETUP AND PRELIMINARIES

Task. We consider the setting of classification where we map input x ∈ X to output y ∈ Y .
Given training data (x1, y1), (x2, y2), . . . (xn, yn) where xi, yi ∼ Dtrain, our goal is to learn a neural
network classifier f : X 7→ Y . We are interested in the diversity of the representations used by a
classifier. Hence it is convenient to parameterize the neural network classifiers f as linear classifiers
on top of feature representations, i.e. f(v, θ;x) = argmax(v⊤Φθ(x)), where v ∈ Rk×|Y| and
Φθ : Rd 7→ Rk. Note that the feature map Φθ is itself a neural network. We use w = (v, θ) to
denote the weights of the network when we do not need to discuss the features explicitly.

Multiple predictive features. In our setting, there are several predictive features. As an example,
inspired by Sagawa et al. (2019), we consider the CelebA inputs as having two redundant features:
a gender feature {male, female} and hair color {blond, dark}, both, in part, predictive of the label.
Formally, each input x has a set of features a1(x), a2(x), . . . am(x) where each ai(x) ∈ Ai denotes
the discrete (ground truth) value associated with the ith feature. We are particularly interested in the
setting where several features are correlated with the label y at varying strengths.

3.1 EVALUATING FEATURE QUALITY

In this work, we seek to compare the feature quality of the representations learned by different meth-
ods. To measure feature quality, our idea is to train a linear probe on the representation to discrim-
inate the corresponding feature, and measure its performance (Rosenfeld et al., 2022; Kirichenko
et al., 2022). Importantly, the training must be done on a dataset only the desired feature is corre-
lated with the label, so that probe only picks up only this feature from the representation.
Formally, we construct the linear probe dataset as follows. Consider a balanced distribution Dbal
where there is an equal number of points from each configuration of the features, i.e., there are
|A1| × |A2| × . . . |Am| subpopulations that have equal probability masses in Dbal. Then, for any
feature i, we define the feature-probing error for this representation in terms the error of a linear
probe u in predicting the true feature value ai(x) when trained on Dbal. Formally,

ProErri(θ)
def
= Ex∼Dbal [ℓ0-1(u

⊤ϕθ(x), ai(x))], for u = argmin Êx∼Dbal [ℓ(u
⊤ai(x))], (1)

where Êx∼Dbal corresponds to the empirical distribution over training data from Dbal used to train
the linear probe and ℓ is some suitable classification loss such as the logistic loss.

3.2 TRAINING ALGORITHMS

Empirical risk minimization via Stochastic Gradient Descent (SGD). Stochastic gradient de-
scent (SGD) is the de facto approach to minimizing the empirical risk over training data. Given a
batch of training samples, {(x1, y1), . . . (xB , yB)}, a loss function ℓ, and model w = (V, θ), we

define the empirical batch loss L̂(w) def
= (1/B)

B∑
i=1

ℓ(f(w;xi), yi). The SGD update is:

w ← w − η∇wL̂(w), (2)
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Table 1: Comparing the in-distribution testing error and balanced distribution probing error for
each feature for SAM and SGD, as defined in Section 3. For CelebA, the hard feature is gender,
for Waterbirds, it is background, for CIFAR-MNIST, it is CIFAR, and for FMNIST-MNIST, it is
FMNIST.

Test Easy ft. probe Hard ft. probe Test Easy ft. probe Hard ft. probe

CelebA Waterbirds
SGD 4.7± 0.07 10.9± 1.15 20.9± 0.93 5.2± 0.13 11.7± 2.28 21.8± 0.99
SAM 4.3± 0.10 8.7± 0.51 15.1± 1.10 4.6± 0.12 7.8± 0.50 19.7± 2.00

CIFAR-MNIST FMNIST-MNIST
SGD 0.1± 0.02 0.1± 0.02 12.7± 1.05 0.5± 0.52 5.8± 4.15 11.6± 1.93
SAM 0.0± 0.01 0.1± 0.03 10.2± 0.51 0.0± 0.02 0.3± 0.10 10.5± 0.36

where η > 0 is the learning rate. Unless otherwise mentioned, we use the cross-entropy loss for
multi-class classification and logistic loss for binary classification.

Sharpness-Aware Minimization (SAM). In recent years, SAM has been proposed as an alterna-
tive to SGD. For model weights w, the SAM update is:

w ← w − η

B∑
i=1

∇wL̂(w)
∣∣
w̃
, where w̃

def
= w + ρ∇wL̂(w)/∥∇wL̂(w)∥2, (3)

for some perturbation radius ρ > 0. We refer the reader to Foret et al. (2020) for a derivation.

The SAM phantom parameter. Comparing SGD (Equation 2) and SAM (Equation 3), notice that
SAM takes a descent step in the direction of the gradient computed at different point: w̃, which we
call the phantom parameter. The phantom parameter is computed by taking a ascent step of fixed
norm in the direction of the gradient at the current parameter w. This is an important characterization
which we exploit in the rest of this paper. By studying how the phantom parameter w̃ relates to the
real parameter w, we can study how SAM changes the learning trajectory directly.

4 SAM IMPROVES FEATURE DIVERSITY

In this section, we demonstrate that SAM can empirically improve the quality of multiple redundant
features, even when SGD would fail as a result of the simplicity bias (Shah et al., 2020). This quality
is particularly important when the features relevant to downstream performance are unknown at
training time, and thus necessary to learn a high quality representation of all available features. We
evaluate SAM on datasets in which multiple features have been labeled, where SGD tends to learn
a higher quality representation of the easier feature. With multiple labeled features, we can evaluate
the quality of the representation of each feature individually. We first describe our experimental
setup, and then present our results in which we compare the feature quality of SAM and SGD.

4.1 DATASETS AND MODELS

Datasets. We use four datasets in our experiments each annotated by two features: CelebA (Liu
et al., 2015), Waterbirds (Sagawa et al., 2019), CIFAR-MNIST (binary) (Shah et al., 2020), and
FMNIST-MNIST (5-class) (Kirichenko et al., 2022). The simplicity bias of SGD suggests that the
easier of the two features will be learned better. Thus, we refer to the feature which attains the lower
probing error for SGD trained models as the “easy” feature and the other has the “hard” feature. We
describe the datasets in detail in Appendix B.

Training setup. Following prior work (Kirichenko et al., 2022; Sagawa et al., 2019), we train an
ImageNet-pretrained ResNet-18 on CelebA and Waterbirds that has been initialized with weights
pretrained on ImageNet. For CIFAR-MNIST, we train a three-layer MLP from scratch. We apply
standard data augmentation and weight decay (detailed in Appendix B), and we tune both algorithms
over different learning rates, and for SAM, we tune over the ρ parameter. We select the optimal hy-
perparameters based on the validation set. For CIFAR-MNIST and CelebA, we train for 20 epochs,
and for Waterbirds we train for 100 epochs. We repeat each experiment four times using different
random seeds, and report the mean and standard deviation of the errors.
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4.2 COMPARING SAM AND SGD

Our goal is to quantify the quality of the features learned by SGD-trained models vs. SAM-trained
models. To this end, in all our datasets, we evaluate both the easy and hard features each model in
terms of their feature probing error. As described in Section 3, we compute the probing error by
training a last-layer probe on a small dataset in which the feature of interest is uncorrelated with
the other feature. Then, we report the accuracy of this probe on a holdout test dataset in which
the feature of interest is again uncorrelated with the other feature. In accordance with our main
hypothesis, we find that SAM consistently achieves lower probing error for both features on all our
datasets, in comparison to SGD (Table 1). We have thus verified that SAM implicitly improves the
quality of multiple redundant features.
This suggests that even though SAM tries to optimize for the loss (and its sharpness) on the training
distribution—and it does so successfully—under the hood, it also somehow improves feature quality
on multiple different, balanced distributions in which the correlation between features is broken and
examples are labeled by a feature of interest. We are interested in understanding how this unexpected
“under the hood” improvement of the feature quality arises in SAM.

5 UNDERSTANDING SAM FEATURE LEARNING IN A TOY SETUP
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Figure 1: Illustration of the toy ex-
ample. (i) The toy data distribu-
tion. We vary the complexity of
the spiral component of the data by
tightening the spiral. (ii) Decision
boundary of classifiers trained with
SGD and with LSAM along a 2D
slice where the other feature.

In this section, we design a minimal, controlled setup that helps
us isolate two core mechanisms within SAM. In our setup, data
has an easier and a harder feature that are both predictive of
the label. SGD exhibits the simplicity bias and learns a poor
quality representation of the harder feature. In contrast, we
show that SAM learns a good representation of both features.

5.1 A MINIMAL SETUP

Feature distribution. We consider a 4D setup X = R4

where the first two coordinates correspond to a linear feature
(the “easier” feature) and the second two coordinates corre-
spond to a spiral feature (the “harder” feature). We denote the
individual components x = [xeasy, xhard]. The associated at-
tributes (see Section 3) for each feature a1(x), a2(x) are such
that a1(x) = 1 if x resides on the right branch of the linear
feature, and zero otherwise; similarly, a2(x) = 1 if x resides
on the right spiral, and zero otherwise. We assume a binary label y ∈ {−1, 1} such that each feature
independently is fully predictive of it i.e., y = a1(x) and y = a2(x). We can vary the complexity of
the spiral feature by varying the number of rotations of the spiral. Here, the complexity refers to the
amount of rotation of the spiral, in degrees.

Disentangled architecture. We are interested in a setting where it is possible to precisely measure
the quality of representations. To this end, we create a network with an explicitly disentangled
representation space (rather than hoping that a trained linear probe would precisely disentangle it).
Specifically, we define an architecture whose last-layer representation takes the form

Φθ(x)
def
= [Φeasy(x),Φhard(x)]

def
= [Φθ([xeasy,0]),Φθ([0, xhard])], (4)

where Φθ : R4 to R is a three-layer neural network. This is followed by last layer weights v =
[veasy, vhard] such that the final classification takes the form, sign(fw(x)) = sign(veasyΦeasy(x) +
vhardΦhard(x)). where w = (v, θ) are the parameters of the neural network. Then, we can think of
our feature probe for either features as simply Φeasy and Φhard respectively.

Probing error. Since we have a disentangled representation space, measuring the probing error
is easy—there is no need to train a linear probe, since each feature is represented separately in the
last layer. We can simply measure the error ℓ0-1(Φeasy(x), y) or ℓ0-1(Φhard(x), y) to compute the
probing error for the easy and hard feature, respectively.

LSAM: A simplification of SAM. For this controlled study, we consider a minimal version
of SAM where we only perturb the last layer V ; we call this LSAM. While the final descent of
LSAM still updates all parameters; it is only the phantom ascent that is restricted to the last layer.
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Specifically, following the Section 3 notation, the phantom parameters take the following simple
form:

ṽ
def
= v + ρ∇vL̂(v, θ)/∥∇vL̂(v, θ)∥2, θ̃

def
= θ. (5)

This is nearly identical to the SAM phantom parameter described by Equation 3, except that only v
is perturbed, and not θ. As we will shortly see (Section 6), the above simplified version of SAM is
sufficient (and in fact, helpful) in cleanly identifying our two fundamental mechanisms that can be
linked to improved feature quality.

5.2 LSAM LEARNS THE HARDER SPIRAL FEATURE, WHILE SGD DOES NOT
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Figure 2: (A) Test-set probing error of harder feature as a
function of the phantom parameter ρ, for multiple complex-
ities for the hard feature. SGD corresponds with ρ = 0. (B)
Phantom weight ratio as a function of ρ. We plot ṽhard/ṽeasy
(solid lines) and vhard/veasy (dashed lines) for different val-
ues of ρ when running LSAM. Note that SGD corresponds
to when ρ = 0. As ρ increases, the ratio ṽhard/ṽeasy in-
creases.

We note that in this dataset, both
SAM and SGD learn the label y per-
fectly. However, the behaviors are
starkly different at the feature-level.
In Figure 1, we plot the contour of
Φeasy and Φhard which correspond to
how the models have learned either
features. We observe, visually, that
SGD has no trouble learning the lin-
ear feature but has a poor representa-
tion of the hard spiral feature. How-
ever, LSAM manages to learn a good
representation of both features. We
quantify this observation by measur-
ing the spiral feature’s probing error
for varying complexities of the spiral
feature (i.e., varying tightness levels),
and for varying values of the SAM
perturbation radius ρ (Figure 2(A)).
We find that while the learned spiral
feature’s quality is poorest when ρ = 0 (i.e., SGD), it progressively improves as we increase ρ. In
effect, this toy example isolates a core property of SAM that sets it apart from SGD: SAM learns
higher quality representations of hard-to-learn features compared to SGD, even in the presence of
a fully predictive easy feature. This is analogous to the feature-diversifying effect we observe in
real-world datasets in Section 4.

6 WHY DOES SAM LEARN THE HARD-TO-LEARN FEATURE?

We have so far established that LSAM achieves significantly lower probing error on a hard-to-learn
spiral feature in comparison to SGD (See Figure 2(A)). In this section, we will describe the two
mechanisms by which LSAM offers this feature-diversifying benefit without being explicitly trained
to do so—we will argue that LSAM re-weights the training examples to increase weight on points
that may be helpful for learning the hard feature, and that LSAM increases the effective step size of
updates that fit the hard feature.

6.1 SAM RE-BALANCES PHANTOM PARAMETERS

The first step in understanding this mechanism is to understand how the phantom parameters ṽeasy
and ṽhard behave as we vary the perturbation radius ρ. We plot the ratio ṽhard/ṽeasy as a function
of ρ in Figure 2(B), which shows that the ratio increases as we increase ρ. This implies that as
ρ is increased, LSAM places more relative weight on the hard feature during the update step, as
described by Equation 3. Note that the re-balancing effect is not the result of the real weight vhard
and veasy changing, but rather the result of the perturbation applied by LSAM when computing
the phantom parameters. The ratio of the real parameters vhard/veasy remains nearly constant as a
function of the perturbation radius ρ (Figure 2(B), dashed line).

6.2 THE FEATURE-DIVERSIFYING EFFECTS OF SAM

With knowledge that LSAM reweights the ratio ṽhard/ṽeasy, our main idea is to decompose the
gradient update into two terms in which we can interpret the effect of this reweighting. For binary
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Figure 3: Lorenz curves for the real and phantom importance weight λi and λ̃i. The dotted diagonal
line represents the Lorenz curve for a uniform distribution. The closer this curve is to this diagonal,
the more equally the importance weights are spread. In blue, we plot the Lorenz curves for an SGD
checkpoint. In orange, we plot the Lorenz curves for an LSAM checkpoint. The update step gradient
is computed at real parameter for SGD, and the phantom parameter for SAM. We include the curves
for the toy (left), CelebA (center), and Waterbirds (right).

classification, logistic loss on sample (xi, yi), we can write the gradient update to parameters θ as:

∇θL̂ =σ
(
−yi(veasyΦeasy(xi) + vhardΦhard(xi)

)︸ ︷︷ ︸
Importance weighting λi

·
(
veasy∇θΦeasy(xi) + vhard∇θΦhard(xi)

)︸ ︷︷ ︸
Sum of feature gradients gi

,

(6)
where σ is the sigmoid function. If we replace vhard and veasy with the phantom parameters
ṽhard, ṽeasy, we get analogous terms λ̃i and g̃i for LSAM. The scalar importance weighting term
λi represents the contribution of each individual example to the final loss gradient. The vector sum
of feature gradients term gi is a weighted combination of the individual feature gradients. The effect
of LSAM on the importance weighting term is example-specific: the degree to which each point is
up-weighted by LSAM λ̃i/λi depends on the example. However, the effect of LSAM on the sum of
feature gradients term is constant across all examples in a batch: the degree to which the effective
learning rate of each feature is up-weighted by LSAM, ṽhard/vhard and ṽeasy/veasy, is the same for
all examples within a batch.
In the remainder of the section, we explore two effects that arise when ṽhard/ṽeasy ≫ vhard/veasy
that enable LSAM to learn the harder feature.
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Figure 4: The learning rate re-
weighting factor for the easy fea-
ture ṽeasy/veasy and the hard fea-
ture ṽhard/vhard, plotted as a distri-
bution over batches in the dataset
(see Equation 6).

Effect one: the importance weighting effect. We con-
sider the effect of increasing ṽhard/ṽeasy on the λ̃i term in
Equation 6, which corresponds to how heavily each point is
weighted in the gradient. At a high level, we argue that this
effect leads to two key beneficial behaviors that can be tested
experimentally: first, examples are weighted more uniformly,
and second, examples that are poorly fit by the hard feature
are upweighted, even when they are well-fit by the easy fea-
ture. Both of these effects promote the learning of the harder
feature by encouraging additional points to contribute to the
learning of the harder feature that would otherwise have con-
tributed negligibly. In particular, the second effect leads to the
up-weighting of points that are incorrectly fit by the harder fea-
ture but have a low loss because they are fit well by the easy
feature. The effect of LSAM is similar to the intervention im-
posed by algorithms that explicitly up-weight examples that
belong to the minority class in imbalanced datasets (Liu et al.,
2021; Sagawa et al., 2019), but it is remarkable that LSAM induces this importance weighting effect
implicitly without being designed to do so.
To verify that points are more uniformly weighted in the update step, we visualize the distribution
of their importance weights as a Lorenz curve, which plots the cumulative fraction of the total
importance contributed by the top k points as a function of k (Figure 3). This means that the closer
the Lorenz curve is to a diagonal line, the more uniformly the importance weights are distributed
across all points. We use the Lorenz curves to compare the behavior of an LSAM step to an SGD
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step given fixed model parameters (Figure 3, left, comparing dashed to solid). We also compare the
Lorenz curves of the importance weights computed using the real parameters and computed using
the phantom parameters for a model that has been trained with SGD and one that has been trained
with LSAM (Figure 3, left, comparing solid line in LSAM plot to dashed line in SGD plot). We find
that the importance weights are more uniformly weighted under LSAM in both settings. We plot
additional Lorenz curves corresponding to different points during training in Appendix G.
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Figure 5: Median importance weight-
ing as a function of the contribution of
each feature. We partition the data into
bins based on the contribution of the
easy and hard features (yveasyΦeasy and
yveasyΦhard), as defined in Section 6.2.
For each of these bins, we plot the me-
dian importance weight term λi for the
points in the bin. We include the corre-
sponding plots for the toy (top), CelebA
(center), and Waterbirds (bottom).

To verify that points that are well fit by the easy feature
but poorly fit by the hard feature are upweighted. We
need a metric to measure the the degree to which the easy
and hard features are fit by the model. In our toy setting,
we can compute the contribution of each feature explic-
itly. We can thus measure the degree to which the easy
and hard features are fit by the model as their contribu-
tion signed by the label: yΦeasy(x) and yΦhard(x). When
either term is positive, the point is classified correctly by
the corresponding feature, with the magnitude of the term
indicating the margin. In order to summarize how points
are weighted as a function of the signed contributions,
we partition the points into bins based on yΦeasy(x) and
yΦhard(x). Thus, we plot the median importance weight
for each bin, which gives us the relationship between the
importance weight of each example and their signed fea-
ture contribution. We see that typical examples that are
poorly-fit by the easy feature (yΦeasy(x) is small) are as-
signed less importance by SAM, and examples that are
poorly-fit by the hard feature (yΦhard(x) is small) are as-
signed more importance by SAM (Figure 5). This verifies
our claim that LSAM up-weights points that are well-fit
by the easy feature but poorly-fit by the hard feature in the
toy setting. We plot additional importance weight plots
corresponding to different points during training in Ap-
pendix G.

Verifying the importance weighting effect in a real-
world setup. We have thus far shown that LSAM in-
duces the importance weighting effect in the toy setting.
However, what happens when we relax our assumptions
and move to a more realistic setting? We aim to test the
importance weighting effect when we run the usual SAM algorithm without a disentangled repre-
sentation space on real-world datasets. We can evaluate importance weight uniformity directly. We
plot the Lorenz curve for the importance weights evaluated at both the real parameter and the phan-
tom parameter for CelebA and Waterbirds in Figure 3. We see that the points are more uniformly
weighted under a SAM perturbation, suggesting that the importance weighting effect is present in
the real-world datasets as well.
To verify that LSAM up-weights points that are well-fit by the easy feature but poorly-fit by the
hard feature, we used the disentangled representation space to measure the degree to which the easy
and hard features are fit by the model. However, in the real setting, we cannot directly measure
the contribution of each feature. Instead, we rely on extracting the feature contributions from the
linear probes veasy and vhard that best classifies the respective feature (refer to Section 3). With
these probes, we can define the signed contribution of the easy and hard feature as yv⊤easyΦ(x) and
yv⊤hardΦ(x), respectively. Thus, we plot the median importance weight for both features as a function
of yv⊤easyΦ(x) and yv⊤hardΦ(x) for CelebA and Waterbirds. Analogous to the toy experiment, we see
that examples that are poorly-fit by the easy feature are assigned less importance by SAM, and
examples that are poorly-fit by the hard feature are assigned more importance by SAM (Figure 5).

Effect two: the learning rate scaling effect. We now turn our attention to the second term, g̃i,
from Equation 6. The g̃i term is a weighted combination of the feature gradients with weights
ṽeasy and ṽhard corresponding to the easy and hard feature respectively. These weights can be
viewed as the “learning rates” as we take gradients steps in the direction of learning different fea-
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tures. Notably, these learning rates are constant across points within a batch. When LSAM causes
ṽhard/ṽeasy ≫ vhard/veasy, g̃i corresponds with a larger effective step size associated with the hard
feature in comparison to gi. As a result the effective learning rate for the hard feature is higher and
leads to more progress on the hard feature. We plot the ratio between the learning rates of the phan-
tom parameters and the real parameters ṽhard/vhard and ṽeasy/veasy for each feature in Figure 4. We
see that LSAM increases the learning rate for hard features and decreases the learning rate for each
feature. We call this the learning rate scaling effect. Unlike the importance weighting effect which
acts on each data point separately, the learning rate scaling effect is more global across the entire
training batch.
Unfortunately, we cannot directly verify the learning rate scaling effect without a disentangled rep-
resentation space. We discuss this further in Appendix C.1.
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Figure 6: Simulations of the learning rate, importance
weighting, and combined effects. Both effects offer gains
in hard feature probing accuracy and together account for
all the benefits offered by LSAM in the toy setting. See Ap-
pendix C for a detailed description of the simulations.

Contribution of each effect. To re-
cap, we show that LSAM induces (i)
an importance weighting effect and
(ii) a learning rate scaling effect, both
of which in turn arise from by re-
balancing the phantom parameters.
We have verified that each of these ef-
fects are present in the toy example,
and we would intuitively expect each
effect to have a feature-diversifying
effect. But how do these effects com-
pare in improvement in feature qual-
ity, and which effect if any is more
important? Are these effects simply
correlations caused by SAM’s improved features, or do these effects causally improve SAM?
We answer these questions in the toy setting, where it is possible to explicitly add or remove each
effect. To isolate each effect, we train with an algorithm that applies only one effect at a time: either
the importance weighting effect or the learning rate effect.
To isolate the importance weighting effect, we train with an algorithm in which we fix the ratio
vhard/veasy = v∗hard/v

∗
easy to a constant value in the importance weighting,

λi := σ
(
−yi(v∗easyΦeasy(xi) + v∗hardΦhard(xi)

)
gi is as usual for SGD (7)

where v∗easy = 1 and v∗hard is a hyperparameter.
We similarly isolate the learning rate effect and test the combination of both effects by fixing
vhard/veasy analogously. The details are described precisely in Appendix C.
In order to compare these algorithms with LSAM, we compute the probing error for the hard feature
against the ratio between the hard feature contribution and the easy feature contribution. For our
algorithms, we have manually set this value v∗hard/v

∗
easy (see Equations 7). For LSAM, we consider

this value to be the mean value of vhard/veasy over training (From Figure 2(B)). This leaves both
our new algorithms and LSAM to be directly comparable as a function of this ratio, which we plot
(Figure 6). We see that both individual interventions (Figure 6, left and center) improve the probing
error for the hard feature. This suggests that both effects are causal and also significant (offer
comparable gains) in explaining LSAM’s improved spiral probing error in the toy setting. Further,
the combined effect (Figure 6, right) matches the performance of LSAM and thus appears to provide
a complete picture of understanding LSAM in our toy.

7 CONCLUSION

In this work, we offer insight into the dynamics of SAM that lead to the improvement of feature
diversity, in contrast with the usual sharpness-based arguments. We have shown how SAM can pro-
mote balanced feature learning in the presence of multiple redundant features, and that this can lead
to improved performance on out-of-distribution tasks. We have also demonstrated that SAM leads to
improvements in feature quality for transfer learning on real data, including the Waterbirds dataset,
CelebA, CIFAR-MNIST, and DomainBed. We hope that our insights provide a new perspective
on the dynamics of SAM without relying on the flatness-based arguments, and that this work will
inspire future work to further understand the mechanisms of SAM and will foster new algorithms
for improving downstream performance on out-of-distribution data in similar contexts.
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A ADDITIONAL RELATED WORK

Shortcut learning and spurious correlations. Many works have demonstrated shortcut learn-
ing in neural networks image and natural language classification tasks (Geirhos et al., 2018; 2020;
Scimeca et al., 2021; Yang et al., 2022; Hermann et al., 2020; Hermann & Lampinen, 2020; Brendel
& Bethge, 2019; Alcorn et al., 2019; Shetty et al., 2019; Singla & Feizi, 2021; Rosenfeld et al.,
2018; Kolesnikov & Lampert, 2016; Moayeri et al., 2022; Gururangan et al., 2018; McCoy et al.,
2019; Xiao et al., 2020; Sagawa et al., 2019). In contrast, we focus purely on feature probing error
which looks at how well a feature is captured in the representation irrespective of how much the final
classifier relies on different features. We also care about probing error with respect to all predictive
features and do not delineate specific features as spurious. Recent works (Kirichenko et al., 2022;
Izmailov et al., 2022; Rosenfeld et al., 2022) have shown that just last layer retraining on a suited
dataset can significantly overcome reliance on spurious correlations suggesting that the non-spurious
features are reasonably well-learnt by the representation.

Feature diversity and finetuning. Multiple methods have been proposed to improve feature di-
versity to evade the simplicity bias (Teney et al., 2022), ignore spurious features (Asgari et al., 2022),
improve transfer learning (Pagliardini et al., 2022), and improve generalization (Jain et al., 2023).
Fine-tuning and other retraining has been a popular method to adopt learned features to tasks other
than the pre-training objective (Pan & Yang, 2009). Retraining has been adopted to recover from
failure modes (Rosenfeld et al., 2022; Kirichenko et al., 2022; Kumar et al., 2022) and to improve
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generalization on novel tasks (Radford et al., 2021; Sharif Razavian et al., 2014; Huh et al., 2016;
Sun et al., 2017; Mahajan et al., 2018; Kolesnikov et al., 2020; Zhai et al., 2019; Dosovitskiy et al.,
2020; Neyshabur et al., 2020; Abnar et al., 2021; Kornblith et al., 2019).

Alternative SAM variants. Multiple variants have been proposed to generalization notions of
flatness (Kwon et al., 2021; Zhuang et al., 2022), to improve the efficiency of SAM (Du et al., 2022;
2021; Liu et al., 2022), and to generalize SAM to different optimizers (Sun et al., 2023).

B OMITTED EXPERIMENTAL DETAILS

Description of datasets. CelebA is a large-scale face attributes dataset with 40 binary attributes.
Following Kirichenko et al. (2022), we train a classifier to predict the “hair color” attribute, with
values {blond, dark-hair}. However, the “gender” attribute, with values {female, male} is highly
correlated with “hair color” due to the imbalance in the dataset, and thus can additionally be useful
to predict the label, for the training distribution. Waterbirds is a synthetic dataset consisting of
images of birds superimposed onto different backgrounds. The data is annotated by “bird type”,
with values {water bird, land bird}, which refers to whether the pictured bird primarily lives in
water or on land. The “background” attribute, with values {water, land}, is highly correlated with
“bird type”. CIFAR-MNIST is a dataset consisting images from MNIST (LeCun et al., 1998) and
CIFAR-10 (Krizhevsky et al., 2009) that have been concantenated together, where the label of the
CIFAR image and the label of the MNIST image are perfectly correlated for all training examples.
Following Shah et al. (2020), we restrict the dataset to the binary setting. The “CIFAR” attribute can
attain values {airplane, automobile} and refers to the label of the CIFAR component of the image.
Similarly, the “MNIST” attribute can attain values {0, 1}. For all datasets, we use the standard
train/validation/test split, and when a validation set is not provided, we use a random 90/10 split of
the training set. For computational efficiency, we down-scale the CelebA images to 64× 64 pixels,
and the Waterbirds images to 96×96 pixels. For FashionMNIST-MNIST dataset (Xiao et al., 2017),
we restrict to the first five classes, associated with the digits 0–5 of MNIST.

Reporting test error. Since the validation and testing datasets of Waterbirds and CelebA differ in
distribution from the training set, to be consistent with Kirichenko et al. (2022) when reporting the
testing error, we weight the testing error of each group by its corresponding frequency in the training
dataset.

Architectures For the experiments involving CIFAR-MNIST and variants, we train on a simple
convolutional architecture including three convolutional layers, followed by ReLUs, with a final
linear decoding layer. The architecture is defined by the following pseudo-PyTorch:

t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d ( 3 , 32 , k e r n e l s i z e =5 , s t r i d e =2 , padd ing = 2) ,
t o r c h . nn . ReLU( i n p l a c e =True ) ,
t o r c h . nn . Conv2d ( 3 2 , 64 , k e r n e l s i z e =3 , s t r i d e =2 , padd ing = 1) ,
t o r c h . nn . ReLU( i n p l a c e =True ) ,
t o r c h . nn . Conv2d ( 6 4 , 128 , k e r n e l s i z e =3 , s t r i d e =2 , padd ing = 1) ,
t o r c h . nn . ReLU( i n p l a c e =True ) ,
t o r c h . nn . F l a t t e n ( ) ,
t o r c h . nn . L i n e a r ( n f e a t u r e s , n u m c l a s s e s )

)

For the experiments involving CelebA and Waterbirds, we use an ImageNet-pretrained ResNet-18
as specified by He et al. (2016).
For the toy experiments, the representation neural network Φθ had the architecture specified by the
following pseudo-PyTorch:

t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . L i n e a r ( n f e a t u r e s , 1 0 0 ) ,
t o r c h . nn . LayerNorm ( 1 0 0 ) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . L i n e a r ( 1 0 0 , 1 0 0 ) ,
t o r c h . nn . LayerNorm ( 1 0 0 ) ,
t o r c h . nn . ReLU ( ) ,
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t o r c h . nn . L i n e a r ( 1 0 0 , n c l a s s e s )
)

Parameters and sweeps. For the toy experiments, we choose a constant learning rate of 0.01, a
batch size of 5, 300 training points, no momentum, and no weight decay.
For the CIFAR-MNIST and FMNIST-MNIST experiments, we sweep over the learning rates {0.01,
0.05, 0.1} and the phantom hyperparameter ρ over {0.0, 0.01, 0.03, 0.05, 0.07, 0.1, 0.2}. We
use a batch size of 100, a cosine learning rate schedule, a momentum parameter of 0.9, and no
weight decay. We normalize the images by the mean pixel value. Otherwise, we do not use data
augmentation.
For the CelebA and Waterbirds experiments, we sweep over the learning rates {0.0005, 0.001, 0.005,
0.01} and the ρ parameter {0.0, 0.01, 0.02, 0.05, 0.07}. We use a batch size of 128, a cosine learning
rate schedule, a momentum parameter of 0.9, and a weight decay of 10−4. We use data augmentation
described by the following pseudo-PyTorch:

WATERBIRDS TRANSFORMS AUGMENT = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . RandomResizedCrop ( 9 6 ,

s c a l e = ( 0 . 7 , 1 . 0 ) ,
r a t i o = ( 0 . 7 5 , 4 . / 3 . ) ,
i n t e r p o l a t i o n = I n t e r p o l a t i o n M o d e . BILINEAR ) ,

t r a n s f o r m s . R a n d o m H o r i z o n t a l F l i p ( ) ,
t r a n s f o r m s . ToTensor ( ) ,
t r a n s f o r m s . Normal i ze (WATERBIRDS MEAN, WATERBIRDS STD)

] )

CELEBA TRANSFORM = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . R e s i z e ( ( 6 4 , 6 4 ) ) ,
t r a n s f o r m s . ToTensor ( ) ,
t r a n s f o r m s . Normal i ze (CELEBA MEAN, CELEBA STD)

] )

C ADDITIONAL DETAILS FOR THE TOY SETTING

Algorithms for the interventions To simulate only the importance weighting effect, we re-weight
points in the importance weighting term λi to the weight of each point computed as if we had fixed
the feature ratio. Similarly, to simulate the learning-rate effect, we re-weight each feature in the
sum of feature gradients term gi by the weight that would assigned if we had fixed the feature
ratio. In order to verify that each effect is important and to quantify the relative strenght of each
effect, we intervene individually on each effect, separately, by fixing the ratio veasy/vhard, but only
when computing the term corresponding with that effect. This means that the loss gradient for the
importance weighting intervention is computed as,

gi.w.(θ) =

B∑
i=1

σyi

(
v∗easyΦeasy(xi) + v∗hardΦhard(xi)

)
(veasy∇θΦeasy(xi) + vhard∇θΦhard(xi)) ,

(8)
and the loss gradient for feature gradient effective learning rate intervention is computed as,

gl.r.(θ) =

B∑
i=1

σyi (veasyΦeasy(xi) + vhardΦhard(xi))
(
v∗easy∇θΦeasy(xi) + v∗hard∇θΦhard(xi)

)
.

(9)
For both equations, v∗easy and v∗hard are fixed and do not change during training. We train with SGD,
but we compute the gradient as described in Equations 8 and 9.
To simulate the effects together, we combine the two interventions by fixing the ratio veasy/vhard in
both terms. This means that the loss gradient for the combined intervention is computed as,

gc.(θ) =

B∑
i=1

σyi

(
v∗easyΦeasy(xi) + v∗hardΦhard(xi)

) (
v∗easy∇θΦeasy(xi) + v∗hard∇θΦhard(xi)

)
.

(10)

16



Published as a conference paper at ICLR 2024

C.1 THE LEARNING RATE EFFECT IS DIFFICULT TO VERIFY IN PRACTICE.
Unfortunately, in the absence of explicitly disentangled architecture (like in our toy setting), it is
difficult to estimate the learning rate scaling effect. The key challenge in achieving a similar obser-
vation of the learning-rate effect on real data is understanding precisely how features are represented.
Since, SAM perturbs the weights at every layer (unlike LSAM), we would need to understand how
each feature is represented at every layer of the neural network. Based on the general principle that
SAM perturbs weights as a function of how much they affect the output, we suspect, intuitively, that
well-learned features will be inhibited by SAM at every layer. While we cannot verify the effect
explicitly for a realistic setup, we believe it contributes to SAM’s gains in feature probing error.

D THEORETICAL INTUITION AND ANALYSIS

In this section, we present a brief discussion of the theoretical intuition behind our results. In partic-
ular, we will aim to understand the importance weighting effect.

Preliminaries. For simplicity, we will aim to understand the dynamics when training with a batch
is a single example x. We will assume, as is typical, that we have a neural network,

fx(θ) = w⊤ϕθ(x) (11)

parameterized by θ, and where ϕθ(x) is the representation of x under the neural network. We assume
that the neural network is differentiable and well-approximated by a first-order Taylor expansion. We
assume that the loss function L(θ) = exp(−yf(θ)) is exponential, though note that cross-entropy
is almost identical to exponential, for correctly classified points. Finally, recall from the main body
of the paper that we can separate the loss gradient into two terms,

∇θL(θ) = −y exp(−yf(θ))︸ ︷︷ ︸
importance weighting term λ

∇θf(θ).︸ ︷︷ ︸
feature gradient term g

(12)

We define the phantom importance weighting parameter λ̃ as the importance weighting term evalu-
ated at the phantom parameter θ̃.

Phantom parameter. Recall that the SAM perturbation with exponential loss is defined as,

θ̃ = θ + ρ
∇θL(θ)
∥∇θL(θ)∥

(13)

= θ + ρ
∇θ exp(−yfx(θ))
∥∇θ exp(−yfx(θ))∥

(14)

= θ − ρ
y exp(−yfx(θ))∇θfx(θ)

∥exp(−yfx(θ))∇θfx(θ)∥
(15)

= θ − ρy
∇θfx(θ)

∥∇θfx(θ)∥
(16)

Importance weighting. We first aim to understand the ratio between the phantom and real impor-
tance weighting term λ̃/λ. We have,

λ̃/λ = exp
(
−yf(θ̃)

)
/ exp

(
−yf(θ)

)
(17)

= exp
(
−y(f(θ̃)− f(θ))

)
(18)

which arises from plugging in the definition of the importance weighting term with exponential loss.
For convenience, we will consider the log of the ratio,

log
(
λ̃/λ

)
= −y(f(θ̃)− f(θ)). (19)

The effect is based upon a first-order Taylor expansion of the logit function f(θ),

f(θ̃) = f(θ)− ρ y∇θf(θ)
⊤ ∇θf(θ)

∥∇θf(θ)∥
+O

(
ρ2
)

(20)

≈ f(θ)− ρ y ∥∇θf(θ)∥ . (21)
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We can plug this into the expression for the ratio of importance weighting terms, and we get,

log
(
λ̃/λ

)
≈ −y (f(θ)− ρ y ∥∇θf(θ)∥ − f(θ)) (22)

= ρ ∥∇θf(θ)∥ (23)
(24)

since y2 = 1. We can see that the ratio of importance weighting terms is approximately proportional
to the magnitude of the feature gradient ∥∇θf(θ)∥.
For a better sense of the dynamics, we compute ∥∇θf(θ)∥ for a few different architectures.

Example 1: LSAM. We consider the case of LSAM, in which only the last layer is perturbed to
construct the phantom parameter. Since this is equivalent to considering the representation function
ϕ to be a constant, we only need to compute the feature gradient norms with respect to the last layer,
w. We have,

∥∇wf(θ)∥ = ∥ϕθ(x)∥. (25)

This implies that the log importance re-weighting factor λ̃/λ is proportional to the norm of the
representation ϕθ(x).

Example 2: Two-layer linear network. We consider the case of a two-layer linear network, with
a single hidden layer. Let f(θ) = v⊤Wx where θ = (v,W ). For convenience, we will compute the
squared norm of the feature gradient,

∥∇θf(θ)∥2 = ∥∇vf(θ)∥2 + ∥∇W f(θ)∥2 (26)

= ∥Wx∥2 + ∥v∥2∥x∥. (27)
(28)

Example 3: Multi-layer linear network. We consider the case of a multi-layer linear network.
Let f(θ) = v⊤W1 · · ·WL−1x where θ = (v,W1, . . . ,WL−1). For convenience, we will compute
the squared norm of the feature gradient,

∥∇θf(θ)∥2 = ∥∇vf(θ)∥2 +
L−1∑
i=1

∥∇Wif(θ)∥2 (29)

= ∥W1 · · ·WL−1x∥2 +
L−1∑
i=1

∥W1 · · ·Wi−1v∥2∥Wi+1 · · ·WL−1x∥2 (30)

=

L∑
j=1

aj∥Wj · · ·WL−1x∥2 (31)

where aj = ∥W1 · · ·Wj−1v∥2 is constant with respect to x. This means that the squared norm of
the feature gradient is proportional to a weighted sum of the squared norms of the representations at
each layer.

Example 4: Multi-layer perceptrons with ReLU. We can also compute the gradient of non-
linear architectures, such as multi-layer perceptrons with ReLU activations. In particular, let
f(θ) = v⊤σ(W1σ(W2 · · ·σ(WL−1x))) be defined by a sequence of layers with the ReLU acti-
vation function σ(x) = max(0, x). For a particular input, we can compute the output of a particular
layer i as,

σi(x) = σ(Wiσ(Wi+1 · · ·σ(WL−1x))). (32)

observe that for a given input x, if we define the matrix Ai = diag(I{σi(x) > 0}), then observe
that the output of the network can be written as,

f(θ) = v⊤A1W1A2W2 · · ·AL−1WL−1x. (33)
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For convenience, we will compute the squared norm of the feature gradient,

∥∇θf(θ)∥2 = ∥∇vf(θ)∥2 +
L−1∑
i=1

∥∇Wi
f(θ)∥2 (34)

= ∥A1W1 · · ·AL−1WL−1∥2

+

L−1∑
i=1

∥A1W1A2W2 · · ·Ai−1Wi−1v∥2∥Ai+1Wi+1 · · ·AL−1WL−1x∥2
(35)

=

L∑
j=1

aj∥AjWj · · ·AL−1WL−1x∥2 (36)

=

L∑
j=1

aj∥σj(x)∥2 (37)

(38)

where aj = ∥A1W1 · · ·Aj−1Wj−1∥2. Unlike the multi-layer linear case, this constant depends on
x through Aj . This means that the squared norm of the feature gradient is proportional to a weighted
sum of the squared norms of the representations at each layer, but where the weights depend on the
input itself. Due to this, a general interpretation of the importance weighting effect is more difficult
to obtain.

General multi-layer neural networks. In general, mutli-layer neural networks can introduce non-
linearities that can make this gradient difficult to analyze. However, we suspect that the computation
for mutli-layer linear networks will provide a sensible approximation for the feature gradient norm
for multi-layer neural networks.

E DATA DISTRIBUTION

In this section, we describe the data distribution for the toy setup.
The data in the toy setup is a concatenation of two features that are independently drawn conditional
on a label y. Before precisely defining the entire distribution, we will specify the feature distributions
individually.
Easy feature distribution. We sample the easy feature, conditioned on the label y ∈ {−1, 1}, from
a latent variable z. The latent variable z is sampled from the uniform distribution over the interval
[0, 1] if y = 1 and from a uniform distribution over the interval [−1, 0] if y = −1. The easy feature
is then defined as the 2-dimensional vector [z, z], and multiplied by a fixed scale parameter aeasy.
Together,

zeasy ∼
{U(0, 1) if y = 1

U(−1, 0) if y = −1 (39)

xeasy = aeasy · [zeasy, zeasy] (40)

Hard feature distribution. Similarly, we sample the hard feature, conditioned on the label
y ∈ {−1, 1}, from a latent variable z. The latent variable z2 is sampled from the uniform dis-
tribution over the interval [0, (2πχ/360)2] if y = 1 and from a uniform distribution over the interval
[−(2πχ/360)2, 0] if y = −1, where χ is a fixed scalar representing the complexity. The hard feature
is then defined as the 2-dimensional vector [−z cos z, z sin z], multiplied by a fixed scale parameter
ahard, and added to some 2-dimensional uniform noise η ∼ U([0, 0.5]× [0, 0.5]). Together,

z2hard ∼
{U(0, (2πχ/360)2) if y = 1

U(−(2πχ/360)2, 0) if y = −1 (41)

xhard = ahard · [−zhard cos zhard, zhard sin zhard] + η (42)

Noise. For the variants that we present in the appendix, we add Gaussian noise ε ∼ N (0, σ2),
feature label noise u ∼ R(p), and feature dropout noise v ∼ B(q), where R(p) is the Rademacher
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distribution with probability p of−1 and probability 1−p of 1, and B(q) is the Bernoulli distribution
with probability q. The noise is added to the easy feature after it is scaled by a.

x{easy,hard} = ε+ u · v · a{easy,hard} · [z{easy,hard}, z{easy,hard}] (43)

In general, we choose aeasy = 2 and ahard = 0.25.

F DOMAINBED

Table 2: Comparing the domain transfer performance of SAM and SGD on the DomainBed datasets.
OfficeHome

Domain
A C P R

SGD 0.687 0.716 0.853 0.777
SAM 0.709 0.745 0.858 0.784

PACS
Domain

A C P S

SGD 0.910 0.897 0.955 0.893
SAM 0.914 0.921 0.964 0.908

VLCS
Domain

C L S V

SGD 0.993 0.736 0.748 0.812
SAM 0.996 0.748 0.776 0.830

In this section, we present comparison of SAM and SGD on DomainBed (Gulrajani & Lopez-Paz,
2020). DomainBed is a benchmark consisting of datasets with realistic domain shifts. Thus, the
results on DomainBed are indicative of SAM’s performance under real-world domain shifts in which
the features that are useful for in-distribution classification may differ from the features that are
useful for out-of-distribution classification. We compare SAM and SGD on three of the DomainBed
datasets: OfficeHome, PACS, and VLCS.

F.1 DATASETS

OfficeHome is a dataset consisting of images from four domains: Art (A), Clipart (C), Product (P),
and Real-World (R).
PACS is a dataset consisting of images from four domains: Art (A), Cartoon (C), Photo (P), and
Sketch (S).
VLCS is a dataset consisting of images from four domains: Caltech101 (C), LabelMe (L), SUN09
(S), and VOC2007 (V).
We use the standard test/train splits of each of the datasets.

F.2 EXPERIMENTAL SETUP

To evaluate domain transfer performance for a given dataset and domain, we train a classifier on
the training set of all domains except the target domain. Following the setup of the main paper, we
extract the quality of the representation by training a linear probe on the training dataset of the target
domain.
More precisely, given the representation ϕ of the classifier that has been pre-trained on the other
domains, we aim to minimize the following loss on the training set of the target domain:

L(u) = E(x,y)∼Dtrain

[
ℓ(u⊤ϕ(x), y)

]
(44)

where Dtarget refers to the training distribution of the target domain, u is the linear probe we are
optimizing, ℓ is cross-entropy loss, and x and y are the input and label of the training example. We
evaluate by measuring the accuracy of the linear probe on the test set of the target domain.
We perform a hyperparameter sweep over ρ ∈ {0, 0.03, 0.05, 0.1} and the learning rate η ∈
{0.005, 0.01, 0.02}. We validate on a small held-out validation set (10% of the training dataset)
selected from the training dataset split. We report the results of the best hyperparameter setting on
the test set of the target domain.
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F.3 RESULTS

We present the results of SAM and SGD on the three datasets in Table 2. We find that SAM out-
performs SGD on all three datasets, confirming that SAM improves the representation quality of the
neural network in a variety of domain transfer settings.

G EXTENDED FIGURES

We provide extended versions of Figures 3 and 5 in Figures 7 and 8, respectively. These figures
show the Lorenz curves for the real and phantom importance weights λi and λ̃i and the median
importance weighting as a function of the contribution of each feature, respectively. We plot each
result over multiple checkpoints over the duration of training.

Results. We observe that the trends discussed in Section 6.2 are consistent across the duration
of training. The phantom importance weights λ̃i are more uniformly distributed than the real im-
portance weights λi. Further, the median importance weighting is higher for points with a higher
contribution of the easy feature than the hard feature.
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Figure 7: Extended version of Figure 3. Lorenz curves for the real and phantom importance weight
λi and λ̃i. The dotted diagonal line represents the Lorenz curve for a uniform distribution. The
closer this curve is to this diagonal, the more equally the importance weights are spread. In blue,
we plot the Lorenz curves for each SGD checkpoint. In orange, we plot the Lorenz curves for
each LSAM checkpoint. The update step gradient is computed at real parameter for SGD, and
the phantom parameter for SAM. We include the curves for the toy (left), CelebA (center), and
Waterbirds (right). We observe that within the SAM checkpoints, the weights of points evaluated at
the phantom parameter are closer to uniform than when evaluate at the real parameter. Further, in
comparison to an SGD checkpoint, the phantom parameter of SAM weights points more uniformly.
We plot each result over multiple checkpoints over the duration of training (epoch in bold).

H VARIANTS OF THE TOY SETUP
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Figure 8: Extended version of Figure 5. Median importance weighting as a function of the con-
tribution of each feature. We partition the data into bins based on the contribution of the easy and
hard features (yveasyΦeasy and yveasyΦhard), as defined in Section 6.2. For each of these bins, we
plot the median importance weight term λi for the points in the bin. We include the corresponding
plots for the toy (top), CelebA (center), and Waterbirds (bottom). We plot each result over multiple
checkpoints over the duration of training (epoch in bold).
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Figure 9: Variants of the toy setup to include noise in the feature distributions (compare with Fig-
ure 2). We include three types of noise distributions: (A) label noise, (B) Gaussian noise, and (C)
feature dropout. For each type of noise, we apply the noise to: (1) both the simple and complex fea-
tures, and (2) only the complex feature. We plot the probing error of the hard feature as a function
of the LSAM phantom parameter ρ. Note that ρ = 0 corresponds to the baseline SGD model.
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Figure 10: Variant of the toy setup in which we vary the batch size (compare with Figure 2). We
plot the probing error of the hard feature as a function of the LSAM phantom parameter ρ. Note that
ρ = 0 corresponds to the baseline SGD model.
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In this section, we present variants of the toy setup to include noise in the feature distributions and
to vary batch size. In general, our results are consistent with the results from the main paper. We
observe that LSAM is robust to a wide range of noise distributions and batch sizes.

H.1 NOISE DISTRIBUTIONS

In order to explore how LSAM behaves when features include noise, we train classifiers using the
toy setup with three types of noise distributions.
Label noise. We add label noise by randomly flipping the labels of a fraction of the features when
generating the training, as defined precisely in Section E. Note that this is different from how label
noise is typically defined: we are not flipping the labels of the training examples, but rather the
labels of the features. We vary the fraction of label noise from 0% to 10%.
Gaussian noise. We add Gaussian noise to the features, as defined precisely in Section E. We vary
the standard deviation of the Gaussian noise from 0 to 1.0.
Feature dropout. We add feature dropout to the features, in which, with some probability, we
replace features with 0, as defined precisely in Section E. We vary the probability of dropout from 0
to 0.4.
Hard-feature-only noise. For each type of noise, we also consider a variant in which the noise is
only added to the hard feature.
In general, we find that LSAM improves the probing error of the hard feature in comparison to SGD
for all types of noise (Figure 9). This suggests that the mechanisms of LSAM that improve feature
representation quality are robust to noise in the feature distributions.

H.2 BATCH SIZE

We also vary the batch size in the toy setup. We plot the probing error of the hard feature as a
function of the LSAM phantom parameter ρ in Figure 10. Note that ρ = 0 corresponds to the
baseline SGD model. We observe that LSAM is generally robust to a wide range of batch sizes, and
that the optimal value of ρ is similar across batch sizes. However, as batch size increases to be very
large, the improvement of LSAM degrades, consistent with [CITE]. In addition, we observe that for
large ρ, the probing error of the hard feature is more sensitive to batch size.
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