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Abstract001

Efforts to improve LLM agent performance002
on complex tasks have largely focused on003
fine-tuning and iterative self-correction. How-004
ever, these approaches often lack generalizable005
mechanisms for long-term learning and remain006
inefficient in dynamic environments. We in-007
troduce OmniReflect, a hierarchical reflection-008
driven framework that constructs constitutions,009
compact sets of guiding principles distilled010
from past task experiences, to enhance the011
effectiveness and efficiency of LLM agents.012
OmniReflect operates in two modes: Self-013
sustaining, where a single agent periodically014
curates its own reflections during task execu-015
tion, and Co-operative, where a meta-advisor016
derives constitutions from a small calibration017
set to guide another agent. To construct these018
constitutional principles, we employ Neural,019
Symbolic, and Neuro-Symbolic techniques, of-020
fering a balance between contextual adaptabil-021
ity and computational efficiency. Empirical022
results averaged across models show major023
improvements in task success, with absolute024
gains of +10.3% on ALFWorld, +23.8% on025
BabyAI, and +8.3% on PDDL in the Self-026
sustaining mode. Similar gains are seen in027
the Co-operative mode, where a lightweight028
Qwen3-4B ReAct agent outperforms all Reflex-029
ion baselines on BabyAI. These findings high-030
light the robustness and effectiveness of Om-031
niReflect across environments and backbones.032

1 Introduction033

Foundational Large Language Models (LLMs) are034

increasingly being deployed as autonomous agents035

to explore environments and utilize tools for ex-036

ecuting complex, often compound tasks on be-037

half of users (Shen et al., 2024; Yang et al., 2023;038

Nakajima, 2023). Despite these advancements, re-039

cent studies continue to highlight key limitations040

of LLM-based agents, particularly in reasoning,041

planning, and continual learning (Jain et al., 2024;042

Huang et al., 2023).043

Figure 1: Existing strategies such as ReAct (Yao et al.,
2022) rely on step-by-step reasoning within a single
trajectory, while Reflexion (Shinn et al., 2023) enhances
performance through iterative retries guided by self-
critiques. In contrast, OmniReflect maintains catego-
rized constitution rules (summarized reflections) that
guide task-solving by collating knowledge over time.

Two major strategies are commonly employed 044

to mitigate these limitations: 045

1. Fine-tuning, typically performed on large- 046

scale, environment-specific datasets using 047

supervised or reinforcement learning ap- 048

proaches (Guo et al., 2025; Deng et al., 2024; 049

Shridhar et al., 2020), which is computation- 050

ally expensive and often lacks scalability. 051

2. Reasoning and self-correction, where an 052

LLM agent is prompted step-by-step to reason 053

about its actions and revise its course if the 054

task remains incomplete (Shinn et al., 2023; 055

Madaan et al., 2023; Xi et al., 2023). 056

Self-correcting methods usually involve analyz- 057

ing and critiquing failed attempts to extract task- 058

specific feedback (called reflection) that can guide 059

future trials (Shinn et al., 2024; Madaan et al., 060

2023). Although these approaches enhance task- 061

level performance, they often fall short in achieving 062

abstraction and generalization in an environment 063

(Xie et al., 2024). 064
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Figure 2: The OmniReflect framework operates in two reflective modes: (1) Self-Sustaining: where the LLM
agent periodically generates, updates and uses constitutions; and (2) Co-operative: where a meta-advisor derives
constitution rules from a calibration set to guide another agent. These rules encode task-level and environment level,
knowledge for effective task completion. Examples are shown on the right.

We introduce OmniReflect, a hierarchical065

reflection-based framework that adaptively curates066

an evolving constitution, a set of categorized and067

summarized reflections, to guide task-solving by068

accumulating knowledge over time. The constitu-069

tion serves as structured memory, distilled from070

prior task experiences within an environment. By071

tightly integrating reflections with task execution,072

OmniReflect not only enables efficient task com-073

pletion but also facilitates the creation of reusable074

knowledge. To ensure the continued utility and075

coherence of constitution (e.g., by reducing redun-076

dancy), OmniReflect performs periodic summa-077

rization, transforming unstructured episodic traces078

into well-organized rule book. Figure 1 provides079

an overview of the OmniReflect framework and080

highlights key differences compared to existing ap-081

proaches.082

OmniReflect can be used in two distinct modes:083

1) Self-sustaining and 2) Co-operative. Figure 2084

illustrates how both modes generate and utilize con-085

stitution, structured reflections accumulated across086

the environment. In the Self-sustaining mode, the087

same LLM agent periodically generates and reuses088

summarized reflections, curating them at fixed step089

intervals. In the Co-operative mode, a meta-advisor090

agent uses a small calibration set of tasks to gen-091

erate constitution rules through reflections, which092

are then consumed by a separate task-solving agent.093

This modular integration leads to consistent per-094

formance improvements with minimal computa-095

tional overhead. Furthermore, the synergistic inte-096

gration of these two modes creates a robust system 097

that acquires foundational knowledge during post- 098

training calibration and incrementally refines it at 099

test time, complementing both fine-tuning and self- 100

correction strategies. 101

We leverage Neural, Symbolic, and Neuro- 102

Symbolic techniques to construct constitutions. 103

Neural methods offer rich, context-aware feed- 104

back but are often computationally intensive. Sym- 105

bolic methods, while efficient and interpretable, 106

tend to lack flexibility. Our Neuro-Symbolic ap- 107

proach strikes a balance, combining the adaptabil- 108

ity of neural models with the structural efficiency 109

of symbolic reasoning to enable scalable and cost- 110

effective constitution generation. We empirically 111

validate this design across diverse agentic bench- 112

marks and LLMs, demonstrating that OmniReflect 113

consistently outperforms strong baselines while 114

solving tasks in fewer steps, highlighting both its 115

effectiveness and efficiency. 116

Our key contributions are as follows: 117

• We propose OmniReflect, a hierarchical, 118

reflection-driven agent framework that en- 119

ables LLMs to accumulate reusable knowl- 120

edge by adaptively creating and summarizing 121

constitutions in parallel with task execution, 122

thereby enhancing reasoning efficiency and 123

overall agent performance. 124

• We demonstrate the robustness of Om- 125

niReflect’s constitution-building in two 126

modes (Self-sustaining and Co-operative) 127
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showing strong performance even with128

minimal calibration data.129

• We evaluate OmniReflect across diverse agen-130

tic benchmarks (ALFWorld, BabyAI, and131

PDDL) using multiple LLM backbones, con-132

sistently outperforming competitive baselines133

in task success and efficiency.134

2 OmniReflect135

The core design of our adaptable reflection frame-136

work, OmniReflect, is shown in Figure 2, with137

step-by-step operations described in Algorithm 1.138

OmniReflect is designed to solve tasks from a139

dataset D by leveraging an LLM agent L that al-140

ternates between two complementary phases: (1)141

ACTION (La) and (2) REFLECTION (Lref). In the142

ACTION phase, the agent generates an action condi-143

tioned on the task description, the current trajectory144

of steps taken, and the constitutions (OmniC) cu-145

rated up to the previous REFLECTION phase. In146

the REFLECTION phase, the agent produces reflec-147

tions based on the task description, the observed148

trajectory, and the existing constitution. These149

reflections include both task-agnostic long-term150

memories, shared across the environment, and task-151

specific progress updates, which act as short-term152

guidance for the current task. Section 2.2 provides153

a detailed breakdown of these reflection types.154

Actions are generated at each turn until either a155

terminal state is reached or a predefined maximum156

number of steps (turnsmax) is exceeded. In contrast,157

reflections are generated at fixed intervals deter-158

mined by a reflection frequency hyperparameter159

(rfreq), while long-term memory summarization is160

triggered based on a separate summarization fre-161

quency (sfreq). We adopt a hyperparameter-driven162

approach, rather than automating the invocation via163

LLM-as-a-Judge strategies (Zheng et al., 2023; Gu164

et al., 2024), due to two main reasons: (1) It avoids165

the inefficiencies of known pitfalls in LLM-as-a-166

judge based automation (Jain et al., 2024; Gu et al.,167

2024; Li et al., 2025; Szymanski et al., 2025);(2)168

It offers greater control over the cost–performance169

trade-off of reflection.170

Specifically, agents might invoke reflection ei-171

ther excessively (seeking frequent reassurance) or172

insufficiently, due to misplaced confidence. Ad-173

ditionally, randomization of test episodes across174

benchmarks can skew task-specific insight dis-175

tributions and complicate automated summariza-176

tion timing, potentially causing under- or over-177

summarization. We provide a detailed analysis of 178

the effects of these hyper-parameters in Section 3.5. 179

Algorithm 1 OmniReflect Methodology
Input:

▶ Dataset D with set of tasks ti, D = {ti |
i ∈ {1, . . . , N}

▶ LLM Agent: La, Reflection Agent: Lref
▶ Environment E producing (observation,

reward) on receiving action
Output:

▶ Success Rate, SR
▶ Constitutions, OmniC

1: Initialize constitutions, OmniC
2: Intialize rewards, rewards
3: Initialize hyper-parameters,

rfreq, sfreq, turnsmax
4: for each task ti in D do
5: Initialize trajectory, τ
6: Initialize task description, dti
7: Set turn← 0
8: while (turn < turnsmax) do
9: ▷ Action Phase

10: act← La(dti , OmniC, τ)
11: obs, reward← E(act)
12: Append (act, obs) to τ
13: ▷ Periodic Reflection Phase
14: if (turn % rfreq is 0) then
15: rules← Lref(dti , OmniC, τ)
16: Append rules to OmniC
17: end if
18: if obs is final state then
19: ▷ Task is complete
20: break
21: end if
22: Increment turn
23: end while
24: Append reward to rewards
25: ▷ Periodic Summarization
26: if (i% sfreq is 0) then
27: OmniC ← Lref(OmniC)
28: end if
29: end for
30: ▷ Compute success rate
31: SR← mean(rewards) ∗ 100
32: return SR,OmniC

2.1 Reflection generation strategies 180

In this work, we explore three distinct approaches 181

for generating natural language reflections based 182

constitutions: 1) Neural 2) Symbolic and 3) Neuro- 183
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Symbolic.184

2.1.1 Neural Generation185

Following prior work (Shinn et al., 2024; Madaan186

et al., 2024), we use LLMs to generate reflections.187

We craft reflection-oriented prompts and use Lref188

to produce a list of rules or insights, which collec-189

tively form the constitution. To avoid redundancy190

and ensure meaningful information gain, Lref also191

periodically summarizes past reflections. The con-192

stitution is continuously updated during task exe-193

cution and leveraged in subsequent steps to guide194

the agent towards successful task completion.195

2.1.2 Symbolic Generation196

We extend the base regular expressions introduced197

by AgentBoard (Ma et al., 2024) for progress track-198

ing, enhancing them to support both fine-grained199

and high-level template-based natural language200

feedback. Additionally, we design a concise set201

of task-specific and environment-level rules based202

on analysis of representative successful and failed203

trajectories. During each reflection step, the current204

trajectory, particularly the most recent observation,205

is evaluated against these regular expressions to206

generate reflections.207

2.1.3 Neuro-Symbolic Generation208

This method guides the Neural system using few-209

shot exemplars, which are derived from reflections210

produced during the Symbolic Generation process.211

This approach aligns LLM-generated reflections212

more closely with human intuition, while substan-213

tially reducing the need for extensive annotations214

typically required by reliable symbolic systems.215

Refer to Appendix Section E for prompt details216

and Section F for sample regular expressions used217

across benchmarks.218

2.2 Reflection categories219

The REFLECTION phase in OmniReflect produces220

three distinct types of reflections: (1) Abstract,221

(2) Error, and (3) Progress. Figure 2 presents222

representative examples of each of these reflection223

types, drawn from sample tasks in the ALFWorld,224

BabyAI, and PDDL environments.225

In the OmniReflect framework, abstract and er-226

ror reflections are periodically summarized and227

stored in long-term memory, which is shared across228

tasks and sessions1 at the environment level. In229

1While OmniReflect is initially designed for single-trial
operation per task, it can be extented to multiple trials while
preserving consistent knowledge sharing across trials.

contrast, progress tracking reflections serve as tran- 230

sient, short-term knowledge that guides decision- 231

making within the current task episode2. 232

2.2.1 Abstract Reflections 233

We generate both task-specific and task-agnostic 234

abstract reflections. In the task-specific setting, the 235

agent solves individual tasks by using reflection 236

to align its existing knowledge with the unique 237

aspects of the current environment. This helps 238

identify and correct errors caused by mismatched 239

assumptions about the environment, often caused 240

due to the implicit world knowledge of the model. 241

In the task-agnostic setting, the agent’s objective 242

is to explore the environment broadly to generate 243

reusable environment-level knowledge that bene- 244

fits future tasks. In the OmniReflect framework, 245

task-specific abstract reflections are generated in 246

both the Self-sustaining and Co-operative modes. 247

In contrast, task-agnostic abstraction is utilized ex- 248

clusively in the Co-operative mode to address the 249

challenge of limited data availability. 250

2.2.2 Error Reflection 251

We build upon prior work such as Reflexion (Shinn 252

et al., 2024), extending its strategy of trajectory 253

analysis to generate actionable feedback for error 254

correction. Unlike existing methods that typically 255

generate reflections post hoc or across multiple task 256

trials (Renze and Guven, 2024), our OmniReflect 257

framework introduces in-situ reflections: guidance 258

is generated at periodic intervals within a single 259

task execution episode. This enables the agent to 260

recover from mistakes more rapidly, reducing the 261

number of iterations needed for successful task 262

completion. Furthermore, the agent evaluates the 263

efficiency of its current trajectories, identifying re- 264

curring planning inefficiencies along with potential 265

strategies for improvement. 266

2.2.3 Progress Reflection 267

OmniReflect generates task-specific progress- 268

tracking thoughts, to assist in monitoring the exe- 269

cution of necessary sub-tasks in an optimal order 270

to complete tasks. Unlike error reflections, they 271

offer not only actionable guidance but also non- 272

actionable, grounding observations that affirm com- 273

pleted sub-tasks, thereby reinforcing the agent’s 274

confidence in progressing to subsequent steps. 275

2For clarity and conciseness, three types of reflections are
not mentioned within the algorithm.
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3 Experimental Details and Results276

We conducted experiments on ALFWorld (Shrid-277

har et al., 2020), BabyAI (Chevalier-Boisvert et al.,278

2018), and PDDL (Silver and Chitnis, 2020), three279

benchmark environments that balance navigation,280

reasoning, and compound task-solving. Details of281

the publicly available datasets, model configura-282

tions, and experimental settings are provided in the283

following sections.284

3.1 Datasets285

ALFWorld is designed to evaluate the ability286

of an agent to perform household tasks through287

goal-directed navigation and interaction. We use288

the unseen split of the dataset for our experiments.289

A detailed description is provided in Appendix B.290

291

BabyAI is a grid-based environment in which292

agents navigate through interconnected minigrids293

to solve tasks such as “pick up a red box and then294

go through the grey door to the right”. We adopt295

the same test split used by AgentBoard (Ma et al.,296

2024). See Appendix C for more details.297

298

PDDL contains planning benchmarks focused on299

task decomposition and state optimization. Our300

experiments include four domains: Gripper (ob-301

ject transport between rooms), Blocksworld (block302

stacking and unstacking), Barman (cocktail prepa-303

ration), and Tyreworld (tool-based mechanical re-304

pairs). We follow the same test split as used by305

AgentBoard. Refer to Appendix D for details.306

3.2 LLMs and Experimental Setup307

Large Language Models. Our study employed308

three widely recognized LLMs as agents: (1)309

Qwen3-4B (Team, 2025), (2) Gemini-2.0 (includ-310

ing its “flash" variant) and (3) GPT-4 (including its311

“omni" variant) (Hurst et al., 2024). To ensure a312

balance between reproducibility and performance,313

we set the temperature to 0, the nucleus sampling314

probability (top_p) to 0.7, the token sampling limit315

(top_k) to 50, and applied a repetition penalty of 1.316

317

ReAct. The ReAct reasoning strategy (Yao et al.,318

2022) combines reasoning (thinking) and acting319

within agentic environments, enabling step-by-step320

decomposition of complex tasks. For ALFWorld,321

we use the prompts provided by the original322

authors (Yao et al., 2022), while for BabyAI323

and PDDL, we adopt ReAct prompts crafted by324

AgentBoard. Each experiment uses a single trial 325

with a maximum of 50 turns per task. 326

327

Reflexion. While using Reflexion (Shinn et al., 328

2024) as our baseline, we adopt the same protocol 329

as the original work, allowing up to 15 trials per 330

task. Each trial consists of 50 turns. 331

332

OmniReflect. We adapt the ReAct reasoning strat- 333

egy with 1-2 few-shot examples to construct our 334

base prompt. For the primary results reported in 335

Table 1, we use a reflection frequency (rfreq) of 336

10 and a summarization interval (sfreq) of 10 as 337

hyper-parameters. Specifically, we generate reflec- 338

tions and update the constitution every 10 turns, 339

and perform a constitution summary after complet- 340

ing 10 tasks. Similar to ReAct, OmniReflect uses a 341

single trial with a maximum of 50 turns per task. 342

3.3 Self-sustaining mode: OmniReflect as an 343

agent 344

The primary results for the self-sustaining mode are 345

shown in Table 1. OmniReflect achieves the highest 346

success rate in 7 out of 9 evaluated settings, outper- 347

forming Reflexion baselines under at least one of 348

the neural, symbolic, or neuro-symbolic configura- 349

tions. The only exceptions are Reflexion Gemini- 350

2.0 on ALFWorld and Reflexion GPT-4 on PDDL. 351

Averaged across models, OmniReflect yields sub- 352

stantial performance gains over Reflexion’s 15-trial 353

setup, despite operating with only a single trial 354

augmented by periodic reflection: +10.3% on ALF- 355

World, +23.8% on BabyAI, and +8.3% on PDDL. 356

Performance patterns across environments fur- 357

ther illuminate the strengths of each reflection strat- 358

egy. On ALFWorld and PDDL, where tasks ex- 359

hibit procedural regularities and structured action 360

sequences, Symbolic and Neuro-Symbolic variants 361

of OmniReflect consistently achieve top perfor- 362

mance. These results highlight the strength of sym- 363

bolic mechanisms, such as regular expressions, for 364

progress monitoring and ensuring plan adherence. 365

Conversely, in BabyAI, where success is tightly 366

coupled to dynamic spatial exploration (e.g., object 367

and door placement is random), Neural approaches 368

dominate. This suggests that flexible, open-ended 369

reasoning is better suited for environments with 370

high variability and partial observability. 371

Collectively, these results underscore the effi- 372

cacy of hierarchical, in-session reflection during 373

task execution, demonstrating its ability to enable 374

early identification and resolution of errors, leading 375
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ALFWorld BabyAI PDDL
Qwen Gemini GPT-4 Qwen Gemini GPT-4 Qwen Gemini GPT-4

ReAct 44.0 68.0 54.2 24.6 45.2 31.2 1.7 41.7 76.7
Reflexion 82.8 94.0 84.1 44.1 53.2 50.8 11.7 66.7 91.7
Self-sustaining mode
OmniReflect-Neural 83.6 91.8 94.8 73.2 74.1 72.3 20.0 71.67 78.3
OmniReflect-Symbolic 91.8 88.8 100.0 45.5 67.9 60.7 16.7 78.3 85.0
OmniReflect-Neuro-Symbolic 86.6 93.3 96.3 54.5 64.3 68.8 31.7 75.0 80.0
Co-operative mode with ReAct agent
OmniReflect meta-advisorQwen 73.1 77.6 93.8 58.0 58.0 59.8 12.1 36.6 70.0
OmniReflect meta-advisorGemini 55.2 47.0 94.8 50.9 58.0 52.7 10.0 45.7 75.0
OmniReflect meta-advisorGPT-4 76.9 79.1 96.3 60.7 63.4 64.2 13.3 65.2 80.0

Table 1: Success Rate (%) of different LLM-agents across ALFWorld, BabyAI, and PDDL environments. All
results follow the experimental setup described in Section 3.2. Reflexion (Shinn et al., 2023) results indicate
final performance after 15 trials are completed. All ReAct and OmniReflect results only use 1 trial. The highest-
performing results are shown in bold. Qwen and Gemini refer to Qwen3-4B and Gemini-2.0 respectively.

to significantly improved task completion across376

diverse environments.377

3.4 Co-operative mode: OmniReflect as a378

Meta-Advisor379

Table 1 also reports success rate improvements380

achieved when using OmniReflect meta-advisor381

models. In this setup, the meta-advisor constructs382

the constitution, while the consumer agent applies383

ReAct-style reasoning guided by the derived rules.384

When equipped with constitutions distilled via Om-385

niReflect from just one calibration example per task386

type, ReAct agents exhibit substantial performance387

gains, achieving average improvements of 28% on388

ALFWorld, 29% on BabyAI, and 20.9% on PDDL,389

using GPT-4 as the meta-advisor. Crucially, these390

gains are realized without any additional LLM in-391

ferences at test time. Instead, the meta-advisor-392

generated constitutions are injected into the agent’s393

prompt, demonstrating that even a lightweight in-394

tegration of natural language guidance can yield395

strong downstream benefits. Notably, this setting396

utilizes only environment-level reflections (specifi-397

cally abstract and error-level constitutions), with-398

out incorporating task-level progress tracking or399

dynamic reflection, as the ReAct agent does not per-400

forming on-the-fly reflective updates during task-401

execution.402

The results underscore the effectiveness and403

transferability of OmniReflect-generated constitu-404

tions (OmniC), across different LLM backbones405

highlighting their scalability and versatility.406

3.5 Ablation Studies and Discussion407

Choice of OmniReflect Meta-Advisor. As illus-408

trated in Table 1, reasoning capabilities are strongly409

correlated with both its ability to generate high- 410

quality constitutions and to follow them effectively. 411

A larger and more capable model such as GPT-4 412

demonstrates exceptional performance as both a 413

meta-advisor (Section 3.4) and as a follower. De- 414

spite its smaller scale, Qwen3-4B proves to be a 415

surprisingly competitive meta-advisor, frequently 416

enabling greater performance gains in downstream 417

ReAct agents compared to Gemini-2.0. 418

In total, 24 out of 27 evaluated meta- 419

advisor/ReAct agent configurations show substan- 420

tial performance improvements over the ReAct- 421

only baseline, demonstrating the robustness and 422

transferability of OmniReflect-derived constitu- 423

tions across model architectures. The only ex- 424

ceptions occur when Gemini-2.0 serves as both 425

the ReAct agent and meta-advisor on ALFWorld, 426

and when GPT-4 ReAct agent is paired with ei- 427

ther Qwen3-4B or Gemini-2.0 as meta-advisors on 428

PDDL. These cases likely reflect either insufficient 429

abstraction quality or weaker synergy in reflection 430

transfer across model scales. 431

Notably, one compelling result is that a Qwen3- 432

4B ReAct agent, when guided by GPT-4 as a meta- 433

advisor, outperforms all Reflexion baselines on 434

BabyAI. This highlights the potential for smaller 435

models to exhibit advanced reasoning behavior 436

when grounded with high-quality constitutions pro- 437

duced a capable OmniReflect Agent. 438

Impact of Reflection Hyper-Parameters. Ta- 439

ble 2 illustrates that across all datasets, over- 440

summarization can degrade performance, poten- 441

tially omitting useful information. In contrast, 442

increasing the frequency of reflection generally 443

yields greater benefits, particularly in partially ob- 444

servable environments like BabyAI, where ongo- 445
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(rfreq, sfreq) ALFWorld BabyAI PDDL
(5, 5) 95.2 67.8 73.3
(5, 10) 96.7 65.2 76.7
(5, 20) 97.0 65.2 78.3
(10, 5) 93.2 62.5 76.6

(10, 10) 94.8 72.3 78.3
(10, 20) 94.8 71.8 78.3

Table 2: Success rates on ALFWorld, BabyAI, and
PDDL using the OmniReflect-Neural setting with GPT-
4, illustrating the impact of reflection and summariza-
tion hyperparameters on task performance.

ALFWorld BabyAI PDDL
ReAct 96.3 64.2 80.0
Neural 100 78.5 86.7
Neuro-Symbolic 100 74.1 90.0

Table 3: Success rate (%) on ALFWorld, BabyAI,
and PDDL using OmniReflect-Neural and OmniReflect-
Neuro-Symbolic settings with GPT-4, highlighting the
added benefit of leveraging pre-generated constitutions
from a GPT-4-based meta-advisor.

ing self-analysis helps the agent better assess its446

progress and adapt rapidly. This experiment uses447

only the OmniReflect-Neural setting, due to its min-448

imal dependence on human annotations, making449

it more adaptable in practice. Additionally, the450

Symbolic variant typically do not perform periodic451

reflection; instead, they trigger reflection condition-452

ally, based on the agent’s current progress.453

OmniReflect Agent with OmniReflect Meta-454

Advisor. Table 3 demonstrates that both neural455

and neuro-symbolic variants of the OmniReflect456

agent consistently outperform their ReAct coun-457

terparts, despite receiving identical guidance from458

the GPT-4 meta-advisor to mitigate the cold-start459

challenge. This indicates that OmniReflect agents460

not only effectively integrate external advice but461

also adapt and refine it over time, exhibiting a ro-462

bust capacity to evolve initial guidance into more463

performant strategies.464

Cost Efficiency. Figure 3 highlights the efficiency465

of the OmniReflect approach compared to both466

the baseline Reflexion method and standard Re-467

Act agents. Across all datasets, OmniReflect con-468

sistently achieves performance comparable to or469

exceeding Reflexion, while maintaining inference470

efficiency on par with ReAct. Specifically, the471

bubble sizes (representing the average number of472

interaction turns) show that OmniReflect agents, re-473

gardless of backbone size, operate with efficiency474

comparable to ReAct, while achieving substantially 475

higher success rates across a range of scenarios. 476

Furthermore, OmniReflect’s Neural and Neuro- 477

Symbolic setting, when using multiple trials on 478

ALFWorld (where Reflexion is the strongest) reach 479

to 100% in just one additional trial. These results 480

underscore the inefficiencies introduced by task- 481

specific, trial-level reflections and siloed knowl- 482

edge3. In contrast, OmniReflect’s hierarchical, 483

environment-level reflection framework enables 484

more generalizable and cost-effective learning, po- 485

sitioning it as a scalable and effective alternative 486

for LLM-based agents. 487

Reflexion may requires up to 764 LLM calls 488

per task, while our neural approach reduces this 489

to under 80, achieving ∼ 700 fewer inferences. 490

OmniReflect-Symbolic does not require any addi- 491

tional LLM calls to generate reflections. 492

Impact of Types of Reflection. Table 4, presents 493

the contributions of the three distinct types of reflec- 494

tions employed in our study. Our analysis reveals 495

that no single type of reflection emerges as the 496

definitive leader, suggesting that their combined 497

implementation is integral to the robust perfor- 498

mance exhibited by our OmniReflect framework. 499

Notably, the data underscores the critical role of 500

environment-level Error reflection, particularly in 501

scenarios where task-level Progress reflections are 502

absent, i.e. the ReAct agent is integrated with the 503

OmniReflect Meta-advisor. Owing to the intricate 504

structure of PDDL, where an action is successful 505

only when all necessary conditions are met (as 506

illustrated in TyreWorld, where the precondition 507

for loosening requires that the agent possesses a 508

wrench, the nut on the hub is tight, and the hub is 509

grounded), Abstract reflections play a pivotal role 510

in explaining these nuances that are often challeng- 511

ing to discern solely through error analysis. 512

For an in-depth discussion on the influence of 513

calibration data size, as well as analysis and illustra- 514

tive examples of constitutions produced by various 515

models across multiple experiments, please consult 516

Appendix section A. 517

4 Related Works 518

Constitutional AI (Bai et al., 2022) introduced the 519

use of human-written constitutions to promote help- 520

ful and harmless behavior. In contrast, our frame- 521

3The average number of turns for Reflexion can be skewed
due to a few failed examples. Nevertheless, the figure still
provides an important comparison that OmniReflect is not
impacted by outliers in the efficiency dimension.
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(a) ALFWorld (b) BabyAI (c) PDDL

Figure 3: Comparison of efficiency and effectiveness across ReAct, Reflexion, and OmniReflect agents reveals that
OmniReflect achieves success rates comparable to or exceeding those of Reflexion, while maintaining inference
efficiency on par with ReAct. Bubble sizes denote the average number of interaction turns per task.

ALFWorld BabyAI PDDL
OmniReflect-Neural 94.8 72.3 78.3
(-) Abstract 91.8 48.2 71.6
(-) Error 92.5 46.4 76.7
(-) Progress 88.8 54.5 75.0
ReAct + MetaAdvisor 96.3 64.2 80.0
(-) Abstract 92.5 61.6 73.3
(-) Error 90.6 52.7 75.0

Table 4: Success rate (%) on ALFWorld, BabyAI, and
PDDL using OmniReflect-Neural and a ReAct agent
with a meta-advisor, illustrating the contributions of
individual reflection types. The largest performance
drops are highlighted in red. GPT-4 is used as both the
agent and meta-advisor in their respective settings.

work autonomously curates task-oriented constitu-522

tions focused on improving task-completion quality.523

Moreover, unlike their finetuning-based approach,524

we leverage prompt-based guidance.525

Self-correction methods like Self-Consistency526

(Wang et al., 2023), Universal Self-Consistency527

(Chen et al., 2024a), and MCR (Yoran et al.,528

2023) enhance reasoning by aggregating or meta-529

reasoning over multiple CoT paths. Complemen-530

tary work leverages iterative correction through531

natural language feedback (Madaan et al., 2024;532

Shinn et al., 2023), numeric rewards and meta-533

feedback (Pan et al., 2024), and introspective learn-534

ing via Self-Play Fine-Tuning in weaker LLMs535

(Chen et al., 2024b). In contrast, OmniReflect per-536

forms reflection at both the environment and task537

level, using constitution-style rules. It enables ro-538

bust, interpretable self-improvement in a single539

trial (without multiple reasoning chains or repeated540

sampling) while markedly boosting weaker LLMs541

without extra fine-tuning or inference overhead.542

MemoryBank (Zhong et al., 2024), RET-LLM543

(Modarressi et al., 2023), and MemGPT (Packer544

et al., 2023) use structured memory or retrieval to545

persist knowledge, but face challenges like drift, 546

size limits, and relevance filtering (Wu et al., 2024). 547

In contrast, OmniReflect maintains a compact, co- 548

herent memory via periodic constitution summa- 549

rization, avoiding unbounded growth. 550

Automatic prompt construction approaches like 551

(Shin et al., 2020; Zhang et al., 2022; Xu et al., 552

2022; Prasad et al., 2022; Li and Liang, 2021; 553

Pryzant et al., 2023; Guo et al.; Yang and Li, 2023; 554

Tang et al., 2025) leverage LLMs as optimizers to 555

adapt prompts for specific downstream tasks. In 556

contrast, our approach uses a straightforward strat- 557

egy by appending constitutions to system prompts 558

that guide the model in using them effectively. 559

5 Conclusion 560

We introduced OmniReflect, a hierarchical 561

reflection-driven framework that summarizes task 562

and environment-level insights into reusable con- 563

stitution, guiding LLM agents in complex environ- 564

ments. It operates effectively in Self-sustaining 565

mode and Co-operative mode, where constitutions 566

are derived from minimal calibration significantly 567

boosting smaller agent’s performance. Our Neu- 568

ral, Symbolic, and Neuro-Symbolic strategies bal- 569

ance adaptability with efficiency. Empirical results 570

across ALFWorld, BabyAI, and PDDL demon- 571

strate consistent improvements over strong base- 572

lines, underscoring OmniReflect’s scalability, gen- 573

eralizability, and cost-efficiency in enhancing self- 574

reflection, and adaptability in LLM agents, serving 575

as a crucial benchmark toward building more effi- 576

cient and autonomous language-based agents. 577
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6 Limitations578

While OmniReflect delivers strong performance579

gains, it introduces additional LLM calls, which580

may pose challenges for real-world deployment.581

However, we show that constitutions generated582

by smaller models (e.g., Qwen3-4B) can signifi-583

cantly improve the performance of larger models584

like GPT-4 and Gemini-2.0, suggesting that over-585

head can be mitigated through strategic model se-586

lection. Currently, constitutions are integrated with-587

out filtering, which may increase computational588

costs for models with limited context windows and589

introduce noise. Future work will explore more ef-590

ficient constitution integration to reduce overhead591

and enhance usability. Though we evaluate Om-592

niReflect in embodied agentic settings, extending593

it to broader reasoning and planning tasks remains594

a promising direction. Finally, while we use ReAct595

for its simplicity and minimal inference overhead,596

future efforts will explore combining OmniReflect597

with advanced strategies such as Self-Consistency598

to further strengthen agent robustness.599
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A Additional Results and Discussion805

A.1 Amount of calibration data.806

Table 5 shows that increasing the amount of cali-807

bration data generally improves the quality of the808

meta-advisor, thereby enhancing the downstream809

performance of ReAct agents that rely on it. How-810

ever, performance gains begin to taper beyond a811

certain point. We exclude BabyAI and PDDL from812

this analysis, as using more than one example per813

task type would constitute nearly 50% of their re-814

spective test sets, undermining the goal of demon-815

strating that the meta-advisor can be calibrated816

with significantly fewer examples than required817

for evaluation. A calibration factor beyond 5 ap-818

proaches this threshold for ALFWorld as well, and819

thus serves as the upper bound in our experiments.820

ALFWorld - Success Rate
Calibration

Factor
Calibration Set

Size
Qwen GPT-4

1 6 76.9 96.3
3 18 79.1 97.8
5 30 80.6 98.5

Table 5: Effect of the calibration factor (number of ex-
amples per task type) on constitution quality and down-
stream ReAct agent performance, as measured on the
ALFWorld dataset. GPT-4 is used as the meta-advisor.

A.2 Constitutions821

This subsection presents representative examples822

spanning all three datasets and reflection types. On823

average, all models generate the highest number of824

abstract reflections (20–50 per dataset), while error825

reflections at the environment level are less fre-826

quent (typically fewer than 20). In contrast, the827

number of progress reflections scales with task828

complexity, as shown in the tables. GPT-4 consis-829

tently produced well-structured outputs, whereas830

Gemini 2.0 and Qwen3-4B encountered JSON- 831

style formatting issues in over 50% of cases, neces- 832

sitating complex post-processing to recover struc- 833

tured data. 834

An exception was observed with Gemini 2.0, 835

which generated over 100 error reflections, diluting 836

the effectiveness of targeted reflection and poten- 837

tially contributing to its lower performance when 838

guided by its own constitutions. GPT-4 produced 839

the largest constitutions, often exhibiting high ver- 840

bosity. While Gemini 2.0 and Qwen3-4B generated 841

a comparable number of reflections, Qwen3-4B 842

frequently yielded more coherent and concise sum- 843

maries without sacrificing quality. 844

Notably, (without explicit guidance) Gemini 2.0 845

included priority annotations in its rules—for ex- 846

ample: ‘priority’: 2, ‘rule’: ‘Prioritize checking 847

locations where target objects are most likely to 848

be found (e.g., drawers, shelves, cabinets, coun- 849

tertop).’, indicating an attempt to encode further 850

structure within its reflective outputs that can be 851

leveraged for reasoning. 852

Table 6, Table 7, and Table 8, show examples of 853

different types of constitutions created by all three 854

models. We have used majority voting to choose 855

abstract and error constitution samples. 856

B ALFWorld 857

This section provides additional details and experi- 858

mental results for the sequential decision making 859

dataset ALFWorld. The embodied tasks are cate- 860

gorized into six types: Pick, Examine, Heat, Cool, 861

Clean, and Pick Two. These tasks involve navigat- 862

ing a home environment to achieve specific goals, 863

such as “place the vase in the safe” or “inspect 864

the book under the desk lamp.” Appendix Tables 9 865

provide a randomly chosen example annotation for 866

one different types of tasks present in the dataset, 867

along with a trajectory that solves the task. 868

C BabyAI 869

BabyAI environment was introduced in (Chevalier- 870

Boisvert et al., 2018) and covers tasks to be per- 871

formed in a grid environment. They can have mul- 872

tiple grid and minigrid sizes, ranging from a single 873

minigrid to upto 9 minigrids. The minigrids can be 874

of sizes 4∗4 to 7∗7. In this environment, the agent 875

can see a 7∗7 grid in the direction it is currently 876

facing. In most of the experiments, the agent is 877

only exposed to this information which severely 878

limits the global perspective of the complete grid 879
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Abstract:
Use fridge for cooling
...
heat [object] with microwave [location] requires microwave to be closed
...
Plates can be found on countertops

Error:
{

"mistake ": "Went to locations that are not present in the environment .",
"solution ": "Carefully check the available locations before moving"

}
...
Progress:
[
You have located an apple ,
...
You have reached the microwave ,
...
]

Table 6: ALFWorld Constitution Examples

Abstract:
If you encounter a barrier while moving forward , turn left or right to explore a
different direction.
...
If you encounter a closed door , use the 'toggle and go through ' command to open it
and proceed.
...
If you see multiple doors , prioritize the closest one first.
...
If you see an object , note its color and position for future reference.

Error:
{

"mistake ": "Attempted to move forward into a barrier",
"solution ": "Should have turned right first to explore the room further"

}
...
{

"mistake ": "Attempted to open the door with an unrecognized action",
"solution ": "Should have checked valid actions before attempting to open the
door"

}

Progress:
[
You have found a blue key , now find a blue door.
...
]

Table 7: BabyAI Constitution Examples
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Abstract:

Gripper Example
If both grippers are occupied , move to the target room to drop the objects.
...
Blockworld Example
If the robot arm is holding a block , it can put down the block or stack it on
another clear block.
...
Barman Example
If you need to transfer an ingredient from a shot glass to a shaker , ensure the
shaker is clean and at the appropriate level.
...
Tyreworld Example
Complete the process on one hub before moving to the next , including jacking down
the hub after replacing the wheel and tightening the nuts.

Error:

{
"mistake ": "Attempted to shake a cocktail without all ingredients in the
shaker",
"solution ": "Ensure all required ingredients are in the shaker before
shaking"

}
...

{
"mistake ": "Inefficient sequence of actions",
"solution ": "Plan the sequence of actions to minimize the number of steps ,
such as filling all ingredients in the shot glass before transferring to the
shaker"

}

Progress:

[
"You have moved to roomb with ball1 and ball2 , now you should drop ball1 and ball2
in roomb.",

"After dropping ball1 and ball2 , you should move back to rooma to pick up ball3
and ball4.",
"Once you have picked up ball3 and ball4 , move to roomb and drop them there.",
"After dropping ball3 and ball4 , return to rooma to pick up ball5 and ball6.",
"Finally , move to roomb and drop ball5 and ball6 to complete the task."

]
...
[

"You have been repeatedly attempting to unstack b5 from b3, which is not a valid
action. Instead , consider other valid actions.",
"Since b5 is clear and the robot arm is empty , you should pick up b5.",
"After picking up b5, you can put it down on the table to free up b3.",
"Once b3 is clear , you can unstack b3 from b4.",
"After unstacking b3 from b4, you can put b3 on the table to free up b4.",
"Then , you can unstack b4 from b2.",
"After unstacking b4 from b2, you can put b4 on the table to free up b2.",
"Next , you can unstack b2 from b1.",
"After unstacking b2 from b1, you can put b2 on the table to free up b1.",
"Now , you can stack b1 on b2 to satisfy the first goal condition.",
"Then , you can pick up b4 and stack it on b1 to satisfy the third goal condition
.",
"Finally , you can pick up b3 and stack it on b5 to satisfy the second goal
condition ."

]
...

Table 8: PDDL Constitution Examples
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Table 9: ALFWorld: PUT Task

Task: Find some apple and put it in sidetable.
Initial observation: You are in the middle of a room. Looking quickly around you ,
you see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a
countertop 1, a diningtable 3, a diningtable 2, a diningtable 1, a drawer 1, a
fridge 1, a garbagecan 1, a microwave 1, a sidetable 1, a sinkbasin 1, a stoveburner
4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1. \newline

Your task is to: find some apple and put it in sidetable.
Action 1: think: To solve the task , I need to find and take an apple , then put it in
sidetable.

Observation 1: OK.
Action 2: think: First I need to find an apple. An apple is more likely to appear in
fridges (1), diningtables (1-3), sidetables (1), countertops (1), sinkbasins (1),

garbagecan (1). I can check one by one , starting with fridge 1.
Observation 2: OK.
Action 3: go to fridge 1.
Observation 3: The fridge 1 is closed.
Action 4: open fridge 1.
Observation 4: You open the fridge 1. The fridge 1 is open. In it, you see a lettuce
2, a mug 2, a potato 2, and a tomato 1.

Exploring: ...
Action 11: go to garbagecan 1.
Observation 11: On the garbagecan 1, you see a apple 3, and a egg 3.
Action 12: think: Now I find an apple (3). Next , I need to take it.
Observation 12: OK.
Action 13: take apple 3 from garbagecan 1.
Observation 13: You pick up the apple 3 from the garbagecan 1.
Action 14: think: Now I find an apple (3). Next , I need to put it in/on sidetable 1.
Observation 14: OK.
Action 15: go to sidetable 1.
Observation 15: On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3,
a potato 1, and a saltshaker 1.
Action 16: put apple 3 in/on sidetable 1.
Observation 16: You put the apple 3 in/on the sidetable 1.

which leads to lot of blind exploration. Figure 4880

provides an example of grid structure and objects881

used in BabyAI environment.882

Figure 4: Visualization of a BabyAI grid environment
showcasing balls, boxes, keys, and doors, with the red
triangle marking the agent’s location and orientation.

D PDDL 883

PDDL benchmark was made accesible using (Sil- 884

ver and Chitnis, 2020). It contains four distinct 885

environments that are used for this work: Grip- 886

per, Blockworld, Barman, and Tyreworld. Gripper 887

and Blockworld provide an initial state and a goal 888

state without explicit task instructions. However 889

Barman and Tyreworld provide explicit task goals. 890

The agent is expected to reason, plan, and navigate 891

to achieve the goal state. Examples of each dataset 892

can be found in the Table 10 below. 893

E Prompts 894

All prompts used in our experiments are outlined 895

in this subsection. 896

E.1 System Prompts 897

System prompts are specific to the environment 898

which outline action templates, and high level 899

guidelines for solving tasks in the environment. 900

Table 11 shows an example for ALFWorld, Table 901

12 shares an example for BabyAI, and finally Table 902

13 presents system prompt for PDDL. 903
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Dataset Example Task
Gripper The goal is to satisfy the following conditions: ball1 is at roomb. ball2 is at roomb. ball3 is at roomb. ball4 is at roomb.

Blockworld The goal is to satisfy the following conditions: b1 is on b2. b2 is on b6. b3 is on b7. b5 is on b3. b6 is on b5. b7 is on b4.
Barman The goal is to satisfy the following conditions: shot1 contains cocktail2. shot2 contains cocktail3.

Tyreworld The goal is to satisfy the following conditions: Wheel r1 is inflated. r2 is on the-hub2. w1 is in boot.

Table 10: Examples of sample tasks from datasets comprised in PDDL

Table 11: ALFWorld ReAct Prompt

Interact with a household to solve a task.
You need to generate actions that strictly follow the below templates:
1. goto [location]
2. take [object] from [location] put [object] in/on [location]
3. open [something]
4. close [something]
5. toggle [object ][ location]
6. clean [object] with [something]
7. heat [object] with [receptacle]
8. cool [object] with [receptacle]

Here are two examples. They are very relevant. Please use the actions in these
examples as your guidelines.
\textit{Example 1: Truncated}
\textit{Example 2: Truncated}

Table 12: BabyAI ReAct Prompt

You are placed in a room and you need to accomplish the given goal with actions.

You can use the following actions:

- turn right

- turn left

- move forward

- go to <obj > <id>

- pick up <obj > <id>

- go through <door > <id >: <door > must be an open door.

- toggle and go through <door > <id >: <door > can be a closed door or a locked door.
If you want to open a locked door , you need to carry a key that is of the same color
as the locked door.

- toggle: there is a closed or locked door right in front of you and you can toggle
it.

\textit{Example 1: Truncated}
\textit{Example 2: Truncated}
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Table 13: PDDL ReAct Prompt

---------blockworld ---------
The robot has four actions: pickup , putdown , stack , and unstack. The domain assumes
a world where there are a set of blocks that can be stacked on top of each other , an
arm that can hold one block at a time , and a table where blocks can be placed.

The actions defined in this domain include:
pickup <block >: pick up a clear block
putdown <block >: put down a block on the table
stack <block > <block >: stack a block on top of another block.
unstack <block > <block >: unstack a block from on top of another block

---------barman ---------
You are a robot barman that manipulates drink dispensers , shot glasses and a shaker.
You have two hands. The goal is to find a plan that serves a desired set of drinks.
Here are the actions you can do. Each valid action is a short phrase following

fixed patterns:

<hand > grasp <container >: Grasp a container
<hand > leave <container >: Leave a container on the table
fill -shot <shot > <ingredient > <hand1 > <hand2 > <dispenser >: Fill a shot glass
with an ingredient from dispenser
refill -shot <shot > <ingredient > <hand1 > <hand2 > <dispenser >: Refill a shot glass
with an ingredient from dispenser

empty -shot <hand > <shot > <beverage >: Empty a shot glass
clean -shot <shot > <beverage > <hand1 > <hand2 >: Clean a shot glass
pour -shot -to-clean -shaker <shot > <ingredient > <shaker > <hand1 > <level1 > <level2
>: Pour an ingredient from a shot glass to a clean shaker from level1 to level2
pour -shot -to-used -shaker <shot > <ingredient > <shaker > <hand1 > <level1 > <level2 >:
Pour an ingredient from a shot glass to a used shaker from level1 to level2

empty -shaker <hand > <shaker > <cocktail > <level1 > <level2 >: Empty a shaker
containing cocktail from level1 to level2
clean -shaker <hand1 > <hand2 > <shaker >: Clean a shaker
shake <cocktail > <ingredient1 > <ingredient2 > <shaker > <hand1 > <hand2 >: Shake a
cocktail in a shaker
pour -shaker -to-shot <beverage > <shot > <hand > <shaker > <level1 > <level2 >: Pour a
beverage from a shaker to a shot glass from level1 to level2

---------gripper ---------
You are a robot with a gripper that can move objects between different rooms. Your
name is Robby.

There are three actions defined in this domain:
move <room1 > <room2 >: This action allows the robot to move from one room to
another.
pick <obj > <room > <gripper >: This action allows the robot to pick up an object
using the gripper.
drop <obj > <room > <gripper >: This action allows the robot to drop an object that
it is carrying.

---------tyreworld ---------
Your goal is to replace flat tyres with intact tyres on the hubs. Remember to open
boot first to get tools you need. Intact tyres should be inflated. The nuts should
be tight on the hubs. The flat tyres , wrench , jack , and pump should be in the boot.
The boot should be closed.

There are 13 actions defined in this domain:
open <container >
close <container >
fetch <object > <container >
put -away <object > <container >
tighten <nut > <hub >
jack -up <hub >
jack -down <hub >
undo <nut > <hub >
do-up <nut > <hub >
remove -wheel <wheel > <hub >
put -on-wheel <wheel > <hub >
inflate <wheel >

\textit{Example 1: Truncated}
\textit{Example 2: Truncated}
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E.2 Symbolic Prompts904

Table 14, Table 15, Table 16 provide symbolic sys-905

tem prompts used by our OmniReflect-Symbolic906

System to provide environment level guidance.907

E.3 Reflection Prompts908

Table 17 present reflection prompts used for gener-909

ating abstract, error, and progress level reflections910

for ALFWorld, BabyAI, and PDDL datasets. They911

share similar content, with the exception of exam-912

ples used to demonstrate reflection examples. In913

Neuro-Symbolic case, we use templated responses914

that are generated by OmniReflect-Symbolic on the915

calibration set, as few shot examples. Table 18 pro-916

vides the simple prompt used for summarization917

across datasets, and for all models.918

F Symbolic Reflections919

We use engineered prompts and regular expres-920

sions for generating symbolic reflections. All921

prompts have been presented in Section E. The922

regular expressions used for progress tracking in923

OmniReflect-Symbolic system are presented below.924

ALFWorld. Example of ALFWorld tracking and925

reflection regular expressions we used can be found926

in Table 19.927

BabyAI. We provide reflection for these situations:928

• You are going in a circle, just turn right or929

turn left and move forward and check valid930

actions.931

• You have found a key, use it to open a same932

colored locked door in the path if needed. DO933

NOT DROP the key before you unlock the934

necessary doors.935

• I have found the door, If my task is to un-936

lock a door, I will unlock the door, else I will937

toggle and go through the door. template for938

this action is toggle and go through <color>939

[closed|locked] <door> <id>940

• I found the target object. I will move towards941

it and pick it up if needed.942

• Now you should drop this in a free location943

that does not block the path for my next steps.944

You cannot carry two items, so you MUST945

drop this before picking up the next item.946

DO NOT DROP if you holding a KEY. KEY947

should be used to unlock the door and then948

you can drop it.949

PDDL. Apart from sharing the left-over subgoals, 950

heuristic reflection takes a simple form of ‘You are 951

doing: ’ and ‘you should be doing: ’ where infor- 952

mation is populated under the following situations: 953

• Gripper 954

– When objects that are at the destination 955

are being accidentally picked up again 956

– When the agent is performing sub- 957

optimal pick ups 958

– When the item incorrectly drops an ob- 959

ject 960

• Blockworld 961

– When agent attempts to use incorrect 962

commands, such as pick up for unstack 963

– When the agent is performing sub- 964

optimal stacking, i.e. if the goal state 965

is 1,2,3,4, it attempts to perform 1,2 and 966

3,4 separately. Since stacks cannot be 967

stacked on top of each other, we warn 968

the agent when it enters this situation 969

– When the agent is stuck in a loop of stack- 970

ing and unstacking incorrect blocks 971

• Barman 972

– When agent does not leave objects in 973

between tasks, which leads to incorrect 974

grasping 975

– When agent uses unclean objects, and 976

does not perform cleaning, for instance, 977

pour-shot-to-clean-shaker does not do 978

anything if a clean shaker is unavailable 979

– When the agent incorrectly assumes task 980

is done, due to incorrect order of ingredi- 981

ent mixing 982

• Tyreworld 983

– When agent retrieves unnecessary tools 984

– When agent forgets steps required for 985

preparation such as removing nuts or 986

jacking a wheel 987
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Table 14: ALFWorld Symbolic System Prompt

You need to go to a location or an object before using it or placing the objects at
the location.
For example you need to `go to garbagecan 1` or `go to microwave 1` before using or
placing the objects at the `garbagecan 1` or `microwave 1

You can only pick up or hold one object at a time.

Everything in the environment is labelled with a numbers. You ALWAYS need to use the
number that follows when referring to anything in the environment.

Valid example:`take lettuce 1 from countertop 1`
Invalid example: `take lettuce from countertop 1

You MUST Alternate between Thinking and Action generation. An example of think is `
think: CD can be found on desk.` and An example of action is `take cd 1 from desk
1.`

You can ONLY use microwaves for heating. Once you are at a microwave , you can
directly try to heat the item.
For example: For the action `go to microwave 1' can directly be followed by the
action `heat apple 1 with microwave 1'

Once you are at a fridge , you can directly try to cool the item.
For example: For the action `go to fridge 1' can directly be followed by the action
`cool lettuce 1 with fridge 1'

For tasks involving look or examine using desklamp you need to find a desklamp.
Once you are at a location with desklamp you can directly use the desklamp. The
correct usage is through action of `use desklamp 1' for using desklamp 1.

For clean or cleaning tasks first obtain the item to be cleaned. You need to then
clean the item at sinkbasin.
Once you are at a sinkbasin , you can directly try to clean the item.
For example: For the action `go to sinkbasin 1' can directly be followed by the
action `clean plate 1 with sinkbasin 1'
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Table 15: BabyAI Symbolic System Prompt

You are in a grid environment with multiple multiple minigrids.
Doors connect different mini grids that are separated by walls. You should go
through doors if necessary to get to the destination.
For instance , if you are at row 4 and column 3 , facing up, and your target is at
row 15 column 1, you should find a path to go down to row 15 and left to column 1 by
toggling doors in between as needed.

YOU NEED KEY ONLY IF THE DOOR IS LOCKED. If a door is locked then you should find
the same colored key to unlock and go through the door.
You only need a key once to toggle through the door. In the next turns , the door is
no longer locked , do you do not need to pick up that color keys unnecessarily.

You can ONLY hold only one object at a time. If you are able to pickup an object ,
then drop what you are currently holding and then pickup the new object.

If you are facing a wall , turn left or turn right to explore other objects
If you to navigate to an object behind you , you can turn back. For example , If you
are in minigrid 0, with direction ^ then turn back to access rest of the grid.

DO NOT repeat the turn multiple times , because you will get lost.

If you are blocked or having trouble picking up an object , you MUST turn to an empty
cell and drop what you are currently holding , you CANNOT drop at the same location ,
as you are facing an object and then pickup the blocking object and move it out of

the way.
Once path is clear , you move or try to pick up the object that is blocking you.
You can ONLY drop objects in empty spaces. DO NOT DROP keys before you use them on
the same colored door. You should drop them after toggling through the door
You MUST NOT drop an object immediately , as that would mean you are dropping it in
the same place. So you MUST turn to an empty spot and then drop it. DO NOT DROP it
in a cell that blocks your path to the next step.

-----------------------

First Turn: You should first generate a thought with a path from your minigrid to
the destination minigrid with all the doors you need to go through. First determine ,
which door you should use to exit your grid if needed. For example , To go from

minigrid 0 to minigrid 5, I need to go through yellow closed door 1 .....\n Generate
this in less than 6 lines.

19



Table 16: PDDL Symbolic System Prompt

These are just guidelines and not the complete commands , so you should generate a
correct command in the correct template.
If your subgoal is that a shot contains an ingredient , you should do the following
steps:

1. grasp the correct shot
2. fill -shot using the dispenser that contains the ingredient

If your subgoal is that a shot contains a cocktail , you should do the following
steps:

Phase 1: Collecting all ingredients into a shaker , for each ingredient in the
cocktail do the following

1. grasp the correct shot
2. fill -shot using the dispenser that contains the ingredient
3. pour -shot -to-clean -shaker
4. clean -shot

Phase 2: Shake and serve
1. leave the shot
2. grap the shaker with all the ingredients
3. shake
4. pour -shaker -to-shot

Here is an example of making a cocktail with ingredient 2 and ingredient 1 in shot3:
-> Filling ingredient 2
left grasp shot3
fill -shot shot3 ingredient2 left right dispenser2
pour -shot -to-clean -shaker shot3 ingredient2 shaker1 left l0 l1
clean -shot glass shot3 with ingredient2 with hand left holding shot glass and right

-> Filling ingredient 1
fill -shot shot3 ingredient1 left right dispenser1
pour -shot -to-used -shaker shot3 ingredient1 shaker1 left l1 l2
clean -shot glass shot3 with ingredient1 with hand left holding shot glass and right

-> Shake and serve
left leave shot3
right grasp shaker1
shake cocktail3 ingredient2 ingredient1 shaker1 right left
pour -shaker -to-shot cocktail3 shot3 right shaker1 l2 l1
Here is subgoal guidance for your current task , they are NOT EXACT commands , they
are just guidance:
After you complete a subgoal , leave any objects you are holding.
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Table 17: Reflection Prompts

>> Abstract
Generate a constitution specific for solving a {tasktype} task and about the
environment.
The constitution should be solely based on the observation in this environment , and
should not contain general rules about regular world.
The rules in the constitution should be generalizable , abstract , correct , and
profound.
Some examples could include: Use microwave for heating or Tomatoes can be found in
fridge , among others. <- ALFWorld
Some examples could include: If you are facing a wall , turn around and continue
exploration. <- BabyAI
Some examples could include: If you have only one arm , you cannot pick up two items
<- PDDL
The constitution should be in a python list format (enclosed in [])

>> Error
Generate a constitution specific for solving this task covering the potential
mistakes performed so far and your suggestions on how to fix it.
The constitution should be solely based on the observation in this environment , and
should not contain general rules about regular world.
The constitution should be in a python list of dictionaries format without any extra
text in a single line.

You should thoroughly analyze the current trajectory and only provide feedback if a
mistake happened so far. Sometimes mistakes can be indicated by the observation `
Nothing happens `.
DO NOT predict future mistakes , or share advice about future steps.
If there are no mistakes so far , then return an empty list
If efficiency of the trajectory can be improved , you should add that as well.
Here is an example: [{'mistake ': 'Cabinet was not opened ', 'solution ': 'Open the
cabinet next time}, ...] <- ALFWorld
Here is an example: [{'mistake ': 'Going in circles ', 'solution ': 'Stop turning same
way and going in circles ...}, ...] <- BabyAI
Here is an example: [{'mistake ': 'Attempted to pick up a block that is stacked ', '
solution ': 'Should use unstack ...}, ...] <- PDDL
>> Progress

Critically examine the trajectory so far to solve the task , and generate explicit
feedback for solving leftover subtasks.
Example: For a task of placing a heated apple in a garbage , one feedback example
could be `You have heated the apple , now you should pick it up and go to garbagecan `
<- ALFWorld

Example: For a task of going through a green door , one feedback example could be `
You have located a green key , now pick it up and locate a green door.` <- BabyAI
Example: An example could be: I have poured ingredient 1 into the shaker. I should
then shake and serve in a clean shot class. <- PDDL
The constitution should be in a python list format (enclosed in []) without any
extra text in a single line.

Table 18: Summarization Prompt

Inspect and summarize the constitution you have build over time by exploring the
environment and solving numerous tasks.
The resulting summary should be usable by any other agent to quickly solve tasks by
using the knowledge built using your experience. <- Abstract
The resulting summary should be usable by any other agent to avoid making any
mistakes that were made. <- Error
There should not be duplicates in the constitution. You should be clear and concise
while summarizing.
You can create new rules by summarizing multiple rules together without losing
information.
Here is the current constitution: [...]
The summarized constitution should be in a python list format (enclosed in []).
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Table 19: Progress Tracking Regular Expressions Examples

Type: examine
Goal: look at bowl under the desklamp.
Patterns:
^(?=.* you see)(?=.*a bowl \d+)
You pick up the bowl \d+
^(?=.* you see)(?=.*a desklamp)
--------

Type: puttwo
Goal: put two soapbar in garbagecan.
Patterns:
^(?=.* you see)(?=.*a soapbar \d+)
You pick up the soapbar \d+
You put the soapbar \d+ in/on the garbagecan \d+
^(?=.* you see)(?=.*a soapbar \d+)
You pick up the soapbar \d+
You put the soapbar \d+ in/on the garbagecan \d+
--------

Type: cool
Goal: put a cool tomato in microwave.
Patterns:
^(?=.* you see)(?=.*a tomato \d+)
You pick up the tomato \d+
You cool the tomato \d+ using the
You put the tomato \d+ in/on the microwave \d+
--------
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