OmniReflect: Discovering Transferable Constitutions
for LLM agents via Neuro-Symbolic Reflections

Anonymous ACL submission

Abstract

Efforts to improve LLM agent performance
on complex tasks have largely focused on
fine-tuning and iterative self-correction. How-
ever, these approaches often lack generalizable
mechanisms for long-term learning and remain
inefficient in dynamic environments. We in-
troduce OmniReflect, a hierarchical reflection-
driven framework that constructs constitutions,
compact sets of guiding principles distilled
from past task experiences, to enhance the
effectiveness and efficiency of LLM agents.
OmniReflect operates in two modes: Self-
sustaining, where a single agent periodically
curates its own reflections during task execu-
tion, and Co-operative, where a meta-advisor
derives constitutions from a small calibration
set to guide another agent. To construct these
constitutional principles, we employ Neural,
Symbolic, and Neuro-Symbolic techniques, of-
fering a balance between contextual adaptabil-
ity and computational efficiency. Empirical
results averaged across models show major
improvements in task success, with absolute
gains of +10.3% on ALFWorld, +23.8% on
BabyAl, and +8.3% on PDDL in the Self-
sustaining mode. Similar gains are seen in
the Co-operative mode, where a lightweight
Qwen3-4B ReAct agent outperforms all Reflex-
ion baselines on BabyAl. These findings high-
light the robustness and effectiveness of Om-
niReflect across environments and backbones.

1 Introduction

Foundational Large Language Models (LLMs) are
increasingly being deployed as autonomous agents
to explore environments and utilize tools for ex-
ecuting complex, often compound tasks on be-
half of users (Shen et al., 2024; Yang et al., 2023;
Nakajima, 2023). Despite these advancements, re-
cent studies continue to highlight key limitations
of LLM-based agents, particularly in reasoning,
planning, and continual learning (Jain et al., 2024;
Huang et al., 2023).

Trial1
Steps

MMMMM

(<)

3
2
Attempt Solving Attempt Solving =2
Steps Steps e B
o™ @ o= O 3
o—=> A O] — g
(O] em—] (O] m— - B
eee eee =2
Trial3 «—— N
eoe e
c
B
Task i Task i Task i
) ; ® ° ; ° ° ; ° S

ReAct Reflexion OmniReflect

Figure 1: Existing strategies such as ReAct (Yao et al.,
2022) rely on step-by-step reasoning within a single
trajectory, while Reflexion (Shinn et al., 2023) enhances
performance through iterative retries guided by self-
critiques. In contrast, OmniReflect maintains catego-
rized constitution rules (summarized reflections) that
guide task-solving by collating knowledge over time.

Two major strategies are commonly employed
to mitigate these limitations:

1. Fine-tuning, typically performed on large-
scale, environment-specific datasets using
supervised or reinforcement learning ap-
proaches (Guo et al., 2025; Deng et al., 2024;
Shridhar et al., 2020), which is computation-
ally expensive and often lacks scalability.

2. Reasoning and self-correction, where an
LLM agent is prompted step-by-step to reason
about its actions and revise its course if the
task remains incomplete (Shinn et al., 2023;
Madaan et al., 2023; Xi et al., 2023).

Self-correcting methods usually involve analyz-
ing and critiquing failed attempts to extract task-
specific feedback (called reflection) that can guide
future trials (Shinn et al., 2024; Madaan et al.,
2023). Although these approaches enhance task-
level performance, they often fall short in achieving
abstraction and generalization in an environment
(Xie et al., 2024).

a —— R
OmniReflect Constitution
.. U o @) I! OmniReflect Constitution
Self-sustaining Co-operative
- Agent generates N N N - Meta-advisor generates Abstract ORI o o e M (e
- Agent utilizes % % E - Consumer agent utilizes heating ...
— I I I SR
Abstract Error Progress PDDL: You can use two objects if both
the grippers are free ...
Self-generated O O Meta-advised
reflections O O reflections
Action Observation O
ironm
Observation Action [} [}
o o Agent
Agent
\S /)

Figure 2: The OmniReflect framework operates in two reflective modes: (1) Self-Sustaining: where the LLM
agent periodically generates, updates and uses constitutions; and (2) Co-operative: where a meta-advisor derives
constitution rules from a calibration set to guide another agent. These rules encode task-level and environment level,
knowledge for effective task completion. Examples are shown on the right.

We introduce OmniReflect, a hierarchical
reflection-based framework that adaptively curates
an evolving constitution, a set of categorized and
summarized reflections, to guide task-solving by
accumulating knowledge over time. The constitu-
tion serves as structured memory, distilled from
prior task experiences within an environment. By
tightly integrating reflections with task execution,
OmniReflect not only enables efficient task com-
pletion but also facilitates the creation of reusable
knowledge. To ensure the continued utility and
coherence of constitution (e.g., by reducing redun-
dancy), OmniReflect performs periodic summa-
rization, transforming unstructured episodic traces
into well-organized rule book. Figure 1 provides
an overview of the OmniReflect framework and
highlights key differences compared to existing ap-
proaches.

OmniReflect can be used in two distinct modes:
1) Self-sustaining and 2) Co-operative. Figure 2
illustrates how both modes generate and utilize con-
stitution, structured reflections accumulated across
the environment. In the Self-sustaining mode, the
same LLM agent periodically generates and reuses
summarized reflections, curating them at fixed step
intervals. In the Co-operative mode, a meta-advisor
agent uses a small calibration set of tasks to gen-
erate constitution rules through reflections, which
are then consumed by a separate task-solving agent.
This modular integration leads to consistent per-
formance improvements with minimal computa-
tional overhead. Furthermore, the synergistic inte-

gration of these two modes creates a robust system
that acquires foundational knowledge during post-
training calibration and incrementally refines it at
test time, complementing both fine-tuning and self-
correction strategies.

We leverage Neural, Symbolic, and Neuro-
Symbolic techniques to construct constitutions.
Neural methods offer rich, context-aware feed-
back but are often computationally intensive. Sym-
bolic methods, while efficient and interpretable,
tend to lack flexibility. Our Neuro-Symbolic ap-
proach strikes a balance, combining the adaptabil-
ity of neural models with the structural efficiency
of symbolic reasoning to enable scalable and cost-
effective constitution generation. We empirically
validate this design across diverse agentic bench-
marks and LLMs, demonstrating that OmniReflect
consistently outperforms strong baselines while
solving tasks in fewer steps, highlighting both its
effectiveness and efficiency.

Our key contributions are as follows:

* We propose OmniReflect, a hierarchical,
reflection-driven agent framework that en-
ables LLMs to accumulate reusable knowl-
edge by adaptively creating and summarizing
constitutions in parallel with task execution,
thereby enhancing reasoning efficiency and
overall agent performance.

* We demonstrate the robustness of Om-
niReflect’s constitution-building in two
modes (Self-sustaining and Co-operative)

showing strong performance even with
minimal calibration data.

* We evaluate OmniReflect across diverse agen-
tic benchmarks (ALFWorld, BabyAlI, and
PDDL) using multiple LLM backbones, con-
sistently outperforming competitive baselines
in task success and efficiency.

2 OmniReflect

The core design of our adaptable reflection frame-
work, OmniReflect, is shown in Figure 2, with
step-by-step operations described in Algorithm 1.

OmniReflect is designed to solve tasks from a
dataset D by leveraging an LLLM agent £ that al-
ternates between two complementary phases: (1)
ACTION (£,) and (2) REFLECTION (Lef). In the
ACTION phase, the agent generates an action condi-
tioned on the task description, the current trajectory
of steps taken, and the constitutions (OmniC') cu-
rated up to the previous REFLECTION phase. In
the REFLECTION phase, the agent produces reflec-
tions based on the task description, the observed
trajectory, and the existing constitution. These
reflections include both task-agnostic long-term
memories, shared across the environment, and task-
specific progress updates, which act as short-term
guidance for the current task. Section 2.2 provides
a detailed breakdown of these reflection types.

Actions are generated at each turn until either a
terminal state is reached or a predefined maximum
number of steps (turnsp,y) is exceeded. In contrast,
reflections are generated at fixed intervals deter-
mined by a reflection frequency hyperparameter
(Tfreq), While long-term memory summarization is
triggered based on a separate summarization fre-
quency (Sfreq). We adopt a hyperparameter-driven
approach, rather than automating the invocation via
LLM-as-a-Judge strategies (Zheng et al., 2023; Gu
et al., 2024), due to two main reasons: (1) It avoids
the inefficiencies of known pitfalls in LLM-as-a-
judge based automation (Jain et al., 2024; Gu et al.,
2024; Li et al., 2025; Szymanski et al., 2025);(2)
It offers greater control over the cost—performance
trade-off of reflection.

Specifically, agents might invoke reflection ei-
ther excessively (seeking frequent reassurance) or
insufficiently, due to misplaced confidence. Ad-
ditionally, randomization of test episodes across
benchmarks can skew task-specific insight dis-
tributions and complicate automated summariza-
tion timing, potentially causing under- or over-

summarization. We provide a detailed analysis of
the effects of these hyper-parameters in Section 3.5.

Algorithm 1 OmniReflect Methodology

Input:
» Dataset D with set of tasks ¢;, D = {¢; |
ie{l,....,N}

» LLM Agent: L,, Reflection Agent: Lcf
» Environment E producing (observation,
reward) on receiving action
Output:
» Success Rate, SR
» Constitutions, OmniC

1: Initialize constitutions, OmniC

2. Intialize rewards, rewards

3: Initialize hyper-parameters,
T'freqs Streq, (UIMSmax

4: for each task ¢; in D do

5: Initialize trajectory, T

6: Initialize task description, dy,

7: Setturn < 0

8 while (turn < turns,,x) do

9 > Action Phase

10: act < Lq(dt;, OmniC, 1)
11: obs, reward < E(act)

12: Append (act, obs) to T

13: > Periodic Reflection Phase
14: if (turn % 7freq is 0) then

15: rules < Lret(dy;, OmniC, 1)
16: Append rules to OmniC
17: end if

18: if obs is final state then

19: > Task is complete

20: break

21: end if

22: Increment turn

23: end while

24: Append reward to rewards
25: > Periodic Summarization
26 if (¢ % Sfreq 18 0) then

27: OmniC < Lef(OmniC)
28: end if

29: end for

30: > Compute success rate

31: SR < mean(rewards) = 100
32: return SR, OmniC

2.1 Reflection generation strategies

In this work, we explore three distinct approaches
for generating natural language reflections based
constitutions: 1) Neural 2) Symbolic and 3) Neuro-

Symbolic.

2.1.1 Neural Generation

Following prior work (Shinn et al., 2024; Madaan
et al., 2024), we use LLMs to generate reflections.
We craft reflection-oriented prompts and use L ef
to produce a list of rules or insights, which collec-
tively form the constitution. To avoid redundancy
and ensure meaningful information gain, L.f also
periodically summarizes past reflections. The con-
stitution is continuously updated during task exe-
cution and leveraged in subsequent steps to guide
the agent towards successful task completion.

2.1.2 Symbolic Generation

We extend the base regular expressions introduced
by AgentBoard (Ma et al., 2024) for progress track-
ing, enhancing them to support both fine-grained
and high-level template-based natural language
feedback. Additionally, we design a concise set
of task-specific and environment-level rules based
on analysis of representative successful and failed
trajectories. During each reflection step, the current
trajectory, particularly the most recent observation,
is evaluated against these regular expressions to
generate reflections.

2.1.3 Neuro-Symbolic Generation

This method guides the Neural system using few-
shot exemplars, which are derived from reflections
produced during the Symbolic Generation process.
This approach aligns LLM-generated reflections
more closely with human intuition, while substan-
tially reducing the need for extensive annotations
typically required by reliable symbolic systems.

Refer to Appendix Section E for prompt details
and Section F for sample regular expressions used
across benchmarks.

2.2 Reflection categories

The REFLECTION phase in OmniReflect produces
three distinct types of reflections: (1) Abstract,
(2) Error, and (3) Progress. Figure 2 presents
representative examples of each of these reflection
types, drawn from sample tasks in the ALFWorld,
BabyAl, and PDDL environments.

In the OmniReflect framework, abstract and er-
ror reflections are periodically summarized and
stored in long-term memory, which is shared across
tasks and sessions' at the environment level. In

'While OmniReflect is initially designed for single-trial

operation per task, it can be extented to multiple trials while
preserving consistent knowledge sharing across trials.

contrast, progress tracking reflections serve as tran-
sient, short-term knowledge that guides decision-
making within the current task episode?.

2.2.1 Abstract Reflections

We generate both rask-specific and task-agnostic
abstract reflections. In the task-specific setting, the
agent solves individual tasks by using reflection
to align its existing knowledge with the unique
aspects of the current environment. This helps
identify and correct errors caused by mismatched
assumptions about the environment, often caused
due to the implicit world knowledge of the model.
In the task-agnostic setting, the agent’s objective
is to explore the environment broadly to generate
reusable environment-level knowledge that bene-
fits future tasks. In the OmniReflect framework,
task-specific abstract reflections are generated in
both the Self-sustaining and Co-operative modes.
In contrast, task-agnostic abstraction is utilized ex-
clusively in the Co-operative mode to address the
challenge of limited data availability.

2.2.2 Error Reflection

We build upon prior work such as Reflexion (Shinn
et al., 2024), extending its strategy of trajectory
analysis to generate actionable feedback for error
correction. Unlike existing methods that typically
generate reflections post hoc or across multiple task
trials (Renze and Guven, 2024), our OmniReflect
framework introduces in-situ reflections: guidance
is generated at periodic intervals within a single
task execution episode. This enables the agent to
recover from mistakes more rapidly, reducing the
number of iterations needed for successful task
completion. Furthermore, the agent evaluates the
efficiency of its current trajectories, identifying re-
curring planning inefficiencies along with potential
strategies for improvement.

2.2.3 Progress Reflection

OmniReflect generates task-specific progress-
tracking thoughts, to assist in monitoring the exe-
cution of necessary sub-tasks in an optimal order
to complete tasks. Unlike error reflections, they
offer not only actionable guidance but also non-
actionable, grounding observations that affirm com-
pleted sub-tasks, thereby reinforcing the agent’s
confidence in progressing to subsequent steps.

%For clarity and conciseness, three types of reflections are
not mentioned within the algorithm.

3 Experimental Details and Results

We conducted experiments on ALFWorld (Shrid-
har et al., 2020), BabyAl (Chevalier-Boisvert et al.,
2018), and PDDL (Silver and Chitnis, 2020), three
benchmark environments that balance navigation,
reasoning, and compound task-solving. Details of
the publicly available datasets, model configura-
tions, and experimental settings are provided in the
following sections.

3.1 Datasets

ALFWorld is designed to evaluate the ability
of an agent to perform household tasks through
goal-directed navigation and interaction. We use
the unseen split of the dataset for our experiments.
A detailed description is provided in Appendix B.

BabyAl is a grid-based environment in which
agents navigate through interconnected minigrids
to solve tasks such as “pick up a red box and then
go through the grey door to the right”. We adopt
the same test split used by AgentBoard (Ma et al.,
2024). See Appendix C for more details.

PDDL contains planning benchmarks focused on
task decomposition and state optimization. Our
experiments include four domains: Gripper (ob-
ject transport between rooms), Blocksworld (block
stacking and unstacking), Barman (cocktail prepa-
ration), and Tyreworld (tool-based mechanical re-
pairs). We follow the same test split as used by
AgentBoard. Refer to Appendix D for details.

3.2 LLMs and Experimental Setup

Large Language Models. Our study employed
three widely recognized LLMs as agents: (1)
Qwen3-4B (Team, 2025), (2) Gemini-2.0 (includ-
ing its “flash" variant) and (3) GPT-4 (including its
“omni" variant) (Hurst et al., 2024). To ensure a
balance between reproducibility and performance,
we set the temperature to O, the nucleus sampling
probability (top_p) to 0.7, the token sampling limit
(top_k) to 50, and applied a repetition penalty of 1.

ReAct. The ReAct reasoning strategy (Yao et al.,
2022) combines reasoning (thinking) and acting
within agentic environments, enabling step-by-step
decomposition of complex tasks. For ALFWorld,
we use the prompts provided by the original
authors (Yao et al.,, 2022), while for BabyAl
and PDDL, we adopt ReAct prompts crafted by

AgentBoard. Each experiment uses a single trial
with a maximum of 50 turns per task.

Reflexion. While using Reflexion (Shinn et al.,
2024) as our baseline, we adopt the same protocol
as the original work, allowing up to 15 trials per
task. Each trial consists of 50 turns.

OmniReflect. We adapt the ReAct reasoning strat-
egy with 1-2 few-shot examples to construct our
base prompt. For the primary results reported in
Table 1, we use a reflection frequency (7f.¢4) of
10 and a summarization interval (s f¢q) of 10 as
hyper-parameters. Specifically, we generate reflec-
tions and update the constitution every 10 turns,
and perform a constitution summary after complet-
ing 10 tasks. Similar to ReAct, OmniReflect uses a
single trial with a maximum of 50 turns per task.

3.3 Self-sustaining mode: OmniReflect as an
agent

The primary results for the self-sustaining mode are
shown in Table 1. OmniReflect achieves the highest
success rate in 7 out of 9 evaluated settings, outper-
forming Reflexion baselines under at least one of
the neural, symbolic, or neuro-symbolic configura-
tions. The only exceptions are Reflexion Gemini-
2.0 on ALFWorld and Reflexion GPT-4 on PDDL.
Averaged across models, OmniReflect yields sub-
stantial performance gains over Reflexion’s 15-trial
setup, despite operating with only a single trial
augmented by periodic reflection: +10.3% on ALF-
World, +23.8% on BabyAl, and +8.3% on PDDL.
Performance patterns across environments fur-
ther illuminate the strengths of each reflection strat-
egy. On ALFWorld and PDDL, where tasks ex-
hibit procedural regularities and structured action
sequences, Symbolic and Neuro-Symbolic variants
of OmniReflect consistently achieve top perfor-
mance. These results highlight the strength of sym-
bolic mechanisms, such as regular expressions, for
progress monitoring and ensuring plan adherence.
Conversely, in BabyAl, where success is tightly
coupled to dynamic spatial exploration (e.g., object
and door placement is random), Neural approaches
dominate. This suggests that flexible, open-ended
reasoning is better suited for environments with
high variability and partial observability.
Collectively, these results underscore the effi-
cacy of hierarchical, in-session reflection during
task execution, demonstrating its ability to enable
early identification and resolution of errors, leading

ALFWorld BabyAl PDDL
Qwen | Gemini | GPT-4 || Qwen | Gemini | GPT-4 || Qwen | Gemini | GPT-4

ReAct 44.0 68.0 54.2 24.6 45.2 31.2 1.7 41.7 76.7
Reflexion 82.8 94.0 84.1 441 53.2 50.8 11.7 66.7 91.7
Self-sustaining mode

OmniReflect-Neural 83.6 91.8 94.8 73.2 74.1 72.3 20.0 71.67 78.3
OmniReflect-Symbolic 91.8 88.8 100.0 45.5 67.9 60.7 16.7 78.3 85.0
OmniReflect-Neuro-Symbolic 86.6 93.3 96.3 54.5 64.3 68.8 31.7 75.0 80.0
Co-operative mode with ReAct agent

OmniReflect meta-advisorgwen 73.1 77.6 93.8 58.0 58.0 59.8 12.1 36.6 70.0
OmniReflect meta-adviSorGemin; 55.2 47.0 94.8 50.9 58.0 52.7 10.0 45.7 75.0
OmniReflect meta-advisorgpr4 76.9 79.1 96.3 60.7 634 64.2 13.3 65.2 80.0

Table 1: Success Rate (%) of different LLM-agents across ALFWorld, BabyAl, and PDDL environments. All
results follow the experimental setup described in Section 3.2. Reflexion (Shinn et al., 2023) results indicate
final performance after 15 trials are completed. All ReAct and OmniReflect results only use 1 trial. The highest-
performing results are shown in bold. Qwen and Gemini refer to Qwen3-4B and Gemini-2.0 respectively.

to significantly improved task completion across
diverse environments.

3.4 Co-operative mode: OmniReflect as a
Meta-Advisor

Table 1 also reports success rate improvements
achieved when using OmniReflect meta-advisor
models. In this setup, the meta-advisor constructs
the constitution, while the consumer agent applies
ReAct-style reasoning guided by the derived rules.
When equipped with constitutions distilled via Om-
niReflect from just one calibration example per task
type, ReAct agents exhibit substantial performance
gains, achieving average improvements of 28% on
ALFWorld, 29% on BabyAl, and 20.9% on PDDL,
using GPT-4 as the meta-advisor. Crucially, these
gains are realized without any additional LLM in-
ferences at test time. Instead, the meta-advisor-
generated constitutions are injected into the agent’s
prompt, demonstrating that even a lightweight in-
tegration of natural language guidance can yield
strong downstream benefits. Notably, this setting
utilizes only environment-level reflections (specifi-
cally abstract and error-level constitutions), with-
out incorporating task-level progress tracking or
dynamic reflection, as the ReAct agent does not per-
forming on-the-fly reflective updates during task-
execution.

The results underscore the effectiveness and
transferability of OmniReflect-generated constitu-
tions (Omni("), across different LLM backbones
highlighting their scalability and versatility.

3.5 Ablation Studies and Discussion

Choice of OmniReflect Meta-Advisor. As illus-
trated in Table 1, reasoning capabilities are strongly

correlated with both its ability to generate high-
quality constitutions and to follow them effectively.
A larger and more capable model such as GPT-4
demonstrates exceptional performance as both a
meta-advisor (Section 3.4) and as a follower. De-
spite its smaller scale, Qwen3-4B proves to be a
surprisingly competitive meta-advisor, frequently
enabling greater performance gains in downstream
ReAct agents compared to Gemini-2.0.

In total, 24 out of 27 evaluated meta-
advisor/ReAct agent configurations show substan-
tial performance improvements over the ReAct-
only baseline, demonstrating the robustness and
transferability of OmniReflect-derived constitu-
tions across model architectures. The only ex-
ceptions occur when Gemini-2.0 serves as both
the ReAct agent and meta-advisor on ALFWorld,
and when GPT-4 ReAct agent is paired with ei-
ther Qwen3-4B or Gemini-2.0 as meta-advisors on
PDDL. These cases likely reflect either insufficient
abstraction quality or weaker synergy in reflection
transfer across model scales.

Notably, one compelling result is that a Qwen3-
4B ReAct agent, when guided by GPT-4 as a meta-
advisor, outperforms all Reflexion baselines on
BabyAl. This highlights the potential for smaller
models to exhibit advanced reasoning behavior
when grounded with high-quality constitutions pro-
duced a capable OmniReflect Agent.

Impact of Reflection Hyper-Parameters. Ta-
ble 2 illustrates that across all datasets, over-
summarization can degrade performance, poten-
tially omitting useful information. In contrast,
increasing the frequency of reflection generally
yields greater benefits, particularly in partially ob-
servable environments like BabyAl, where ongo-

(Fireq Streq) | ALFWorld || BabyAl || PDDL
(.5 95.2 67.8 || 733
(5, 10) 96.7 652 || 76.7
(5,20) 97.0 652 || 783
(10, 5) 93.2 62.5 || 76.6

(10, 10) 94.8 723 | 783
(10, 20) 94.8 718 || 783

Table 2: Success rates on ALFWorld, BabyAlI, and
PDDL using the OmniReflect-Neural setting with GPT-
4, illustrating the impact of reflection and summariza-
tion hyperparameters on task performance.

ALFWorld || BabyAl || PDDL
ReAct 96.3 64.2 80.0
Neural 100 78.5 86.7
Neuro-Symbolic 100 74.1 90.0

Table 3: Success rate (%) on ALFWorld, BabyAl,
and PDDL using OmniReflect-Neural and OmniReflect-
Neuro-Symbolic settings with GPT-4, highlighting the
added benefit of leveraging pre-generated constitutions
from a GPT-4-based meta-advisor.

ing self-analysis helps the agent better assess its
progress and adapt rapidly. This experiment uses
only the OmniReflect-Neural setting, due to its min-
imal dependence on human annotations, making
it more adaptable in practice. Additionally, the
Symbolic variant typically do not perform periodic
reflection; instead, they trigger reflection condition-
ally, based on the agent’s current progress.

OmniReflect Agent with OmniReflect Meta-
Adyvisor. Table 3 demonstrates that both neural
and neuro-symbolic variants of the OmniReflect
agent consistently outperform their ReAct coun-
terparts, despite receiving identical guidance from
the GPT-4 meta-advisor to mitigate the cold-start
challenge. This indicates that OmniReflect agents
not only effectively integrate external advice but
also adapt and refine it over time, exhibiting a ro-
bust capacity to evolve initial guidance into more
performant strategies.

Cost Efficiency. Figure 3 highlights the efficiency
of the OmniReflect approach compared to both
the baseline Reflexion method and standard Re-
Act agents. Across all datasets, OmniReflect con-
sistently achieves performance comparable to or
exceeding Reflexion, while maintaining inference
efficiency on par with ReAct. Specifically, the
bubble sizes (representing the average number of
interaction turns) show that OmniReflect agents, re-
gardless of backbone size, operate with efficiency

comparable to ReAct, while achieving substantially
higher success rates across a range of scenarios.
Furthermore, OmniReflect’s Neural and Neuro-
Symbolic setting, when using multiple trials on
ALFWorld (where Reflexion is the strongest) reach
to 100% in just one additional trial. These results
underscore the inefficiencies introduced by task-
specific, trial-level reflections and siloed knowl-
edgeS. In contrast, OmniReflect’s hierarchical,
environment-level reflection framework enables
more generalizable and cost-effective learning, po-
sitioning it as a scalable and effective alternative
for LLM-based agents.

Reflexion may requires up to 764 LLM calls

per task, while our neural approach reduces this
to under 80, achieving ~ 700 fewer inferences.
OmniReflect-Symbolic does not require any addi-
tional LLM calls to generate reflections.
Impact of Types of Reflection. Table 4, presents
the contributions of the three distinct types of reflec-
tions employed in our study. Our analysis reveals
that no single type of reflection emerges as the
definitive leader, suggesting that their combined
implementation is integral to the robust perfor-
mance exhibited by our OmniReflect framework.
Notably, the data underscores the critical role of
environment-level Error reflection, particularly in
scenarios where task-level Progress reflections are
absent, i.e. the ReAct agent is integrated with the
OmniReflect Meta-advisor. Owing to the intricate
structure of PDDL, where an action is successful
only when all necessary conditions are met (as
illustrated in TyreWorld, where the precondition
for loosening requires that the agent possesses a
wrench, the nut on the hub is tight, and the hub is
grounded), Abstract reflections play a pivotal role
in explaining these nuances that are often challeng-
ing to discern solely through error analysis.

For an in-depth discussion on the influence of
calibration data size, as well as analysis and illustra-
tive examples of constitutions produced by various
models across multiple experiments, please consult
Appendix section A.

4 Related Works

Constitutional Al (Bai et al., 2022) introduced the
use of human-written constitutions to promote help-
ful and harmless behavior. In contrast, our frame-

3The average number of turns for Reflexion can be skewed
due to a few failed examples. Nevertheless, the figure still
provides an important comparison that OmniReflect is not
impacted by outliers in the efficiency dimension.

O Qwen3-4B O Gemini-2.0 GPT-4 O Qwen3-4B O Gemini-2.0 > GPT-4 O Qwen3-4B O Gemini-2.0 GPT-4
_ 100 ()ses B A Omh . 100 = 100 ,
& (.. R OF Ow & 4 g 80 :]
2 80 (IO © e e g 8 (asss O -
S - = g o 9 g ~
o 60 Q (o) g
g S 40 S 20
) %) - 2]
40 \— 20 ~ Qsos N/
pct Q00 \eur@ oic 00" I CURIC oic x0° pot o geurd ol o
RET gefie® e oy s?;bcm R et N o s\jN“e‘go\'\c R et N o S‘\;‘;\bo\m

(a) ALFWorld

(b) BabyAl

(c) PDDL

Figure 3: Comparison of efficiency and effectiveness across ReAct, Reflexion, and OmniReflect agents reveals that
OmniReflect achieves success rates comparable to or exceeding those of Reflexion, while maintaining inference
efficiency on par with ReAct. Bubble sizes denote the average number of interaction turns per task.

ALFWorld || BabyAl | PDDL
OmniReflect-Neural 94.8 72.3 78.3
(-) Abstract 91.8 48.2 71.6
(=) Error 92.5 46.4 76.7
(-) Progress 88.8 54.5 75.0
ReAct + MetaAdvisor 96.3 64.2 80.0
(-) Abstract 92.5 61.6 73.3
(-) Error 90.6 52.7 75.0

Table 4: Success rate (%) on ALFWorld, BabyAlI, and
PDDL using OmniReflect-Neural and a ReAct agent
with a meta-advisor, illustrating the contributions of
individual reflection types. The largest performance
drops are highlighted in red. GPT-4 is used as both the
agent and meta-advisor in their respective settings.

work autonomously curates task-oriented constitu-
tions focused on improving task-completion quality.
Moreover, unlike their finetuning-based approach,
we leverage prompt-based guidance.

Self-correction methods like Self-Consistency
(Wang et al., 2023), Universal Self-Consistency
(Chen et al., 2024a), and MCR (Yoran et al.,
2023) enhance reasoning by aggregating or meta-
reasoning over multiple CoT paths. Complemen-
tary work leverages iterative correction through
natural language feedback (Madaan et al., 2024;
Shinn et al., 2023), numeric rewards and meta-
feedback (Pan et al., 2024), and introspective learn-
ing via Self-Play Fine-Tuning in weaker LLMs
(Chen et al., 2024b). In contrast, OmniReflect per-
forms reflection at both the environment and task
level, using constitution-style rules. It enables ro-
bust, interpretable self-improvement in a single
trial (without multiple reasoning chains or repeated
sampling) while markedly boosting weaker LLMs
without extra fine-tuning or inference overhead.

MemoryBank (Zhong et al., 2024), RET-LLM

(Modarressi et al., 2023), and MemGPT (Packer
et al., 2023) use structured memory or retrieval to

persist knowledge, but face challenges like drift,
size limits, and relevance filtering (Wu et al., 2024).
In contrast, OmniReflect maintains a compact, co-
herent memory via periodic constitution summa-
rization, avoiding unbounded growth.

Automatic prompt construction approaches like
(Shin et al., 2020; Zhang et al., 2022; Xu et al.,
2022; Prasad et al., 2022; Li and Liang, 2021;
Pryzant et al., 2023; Guo et al.; Yang and Li, 2023;
Tang et al., 2025) leverage LLMs as optimizers to
adapt prompts for specific downstream tasks. In
contrast, our approach uses a straightforward strat-
egy by appending constitutions to system prompts
that guide the model in using them effectively.

5 Conclusion

We introduced OmniReflect, a hierarchical
reflection-driven framework that summarizes task
and environment-level insights into reusable con-
stitution, guiding LL.M agents in complex environ-
ments. It operates effectively in Self-sustaining
mode and Co-operative mode, where constitutions
are derived from minimal calibration significantly
boosting smaller agent’s performance. Our Neu-
ral, Symbolic, and Neuro-Symbolic strategies bal-
ance adaptability with efficiency. Empirical results
across ALFWorld, BabyAl, and PDDL demon-
strate consistent improvements over strong base-
lines, underscoring OmniReflect’s scalability, gen-
eralizability, and cost-efficiency in enhancing self-
reflection, and adaptability in LLM agents, serving
as a crucial benchmark toward building more effi-
cient and autonomous language-based agents.

6 Limitations

While OmniReflect delivers strong performance
gains, it introduces additional LLM calls, which
may pose challenges for real-world deployment.
However, we show that constitutions generated
by smaller models (e.g., Qwen3-4B) can signifi-
cantly improve the performance of larger models
like GPT-4 and Gemini-2.0, suggesting that over-
head can be mitigated through strategic model se-
lection. Currently, constitutions are integrated with-
out filtering, which may increase computational
costs for models with limited context windows and
introduce noise. Future work will explore more ef-
ficient constitution integration to reduce overhead
and enhance usability. Though we evaluate Om-
niReflect in embodied agentic settings, extending
it to broader reasoning and planning tasks remains
a promising direction. Finally, while we use ReAct
for its simplicity and minimal inference overhead,
future efforts will explore combining OmniReflect
with advanced strategies such as Self-Consistency
to further strengthen agent robustness.

References

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Ke-
fan Xiao, Pengcheng Yin, Sushant Prakash, Charles
Sutton, Xuezhi Wang, and Denny Zhou. 2024a. Uni-
versal self-consistency for large language models. In
ICML 2024 Workshop on In-Context Learning.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024b. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. arXiv preprint arXiv:2401.01335.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. 2018. Babyai: A plat-
form to study the sample efficiency of grounded lan-
guage learning. arXiv preprint arXiv:1810.08272.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,

36.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. 2024. A survey on
llm-as-a-judge. arXiv preprint arXiv:2411.15594.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Q Guo, R Wang, J Guo, B Li, K Song, X Tan, G Liu,
J Bian, and Y Yang. Connecting large language
models with evolutionary algorithms yields power-
ful prompt optimizers. arxiv 2023. arXiv preprint
arXiv:2309.08532.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023. Large language
models cannot self-correct reasoning yet. arXiv
preprint arXiv:2310.01798.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Abhinav Jain, Chris Jermaine, and Vaibhav Unhelkar.
2024. Rag-modulo: Solving sequential tasks us-
ing experience, critics, and language models. arXiv
preprint arXiv:2409.12294.

Dawei Li, Renliang Sun, Yue Huang, Ming Zhong, Bo-
han Jiang, Jiawei Han, Xiangliang Zhang, Wei Wang,
and Huan Liu. 2025. Preference leakage: A contam-
ination problem in llm-as-a-judge. arXiv preprint
arXiv:2502.01534.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An analyt-
ical evaluation board of multi-turn llm agents. arXiv
preprint arXiv:2401.13178.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Ali Modarressi, Ayyoob Imani, Mohsen Fayyaz, and
Hinrich Schiitze. 2023. Ret-1lm: Towards a general
read-write memory for large language models. arXiv
preprint arXiv:2305.14322.

Yohei Nakajima. 2023. Babyagi. Python. https://github.
com/yoheinakajima/babyagi.

Charles Packer, Vivian Fang, Shishir_G Patil, Kevin
Lin, Sarah Wooders, and Joseph_E Gonzalez. 2023.
Memgpt: Towards llms as operating systems.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2024.
Automatically correcting large language models: Sur-
veying the landscape of diverse automated correction
strategies. Transactions of the Association for Com-
putational Linguistics, 12:484-506.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2022. Grips: Gradient-free, edit-based in-
struction search for prompting large language models.
arXiv preprint arXiv:2203.07281.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-
guang Zhu, and Michael Zeng. 2023. Automatic
prompt optimization with" gradient descent" and
beam search. arXiv preprint arXiv:2305.03495.

Matthew Renze and Erhan Guven. 2024. Self-reflection
in Ilm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2024. Hugging-
gpt: Solving ai tasks with chatgpt and its friends
in hugging face. Advances in Neural Information
Processing Systems, 36.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-

ing Systems, 36:8634-8652.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Coté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. arXiv
preprint arXiv:2010.03768.

Tom Silver and Rohan Chitnis. 2020. Pddlgym: Gym
environments from pddl problems. arXiv preprint
arXiv:2002.06432.

Annalisa Szymanski, Noah Ziems, Heather A Eicher-
Miller, Toby Jia-Jun Li, Meng Jiang, and Ronald A
Metoyer. 2025. Limitations of the 1lm-as-a-judge
approach for evaluating llm outputs in expert knowl-
edge tasks. In Proceedings of the 30th International
Conference on Intelligent User Interfaces, pages 952—
966.

10

Xinyu Tang, Xiaolei Wang, Wayne Xin Zhao, Siyuan
Lu, Yaliang Li, and Ji-Rong Wen. 2025. Unleash-
ing the potential of large language models as prompt
optimizers: Analogical analysis with gradient-based
model optimizers. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 39, pages
25264-25272.

Qwen Team. 2025. Qwen3. https://github.com/
QwenlLM/Qwen3.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Siye Wu, Jian Xie, Jiangjie Chen, Tinghui Zhu, Kai
Zhang, and Yanghua Xiao. 2024. How easily do
irrelevant inputs skew the responses of large language
models? arXiv preprint arXiv:2404.03302.

Zhiheng Xi, Senjie Jin, Yuhao Zhou, Rui Zheng,
Songyang Gao, Tao Gui, Qi Zhang, and Xuanjing
Huang. 2023. Self-polish: Enhance reasoning in
large language models via problem refinement. arXiv
preprint arXiv:2305.14497.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu,
Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. 2024. Travelplanner: A benchmark for real-
world planning with language agents. arXiv preprint
arXiv:2402.01622.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yang-
gang Wang, Haiyu Li, and Zhilin Yang. 2022. Gps:
Genetic prompt search for efficient few-shot learning.
arXiv preprint arXiv:2210.17041.

Heng Yang and Ke Li. 2023. Instoptima: Evolution-
ary multi-objective instruction optimization via large
language model-based instruction operators. arXiv
preprint arXiv:2310.17630.

Hui Yang, Sifu Yue, and Yunzhong He. 2023. Auto-gpt
for online decision making: Benchmarks and addi-
tional opinions. arXiv preprint arXiv:2306.02224.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel
Deutch, and Jonathan Berant. 2023. Answering
questions by meta-reasoning over multiple chains of
thought. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 5942-5966.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale
Schuurmans, and Joseph E Gonzalez. 2022. Tem-
pera: Test-time prompting via reinforcement learning.
arXiv preprint arXiv:2211.11890.

https://github.com/QwenLM/Qwen3
https://github.com/QwenLM/Qwen3
https://github.com/QwenLM/Qwen3

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging 1lm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595-46623.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and
Yanlin Wang. 2024. Memorybank: Enhancing large
language models with long-term memory. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 19724-19731.

A Additional Results and Discussion

A.1 Amount of calibration data.

Table 5 shows that increasing the amount of cali-
bration data generally improves the quality of the
meta-advisor, thereby enhancing the downstream
performance of ReAct agents that rely on it. How-
ever, performance gains begin to taper beyond a
certain point. We exclude BabyAl and PDDL from
this analysis, as using more than one example per
task type would constitute nearly 50% of their re-
spective test sets, undermining the goal of demon-
strating that the meta-advisor can be calibrated
with significantly fewer examples than required
for evaluation. A calibration factor beyond 5 ap-
proaches this threshold for ALFWorld as well, and
thus serves as the upper bound in our experiments.

ALFWorld - Success Rate

Calibration Calibrgtion Set Qwen | GPT-4
Factor Size
1 6 76.9 96.3
3 18 79.1 97.8
5 30 80.6 98.5

Table 5: Effect of the calibration factor (number of ex-
amples per task type) on constitution quality and down-
stream ReAct agent performance, as measured on the
ALFWorld dataset. GPT-4 is used as the meta-advisor.

A.2 Constitutions

This subsection presents representative examples
spanning all three datasets and reflection types. On
average, all models generate the highest number of
abstract reflections (20-50 per dataset), while error
reflections at the environment level are less fre-
quent (typically fewer than 20). In contrast, the
number of progress reflections scales with task
complexity, as shown in the tables. GPT-4 consis-
tently produced well-structured outputs, whereas

11

Gemini 2.0 and Qwen3-4B encountered JSON-
style formatting issues in over 50% of cases, neces-
sitating complex post-processing to recover struc-
tured data.

An exception was observed with Gemini 2.0,
which generated over 100 error reflections, diluting
the effectiveness of targeted reflection and poten-
tially contributing to its lower performance when
guided by its own constitutions. GPT-4 produced
the largest constitutions, often exhibiting high ver-
bosity. While Gemini 2.0 and Qwen3-4B generated
a comparable number of reflections, Qwen3-4B
frequently yielded more coherent and concise sum-
maries without sacrificing quality.

Notably, (without explicit guidance) Gemini 2.0
included priority annotations in its rules—for ex-
ample: ‘priority’: 2, ‘rule’: ‘Prioritize checking
locations where target objects are most likely to
be found (e.g., drawers, shelves, cabinets, coun-
tertop).’, indicating an attempt to encode further
structure within its reflective outputs that can be
leveraged for reasoning.

Table 6, Table 7, and Table 8, show examples of
different types of constitutions created by all three
models. We have used majority voting to choose
abstract and error constitution samples.

B ALFWorld

This section provides additional details and experi-
mental results for the sequential decision making
dataset ALFWorld. The embodied tasks are cate-
gorized into six types: Pick, Examine, Heat, Cool,
Clean, and Pick Two. These tasks involve navigat-
ing a home environment to achieve specific goals,
such as “place the vase in the safe” or “inspect
the book under the desk lamp.” Appendix Tables 9
provide a randomly chosen example annotation for
one different types of tasks present in the dataset,
along with a trajectory that solves the task.

C BabyAl

BabyAlI environment was introduced in (Chevalier-
Boisvert et al., 2018) and covers tasks to be per-
formed in a grid environment. They can have mul-
tiple grid and minigrid sizes, ranging from a single
minigrid to upto 9 minigrids. The minigrids can be
of sizes 4x4 to 7«7. In this environment, the agent
can see a 7x7 grid in the direction it is currently
facing. In most of the experiments, the agent is
only exposed to this information which severely
limits the global perspective of the complete grid

Abstract:
Use fridge for cooling

heat [object] with microwave [location] requires microwave to be closed

Plates can be found on countertops

Error:

{
"mistake”: "Went to locations that are not present in the environment.”,
"solution”: "Carefully check the available locations before moving”

}

Progress:

L

You have located an apple,
You have reached the microwave,

j..

Table 6: ALFWorld Constitution Examples

Abstract:
If you encounter a barrier while moving forward, turn left or right to explore a
different direction.

If you encounter a closed door, use the 'toggle and go through' command to open it
and proceed.

If you see multiple doors, prioritize the closest one first.

If you see an object, note its color and position for future reference.

Error:
{
"mistake"”": "Attempted to move forward into a barrier”,
"solution”: "Should have turned right first to explore the room further”
}
{
"mistake"”: "Attempted to open the door with an unrecognized action”,
"solution”: "Should have checked valid actions before attempting to open the
door”
}
Progress:
L

You have found a blue key, now find a blue door.

j..

Table 7: BabyAI Constitution Examples

12

Abstract:

Gripper Example
If both grippers are occupied, move to the target room to drop the objects.

Blockworld Example
If the robot arm is holding a block, it can put down the block or stack it on
another clear block.

Barman Example
If you need to transfer an ingredient from a shot glass to a shaker, ensure the
shaker is clean and at the appropriate level.

Tyreworld Example
Complete the process on one hub before moving to the next, including jacking down
the hub after replacing the wheel and tightening the nuts.

Error:

{
"mistake”: "Attempted to shake a cocktail without all ingredients in the
shaker”,
"solution”: "Ensure all required ingredients are in the shaker before
shaking"”

3

{
"mistake”: "Inefficient sequence of actions”,
"solution”: "Plan the sequence of actions to minimize the number of steps,
such as filling all ingredients in the shot glass before transferring to the
shaker”

}

Progress:

L

"You have moved to roomb with balll and ball2, now you should drop balll and ball2
in roomb.",

"After dropping balll and ball2, you should move back to rooma to pick up ball3

and ball4.",

"Once you have picked up ball3 and ball4, move to roomb and drop them there.”,

"After dropping ball3 and ball4, return to rooma to pick up ball5 and ball6.",

"Finally, move to roomb and drop ball5 and ball6é to complete the task.”

"You have been repeatedly attempting to unstack b5 from b3, which is not a valid
action. Instead, consider other valid actions.”,

"Since b5 is clear and the robot arm is empty, you should pick up b5.",
"After picking up b5, you can put it down on the table to free up b3.",
"Once b3 is clear, you can unstack b3 from b4.",

"After unstacking b3 from b4, you can put b3 on the table to free up b4.",
"Then, you can unstack b4 from b2.",

"After unstacking b4 from b2, you can put b4 on the table to free up b2.",
"Next, you can unstack b2 from b1.",

"After unstacking b2 from b1, you can put b2 on the table to free up bl1.",

"Now, you can stack b1l on b2 to satisfy the first goal condition.”,

"Then, you can pick up b4 and stack it on b1 to satisfy the third goal condition
"Finally, you can pick up b3 and stack it on b5 to satisfy the second goal
condition.”

Table 8: PDDL Constitution Examples

13

Table 9: ALFWorld: PUT Task

Task: Find some apple and put it in sidetable.

Initial observation: You are in the middle of a room. Looking quickly around you,

you see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a

countertop 1, a diningtable 3, a diningtable 2, a diningtable 1, a drawer 1, a

fridge 1, a garbagecan 1, a microwave 1, a sidetable 1, a sinkbasin 1, a stoveburner
4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1. \newline

Your task is to: find some apple and put it in sidetable.

Action 1: think: To solve the task, I need to find and take an apple, then put it in
sidetable.

Observation 1: OK.

Action 2: think: First I need to find an apple. An apple is more likely to appear in
fridges (1), diningtables (1-3), sidetables (1), countertops (1), sinkbasins (1),

garbagecan (1). I can check one by one, starting with fridge 1.

Observation 2: OK.

Action 3: go to fridge 1.

Observation 3: The fridge 1 is closed.

Action 4: open fridge 1.

Observation 4: You open the fridge 1. The fridge 1 is open. In it, you see a lettuce
2, a mug 2, a potato 2, and a tomato 1.

Exploring: .

Action 11: go to garbagecan 1.

Observation 11: On the garbagecan 1, you see a apple 3, and a egg 3.

Action 12: think: Now I find an apple (3). Next, I need to take it.

Observation 12: OK.

Action 13: take apple 3 from garbagecan 1.

Observation 13: You pick up the apple 3 from the garbagecan 1.

Action 14: think: Now I find an apple (3). Next, I need to put it in/on sidetable 1.
Observation 14: OK.

Action 15: go to sidetable 1.

Observation 15: On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3,
a potato 1, and a saltshaker 1.

Action 16: put apple 3 in/on sidetable 1.

Observation 16: You put the apple 3 in/on the sidetable 1.

which leads to lot of blind exploration. Figure 4 D PDDL
provides an example of grid structure and objects

used in BabyAI environment. PDDL benchmark was made accesible using (Sil-

ver and Chitnis, 2020). It contains four distinct
environments that are used for this work: Grip-
per, Blockworld, Barman, and Tyreworld. Gripper
and Blockworld provide an initial state and a goal
state without explicit task instructions. However
Barman and Tyreworld provide explicit task goals.
The agent is expected to reason, plan, and navigate
to achieve the goal state. Examples of each dataset
can be found in the Table 10 below.

E Prompts

All prompts used in our experiments are outlined
in this subsection.

E.1 System Prompts

System prompts are specific to the environment
which outline action templates, and high level
guidelines for solving tasks in the environment.
Figure 4: Visualization of a BabyAlI grid environment ~ Table 11 shows an example for ALFWorld, Table
showcasing balls, boxes, keys, and doors, with thered 12 shares an example for BabyAl, and finally Table
triangle marking the agent’s location and orientation. 13 presents system prompt for PDDL.

14

Dataset Example Task
Gripper The goal is to satisfy the following conditions: balll is at roomb. ball2 is at roomb. ball3 is at roomb. ball4 is at roomb.
Blockworld | The goal is to satisfy the following conditions: bl is on b2. b2 is on b6. b3 is on b7. b5 is on b3. b6 is on bS. b7 is on b4.
Barman The goal is to satisfy the following conditions: shotl contains cocktail2. shot2 contains cocktail3.
Tyreworld | The goal is to satisfy the following conditions: Wheel r1 is inflated. 12 is on the-hub2. w1 is in boot.

Table 10: Examples of sample tasks from datasets comprised in PDDL

Table 11: ALFWorld ReAct Prompt

Interact with a household to solve a task.
You need to generate actions that strictly follow the below templates:

1.

0N UL~ WN

goto [location]

take [object] from [location] put [object] in/on [location]
open [something]

close [something]

toggle [object][location]

clean [object] with [something]

heat [object] with [receptaclel

cool [object] with [receptacle]

Here are two examples. They are very relevant. Please use the actions in these
examples as your guidelines.

\textit{Example 1: Truncated}

\textit{Example 2: Truncated}

Table 12: BabyAI ReAct Prompt

You are placed in a room and you need to accomplish the given goal with actions.

You can use the following actions:

- toggle:

i

turn right

turn left

move forward

go to <obj> <id>

pick up <obj> <id>

go through <door> <id>: <door> must be an open door.

toggle and go through <door> <id>: <door> can be a closed door or a locked door.
If you want to open a locked door, you need to carry a key that is of the same color
as the locked door.

t.

there is a closed or locked door right in front of you and you can toggle

\textit{Example 1: Truncated}
\textit{Example 2: Truncated}

15

Table 13: PDDL ReAct Prompt

————————— blockworld---------

The robot has four actions: pickup, putdown, stack, and unstack. The domain assumes

a world where there are a set of blocks that can be stacked on top of each other, an
arm that can hold one block at a time, and a table where blocks can be placed.

The actions defined in this domain include:

pickup <block>: pick up a clear block

putdown <block>: put down a block on the table

stack <block> <block>: stack a block on top of another block.

unstack <block> <block>: unstack a block from on top of another block

————————— barman---------

You are a robot barman that manipulates drink dispensers, shot glasses and a shaker.
You have two hands. The goal is to find a plan that serves a desired set of drinks.
Here are the actions you can do. Each valid action is a short phrase following

fixed patterns:

<hand> grasp <container>: Grasp a container
<hand> leave <container>: Leave a container on the table
fill-shot <shot> <ingredient> <hand1> <hand2> <dispenser>: Fill a shot glass
with an ingredient from dispenser
refill-shot <shot> <ingredient> <hand1> <hand2> <dispenser>: Refill a shot glass
with an ingredient from dispenser
empty-shot <hand> <shot> <beverage>: Empty a shot glass
clean-shot <shot> <beverage> <handl1> <hand2>: Clean a shot glass
pour -shot-to-clean-shaker <shot> <ingredient> <shaker> <hand1> <levell> <level2
>: Pour an ingredient from a shot glass to a clean shaker from levell to level2
pour -shot-to-used-shaker <shot> <ingredient> <shaker> <handl1> <levell> <level2>:
Pour an ingredient from a shot glass to a used shaker from levell to level2
empty-shaker <hand> <shaker> <cocktail> <levell> <level2>: Empty a shaker
containing cocktail from levell to level2
clean-shaker <handl1> <hand2> <shaker>: Clean a shaker
shake <cocktail> <ingredientl1> <ingredient2> <shaker> <hand1> <hand2>: Shake a
cocktail in a shaker
pour -shaker-to-shot <beverage> <shot> <hand> <shaker> <levell> <level2>: Pour a
beverage from a shaker to a shot glass from levell to level2
————————— gripper---------
You are a robot with a gripper that can move objects between different rooms. Your
name is Robby.
There are three actions defined in this domain:
move <rooml> <room2>: This action allows the robot to move from one room to
another.
pick <obj> <room> <gripper>: This action allows the robot to pick up an object
using the gripper.
drop <obj> <room> <gripper>: This action allows the robot to drop an object that
it is carrying.
————————— tyreworld---------
Your goal is to replace flat tyres with intact tyres on the hubs. Remember to open
boot first to get tools you need. Intact tyres should be inflated. The nuts should
be tight on the hubs. The flat tyres, wrench, jack, and pump should be in the boot.
The boot should be closed.
There are 13 actions defined in this domain:
open <container>
close <container>
fetch <object> <container>
put-away <object> <container>
tighten <nut> <hub>
jack-up <hub>
jack-down <hub>
undo <nut> <hub>
do-up <nut> <hub>
remove -wheel <wheel> <hub>
put-on-wheel <wheel> <hub>
inflate <wheel>
\textit{Example 1: Truncated}
\textit{Example 2: Truncated}

16

E.2 Symbolic Prompts

Table 14, Table 15, Table 16 provide symbolic sys-
tem prompts used by our OmniReflect-Symbolic
System to provide environment level guidance.

E.3 Reflection Prompts

Table 17 present reflection prompts used for gener-
ating abstract, error, and progress level reflections
for ALFWorld, BabyAlI, and PDDL datasets. They
share similar content, with the exception of exam-
ples used to demonstrate reflection examples. In
Neuro-Symbolic case, we use templated responses
that are generated by OmniReflect-Symbolic on the
calibration set, as few shot examples. Table 18 pro-
vides the simple prompt used for summarization
across datasets, and for all models.

F Symbolic Reflections

We use engineered prompts and regular expres-
sions for generating symbolic reflections. All
prompts have been presented in Section E. The
regular expressions used for progress tracking in
OmniReflect-Symbolic system are presented below.
ALFWorld. Example of ALFWorld tracking and
reflection regular expressions we used can be found
in Table 19.

BabyAl. We provide reflection for these situations:

* You are going in a circle, just turn right or
turn left and move forward and check valid
actions.

You have found a key, use it to open a same
colored locked door in the path if needed. DO
NOT DROP the key before you unlock the
necessary doors.

I have found the door, If my task is to un-
lock a door, I will unlock the door, else I will
toggle and go through the door. template for
this action is toggle and go through <color>
[closedllocked] <door> <id>

I found the target object. I will move towards
it and pick it up if needed.

Now you should drop this in a free location
that does not block the path for my next steps.
You cannot carry two items, so you MUST
drop this before picking up the next item.
DO NOT DROFP if you holding a KEY. KEY
should be used to unlock the door and then
you can drop it.

17

PDDL. Apart from sharing the left-over subgoals,
heuristic reflection takes a simple form of ‘You are
doing: ’ and ‘you should be doing: > where infor-
mation is populated under the following situations:

* Gripper

— When objects that are at the destination
are being accidentally picked up again

— When the agent is performing sub-
optimal pick ups

— When the item incorrectly drops an ob-
ject

e Blockworld

— When agent attempts to use incorrect
commands, such as pick up for unstack

— When the agent is performing sub-
optimal stacking, i.e. if the goal state
is 1,2,3,4, it attempts to perform 1,2 and
3,4 separately. Since stacks cannot be
stacked on top of each other, we warn
the agent when it enters this situation

— When the agent is stuck in a loop of stack-
ing and unstacking incorrect blocks

e Barman

— When agent does not leave objects in
between tasks, which leads to incorrect
grasping

— When agent uses unclean objects, and
does not perform cleaning, for instance,
pour-shot-to-clean-shaker does not do
anything if a clean shaker is unavailable

— When the agent incorrectly assumes task
is done, due to incorrect order of ingredi-
ent mixing

* Tyreworld

— When agent retrieves unnecessary tools

— When agent forgets steps required for
preparation such as removing nuts or
jacking a wheel

Table 14: ALFWorld Symbolic System Prompt

You need to go to a location or an object before using it or placing the objects at
the location.

For example you need to “go to garbagecan 1° or ~“go to microwave 1° before using or
placing the objects at the ~garbagecan 1° or “microwave 1

You can only pick up or hold one object at a time.

Everything in the environment is labelled with a numbers. You ALWAYS need to use the
number that follows when referring to anything in the environment.

Valid example: take lettuce 1 from countertop 1°

Invalid example: ~take lettuce from countertop 1

You MUST Alternate between Thinking and Action generation. An example of think is
think: CD can be found on desk.~ and An example of action is ~“take cd 1 from desk
1.°

You can ONLY use microwaves for heating. Once you are at a microwave, you can
directly try to heat the item.

For example: For the action “go to microwave 1' can directly be followed by the
action “heat apple 1 with microwave 1'

Once you are at a fridge, you can directly try to cool the item.
For example: For the action “go to fridge 1' can directly be followed by the action
“cool lettuce 1 with fridge 1'

For tasks involving look or examine using desklamp you need to find a desklamp.
Once you are at a location with desklamp you can directly use the desklamp. The
correct usage is through action of “use desklamp 1' for using desklamp 1.

For clean or cleaning tasks first obtain the item to be cleaned. You need to then
clean the item at sinkbasin.

Once you are at a sinkbasin, you can directly try to clean the item.

For example: For the action “go to sinkbasin 1' can directly be followed by the
action “clean plate 1 with sinkbasin 1'

18

Table 15: BabyAl Symbolic System Prompt

You are in a grid environment with multiple multiple minigrids.

Doors connect different mini grids that are separated by walls. You should go
through doors if necessary to get to the destination.

For instance, if you are at row 4 and column 3 , facing up, and your target is at
row 15 column 1, you should find a path to go down to row 15 and left to column 1 by
toggling doors in between as needed.

YOU NEED KEY ONLY IF THE DOOR IS LOCKED. If a door is locked then you should find

the same colored key to unlock and go through the door.

You only need a key once to toggle through the door. In the next turns, the door is

no longer locked, do you do not need to pick up that color keys unnecessarily.

You can ONLY hold only one object at a time. If you are able to pickup an object,
then drop what you are currently holding and then pickup the new object.

If you are facing a wall, turn left or turn right to explore other objects
If you to navigate to an object behind you, you can turn back. For example, If you
are in minigrid @0, with direction * then turn back to access rest of the grid.

DO NOT repeat the turn multiple times, because you will get lost.

If you are blocked or having trouble picking up an object, you MUST turn to an empty
cell and drop what you are currently holding, you CANNOT drop at the same location,
as you are facing an object and then pickup the blocking object and move it out of

the way.

Once path is clear, you move or try to pick up the object that is blocking you.

You can ONLY drop objects in empty spaces. DO NOT DROP keys before you use them on

the same colored door. You should drop them after toggling through the door

You MUST NOT drop an object immediately, as that would mean you are dropping it in

the same place. So you MUST turn to an empty spot and then drop it. DO NOT DROP it

in a cell that blocks your path to the next step.

First Turn: You should first generate a thought with a path from your minigrid to
the destination minigrid with all the doors you need to go through. First determine,
which door you should use to exit your grid if needed. For example, To go from

minigrid @ to minigrid 5, I need to go through yellow closed door 1 \n Generate
this in less than 6 lines.

19

Table 16: PDDL Symbolic System Prompt

These are just guidelines and not the complete commands, so you should generate a
correct command in the correct template.
If your subgoal is that a shot contains an ingredient, you should do the following
steps:

1. grasp the correct shot

2. fill-shot using the dispenser that contains the ingredient

If your subgoal is that a shot contains a cocktail, you should do the following
steps:
Phase 1: Collecting all ingredients into a shaker, for each ingredient in the
cocktail do the following
1. grasp the correct shot
2. fill-shot using the dispenser that contains the ingredient
3. pour-shot-to-clean-shaker
4. clean-shot
Phase 2: Shake and serve
1. leave the shot
grap the shaker with all the ingredients
shake
pour -shaker-to-shot

A wN

Here is an example of making a cocktail with ingredient 2 and ingredient 1 in shot3:
-> Filling ingredient 2

left grasp shot3

fill-shot shot3 ingredient2 left right dispenser2

pour-shot-to-clean-shaker shot3 ingredient2 shaker1l left 10 11

clean-shot glass shot3 with ingredient2 with hand left holding shot glass and right

-> Filling ingredient 1

fill-shot shot3 ingredientl left right dispenser]l

pour -shot-to-used-shaker shot3 ingredientl shakerl left 11 12

clean-shot glass shot3 with ingredientl with hand left holding shot glass and right

-> Shake and serve

left leave shot3

right grasp shakerl

shake cocktail3 ingredient2 ingredientl shaker1l right left

pour-shaker-to-shot cocktail3 shot3 right shaker1l 12 11

Here is subgoal guidance for your current task, they are NOT EXACT commands, they
are just guidance:

After you complete a subgoal, leave any objects you are holding.

20

Table 17: Reflection Prompts

>> Abstract

Generate a constitution specific for solving a {tasktype} task and about the
environment.

The constitution should be solely based on the observation in this environment, and
should not contain general rules about regular world.

The rules in the constitution should be generalizable, abstract, correct, and
profound.

Some examples could include: Use microwave for heating or Tomatoes can be found in
fridge, among others. <- ALFWorld

Some examples could include: If you are facing a wall, turn around and continue
exploration. <- BabyAI

Some examples could include: If you have only one arm, you cannot pick up two items
<- PDDL

The constitution should be in a python list format (enclosed in [])

>> Error

Generate a constitution specific for solving this task covering the potential

mistakes performed so far and your suggestions on how to fix it.

The constitution should be solely based on the observation in this environment, and
should not contain general rules about regular world.

The constitution should be in a python list of dictionaries format without any extra
text in a single line.

You should thoroughly analyze the current trajectory and only provide feedback if a

mistake happened so far. Sometimes mistakes can be indicated by the observation

Nothing happens ™.

DO NOT predict future mistakes, or share advice about future steps.

If there are no mistakes so far, then return an empty list

If efficiency of the trajectory can be improved, you should add that as well.

Here is an example: [{'mistake': 'Cabinet was not opened', 'solution': 'Open the
cabinet next time}, ...] <- ALFWorld

Here is an example: [{'mistake': 'Going in circles', 'solution': 'Stop turning same
way and going in circles...}, ...] <- BabyAl

Here is an example: [{'mistake': 'Attempted to pick up a block that is stacked',6 '
solution': 'Should use unstack...}, ...] <- PDDL

>> Progress

Critically examine the trajectory so far to solve the task, and generate explicit
feedback for solving leftover subtasks.

Example: For a task of placing a heated apple in a garbage, one feedback example
could be “You have heated the apple, now you should pick it up and go to garbagecan"”
<- ALFWorld

Example: For a task of going through a green door, one feedback example could be

You have located a green key, now pick it up and locate a green door.~ <- BabyAIl
Example: An example could be: I have poured ingredient 1 into the shaker. I should
then shake and serve in a clean shot class. <- PDDL

The constitution should be in a python list format (enclosed in []) without any
extra text in a single line.

Table 18: Summarization Prompt

Inspect and summarize the constitution you have build over time by exploring the
environment and solving numerous tasks.

The resulting summary should be usable by any other agent to quickly solve tasks by
using the knowledge built using your experience. <- Abstract

The resulting summary should be usable by any other agent to avoid making any
mistakes that were made. <- Error

There should not be duplicates in the constitution. You should be clear and concise
while summarizing.

You can create new rules by summarizing multiple rules together without losing
information.

Here is the current constitution: [...]

The summarized constitution should be in a python list format (enclosed in []).

21

Table 19: Progress Tracking Regular Expressions Examples

Type: examine

Goal: look at bowl under the desklamp.
Patterns:

A(?=.% you see)(?=.xa bowl \d+)

You pick up the bowl \d+

A(?=.% you see)(?=.%xa desklamp)

Type: puttwo

Goal: put two soapbar in garbagecan.

Patterns:

A(?=.% you see) (?=.*a soapbar \d+)

You pick up the soapbar \d+

You put the soapbar \d+ in/on the garbagecan \d+
*(?=.% you see)(?=.*a soapbar \d+)

You pick up the soapbar \d+

You put the soapbar \d+ in/on the garbagecan \d+

Type: cool
Goal: put a cool tomato in microwave.
Patterns:

*(?=.% you see)(?=.xa tomato \d+)

You pick up the tomato \d+

You cool the tomato \d+ using the

You put the tomato \d+ in/on the microwave \d+

22

	Introduction
	OmniReflect
	Reflection generation strategies
	Neural Generation
	Symbolic Generation
	Neuro-Symbolic Generation

	Reflection categories
	Abstract Reflections
	Error Reflection
	Progress Reflection

	Experimental Details and Results
	Datasets
	LLMs and Experimental Setup
	Self-sustaining mode: OmniReflect as an agent
	Co-operative mode: OmniReflect as a Meta-Advisor
	Ablation Studies and Discussion

	Related Works
	Conclusion
	Limitations
	Additional Results and Discussion
	Amount of calibration data.
	Constitutions

	ALFWorld
	BabyAI
	PDDL
	Prompts
	System Prompts
	Symbolic Prompts
	Reflection Prompts

	Symbolic Reflections

