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Abstract

Model-based reinforcement learning (MBRL) offers sample-efficient policy opti-1

mization but is susceptible to distractions. We address this by developing Policy-2

Shaped Prediction (PSP), a method that empowers agents to interpret their own3

policies and shape their world models accordingly. By combining gradient-based4

interpretability, pretrained segmentation models, and adversarial learning, PSP5

outperforms existing distractor-reduction approaches. This work represents an6

interpretability-driven advance towards robust MBRL.7

1 Introduction8

Model-based reinforcement learning (MBRL) offers a promising path to data-efficient policy learning,9

demonstrating impressive performance with high-dimensional sensory data [Hafner et al., 2023].10

However, MBRL world models are particularly susceptible to distracting stimuli, a challenge that11

persists despite numerous attempts to address it [Deng et al., 2022, Fu et al., 2021, Wang et al., 2022,12

Seo et al., 2022, Wu et al., 2023, Schrittwieser et al., 2020].13

We introduce Policy-Shaped Prediction (PSP), a novel method that uses gradient-based interpretability14

to identify and focus on important parts of an image-based environment. PSP interprets its own policy15

to prioritize relevant information, synergizing task-informed gradient-based loss weighting with a16

pre-trained segmentation model [Kirillov et al., 2023]. This approach creates a distraction-suppressing17

agent that outperforms leading image-based MBRL agents, particularly excelling against challenging18

and intricate, yet learnable, distractors. Our key contributions include:19

• The development of PSP, combining gradient-based interpretability with pretrained segmen-20

tation to focus learning on important environment features.21

• A challenging new benchmark for testing robustness to learnable distractions.22

• Demonstration of PSP’s 2x improvement in robustness against challenging distractions23

while maintaining good performance in non-distracting settings.24

2 Method25

We introduce PSP, a method to reduce an agent’s sensitivity to useless distractions by focusing on26

sensory stimuli that are most relevant to its policy, rather than seeking to model everything in the27

environment. Our guiding intuition is that gradient-based interpretability techniques, traditionally28

used for post-hoc analysis, can be leveraged during training to highlight pixels in the environment29

that are important to the agent’s policy. Additionally, using image segmentation we aggregate these30

pixelwise salience signals to identify important objects.31
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PSP employs (1) gradients of the policy with respect to image inputs to identify task-relevant elements32

of the image, (2) a segmentation model to aggregate gradients within each object in the image, and33

(3) an adversarial objective to the image encoder of the world model that discourages encoding34

of duplicate information about the previous action. Figure 1 illustrates the training modifications35

made by this method to the underlying DreamerV3 [Hafner et al., 2023] architecture. Notably, since36

these modifications only affect the training stage of the world model, the DreamerV3 agent remains37

unaltered during inference. Below, we describe each of the three key components in detail.38

2.1 Task-informed image reconstruction through interpretability-based weighting39

Our approach builds upon the core idea that signals most important to the actor and/or critic should40

be given special importance in the world model. We extend the concepts of Value-Gradient weighted41

Model loss (VaGraM) [Voelcker et al., 2022] to high dimensional image inputs, which the previous42

work did not demonstrate. This extension to the image domain is inspired by gradient-based43

interpretability methods such as saliency maps [Simonyan et al., 2013, Shrikumar et al., 2017,44

Ancona et al., 2019]. Doing so requires novel work mitigating the problems of using gradient signals45

for high dimensional image input rather than low dimensional proprioceptive input. Additionally, we46

test with complex signals that are present in the same image inputs that contain useful information,47

whereas VaGraM tests on simple additional appended "distractor dimensions", which are independent48

of the state space and reward function.49

While VaGraM focused solely on the using a gradient signal from the value function, we hypothesize50

that the gradient of the policy may provide an even more informative signal. To compute the policy-51

gradient weighting, we first sum across the dimensions of the action vector a = E(π(s)), where s52

is the latent state of the world model, to produce a scalar a =
∑

j aj , and then take the gradient53

with respect to the pixels of the input image x. To apply this weighting in the context of DreamerV354

[Hafner et al., 2023], we scale the image reconstruction loss term at each pixel i, for reconstructed55

image x̂i.56

Limage(ϕ) =
∑
xi

∂a

∂xi
(x̂i − xi)

2 (1)

Figure 1: Policy-Shaped Prediction in an environment with challenging distractions. (left) Training
of an otherwise-unaltered DreamerV3 agent is modified in two ways: 1) A head is added to predict
the previous action based on the image encoding, and the gradient of the head is subtracted from the
gradient of the image encoder, and 2) the loss is scaled pixelwise by a policy-shaped loss weight.
(right) The loss weight uses the gradient of the policy to the input pixels. The image is segmented,
and the pixel weights are averaged within each segmented object. Dashed lines signify gradient flow.
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2.2 Improving saliency maps with object-based aggregation of gradient weights57

Gradient-based weighting of the world model’s reconstruction faces challenges due to noisiness from58

small-scale fluctuations [Smilkov et al., 2017]. While more computationally demanding approaches59

exist [Sundararajan et al., 2017, Smilkov et al., 2017], we introduce a novel, efficient solution:60

object-based aggregation of explainability signals using the objects detected by any high-quality61

segmentation model (SEG). We used the Segment Anything Model (SAM) [Kirillov et al., 2023], but62

other models of sufficient quality may be utilized.63

During data collection, we segment each image into object masks, including a mask for unassigned64

pixels. The weight of a pixel xi in segment SEG(xi) is:65

Wi =
1

||SEG(xi)||
∑

j∈SEG(xi)

|∂a/∂xj | (2)

We clip the raw salience map to the 99th percentile before aggregation. If all gradients are zero,66

we set Wi = 1 for all i. We also linearly interpolate between the salience weighting and a uniform67

weighting: W ′′
i = αW ′

i +(1−α) where W ′
i = width ·height ·Wi/

∑
i Wi and α = 0.9. This allows68

the world model to maintain reasonable reconstruction of less-salient aspects of the environment.69

2.3 Adversarial action prediction head70

The DreamerV3 world model consists of three main components: a convolutional neural network71

(CNN) image encoder zt ∼ qϕ(zt|ht, et) with et = CNNρ(xt), which processes the input image,72

serves as a prior during training, and encodes the environment state during inference; a recurrent73

state space machine (RSSM) consisting of ht = fϕ(ht−1, zt−1, at−1) and ẑt ∼ pϕ(ẑt|ht) that74

is trained to simulate the progression of latent states given actions; and an image decoder, x̂t ∼75

pϕ(x̂t|ht, zt) which reconstructs the image from the latent state. Problematically, the encoder can76

capture information about previous actions from the image, despite this information already being77

provided directly to the RSSM through the action input. In other words, zt may source information78

about at−1 directly through xt, despite at−1 being an argument to fϕ during the computation of79

ht. Unfortunately, our reconstruction loss weighting may not solve this problem, since during80

backpropagation from the actor-critic functions, we do not distinguish information about previous81

actions that comes from the image versus the action input to the RSSM.82

To prevent the encoder from redundantly capturing previous action information already provided to83

the RSSM, we introduce an adversarial MLP head:84

ât−1 = MLPω(CNNρ(sg(xt))) (3)

LAdvHead(ât−1, at−1) = (ât−1 − at−1)
2 (4)

During world model training, we subtract the scaled gradient ϵ · ∇θL(ât−1, at−1) from the overall85

gradient (ϵ = 1e3), ensuring action information comes solely from the provided action vector.86

Our training procedure for a DreamerV3 agent is shown in Algorithm 1. We note that it should be87

possible to apply these concepts of gradient-based weighting, segmentation-based aggregation, and88

adversarial action prediction to world models other than our chosen DreamerV3 architecture.89

3 Experiments90

To evaluate the model’s performance we design our experiments around the following questions:91

Q1. Is our agent robust against distractors which are learnable by the world model, but of no92

utility for the actor-critic?93

Q2. What aspects of the environment are assigned importance by our method?94

Q3. Is our agent robust against distractors that are unrelated to the agent’s actions?95

Q4. Does our agent maintain performance in standard, lower-distraction environments?96

Q5. What are the contributions of each component of our method?97
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Algorithm 1 Policy-Shaped Prediction training (for DreamerV3)
1: Input: World model parameterized by ϕ, policy π paramaterized by θ, image encoder

parametrized by ρ, replay buffer with image transitions (xt−1, at−1, xt, rt, ct), SEG segmentation
model (SAM, in our application), action prediction MLP parameterized by ω

2: for training iteration 1, 2, . . . do
3: Sample batch of transition sequences
4: G = ∇xπθ # Gradient of policy with respect to input image pixels
5: S = SEG(x) # Segmentation of input image
6: W = agg(G,S) # Aggregate gradient using segmentation
7: W ′

i = Wi/
∑

i Wi # Normalize weighting
8: W ′′ = αW ′ + (1− α)1shape(W

′) # Linearly interpolate with uniform weighting
9: Lpred(ϕ) = − ln pϕ(xt | zt, ht)⊙W ′′ − ln pϕ(rt | zt, ht)− ln pϕ(ct | zt, ht)

# Weighted DreamerV3 prediction loss
10: L(ϕ) = Eqϕ

[∑T
t=1 (βpredLpred(ϕ) + βdynLdyn(ϕ) + βrepLrep(ϕ))

]
# DreamerV3 model loss

11: ât−1 = MLPω(stop_gradient(CNNρ(xt))) # Adversarial action prediction head
12: ϕ← Adam(∇L− ϵ ∗ ∂L(ât−1, at−1)/∂ρ, ϕ)
13: LAdvHead(ât−1, at−1) = (ât−1 − at−1)

2

14: ω ← Adam(∇LAdvHead, ω)
15: end for

3.1 Experimental details98

Baselines We test four Model-Based RL approaches as baselines: DreamerV3 [Hafner et al., 2023],99

and three methods specifically designed to handle distractions – Task Informed Abstractions [Fu100

et al., 2021], Denoised MDP (method in Figure 2b) [Wang et al., 2022], and DreamerPro [Deng et al.,101

2022]. Additionally, we choose DrQv2 [Yarats et al., 2021a] as a representative baseline Model-Free102

approach. For all agents, we use 3 random seeds per task, and default hyperparameters.103

Environment details Visual observations are 64 × 64 × 3 pixel renderings. We test performance in104

three environments: DeepMind Control Suite (DMC) [Tassa et al., 2018], Reafferent DMC (described105

below), and Distracting Control Suite [Stone et al., 2021] (background video initialized to a random106

frame each episode, 2,000 grayscale frames from the "driving car" Kinetics dataset [Kay et al., 2017]).107

For each environment, we test two tasks: Cheetah Run and Hopper Stand. We selected these tasks108

because they present different levels of difficulty, allowing us to assess how distraction-sensitivity109

depends on the inherent difficulty of the task. For ablation experiments, we test on Cheetah Run.110

3.2 Reafferent Deepmind Control Suite111

Figure 2: Schematic of the Reafferent Deepmind
Control environment. The distracting background
is entirely predictable based on the agent’s previous
action and the elapsed time in the episode.

To test our hypothesis, we devised the Reaffer-112

ent Deepmind Control environment, inspired by113

[Stone et al., 2021]. This environment features114

distracting backgrounds that depend determinis-115

tically on the agent’s previous action and elapsed116

time, mimicking complex self-generated distrac-117

tors in the natural world. The background con-118

sists of 2,500 16x16 color grids, mapped to 625119

time values and 4 discretized values of the first120

action dimension.121

Many methods encode assumptions about the122

forms distractors will take (usually uncorrelated123

to agent actions, reward, or both), rather than a124

means of generally identifying and ignoring dis-125

tractors. We hypothesize that a learning-based126

approach, in which we avoid distraction by learn-127

ing what is actually important for the agent to128

get things done, has the potential to overcome129

even learnable-but-not-useful distractions.130
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Figure 3: Training curve comparisons on Reafferent Deepmind Control. Mean ± std. err.

Figure 4: Denoised MDP
reconstructs the background
with a high degree of fidelity,
but does not clearly render the
Cheetah agent.

We find that baseline MBRL methods perform poorly in this en-131

vironment (Table 1, Figure 3), often reproducing the distracting132

background at the expense of accurately modeling the agent (Figure133

4). In contrast, our method demonstrates substantial improvement134

over existing baselines, achieving scores beyond their reach despite135

some variance in performance and affirmatively answering Q1.136

The model-free DrQv2 agent demonstrates robust performance, as137

expected since its CNN encoder is learned as part of the policy.138

In contrast, model-based methods face challenges when the world139

model’s learning objective differs from the policy’s. Our method140

bridges this gap, achieving superior performance while retaining the141

advantages of model-based RL.142

Figure 5: PSP vs. DreamerV3 on Reafferent Chee-
tah Run. From left: true, reconstructed, difference
(true - recon.), loss weighting of PSP. DreamerV3
reproduces the background but not the back leg
(see white arrow), and PCP renders the leg while
not bothering to accurately model the background,
answering the question posed in Q2.

PSP demonstrates a substantial improvement143

over the baselines (Table 1, Figure 3). Although144

it shows a higher than desired level of variance145

between runs, especially on the more challeng-146

ing Hopper Stand task, it nevertheless achieves147

scores beyond the reach of any of the baselines.148

We note that none of the 12 runs across the 4149

baseline methods demonstrate a score substan-150

tially above 0.151

3.3 Performance on unaltered152

DMC and Distracting Control Suite153

Importantly, PSP performs comparably to other154

methods (including DreamerV3) on the unal-155

tered Deepmind Control Suite, demonstrating156

Table 1: Performance comparison across environments. DrQv2 is model-free, all others are model-
based. TIA is task-informed abstraction, dMDP is denoised MDP, mean ± standard deviation.

Task DrQv2 DreamerV3 DreamerPro TIA dMDP PSP

Reafferent Control

Cheetah Run 565.1 ± 35.5 158.4 ± 45.7 39.7 ± 9.0 200.4 ± 203.9 6.7 ± 4.3 383.1 ± 23.8
Hopper Stand 210.3 ± 353.8 4.6 ± 3.9 3.8 ± 1.0 0.9 ± 0.3 1.7 ± 2.5 128.5 ± 215.7

Unmodified Deepmind Control

Cheetah Run 736.0 ± 17.0 521.1 ± 136.3 908.4 ± 1.6 773.7 ± 22.7 763.0 ± 62.8 712.3 ± 32.3
Hopper Stand 752.9 ± 206.8 867.4 ± 15.9 890 ± 11.2 298.4 ± 512 897.9 ± 14.2 865.6 ± 53.6

Distracting Deepmind Control

Cheetah Run 364.4 ± 60.7 243.8 ± 81.2 179.1 ± 24 548.5 ± 238.9 397.4 ± 111.8 408.6 ± 125.1
Hopper Stand 781.1 ± 110.3 173.7 ± 160.9 561.8 ± 103.1 200.5 ± 171.7 13.2 ± 16.5 417.7 ± 118.9
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Figure 6: Training curve comparison on Distracting Control. Mean ± std. err.

Table 2: Performance of ablated versions of PSP (for reafferent and unaltered Cheetah Run).

Gradient
weighting

Gradient weighting
with segmentation Unaltered Reafferent

Policy ✓ 712.3 ± 32.3 383.1 ± 23.8
Policy ✗ 742.1 ± 79.7 188.4 ± 9.4
None ✗ 521.1 ± 136.3 158.4 ± 45.7

that we have not introduced a tradeoff between157

performance on distracting and non-distracting environments and addressing Q4. (Table 1, Figure158

A1).159

On Distracting Control tasks, in which the background distractor is uncoupled from the agent’s160

actions, PSP produced consistently improved performance relative to baseline DreamerV3, in contrast161

to the more variable performance of DreamerPro, TIA, and Denoised MDP (Table 1, Figure 6),162

addressing Q3.163

Figure 7: PSP vs. DreamerV3 on Reafferent Hop-
per Stand. From left: true, reconstructed, differ-
ence (true - recon.), loss weighting of PSP. Dream-
erV3 reproduces the background but not the agent,
and PCP renders the agent while not bothering to
accurately model the background, answering the
question posed in Q2.

In sum, PSP exhibits similar performance to164

baseline methods in commonly used tests of165

distractor-suppression and in non-distracting166

environments, while also demonstrating un-167

matched performance on particularly challeng-168

ing distractors that are complex but learnable.169

Given the success of MBRL in non-adversarial170

environments, even when compared with lead-171

ing Model Free Reinforcement Learning tech-172

niques [Hafner et al., 2023] , this work points to173

ways of matching these gains in an adversarial174

setting.175

3.4 Ablation study176

To understand the contributions of each sub-177

component of the method (Q5), we conduct ab-178

lations on the reafferent and unaltered Cheetah Run (Table 2). We find that while some ablations179

trade off performance between the environments, our complete model has good performance on180

both. In particular, segmentation-based aggregation is critical to improving our model’s performance181

amid distractors, while also maintaining its performance in the non-adversarial baseline. Overall,182

the results of the ablations confirm that combining segmentation, policy gradient sensory weight-183

ing, and adversarial action prediction results in the best scores across the unaltered and reafferent184

environments.185
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4 Related Work186

Related Work Recent advances in Model Based RL (MBRL) like World Models [Ha and Schmid-187

huber, 2018], SimPLe [Kaiser et al., 2019], MuZero [Schrittwieser et al., 2020], EfficientZero [Ye188

et al., 2021], and DreamerV3 [Hafner et al., 2023] have shown impressive performance but remain sus-189

ceptible to distractions [Lambert et al., 2020]. Various approaches have been proposed to address this,190

including (1) structural regularizations (DreamerPro [Deng et al., 2022], Agent Control-Endogenous191

State Discovery [Lamb et al., 2022], Task Informed Abstractions [Fu et al., 2021], Denoised MDPs192

[Wang et al., 2022]), ensemble methods [Clavera et al., 2018], and (2) learning-based approaches193

that use actor-critic functions to guide world modeling (VaGraM [Voelcker et al., 2022], Mismatched194

No More Eysenbach et al. [2022], Goal-Aware Prediction [Nair et al., 2020], Masked world models195

for visual control [Seo et al., 2023], The value equivalence principle for model-based reinforcement196

learning [Grimm et al., 2020], MuZero [Schrittwieser et al., 2020], Value Prediction Networks [Oh197

et al., 2017]). Parallel work in Model Free RL (MFRL) has also tackled distraction sensitivity, with198

methods like DrQv2 [Yarats et al., 2021a] and approaches using attention mechanisms [Mott et al.,199

2019], prototypes [Yarats et al., 2021b], and dynamic sparse training [Grooten et al., 2023a,b].200

5 Discussion201

PSP introduces a novel approach to model-based reinforcement learning that leverages interpretability202

techniques not just for analysis, but as an integral part of the learning process. By allowing the agent203

to interpret its own policy, PSP focuses the world model’s capacity on aspects of the environment204

most relevant for decision making. This self-interpretation process comprises three key components:205

1) We use gradient-based interpretability methods, analogous to saliency maps [Simonyan et al.,206

2013], to identify important pixels in the input image; 2) We aggregate pixel importance by object207

using a pre-trained segmentation model, providing a higher-level interpretation of the environment;208

3) We employ an adversarial prediction head to prevent wasteful encoding of known information.209

Our work opens avenues for future research in interpretable RL, such as using more advanced210

explainability gradient-based attribution methods like Integrated Gradients [Sundararajan et al., 2017,211

Ancona et al., 2019]. While PSP demonstrates promising results, it has limitations, including its212

object-centric assumptions and the computational requirements of the segmentation model.213

Outlook In conclusion, PSP represents a significant step towards robust model-based RL via the214

direct integration of of model interpretability techniques. The findings here open other lines of inquiry215

such as using more explainable architectures, utilizing faster segmentation models and utilizing216

segmentation models designed for videos in order to do temporal aggregation.217
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Figure A1: Training curve comparison on unmodified Deepmind Control. Mean ± std. err.

A Broader Impacts296

At the current stage, this work remains reasonably far from any large societal impacts, as it is limited297

to agents interacting with small, simulated environments. Over the long term, however, if model-based298

RL algorithms are used to control robots or internet-connected agents (such as large language model299

agents), the potential for both large positive and negative societal impacts becomes relevant. On the300

positive side, intelligent agents that are capable of modeling the world and avoiding distractors have301

the potential to aid humans in a wide variety of scenarios, from housework, to medical applications,302

to exploration, to internet research. On the negative side, agents without proper safeguards have the303

potential to inflict harm on humans and the environment, whether through negligence or malfeasance.304

Ultimately, our work is targeted at producing the positive impacts, while still allowing for mitigation305

of the negative impacts.306

B Experiments Compute Resources307

Each trial of the PSP method used 4 Nvidia A40 GPUs to train the modified DreamerV3 model, and 4308

A40 GPUs to run the segment anything model in parallel. Given an estimated 17 unique experiments309

for the final paper, 3 trials per experiment with our method, and about 1.5 days per training run, we310

used about 17 * 3 * 1.5 * 8 GPUs = 612 GPU days on A40 accelerators. Early experiments with311

this methodology likely used an additional 300. Baseline trials could be run on only a single A40312

GPU or a desktop NVIDIA 2070 SUPER, usually in less than a day, and accounted for a comparably313

negligible level of resources.314

We believe this level of resource consumption could be easily reduced. The modifications to the315

DreamerV3 model do not attempt to benchmark the most costly components. We suspect our method316

of parallelizing the new backpropagation from the policy to the image could be optimized further317

from its naive Jax implementation. Additionally, SAM could be supplanted by a more efficient318

segmentation model. We focused on establishing the basic technique with SAM, but replacing it319

should be the subject of future work.320

C Code321

An anonymized version of the code with instructions for reproducing these experiments will be322

available for reviewers at this anonymous GitHub Repository.323
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NeurIPS Paper Checklist324

1. Claims325

Question: Do the main claims made in the abstract and introduction accurately reflect the326

paper’s contributions and scope?327

Answer: [Yes]328

Justification: The abstract and introduction clearly state our contributions and claims, and329

match the details in the results section.330

Guidelines:331

• The answer NA means that the abstract and introduction do not include the claims332

made in the paper.333

• The abstract and/or introduction should clearly state the claims made, including the334

contributions made in the paper and important assumptions and limitations. A No or335

NA answer to this question will not be perceived well by the reviewers.336

• The claims made should match theoretical and experimental results, and reflect how337

much the results can be expected to generalize to other settings.338

• It is fine to include aspirational goals as motivation as long as it is clear that these goals339

are not attained by the paper.340

2. Limitations341

Question: Does the paper discuss the limitations of the work performed by the authors?342

Answer: [Yes]343

Justification: Yes, the paper clearly points out what we believe to be core limitations and344

assumptions of our work, as well as present limitations that we do not believe are inherent345

to the method.346

Guidelines:347

• The answer NA means that the paper has no limitation while the answer No means that348

the paper has limitations, but those are not discussed in the paper.349

• The authors are encouraged to create a separate "Limitations" section in their paper.350

• The paper should point out any strong assumptions and how robust the results are to351

violations of these assumptions (e.g., independence assumptions, noiseless settings,352

model well-specification, asymptotic approximations only holding locally). The authors353

should reflect on how these assumptions might be violated in practice and what the354

implications would be.355

• The authors should reflect on the scope of the claims made, e.g., if the approach was356

only tested on a few datasets or with a few runs. In general, empirical results often357

depend on implicit assumptions, which should be articulated.358

• The authors should reflect on the factors that influence the performance of the approach.359

For example, a facial recognition algorithm may perform poorly when image resolution360

is low or images are taken in low lighting. Or a speech-to-text system might not be361

used reliably to provide closed captions for online lectures because it fails to handle362

technical jargon.363

• The authors should discuss the computational efficiency of the proposed algorithms364

and how they scale with dataset size.365

• If applicable, the authors should discuss possible limitations of their approach to366

address problems of privacy and fairness.367

• While the authors might fear that complete honesty about limitations might be used by368

reviewers as grounds for rejection, a worse outcome might be that reviewers discover369

limitations that aren’t acknowledged in the paper. The authors should use their best370

judgment and recognize that individual actions in favor of transparency play an impor-371

tant role in developing norms that preserve the integrity of the community. Reviewers372

will be specifically instructed to not penalize honesty concerning limitations.373

3. Theory Assumptions and Proofs374

Question: For each theoretical result, does the paper provide the full set of assumptions and375

a complete (and correct) proof?376
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Answer: [NA]377

Justification: The claims of this paper are tested empirically.378

Guidelines:379

• The answer NA means that the paper does not include theoretical results.380

• All the theorems, formulas, and proofs in the paper should be numbered and cross-381

referenced.382

• All assumptions should be clearly stated or referenced in the statement of any theorems.383

• The proofs can either appear in the main paper or the supplemental material, but if384

they appear in the supplemental material, the authors are encouraged to provide a short385

proof sketch to provide intuition.386

• Inversely, any informal proof provided in the core of the paper should be complemented387

by formal proofs provided in appendix or supplemental material.388

• Theorems and Lemmas that the proof relies upon should be properly referenced.389

4. Experimental Result Reproducibility390

Question: Does the paper fully disclose all the information needed to reproduce the main ex-391

perimental results of the paper to the extent that it affects the main claims and/or conclusions392

of the paper (regardless of whether the code and data are provided or not)?393

Answer: [Yes]394

Justification: The paper itself should include enough detail to reproduce our results with395

the open source SAM and Dreamerv3 models. Because the implementation is not trivial,396

we will also release the GitHub repository in the camera ready version, which includes an397

implementation of the core algorithm for DreamerV3 and a shared implementation of the398

test environments for DreamerV3 and every baseline. We have not included it in the review399

version as the GitHub will identify the authors.400

Guidelines:401

• The answer NA means that the paper does not include experiments.402

• If the paper includes experiments, a No answer to this question will not be perceived403

well by the reviewers: Making the paper reproducible is important, regardless of404

whether the code and data are provided or not.405

• If the contribution is a dataset and/or model, the authors should describe the steps taken406

to make their results reproducible or verifiable.407

• Depending on the contribution, reproducibility can be accomplished in various ways.408

For example, if the contribution is a novel architecture, describing the architecture fully409

might suffice, or if the contribution is a specific model and empirical evaluation, it may410

be necessary to either make it possible for others to replicate the model with the same411

dataset, or provide access to the model. In general. releasing code and data is often412

one good way to accomplish this, but reproducibility can also be provided via detailed413

instructions for how to replicate the results, access to a hosted model (e.g., in the case414

of a large language model), releasing of a model checkpoint, or other means that are415

appropriate to the research performed.416

• While NeurIPS does not require releasing code, the conference does require all submis-417

sions to provide some reasonable avenue for reproducibility, which may depend on the418

nature of the contribution. For example419

(a) If the contribution is primarily a new algorithm, the paper should make it clear how420

to reproduce that algorithm.421

(b) If the contribution is primarily a new model architecture, the paper should describe422

the architecture clearly and fully.423

(c) If the contribution is a new model (e.g., a large language model), then there should424

either be a way to access this model for reproducing the results or a way to reproduce425

the model (e.g., with an open-source dataset or instructions for how to construct426

the dataset).427

(d) We recognize that reproducibility may be tricky in some cases, in which case428

authors are welcome to describe the particular way they provide for reproducibility.429

In the case of closed-source models, it may be that access to the model is limited in430
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some way (e.g., to registered users), but it should be possible for other researchers431

to have some path to reproducing or verifying the results.432

5. Open access to data and code433

Question: Does the paper provide open access to the data and code, with sufficient instruc-434

tions to faithfully reproduce the main experimental results, as described in supplemental435

material?436

Answer: [Yes]437

Justification: An anonymized version of the code will be available at the linked GitHub438

Repository for reviewers.439

Guidelines:440

• The answer NA means that paper does not include experiments requiring code.441

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/442

public/guides/CodeSubmissionPolicy) for more details.443

• While we encourage the release of code and data, we understand that this might not be444

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not445

including code, unless this is central to the contribution (e.g., for a new open-source446

benchmark).447

• The instructions should contain the exact command and environment needed to run to448

reproduce the results. See the NeurIPS code and data submission guidelines (https:449

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.450

• The authors should provide instructions on data access and preparation, including how451

to access the raw data, preprocessed data, intermediate data, and generated data, etc.452

• The authors should provide scripts to reproduce all experimental results for the new453

proposed method and baselines. If only a subset of experiments are reproducible, they454

should state which ones are omitted from the script and why.455

• At submission time, to preserve anonymity, the authors should release anonymized456

versions (if applicable).457

• Providing as much information as possible in supplemental material (appended to the458

paper) is recommended, but including URLs to data and code is permitted.459

6. Experimental Setting/Details460

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-461

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the462

results?463

Answer: [Yes]464

Justification: We include all relevant details of our benchmark and (where we diverge from465

the default) models.466

Guidelines:467

• The answer NA means that the paper does not include experiments.468

• The experimental setting should be presented in the core of the paper to a level of detail469

that is necessary to appreciate the results and make sense of them.470

• The full details can be provided either with the code, in appendix, or as supplemental471

material.472

7. Experiment Statistical Significance473

Question: Does the paper report error bars suitably and correctly defined or other appropriate474

information about the statistical significance of the experiments?475

Answer: [Yes]476

Justification: All experiments are performed with three trials and std. dev is reported.477

Guidelines:478

• The answer NA means that the paper does not include experiments.479

• The authors should answer "Yes" if the results are accompanied by error bars, confi-480

dence intervals, or statistical significance tests, at least for the experiments that support481

the main claims of the paper.482
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• The factors of variability that the error bars are capturing should be clearly stated (for483

example, train/test split, initialization, random drawing of some parameter, or overall484

run with given experimental conditions).485

• The method for calculating the error bars should be explained (closed form formula,486

call to a library function, bootstrap, etc.)487

• The assumptions made should be given (e.g., Normally distributed errors).488

• It should be clear whether the error bar is the standard deviation or the standard error489

of the mean.490

• It is OK to report 1-sigma error bars, but one should state it. The authors should491

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis492

of Normality of errors is not verified.493

• For asymmetric distributions, the authors should be careful not to show in tables or494

figures symmetric error bars that would yield results that are out of range (e.g. negative495

error rates).496

• If error bars are reported in tables or plots, The authors should explain in the text how497

they were calculated and reference the corresponding figures or tables in the text.498

8. Experiments Compute Resources499

Question: For each experiment, does the paper provide sufficient information on the com-500

puter resources (type of compute workers, memory, time of execution) needed to reproduce501

the experiments?502

Answer: [Yes]503

Justification: We have provided a transparent and reasonable estimate of compute require-504

ments in the appendix.505

Guidelines:506

• The answer NA means that the paper does not include experiments.507

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,508

or cloud provider, including relevant memory and storage.509

• The paper should provide the amount of compute required for each of the individual510

experimental runs as well as estimate the total compute.511

• The paper should disclose whether the full research project required more compute512

than the experiments reported in the paper (e.g., preliminary or failed experiments that513

didn’t make it into the paper).514

9. Code Of Ethics515

Question: Does the research conducted in the paper conform, in every respect, with the516

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?517

Answer: [Yes]518

Justification: The only new dataset involved in this work was generated by a small Python519

procedure and has no privacy risks or ethical concerns. The implemented model modifies an520

open source repo and has had no interaction with human subjects.521

Guidelines:522

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.523

• If the authors answer No, they should explain the special circumstances that require a524

deviation from the Code of Ethics.525

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-526

eration due to laws or regulations in their jurisdiction).527

10. Broader Impacts528

Question: Does the paper discuss both potential positive societal impacts and negative529

societal impacts of the work performed?530

Answer: [Yes]531

Justification:This is foundational work for improving MBRL and any societal impacts are at532

least one order removed, but we have outlined the possible societal impacts of improved533

MBRL in general.534
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Guidelines:535

• The answer NA means that there is no societal impact of the work performed.536

• If the authors answer NA or No, they should explain why their work has no societal537

impact or why the paper does not address societal impact.538

• Examples of negative societal impacts include potential malicious or unintended uses539

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations540

(e.g., deployment of technologies that could make decisions that unfairly impact specific541

groups), privacy considerations, and security considerations.542

• The conference expects that many papers will be foundational research and not tied543

to particular applications, let alone deployments. However, if there is a direct path to544

any negative applications, the authors should point it out. For example, it is legitimate545

to point out that an improvement in the quality of generative models could be used to546

generate deepfakes for disinformation. On the other hand, it is not needed to point out547

that a generic algorithm for optimizing neural networks could enable people to train548

models that generate Deepfakes faster.549

• The authors should consider possible harms that could arise when the technology is550

being used as intended and functioning correctly, harms that could arise when the551

technology is being used as intended but gives incorrect results, and harms following552

from (intentional or unintentional) misuse of the technology.553

• If there are negative societal impacts, the authors could also discuss possible mitigation554

strategies (e.g., gated release of models, providing defenses in addition to attacks,555

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from556

feedback over time, improving the efficiency and accessibility of ML).557

11. Safeguards558

Question: Does the paper describe safeguards that have been put in place for responsible559

release of data or models that have a high risk for misuse (e.g., pretrained language models,560

image generators, or scraped datasets)?561

Answer: [NA]562

Justification: This paper describes a foundational change to MBRL and introduces no new563

datasets that pose a risk for misuse.564

Guidelines:565

• The answer NA means that the paper poses no such risks.566

• Released models that have a high risk for misuse or dual-use should be released with567

necessary safeguards to allow for controlled use of the model, for example by requiring568

that users adhere to usage guidelines or restrictions to access the model or implementing569

safety filters.570

• Datasets that have been scraped from the Internet could pose safety risks. The authors571

should describe how they avoided releasing unsafe images.572

• We recognize that providing effective safeguards is challenging, and many papers do573

not require this, but we encourage authors to take this into account and make a best574

faith effort.575

12. Licenses for existing assets576

Question: Are the creators or original owners of assets (e.g., code, data, models), used in577

the paper, properly credited and are the license and terms of use explicitly mentioned and578

properly respected?579

Answer: [Yes]580

Justification: All previous work is cited and no proprietary code has been used beyond what581

is allowed by its license.582

Guidelines:583

• The answer NA means that the paper does not use existing assets.584

• The authors should cite the original paper that produced the code package or dataset.585

• The authors should state which version of the asset is used and, if possible, include a586

URL.587
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.588

• For scraped data from a particular source (e.g., website), the copyright and terms of589

service of that source should be provided.590

• If assets are released, the license, copyright information, and terms of use in the591

package should be provided. For popular datasets, paperswithcode.com/datasets592

has curated licenses for some datasets. Their licensing guide can help determine the593

license of a dataset.594

• For existing datasets that are re-packaged, both the original license and the license of595

the derived asset (if it has changed) should be provided.596

• If this information is not available online, the authors are encouraged to reach out to597

the asset’s creators.598

13. New Assets599

Question: Are new assets introduced in the paper well documented and is the documentation600

provided alongside the assets?601

Answer: [Yes]602

Justification: Source code will be provided before publication if paper is accepted.603

Guidelines:604

• The answer NA means that the paper does not release new assets.605

• Researchers should communicate the details of the dataset/code/model as part of their606

submissions via structured templates. This includes details about training, license,607

limitations, etc.608

• The paper should discuss whether and how consent was obtained from people whose609

asset is used.610

• At submission time, remember to anonymize your assets (if applicable). You can either611

create an anonymized URL or include an anonymized zip file.612

14. Crowdsourcing and Research with Human Subjects613

Question: For crowdsourcing experiments and research with human subjects, does the paper614

include the full text of instructions given to participants and screenshots, if applicable, as615

well as details about compensation (if any)?616

Answer: [NA]617

Justification: No human subjects.618

Guidelines:619

• The answer NA means that the paper does not involve crowdsourcing nor research with620

human subjects.621

• Including this information in the supplemental material is fine, but if the main contribu-622

tion of the paper involves human subjects, then as much detail as possible should be623

included in the main paper.624

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,625

or other labor should be paid at least the minimum wage in the country of the data626

collector.627

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human628

Subjects629

Question: Does the paper describe potential risks incurred by study participants, whether630

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)631

approvals (or an equivalent approval/review based on the requirements of your country or632

institution) were obtained?633

Answer: [NA]634

Justification: No human subjects.635

Guidelines:636

• The answer NA means that the paper does not involve crowdsourcing nor research with637

human subjects.638
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• Depending on the country in which research is conducted, IRB approval (or equivalent)639

may be required for any human subjects research. If you obtained IRB approval, you640

should clearly state this in the paper.641

• We recognize that the procedures for this may vary significantly between institutions642

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the643

guidelines for their institution.644

• For initial submissions, do not include any information that would break anonymity (if645

applicable), such as the institution conducting the review.646
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