
Polynomial Width is Sufficient for Set Representation
with High-dimensional Features

Anonymous Author(s)
Affiliation
Address
email

Abstract

Set representation has become ubiquitous in deep learning for modeling the induc-1

tive bias of neural networks that are insensitive to the input order. DeepSets is the2

most widely used neural network architecture for set representation. It involves3

embedding each set element into a latent space with dimension L, followed by a4

sum pooling to obtain a whole-set embedding, and finally mapping the whole-set5

embedding to the output. In this work, we investigate the impact of the dimension6

L on the expressive power of DeepSets. Previous analyses either oversimplified7

high-dimensional features to be one-dimensional features or were limited to ana-8

lytic activations, thereby diverging from practical use or resulting in L that grows9

exponentially with the set size N and feature dimension D. To investigate the10

minimal value of L that achieves sufficient expressive power, we present two set-11

element embedding layers: (a) linear + power activation (LP) and (b) logarithm +12

linear + exponential activations (LLE). We demonstrate that L being poly(N,D)13

is sufficient for set representation using both embedding layers. We also provide a14

lower bound of L for the LP embedding layer. Furthermore, we extend our results15

to permutation-equivariant set functions and the complex field.16

1 Introduction17

Enforcing invariance into neural network architectures has become a widely-used principle to design18

deep learning models [1–7]. In particular, when a task is to learn a function with a set as the input, the19

architecture enforces permutation invariance that asks the output to be invariant to the permutation20

of the input set elements [8, 9]. Neural networks to learn a set function have found a variety of21

applications in particle physics [10, 11], computer vision [12, 13] and population statistics [14–16],22

and have recently become a fundamental module (the aggregation operation of neighbors’ features in23

a graph [17–19]) in graph neural networks (GNNs) [20, 21] that show even broader applications.24

Previous works have studied the expressive power of neural network architectures to represent set25

functions [8,9,22–26]. Formally, a set with N elements can be represented as S = {x(1), · · · ,x(N)}26

where x(i) is in a feature space X , typically X = RD. To represent a set function that takes S and27

outputs a real value, the most widely used architecture DeepSets [9] follows Eq. (1).28

f(S) = ρ

(
N∑
i=1

ϕ(x(i))

)
,where ϕ : X → RL and ρ : RL → R are continuous functions. (1)

DeepSets encodes each set element individually via ϕ, and then maps the encoded vectors after sum29

pooling to the output via ρ. The continuity of ϕ and ρ ensure that they can be well approximated30

by fully-connected neural networks [27, 28], which has practical implications. DeepSets enforces31

permutation invariance because of the sum pooling, as shuffling the order of x(i) does not change32

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Table 1: A comprehensive comparison among all prior works on expressiveness analysis with L. Our
results achieve the tightest bound on L while being able to analyze high-dimensional set features and
extend to the equivariance case.

Prior Arts L D > 1 Exact Rep. Equivariance
DeepSets [9] D + 1 ✗ ✓ ✓
Wagstaff et al. [23] D ✗ ✓ ✓

Segol et al. [25]
(
N+D
N

)
− 1 ✓ ✗ ✓

Zweig & Bruna [26] exp(min{
√
N,D}) ✓ ✗ ✗

Our results poly(N,D) ✓ ✓ ✓

the output. However, the sum pooling compresses the whole set into an L-dimension vector, which33

places an information bottleneck in the middle of the architecture. Therefore, a core question on34

using DeepSets for set function representation is that given the input feature dimension D and the35

set size N , what the minimal L is needed so that the architecture Eq. (1) can represent/universally36

approximate any continuous set functions. The question has attracted attention in many previous37

works [9, 23–26] and is the focus of the present work.38

An extensive understanding has been achieved for the case with one-dimensional features (D = 1).39

Zaheer et al. [9] proved that this architecture with bottleneck dimension L = N suffices to accurately40

represent any continuous set functions when D = 1. Later, Wagstaff et al. proved that accurate41

representations cannot be achieved when L < N [23] and further strengthened the statement to a42

failure in approximation to arbitrary precision in the infinity norm when L < N [24].43

However, for the case with high-dimensional features (D > 1), the characterization of the minimal44

possible L is still missing. Most of previous works [9, 25, 29] proposed to generate multi-symmetric45

polynomials to approximate permutation invariant functions [30]. As the algebraic basis of multi-46

symmetric polynomials is of size L∗ =
(
N+D
N

)
−1 [31] (exponential in min{D,N}), these works by47

default claim that if L ≥ L∗, f in Eq. 1 can approximate any continuous set functions, while they do48

not check the possibility of using a smaller L. Zweig and Bruna [26] constructed a set function that f49

requires bottleneck dimension L > N−2 exp(O(min{D,
√
N})) (still exponential in min{D,

√
N})50

to approximate while it relies on the condition that ϕ, ρ only adopt analytic activations. This condition51

is overly strict, as most of the practical neural networks allow using non-analytic activations, such as52

ReLU. Zweig and Bruna thus left an open question whether the exponential dependence on N or D53

of L is still necessary if ϕ, ρ allow using non-analytic activations.54

Present work The main contribution of this work is to confirm a negative response to the above55

question. Specfically, we present the first theoretical justification that L being polynomial in N and56

D is sufficient for DeepSets (Eq. (1)) like architecture to represent any continuous set functions57

with high-dimensional features (D > 1). To mitigate the gap to the practical use, we consider two58

architectures to implement feature embedding ϕ (in Eq. 1) and specify the bounds on L accordingly:59

• ϕ adopts a linear layer with power mapping: The minimal L holds a lower bound and an upper60

bound, which is N(D + 1) ≤ L < N5D2.61

• Constrained on the entry-wise positive input space RN×D
>0 , ϕ adopts two layers with logarithmic62

and exponential activations respectively: The minimal L holds a tighter upper bound L ≤ 2N2D2.63

We prove that if the function ρ could be any continuous function, the above two architectures64

reproduce the precise construction of any set functions for high-dimensional features D > 1, akin65

to the result in [9] for D = 1. This result contrasts with [25, 26] which only present approximating66

representations. If ρ adopts a fully-connected neural network that allows approximation of any67

continuous functions on a bounded input space [27, 28], then the DeepSets architecture f(·) can68

approximate any set functions universally on that bounded input space. Moreover, our theory can be69

easily extended to permutation-equivariant functions and complex set functions, where the minimal70

L shares the same bounds up to some multiplicative constants.71

Another comment on our contributions is that Zweig and Bruna [26] use difference in the needed72

dimensionL to illustrate the gap between DeepSets [9] and Relational Network [32] in their expressive73

powers, where the latter encodes set elements in a pairwise manner rather than in a separate manner.74

The gap well explains the empirical observation that Relational Network achieves better expressive75

power with smaller L [23,33]. Our theory does not violate such an observation while it shows that the76

2

gap can be reduced from an exponential order inN andD to a polynomial order. Moreover, many real-77

world applications have computation constraints where only DeepSets instead of Relational Network78

can be used, e.g., the neighbor aggregation operation in GNN being applied to large networks [21],79

and the hypergraph neural diffusion operation in hypergraph neural networks [7]. Our theory points80

out that in this case, it is sufficient to use polynomial L dimension to embed each element, while one81

needs to adopt a function ρ with non-analytic activitions.82

2 Preliminaries83

2.1 Notations and Problem Setup84

We are interested in the approximation and representation of functions defined over sets 1. In85

convention, an N -sized set S = {x(1), · · · ,x(N)}, where x(i) ∈ RD,∀i ∈ [N](≜ {1, 2, ..., N}),86

can be denoted by a data matrix X =
[
x(1) · · · x(N)

]⊤ ∈ RN×D. Note that we use the87

superscript (i) to denote the i-th set element and the subscript i to denote the i-th column/feature88

channel of X , i.e., xi =
[
x
(1)
i · · · x

(N)
i

]⊤
. Let Π(N) denote the set of all N -by-N permutation89

matrices. To characterize the unorderedness of a set, we define an equivalence class over RN×D:90

Definition 2.1 (Equivalence Class). If matrices X,X′ ∈ RN×D represent the same set X , then they91

are called equivalent up a row permutation, denoted as X ∼ X′. Or equivalently, X ∼ X′ if and92

only if there exists a matrix P ∈ Π(N) such that X = PX′.93

Set functions can be in general considered as permutation-invariant or permutation-equivariant94

functions, which process the input matrices regardless of the order by which rows are organized. The95

formal definitions of permutation-invariant/equivariant functions are presented as below:96

Definition 2.2. (Permutation Invariance) A function f : RN×D → RD′
is called permutation-97

invariant if f(PX) = f(X) for any P ∈ Π(N).98

Definition 2.3. (Permutation Equivariance) A function f : RN×D → RN×D′
is called permutation-99

equivariant if f(PX) = P f(X) for any P ∈ Π(N).100

In this paper, we investigate the approach to design a neural network architecture with permutation in-101

variance/equivariance. Below we will first focus on permutation-invariant functions f : RN×D → R.102

Then, in Sec. 5, we show that we can easily extend the established results to permutation-equivariant103

functions through the results provided in [7, 34] and to the complex field. The obtained results for104

D′ = 1 can also be easily extended to D′ > 1 as otherwise f can be written as [f1 · · · fD′]
⊤ and105

each fi has single output feature channel.106

2.2 DeepSets and The Difficulty in the High-Dimensional Case D > 1107

The seminal work [9] establishes the following result which induces a neural network architecture for108

permutation-invariant functions.109

Theorem 2.4 (DeepSets [9], D = 1). A continuous function f : RN → R is permutation-invariant110

(i.e., a set function) if and only if there exists continuous functions ϕ : R → RL and ρ : RL → R111

such that f(X) = ρ
(∑N

i=1 ϕ(x
(i))
)

, where L can be as small as N . Note that, here x(i) ∈ R.112

Remark 2.5. The original result presented in [9] states the latent dimension should be as large as113

N + 1. [23] tighten this dimension to exactly N .114

Theorem 2.4 implies that as long as the latent space dimension L ≥ N , any permutation-invariant115

functions can be implemented by a unified manner as DeepSets (Eq.(1)). Furthermore, DeepSets116

suggests a useful architecture for ϕ at the analysis convenience and empirical utility, which is formally117

defined below (ϕ = ψL):118

Definition 2.6 (Power mapping). A power mapping of degree K is a function ψK : R → RK which119

transforms a scalar to a power series: ψK(z) =
[
z z2 · · · zK

]⊤
.120

1In fact, we allow repeating elements in S, therefore, S should be more precisely called multiset. With a
slight abuse of terminology, we interchangeably use terms multiset and set throughout the whole paper.

3

...

LP
LL

E

...

... ... Sum

Sum

...

Figure 1: Illustration of the proposed linear + power mapping embedding layer (LP) and logarithm
activation + linear + exponential activation embedding layer (LLE).

However, DeepSets [9] focuses on the case that the feature dimension of each set element is one121

(i.e., D = 1). To demonstrate the difficulty extending Theorem 2.4 to high-dimensional features,122

we reproduce the proof next, which simultaneously reveals its significance and limitation. Some123

intermediate results and mathematical tools will be recalled along the way later in our proof.124

We begin by defining sum-of-power mapping (of degree K) ΨK(X) =
∑N

i=1 ψK(xi), where ψK125

is the power mapping following Definition 2.6. Afterwards, we reveal that sum-of-power mapping126

ΨK(X) has a continuous inverse. Before stating the formal argument, we formally define the127

injectivity of permutation-invariant mappings:128

Definition 2.7 (Injectivity). A set function h : RN×D → RL is injective if there exists a function129

g : RL → RN×D such that for any X ∈ RN×D, we have g ◦ f(X) ∼ X . Then g is an inverse of f .130

And we summarize the existence of continuous inverse of ΨK(x) into the following lemma shown131

by [9] and improved by [23]. This result comes from homeomorphism between roots and coefficients132

of monic polynomials [35].133

Lemma 2.8 (Existence of Continuous Inverse of Sum-of-Power [9,23]). ΨN : RN → RN is injective,134

thus the inverse Ψ−1
N : RN → RN exists. Moreover, Ψ−1

N is continuous.135

Now we are ready to prove necessity in Theorem 2.4 as sufficiency is easy to check. By choosing136

ϕ = ψN : R → RN to be the power mapping (cf. Definition 2.6), and ρ = f ◦Ψ−1
N . For any scalar-137

valued set X =
[
x(1) · · · x(N)

]⊤
, ρ
(∑N

i=1 ϕ(x
(i))
)
= f ◦Ψ−1

N ◦ΨN (x) = f(PX) = f(X)138

for some P ∈ Π(N). The existence and continuity of Ψ−1
N are due to Lemma 2.8.139

Theorem 2.4 gives the exact decomposable form [23] for permutation-invariant functions, which140

is stricter than approximation error based expressiveness analysis. In summary, the key idea is to141

establish a mapping ϕ whose element-wise sum-pooling has a continuous inverse.142

Curse of High-dimensional Features. We argue that the proof of Theorem 2.4 is not applicable143

to high-dimensional set features (D ≥ 2). The main reason is that power mapping defined in144

Definition 2.6 only receives scalar input. It remains elusive how to extend it to a multivariate version145

that admits injectivity and a continuous inverse. A plausible idea seems to be applying power mapping146

for each channel xi independently, and due to the injectivity of sum-of-power mapping ΨN , each147

channel can be uniquely recovered individually via the inverse Ψ−1
N . However, we point out that148

each recovered feature channel x′
i ∼ xi, ∀i ∈ [D], does not imply [x′

1 · · · x′
D] ∼ X , where149

the alignment of features across channels gets lost. Hence, channel-wise power encoding no more150

composes an injective mapping. Zaheer et al. [9] proposed to adopt multivariate polynomials as ϕ for151

high-dimensional case, which leverages the fact that multivariate symmetric polynomials are dense in152

the space of permutation invariant functions (akin to Stone-Wasserstein theorem) [30]. This idea later153

got formalized in [25] by setting ϕ(x(i)) =
[
· · ·

∏
j∈[D](x

(i)
j)αj · · ·

]
where α ∈ ND traverses154

all
∑

j∈[D] αj ≤ n and extended to permutation equivariant functions. Nevertheless, the dimension155

L =
(
N+D
D

)
, i.e., exponential in min{N,D} in this case, and unlike DeepSets [9] which exactly156

recovers f for D = 1, the architecture in [9, 25] can only approximate the desired function.157

3 Main Results158

In this section, we present our main result which extends Theorem 2.4 to high-dimensional features.159

Our conclusion is that to universally represent a set function on sets of lengthN and feature dimension160

4

D with the DeepSets architecture [9] (Eq. (1)), a dimension L at most polynomial in N and D is161

needed for expressing the intermediate embedding space.162

Formally, we summarize our main result in the following theorem.163

Theorem 3.1 (The main result). Suppose D ≥ 2. For any continuous permutation-invariant function164

f : KN×D → R, K ⊆ R, there exists two continuous mappings ϕ : RD → RL and ρ : RL → R165

such that for every X ∈ KN×D, f(X) = ρ
(∑N

i=1 ϕ(x
(i))
)

where166

• For some L ∈ [N(D+1), N5D2] when ϕ admits linear layer + power mapping (LP) architecture:167

ϕ(x) =
[
ψN (w1x)

⊤ · · · ψN (wKx)⊤
]

(2)

for some w1, · · · ,wK ∈ RD, and K = L/N .168

• For some L ∈ [ND, 2N2D2] when ϕ admits logarithm activations + linear layer + exponential169

activations (LLE) architecture:170

ϕ(x) = [exp(w1 log(x)) · · · exp(wL log(x))] (3)

for some w1, · · · ,wL ∈ RD and K ⊆ R>0.171

The bounds of L depend on the choice of the architecture of ϕ, which are illustrated in Fig. 1. In172

the LP setting, we adopt a linear layer that maps each set element into K dimension. Then we apply173

a channel-wise power mapping that separately transforms each value in the feature vector into an174

N -order power series, and concatenates all the activations together, resulting in a KN dimension175

feature. The LP architecture is closer to DeepSets [9] as they share the power mapping as the main176

component. Theorem 3.1 guarantees the existence of ρ and ϕ (in the form of Eq. (2)) which satisfy177

Eq. (1) without the need to set K larger than N4D2 while K ≥ D + 1 is necessary. Therefore, the178

total embedding size L = KN is bounded by N5D2 above and N(D + 1) below. Note that this179

lower bound is not trivial as ND is the degree of freedom of the input X . No matter how w1, ...,wK180

are adopted, one cannot achieve an injective mapping by just using ND dimension.181

In the LLE architecture, we investigate the utilization of logarithmic and exponential activations in set182

representation, which are also valid activations to build deep neural networks [36, 37]. Each set entry183

will be squashed by a element-wise logarithm first, then linearly embedded into an L-dimensional184

space via a group of weights, and finally transformed by an element-wise exponential activation.185

Essentially, each exp(wi log(x)), i ∈ [L] gives a monomial of x. The LLE architecture requires the186

feature space constrained on the positive orthant to ensure logarithmic operations are feasible. But187

the advantage is that the upper bound of L is improved to be 2N2D2. The lower bound ND for188

the LLE architecture is a trivial bound due to the degree of freedom of the input X . Note that the189

constraint on the positive orthant R>0 is not essential. If we are able to use monomial activations to190

process a vector x as used in [25, 26], then, the constraint on the positive orthant can be removed.191

Remark 3.2. The bounds in Theorem 3.1 are non-asymptotic. This implies the latent dimensions192

specified by the corresponding architectures are precisely sufficient for expressing the input.193

Remark 3.3. Unlike ϕ, the form of ρ cannot be explicitly specified, as it depends on the desired194

function f . The complexity of ρ remains unexplored in this paper, which may be high in practice.195

Importance of Continuity. We argue that the requirements of continuity on ρ and ϕ are essential196

for our discussion. First, practical neural networks can only provably approximate continuous197

functions [27, 28]. Moreover, set representation without such requirements can be straightforward198

(but likely meaningless in practice). This is due to the following lemma.199

Lemma 3.4 ([38]). There exists a discontinuous bijective mapping between RD and R if D ≥ 2.200

By Lemma 3.4, we can define a bijective mapping r : RD → R which maps the high-dimensional201

features to scalars, and its inverse exists. Then, the same proof of Theorem 2.4 goes through by202

letting ϕ = ψN ◦ r and ρ = f ◦ r−1 ◦Ψ−1
N . However, we note both ρ and ϕ lose continuity.203

Comparison with Prior Arts. Below we highlight the significance of Theorem 3.1 in contrast204

to the existing literature. A quick overview is listed in Tab. 1 for illustration. The lower bound205

in Theorem 3.1 corrects a natural misconception that the degree of freedom (i.e., L = ND for206

5

multi-channel cases) is not enough for representing the embedding space. Fortunately, the upper207

bound in Theorem 3.1 shows the complexity of representing vector-valued sets is still manageable as208

it merely scales polynomially in N and D. Compared with Zweig and Bruna’s finding [26], our result209

significantly improves this bound on L from exponential to polynomial by allowing non-analytic210

functions to amortize the expressiveness. Besides, Zweig and Bruna’s work [26] is hard to be applied211

to the real domain, while ours are extensible to complex numbers and equivariant functions.212

4 Proof Sketch213

In this section, we introduce the proof techniques of Theorem 3.1, while deferring a full version and214

all missing proofs to the supplementary materials.215

The proof of Theorem 3.1 mainly consists of two steps below, which is completely constructive:216

1. For the LP architecture, we construct a group of K linear weights w1 · · · ,wK with K ≤ N4D2217

such that the summation over the associated LP embedding (Eq. (2)): Ψ(X) =
∑N

i=1 ϕ(x
(i)) is218

injective and has a continuous inverse. Moreover, if K ≤ D, such weights do not exist, which219

induces the lower bound.220

2. Similarly, for the LLE architecture, we construct a group of L linear weights w1 · · · ,wL with221

L ≤ 2N2D2 such that the summation over the associated LLE embedding (Eq. (3)) is injective222

and has a continuous inverse. Trivially, if L < ND, such weights do not exist, which induces the223

lower bound.224

3. Then the proof of upper bounds can be concluded for both settings by letting ρ = f ◦Ψ−1 since225

ρ
(∑N

i=1 ϕ(x
(i))
)
= f ◦Ψ−1 ◦Ψ(X) = f(PX) = f(X) for some P ∈ Π(N).226

Next, we elaborate on the construction idea which yields injectivity for both embedding layers in Sec.227

4.1 and 4.2, respectively. To show injectivity, it is equivalent to establish the following statement for228

both Eq. (2) and Eq. (3), respectively:229

∀X,X′ ∈ RN×D,

N∑
i=1

ϕ(x(i)) =

N∑
i=1

ϕ(x′(i)) ⇒ X ∼ X′ (4)

In Sec. 4.3, we prove the continuity of the inverse map for LP and LLE via arguments similar to [35].230

4.1 Injectivity of LP231

In this section, we consider ϕ follows the definition in Eq. (2), which amounts to first linearly232

transforming each set element and then applying channel-wise power mapping. This is, we seek233

a group of linear transformations w1, · · · ,wK such that X ∼ X′ can be induced from Xwi ∼234

X′wi,∀i ∈ [K] for some K larger than N while being polynomial in N and D. The intuition is that235

linear mixing among each channel can encode relative positional information. Only if X ∼ X′, the236

mixing information can be reproduced.237

Formally, the first step accords to the property of power mapping (cf. Lemma 2.8), and we can obtain:238

N∑
i=1

ϕ(x(i)) =

N∑
i=1

ϕ(x′(i)) ⇒ Xwi ∼ X′wi,∀i ∈ [K]. (5)

To induce X ∼ X′ from Xwi ∼ X′wi,∀i ∈ [K], our construction divides the weights {wi, i ∈239

[K]} into three groups: {w(1)
i : i ∈ [D]}, {w(2)

j : j ∈ [K1]}, and {w(3)
i,j,k : i ∈ [D], j ∈ [K1], k ∈240

[K2]}. Each block is outlined as below:241

1. Let the first group of weights w(1)
1 = e1, · · · ,w(1)

D = eD to buffer the original features, where242

ei is the i-th canonical basis.243

2. Design the second group of linear weights, w(2)
1 , · · · ,w(2)

K1
for K1 as large as N(N − 1)(D −244

1)/2 + 1, which, by Lemma 4.4 latter, guarantees at least one of Xw
(2)
j , j ∈ [K1] forms an245

anchor defined below:246

6

Definition 4.1 (Anchor). Consider the data matrix X ∈ RN×D, then a ∈ RN is called an anchor247

of X if ai ̸= aj for any i, j ∈ [N] such that x(i) ̸= x(j).248

And suppose a = Xw
(2)
j∗ is an anchor of X for some j∗ ∈ [K1] and a′ = X′w

(2)
j∗ , then we249

show the following statement is true by Lemma 4.3 latter:250

[a xi] ∼ [a′ x′
i] ,∀i ∈ [D] ⇒ X ∼ X′. (6)

3. Design a group of weights w(3)
i,j,k for i ∈ [D], j ∈ [K1], k ∈ [K2] with K2 = N(N − 1) + 1 that251

mixes each original channel xi with each Xw
(2)
j , j ∈ [K1] by w

(3)
i,j,k = ei − γkw

(2)
j . Then we252

show in Lemma 4.5 that:253

Xwi ∼ X′wi,∀i ∈ [K] ⇒
[
Xw

(2)
j xi

]
∼
[
X′w

(2)
j x′

i

]
,∀i ∈ [D], j ∈ [K1] (7)

With such configuration, injectivity can be concluded by the entailment along Eq. (5), (7), (6): Eq. (5)254

guarantees the RHS of Eq. (7); The existence of the anchor in Lemma 4.4 paired with Eq. (6)255

guarantees X ∼ X′. The total required number of weights K = D +K1 +DK1K2 ≤ N4D2.256

Below we provides a series of lemmas that demonstrate the desirable properties of anchors and257

elaborate on the construction complexity. Detailed proofs are left in Appendix. In plain language, by258

Definition 4.1, two entries in the anchor must be distinctive if the set elements at the corresponding259

indices are not equal. As a consequence, we derive the following property of anchors:260

Lemma 4.2. Consider the data matrix X ∈ RN×D and a ∈ RN an anchor of X . Then if there261

exists P ∈ Π(N) such that Pa = a then Pxi = xi for every i ∈ [D].262

With the above property, anchors defined in Definition 4.1 indeed have the entailment in Eq. (6):263

Lemma 4.3 (Union Alignment based on Anchor Alignment). Consider the data matrix X,X′ ∈264

RN×D, a ∈ RN is an anchor of X and a′ ∈ RN is an arbitrary vector. If [a xi] ∼ [a′ x′
i] for265

every i ∈ [D], then X ∼ X′.266

However, the anchor a is required to be generated from X via a point-wise linear transformation.267

The strategy to generate an anchor is to enumerate as many linear weights as needs, so that for any X ,268

at least one j such that Xw
(2)
j becomes an anchor. We show that at most N(N − 1)(D − 1)/2 + 1269

linear weights are enough to guarantee the existence of an anchor for any X:270

Lemma 4.4 (Anchor Construction). There exists a set of weights w1, · · · ,wK where K = N(N −271

1)(D − 1)/2 + 1 such that for every data matrix X ∈ RN×D, there exists j ∈ [K], Xwj is an272

anchor of X .273

We wrap off the proof by presenting the following lemma which is applied to prove Eq. (7) by fixing274

any i ∈ [D], j ∈ [K1] in Eq. (7) while checking the condition for all k ∈ [K2]:275

Lemma 4.5 (Anchor Matching). There exists a group of coefficients γ1, · · · , γK2
where K2 =276

N(N − 1) + 1 such that the following statement holds: Given any x,x′,y,y′ ∈ RN such that277

x ∼ x′ and y ∼ y′, if (x− γky) ∼ (x′ − γky
′) for every k ∈ [K2], then [x y] ∼ [x′ y′].278

For completeness, we add the following lemma which implies LP-induced sum-pooling cannot be279

injective if K ≤ ND, when D ≥ 2.280

Theorem 4.6 (Lower Bound). Consider data matrices X ∈ RN×D where D ≥ 2. If K ≤ D, then281

for every w1, · · · ,wK , there exists X′ ∈ RN×D such that X ̸∼ X′ but Xwi ∼ X′wi for every282

i ∈ [K].283

Remark 4.7. Theorem 4.6 is significant in that with high-dimensional features, the injectivity is284

provably not satisfied when the embedding space has dimension equal to the degree of freedom.285

4.2 Injectivity of LLE286

In this section, we consider ϕ follows the definition in Eq. (3). First of all, we note that each term in287

the RHS of Eq. (3) can be rewritten as a monomial as shown in Eq. (8). Suppose we are able to use288

monomial activations to process a vector x(i). Then, the constraint on the positive orthant R>0 in our289

main result Theorem 3.1 can be even removed.290

ϕ(x) = [· · · exp(wi log(x)) · · ·] =
[
· · ·

∏D
j=1 x

wi,j

j · · ·
]

(8)

7

Then, the assignment of w1, · · · ,wL amounts to specifying the exponents for D power functions291

within the product. Next, we prepare our construction with the following two lemmas:292

Lemma 4.8. For any pair of vectors x1,x2 ∈ RN ,y1,y2 ∈ RN , if
∑

i∈[N] x
l−k
1,i xk

2,i =293 ∑
i∈[N] y

l−k
1,i yk

2,i for every l, k ∈ [N] such that 0 ≤ k ≤ l, then [x1 x2] ∼ [y1 y2].294

The above lemma is to show that we may use summations of monic bivariate monomials to align every295

two feature columns. The next lemma shows that such pairwise alignment yields union alignment.296

Lemma 4.9 (Union Alignment based on Pairwise Alignment). Consider data matrices X,X′ ∈297

RN×D. If [xi xj] ∼ [x′
i x′

j] for every i, j ∈ [D], then X ∼ X′.298

Then the construction idea of w1, · · · ,wL can be drawn from Lemma 4.8 and 4.9:299

1. Lemma 4.8 indicates if the weights in Eq. (8) enumerate all the monic bivariate monomials in300

each pair of channels with degrees less or equal to N , i.e., xp
ix

q
j for all i, j ∈ [D] and p+ q ≤ N ,301

then we can yield:302

N∑
i=1

ϕ(x(i)) =

N∑
i=1

ϕ(x′(i)) ⇒ [xi xj] ∼ [x′
i x′

j] ,∀i, j ∈ [D]. (9)

2. The next step is to invoke Lemma 4.9 which implies if every pair of feature channels is aligned,303

then we can conclude all the channels are aligned with each other as well.304

[xi xj] ∼ [x′
i x′

j] ,∀i, j ∈ [D] ⇒ X ∼ X′. (10)

Based on these motivations, we assign the weights that induce all bivariate monic monomials with305

the degree no more than N . First of all, we reindex {wi, i ∈ [L]} as {wi,j,p,q, i ∈ [D], j ∈ [D], p ∈306

[N], q ∈ [p+ 1]}. Then weights can be explicitly specified as wi,j,p,q = (q − 1)ei + (p− q + 1)ej ,307

where ei is the i-th canonical basis. With such weights, injectivity can be concluded by entailment308

along Eq. (9) and (10). Moreover, the total number of linear weights is L = D2(N + 3)N/2 ≤309

2N2D2, as desired.310

4.3 Continuous Lemma311

In this section, we show that the LP and LLE induced sum-pooling are both homeomorphic. We312

note that it is intractable to obtain the closed form of their inverse maps. Notably, the following313

remarkable result can get rid of inversing a functions explicitly by merely examining the topological314

relationship between the domain and image space.315

Lemma 4.10. (Theorem 1.2 [35]) Let (X , dX) and (Y, dY) be two metric spaces and f : X → Y is316

a bijection such that (a) each bounded and closed subset of X is compact, (b) f is continuous, (c)317

f−1 maps each bounded set in Y into a bounded set in X . Then f−1 is continuous.318

Subsequently, we show the continuity in an informal but more intuitive way while deferring a rigorous319

version to the supplementary materials. Denote Ψ(X) =
∑

i∈[N] ϕ(x
(i)). To begin with, we set320

X = RN×D/ ∼ with metric dX (X,X ′) = minP∈Π(N) ∥X − PX ′∥1 and Y = {Ψ(X)|X ∈321

X} ⊆ RL with metric dY(y,y′) = ∥y − y′∥∞. It is easy to show that X satisfies the conditions322

(a) and Ψ(X) satisfies (b) for both LP and LLE embedding layers. Then it remains to conclude the323

proof by verifying the condition (c) for the mapping Y → X , i.e., the inverse of Ψ(X). We visualize324

this mapping following our arguments on injectivity:325

(LP) Ψ(X)
Eq. (5)−−−→ [· · · P iXwi · · ·] , i ∈ [K]

Eqs. (6) + (7)−−−−−−−→ PX

(LLE) Ψ(X)︸ ︷︷ ︸
Y

Eq. (9)−−−→
[
· · · Qi,jxi Qi,jxj · · ·

]
, i, j ∈ [D]︸ ︷︷ ︸

Z

Eq. (10)−−−−→ QX︸︷︷︸
X

,

for some X dependent P , Q. Here, P i, i ∈ [K] and Qi,j , i, j ∈ [D] ∈ Π(N). According to326

homeomorphism between polynomial coefficients and roots (Theorem 3.4 in [35]), any bounded set327

in Y will induce a bound set in Z . Moreover, since elements in Z contains all the columns of X (up328

to some changes of the entry orders), a bounded set in Z also corresponds to a bounded set in X .329

Through this line of arguments, we conclude the proof.330

8

5 Extensions331

In this section, we discuss two extensions to Theorem 3.1, which strengthen our main result.332

Permutation Equivariance. Permutation-equivariant functions (cf. Definition 2.3) are considered333

as a more general family of set functions. Our main result does not lose generality to this class of334

functions. By Lemma 2 of [7], Theorem 3.1 can be directly extended to permutation-equivariant335

functions with the same lower and upper bounds, stated as follows:336

Theorem 5.1 (Extension to Equivariance). For any permutation-equivariant function f : KN×D →337

RN , K ⊆ R, there exists continuous functions ϕ : RD → RL and ρ : RD × RL → R such that338

f(X)j = ρ
(
x(j),

∑
i∈[N] ϕ(x

(i))
)

for every j ∈ [N], where L ∈ [N(D + 1), N5D2] when ϕ339

admits LP architecture, and L ∈ [ND, 2N2D2] when ϕ admits LLE architecture (K ∈ R>0).340

Complex Domain. The upper bounds in Theorem 3.1 is also true to complex features up to a341

constant scale (i.e., K ⊆ C). When features are defined over CN×D, our primary idea is to divide342

each channel into two real feature vectors, and recall Theorem 3.1 to conclude the arguments on an343

RN×2D input. All of our proof strategies are still applied. This result directly contrasts to Zweig344

and Bruna’s work [26] whose main arguments were established on complex numbers. We show345

that even moving to the complex domain, polynomial length of L is still sufficient for the DeepSets346

architecture [9]. We state a formal version of the theorem in the supplementary material.347

6 Related Work348

Works on neural networks to represent set functions have been discussed extensively in the Sec. 1.349

Here, we review other related works on the expressive power analysis of neural networks.350

Early works studied the expressive power of feed-forward neural networks with different activa-351

tions [27, 28]. Recent works focused on characterizing the benefits of the expressive power of deep352

architectures to explain their empirical success [39–43]. Modern neural networks often enforce some353

invariance properties into their architectures such as CNNs that capture spatial translation invariance.354

The expressive power of invariant neural networks has been analyzed recently [22, 44, 45].355

The architectures studied in the above works allow universal approximation of continuous func-356

tions defined on their inputs. However, the family of practically useful architectures that enforce357

permutation invariance often fail in achieving universal approximation. Graph Neural Networks358

(GNNs) enforce permutation invariance and can be viewed as an extension of set neural networks359

to encode a set of pair-wise relations instead of a set of individual elements [20, 21, 46, 47]. GNNs360

suffer from limited expressive power [5, 17, 18] unless they adopt exponential-order tensors [48].361

Hence, previous studies often characterized GNNs’ expressive power based on their capability of362

distinguishing non-isomorphic graphs. Only a few works have ever discussed the function approxima-363

tion property of GNNs [49–51] while these works still miss characterizing such dependence on the364

depth and width of the architectures [52]. As practical GNNs commonly adopt the architectures that365

combine feed-forward neural networks with set operations (neighborhood aggregation), we believe366

the characterization of the needed size for set function approximation studied in [26] and this work367

may provide useful tools to study finer-grained characterizations of the expressive power of GNNs.368

7 Conclusion369

This work investigates how many neurons are needed to model the embedding space for set repre-370

sentation learning with the DeepSets architecture [9]. Our paper provides an affirmative answer that371

polynomial many neurons in the set size and feature dimension are sufficient. Compared with prior372

arts, our theory takes high-dimensional features into consideration while significantly advancing the373

state-of-the-art results from exponential to polynomial.374

Limitations. The tightness of our bounds is not examined in this paper, and the complexity of ρ is375

uninvestigated and left for future exploration. Besides, deriving an embedding layer agnostic lower376

bound for the embedding space remains another widely open question.377

9

References378

[1] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series.379

The handbook of brain theory and neural networks, 3361(10):1995, 1995.380

[2] Taco Cohen and Max Welling. Group equivariant convolutional networks. In International381

conference on machine learning, pages 2990–2999. PMLR, 2016.382

[3] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.383

Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,384

34(4):18–42, 2017.385

[4] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution386

in neural networks to the action of compact groups. In International Conference on Machine387

Learning, pages 2747–2755, 2018.388

[5] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant389

graph networks. In International Conference on Learning Representations (ICLR), 2018.390

[6] Alexander Bogatskiy, Brandon Anderson, Jan Offermann, Marwah Roussi, David Miller, and391

Risi Kondor. Lorentz group equivariant neural network for particle physics. In International392

Conference on Machine Learning, pages 992–1002. PMLR, 2020.393

[7] Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, and Pan Li. Equivariant hyper-394

graph diffusion neural operators. In International Conference on Learning Representations395

(ICLR), 2023.396

[8] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point397

sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer398

vision and pattern recognition, pages 652–660, 2017.399

[9] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,400

and Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems401

(NeurIPS), 2017.402

[10] Vinicius Mikuni and Florencia Canelli. Point cloud transformers applied to collider physics.403

Machine Learning: Science and Technology, 2(3):035027, 2021.404

[11] Huilin Qu and Loukas Gouskos. Jet tagging via particle clouds. Physical Review D,405

101(5):056019, 2020.406

[12] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In407

Proceedings of the IEEE/CVF international conference on computer vision, pages 16259–16268,408

2021.409

[13] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.410

Set transformer: A framework for attention-based permutation-invariant neural networks. In411

International conference on machine learning, pages 3744–3753. PMLR, 2019.412

[14] Yan Zhang, Jonathon Hare, and Adam Prugel-Bennett. Deep set prediction networks. Advances413

in Neural Information Processing Systems, 32, 2019.414

[15] Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. Fspool: Learning set representations415

with featurewise sort pooling. In International Conference on Learning Representations, 2020.416

[16] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting417

networks via continuous relaxations. In International Conference on Learning Representations,418

2020.419

[17] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,420

Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural421

networks. In the AAAI Conference on Artificial Intelligence, volume 33, pages 4602–4609,422

2019.423

[18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural424

networks? In International Conference on Learning Representations, 2019.425

[19] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal426

neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,427

33:13260–13271, 2020.428

10

[20] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.429

The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.430

[21] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large431

graphs. In Advances in Neural Information Processing Systems, 2017.432

[22] Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant433

networks. In International conference on machine learning, pages 4363–4371. PMLR, 2019.434

[23] Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar Posner, and Michael A Osborne.435

On the limitations of representing functions on sets. In International Conference on Machine436

Learning, pages 6487–6494. PMLR, 2019.437

[24] Edward Wagstaff, Fabian B Fuchs, Martin Engelcke, Michael A Osborne, and Ingmar Posner.438

Universal approximation of functions on sets. Journal of Machine Learning Research, 23(151):1–439

56, 2022.440

[25] Nimrod Segol and Yaron Lipman. On universal equivariant set networks. In International441

Conference on Learning Representations (ICLR), 2020.442

[26] Aaron Zweig and Joan Bruna. Exponential separations in symmetric neural networks. arXiv443

preprint arXiv:2206.01266, 2022.444

[27] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of445

control, signals and systems, 2(4):303–314, 1989.446

[28] Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multilayer feedforward networks are447

universal approximators. Neural Networks, 2(5):359–366, 1989.448

[29] Shupeng Gui, Xiangliang Zhang, Pan Zhong, Shuang Qiu, Mingrui Wu, Jieping Ye, Zhengdao449

Wang, and Ji Liu. Pine: Universal deep embedding for graph nodes via partial permutation450

invariant set functions. IEEE Transactions on Pattern Analysis and Machine Intelligence,451

44(2):770–782, 2021.452

[30] Nicolas Bourbaki. Éléments d’histoire des mathématiques, volume 4. Springer Science &453

Business Media, 2007.454

[31] David Rydh. A minimal set of generators for the ring of multisymmetric functions. In Annales455

de l’institut Fourier, volume 57, pages 1741–1769, 2007.456

[32] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter457

Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning.458

Advances in neural information processing systems, 30, 2017.459

[33] R. L. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro. Janossy pooling: Learning deep460

permutation-invariant functions for variable-size inputs. In International Conference on Learn-461

ing Representations (ICLR), 2018.462

[34] Akiyoshi Sannai, Yuuki Takai, and Matthieu Cordonnier. Universal approximations of permuta-463

tion invariant/equivariant functions by deep neural networks. arXiv preprint arXiv:1903.01939,464

2019.465

[35] Branko Ćurgus and Vania Mascioni. Roots and polynomials as homeomorphic spaces. Exposi-466

tiones Mathematicae, 24(1):81–95, 2006.467

[36] Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function.468

IEEE Transactions on Information theory, 39(3):930–945, 1993.469

[37] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network470

learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.471

[38] Fernando Q Gouvêa. Was cantor surprised? The American Mathematical Monthly, 118(3):198–472

209, 2011.473

[39] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks,474

94:103–114, 2017.475

[40] Shiyu Liang and R Srikant. Why deep neural networks for function approximation? In476

International Conference on Learning Representations, 2017.477

[41] Joe Kileel, Matthew Trager, and Joan Bruna. On the expressive power of deep polynomial478

neural networks. Advances in neural information processing systems, 32, 2019.479

11

[42] Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: A480

tensor analysis. In Conference on learning theory, pages 698–728. PMLR, 2016.481

[43] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the482

expressive power of deep neural networks. In international conference on machine learning,483

pages 2847–2854. PMLR, 2017.484

[44] Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. Constructive485

Approximation, 55(1):407–474, 2022.486

[45] Ding-Xuan Zhou. Universality of deep convolutional neural networks. Applied and computa-487

tional harmonic analysis, 48(2):787–794, 2020.488

[46] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural489

message passing for quantum chemistry. In International Conference on Machine Learning490

(ICML), 2017.491

[47] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional492

networks. In International Conference on Learning Representations (ICLR), 2017.493

[48] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.494

In Advances in Neural Information Processing Systems, pages 7090–7099, 2019.495

[49] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph496

isomorphism testing and function approximation with gnns. In Advances in Neural Information497

Processing Systems, pages 15868–15876, 2019.498

[50] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count499

substructures? volume 33, 2020.500

[51] Waïss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural501

networks. In ICLR 2021-International Conference on Learning Representations, 2021.502

[52] Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International503

Conference on Learning Representations, 2020.504

12

	Introduction
	Preliminaries
	Notations and Problem Setup
	DeepSets and The Difficulty in the High-Dimensional Case D>1

	Main Results
	Proof Sketch
	Injectivity of LP
	Injectivity of LLE
	Continuous Lemma

	Extensions
	Related Work
	Conclusion

