

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OPTIMIZING CANARIES FOR PRIVACY AUDITING WITH METAGRADIENT DESCENT

Anonymous authors

Paper under double-blind review

ABSTRACT

In this work we study *black-box privacy auditing*, where the goal is to lower bound the privacy parameter of a differentially private learning algorithm using only the algorithm’s outputs (i.e., final trained model). For DP-SGD (the most successful method for training differentially private deep learning models), the canonical approach auditing uses *membership inference*—an auditor comes with a small set of special “canary” examples, inserts a random subset of them into the training set, and then tries to discern which of their canaries were included in the training set (typically via a membership inference attack). The auditor’s success rate then provides a lower bound on the privacy parameters of the learning algorithm. Our main contribution is a method for *optimizing* the auditor’s canary set to improve privacy auditing, leveraging recent work on metagradient optimization (Engstrom et al., 2025). Our empirical evaluation demonstrates that by using such optimized canaries, we can improve empirical lower bounds for differentially private image classification models by over **1.8x** in certain instances. Furthermore, we demonstrate that our method is *DP-SGD agnostic* and *efficient*: canaries optimized for non-private SGD with a small model architecture remain effective when auditing larger models trained with DP-SGD.

1 INTRODUCTION

Differential privacy (DP) (Dwork et al., 2006) offers a rigorous mathematical framework for safeguarding individual data in machine learning. Within this framework, differentially private stochastic gradient descent (DP-SGD) (Abadi et al., 2016) has emerged as the standard for training differentially private deep learning models. Although DP-SGD provides theoretical upper bounds on privacy loss based on its hyperparameters, these guarantees are likely conservative, which mean they tend to overestimate the privacy leakage in practice (Nasr et al., 2023). In many cases, however, they may not reflect the true privacy leakage that occurs during training. To address this gap, researchers have developed empirical techniques known as privacy audits, which aim to establish lower bounds on privacy loss. In addition to quantifying real-world leakage, privacy auditing can also help detect bugs or unintended behaviors in the implementation of private algorithms (Tramer et al., 2022).

Providing a lower bound on the privacy leakage of an algorithm typically requires the auditor to guess some private information (*membership inference*) using a set of examples (also referred to as *canaries*). For example, in one-run auditing procedures (Steinke et al., 2023; Mahloujifar et al., 2024) (which we discuss further in Section 2.1.2), a random subset of these canaries is inserted into the training dataset, and once the model is trained, the auditor guesses which of these samples belong to the subset. While recent work has made significant progress in tightening these bounds through privacy auditing, the strongest results typically assume unrealistic levels of access or control of the private training process (broadly speaking, such settings fall under the term *white-box* auditing (Nasr et al., 2023)). In contrast, this work focuses on a more practical and restrictive *black-box* setting. Here, the auditor can only insert a subset of carefully crafted examples (called the *canaries*) into the training set and observe the model’s output at the *last iterate* (without access to intermediate model states or gradient computations). In other words, the goal of black-box DP auditing reduces to performing membership inference on the canaries based on the *final model output*.

In this work, we study how to optimize canary samples for the purpose of black-box auditing in differentially private stochastic gradient descent (DP-SGD). Leveraging metagradient descent (En-

054 [gstrom et al., 2025](#)), we introduce an approach for crafting canaries specifically tailored for insertion
 055 into the training set during DP auditing. Through empirical evaluation on single-run auditing pro-
 056 tocols for DP image classification models, we find that our method consistently yields canaries that
 057 surpass standard baselines by more than a factor of two in certain regimes. Notably, our algorithm is
 058 computationally efficient: although it involves running (non-private) SGD on a lightweight ResNet-
 059 9 architecture, the resulting canaries demonstrate strong performance even when deployed in larger
 060 models, such as Wide ResNets, trained under DP-SGD. Furthermore, this improvement persists
 061 whether DP-SGD is used for end-to-end training or private finetuning on pretrained networks.

062 1.1 RELATED WORK

063 Early works in DP auditing ([Ding et al., 2018](#); [Bichsel et al., 2018](#)) introduce methods that detect
 064 violations of formal DP guarantees, relying on a large number of runs to identify deviations from
 065 expected behavior. These techniques, however, are not directly applicable to the domain of differ-
 066 entially private machine learning, as they were developed for auditing simpler DP mechanisms. To
 067 tackle this issue, [Jagielski et al. \(2020\)](#) and [Nasr et al. \(2021\)](#) introduce new approaches based on
 068 membership inference attacks (MIA) to empirically determine privacy lower bounds for more com-
 069 plex algorithms like DP-SGD. Membership inference consists of accurately determining whether
 070 a specific sample was part of the model’s training dataset. If the guesser (i.e. *attacker*) can reli-
 071 ably make accurate guesses, it suggests that the model retains information about individual samples
 072 observed during training, thereby comprising individuals’ privacy. Hence, MIA can be used as a
 073 practical DP auditing tool in which lower bounds on how much privacy leakage has occurred can be
 074 directly be estimated from the success rate of the attacker.

075 **One-run auditing.** The first auditing methods for DP-SGD relied on many runs of the algorithm,
 076 making auditing very expensive and often impractical. To remedy this issue, [Steinke et al. \(2023\)](#);
 077 [Mahloujifar et al. \(2024\)](#) reduce the computational cost of auditing by proposing procedures that
 078 require only one training run. [Kazmi et al. \(2024\)](#) and [Liu et al. \(2025\)](#) further study how to in-
 079 incorporate stronger MIA methods to empirically improve auditing in this one-run setting. Similarly,
 080 [Keinan et al. \(2025\)](#) study the theoretical maximum efficacy of one-run auditing.

081 **Last-iterate auditing.** Our work builds on the aforementioned one-run auditing methods and fo-
 082 cuses specifically on the *last-iterate* auditing regime, which restricts the auditor’s access to just the
 083 final model weights after the last iteration of DP-SGD. Related work to this regime from [Muthu
 084 Selva Annamalai \(2024\)](#) investigates whether the analysis on the last iteration can be as tight as
 085 analysis on the sequence of all iterates. Meanwhile, [Nasr et al. \(2025\)](#) propose a heuristic that
 086 predicts empirical lower bounds derived from auditing the last iterate. Other works instead focus
 087 on on partial relaxations of the problem: [Cebere et al. \(2025\)](#) assume that the auditor can inject
 088 crafted-gradients, and [Muthu Selva Annamalai & De Cristofaro \(2024\)](#) audit models that initialized
 089 to worst-case parameters.

090 **Canaries Optimization.** Rather than proposing new auditing procedures, our work studies how to
 091 make existing ones more effective by focusing on optimizing canary sets for privacy auditing. Sim-
 092 ilarly, [Jagielski et al. \(2020\)](#) develop a method, *CLIPBKD*, that uses singular value decompositon to
 093 obtain canaries more robust to gradient clipping. [Nasr et al. \(2023\)](#) evaluate various procedures to
 094 optimize canaries for their *white-box* auditing experiments. To better audit differentially private fed-
 095 erated learning, [Maddock et al. \(2023\)](#) craft an adversarial sample that is added to a client’s dataset
 096 used to send model updates. Finally, in the context of auditing LLMs, [Panda et al. \(2025\)](#) proposes
 097 using tokens sequences not present in the training dataset as canaries, while [Meeus et al. \(2025\)](#)
 098 create canaries with a low-perplexity, in-distribution prefixes and high-perplexity suffixes.

099 **Metagradient computation.** Our work also makes use of recent advancements in computing
 100 *metagradients*, gradients of machine learning models’ outputs with respect to their hyperparameters
 101 or other quantities decided on prior to training. Prior work on metagradient computation falls under
 102 two categories: *implicit differentiation* ([Bengio, 2000](#); [Koh & Liang, 2017](#); [Rajeswaran et al., 2019](#);
 103 [Finn et al., 2017](#); [Lorraine et al., 2020](#); [Chen & Hsieh, 2020](#); [Bae et al., 2022](#)) aims to approximate
 104 the metagradient. On one hand, approximating metagradients allows for scalability to large-scale
 105 metagradient computation; on the other, this approach loosens correctness guarantees and imposes

108 restrictions on what learning algorithms can be used. In contrast, *explicit differentiation* directly
 109 computes metagradients using automatic differentiation. However, these works (Maclaurin et al.,
 110 2015; Micaelli & Storkey, 2021; Franceschi et al., 2017; Liu et al., 2018) are limited by their scal-
 111 ability to larger models and number of hyperparameters and by numerical instability. We leverage
 112 recent work by Engstrom et al. (2025), which takes the explicit approach, but addresses the afore-
 113 mentioned issues by proposing a scalable and memory-efficient method to computing metagradients.
 114

115 2 PRELIMINARIES

117 Informally, differential privacy provides bounds on the extent to which the output distribution of a
 118 randomized algorithm \mathcal{M} can change when a data point is removed or swapped out.
 119

120 **Definition 2.1** ((Approximate-) Differential Privacy (DP) (Dwork et al., 2006)). A randomized al-
 121 gorithm $\mathcal{M} : \mathcal{X}^N \rightarrow \mathbb{R}$ satisfies (ε, δ) -differential privacy if for all neighboring datasets D, D' (i.e.,
 122 all D, D' such that $|D' \setminus D| = 1$ and for all outcomes $S \subseteq \mathbb{R}$ we have

$$123 P(\mathcal{M}(D) \in S) \leq e^\varepsilon P(\mathcal{M}(D') \in S) + \delta$$

125 In the context of machine learning, \mathcal{M} would be a learning algorithm, and this definition requires
 126 the model to be insensitive to the exclusion of one training data point. In essence, it bounds the
 127 change in the output distribution of the model when trained on neighboring datasets. This implies
 128 that the model does not overly depend on any single sample observed.

129 Since the seminal work of Dwork et al. (2006), various relaxations of differential privacy have been
 130 proposed. Below, we define f -differential privacy, which we later reference when describing the
 131 auditing procedure proposed by Mahloujifar et al. (2024).

132 **Definition 2.2** (f -Differential Privacy (Dong et al., 2022)). A mechanism \mathcal{M} is f -DP if for all
 133 neighboring datasets $\mathcal{S}, \mathcal{S}'$ and all measurable sets T with $|\mathcal{S} \Delta \mathcal{S}'| = 1$, we have

$$135 \Pr[\mathcal{M}(\mathcal{S}) \in T] \leq \bar{f}(\Pr[\mathcal{M}(\mathcal{S}') \in T]). \quad (1)$$

137 Importantly, f -DP relates to approximate DP in the following way:

138 **Proposition 1.** A mechanism is (ε, δ) -DP if it is f -DP with respect to $\bar{f}(x) = e^\varepsilon x + \delta$, where
 139 $f(x) = 1 - f(x)$.
 140

141 While a wide range of methods for adding differentially private guarantees to machine learning
 142 algorithms have been proposed over the years, DP-SGD (Abadi et al., 2016) has been established as
 143 one of the de facto algorithms for training deep neural networks with DP. At a high-level, DP-SGD
 144 makes SGD differentially private by modifying it in the following ways: (1) gradients are clipped
 145 to some maximum Euclidean norm and (2) random noise is added to the clipped gradients prior to
 146 each update step. In Algorithm 1, we present DP-SGD in detail.

147 2.1 AUDITING DIFFERENTIAL PRIVACY

150 Differentially private algorithms are accompanied by analysis upper bounding the DP parameters
 151 ε and δ . Privacy auditing instead provides an empirical *lower bound* on these parameters. In this
 152 work, we focus on a specific formulation of privacy audits: *last-iterate*, *black-box*, *one-run* auditing.

153 2.1.1 LAST-ITERATE BLACK-BOX AUDITING

155 Our work focuses on *last-iterate black-box* auditing, where the auditor can only insert samples (i.e.,
 156 canaries) into the training set and can only access the resulting model at the final training iteration.
 157 We note that, in contrast, previous works have also studied white-box settings. While the exact
 158 assumptions made in this setting can vary (Nasr et al., 2021; 2023; Steinke et al., 2023; Koskela &
 159 Mohammadi, 2025), it can be characterized as having fewer restrictions (e.g., access to intermediate
 160 training iterations or the ability to inject and modify gradients). While auditing in white-box settings
 161 generally leads to higher lower bound estimates due to the strength of the auditor, its assumptions
 are often far less realistic than those made in black-box auditing.

162

Algorithm 1: Differentially Private Stochastic Gradient Descent (DP-SGD)

163

Input: $x \in \mathcal{X}^n$

164

Requires: Loss function $f : \mathbb{R}^d \times \mathcal{X} \rightarrow \mathbb{R}$

165

Parameters: Number of iterations ℓ , learning rate η , clipping threshold $c > 0$, noise multiplier $\sigma > 0$, sampling probability $q \in (0, 1]$

166

1 Initialize $w_0 \in \mathbb{R}^d$;

167

2 **for** $t = 1, \dots, \ell$ **do**

168

3 Sample $S^t \subseteq [n]$ where each $i \in [n]$ is included independently with probability q ;

169

4 Compute $g_i^t = \nabla_{w^{t-1}} f(w^{t-1}, x_i) \in \mathbb{R}^d$ for all $i \in S^t$;

170

5 Clip $\tilde{g}_i^t = \min \left\{ 1, \frac{c}{\|g_i^t\|_2} \right\} \cdot g_i^t \in \mathbb{R}^d$ for all $i \in S^t$;

171

6 Sample $\xi^t \in \mathbb{R}^d$ from $\mathcal{N}(0, \sigma^2 c^2 I)$;

172

7 Sum $\tilde{g}^t = \xi^t + \sum_{i \in S^t} \tilde{g}_i^t \in \mathbb{R}^d$;

173

8 Update $w^t = w^{t-1} - \eta \cdot \tilde{g}^t \in \mathbb{R}^d$;

174

Output: w^0, w^1, \dots, w^ℓ

175

176

177

178

179

Algorithm 2: Black-box Auditing - One Run (Steinke et al., 2023)

180

Input: probability threshold τ , privacy parameter δ , training algorithm \mathcal{A} , dataset D , set of m canaries $C = \{c_1, \dots, c_m\}$

181

Requires: scoring function **score**

182

Parameters: number of positive and negative guesses k_+ and k_-

183

1 Randomly split canaries C into two equally-sized sets C_{IN} and C_{OUT}

184

185

2 Let $S = \{s_i\}_{i=1}^m$, where $s_i = \begin{cases} 1 & \text{if } c_i \in C_{\text{IN}} \\ -1 & \text{if } c_i \in C_{\text{OUT}} \end{cases}$

186

3 Train model $w \leftarrow \mathcal{A}(D \cup C_{\text{IN}})$

187

4 Compute vector of scores $Y = \{\text{score}(w, c_i)\}_{i=1}^m$

188

5 Sort scores in ascending order $Y' \leftarrow \text{sort}(Y)$

189

6 Construct vector of guesses $T = \{t_i\}_{i=1}^m$, where $t_i =$

190

$$\begin{cases} 1 & \text{if } Y_i \text{ is among the top } k_+ \text{ scores in } Y \text{ (i.e., } Y_i \geq Y'_{m-k_+} \text{) // guess } c_i \in C_{\text{IN}} \\ -1 & \text{if } Y_i \text{ is among the bottom } k_- \text{ scores in } Y \text{ (i.e., } Y_i \leq Y'_{k_-} \text{) // guess } c_i \in C_{\text{OUT}} \\ 0 & \text{otherwise // abstain} \end{cases}$$

191

7 Compute empirical epsilon $\tilde{\epsilon}$ (i.e., find the largest $\tilde{\epsilon}$ such that S, T, τ , and δ satisfy Theorem 1)

192

Output: $\tilde{\epsilon}$

193

194

195

196

197

198

199

200

2.1.2 ONE-RUN AUDITING

201

202

Early works (Jagielski et al., 2020; Tramer et al., 2022; Nasr et al., 2023) design privacy auditing “attacks” that align with the definition of DP, which bounds the difference in outputs on neighboring datasets that differ by one sample. These audits detect the presence (or absence) of an individual sample over hundreds—if not, thousands—of runs of DP-SGD. The auditing procedure then gives a lower bound on ϵ based on the true and false positive rates of the membership inference attacks.

203

204

205

206

While effective, these multi-run auditing procedures are computational expensive. Consequently, Steinke et al. (2023) propose an alternative procedure that requires only *one* training run. Their strategy inserts multiple canary examples and obtains a lower bound based on how well an attacker can guess whether some canary was used in training. While one-run auditing can sacrifice bound tightness, its ability to audit without multiple runs of DP-SGD make it much more efficient and therefore, practical for larger models. In our work, we consider two primary auditing procedures:

207

208

209

210

211

212

213

214

215

(1) Steinke et al. (2023) introduce the concept of privacy auditing using one training run. Given some set of canaries C , samples are randomly sampled from C with probability $\frac{1}{2}$ and inserted into the training set. Once the model is trained, the auditor guesses which samples in C were or were not included in the training set. The auditor can make any number of guesses or abstain. We present

216 **Algorithm 3:** Black-box Auditing - One Run (Mahloujifar et al., 2024)
217
218 **Input:** privacy parameter δ , training algorithm \mathcal{A} , dataset D , set of m canaries
219 $C = \{c_1, \dots, c_m\}$
220 **Requires:** scoring function **score**
221 **Parameters:** number of guesses k
222 1 Randomly split canaries C into two equally-sized sets C_{IN} and C_{OUT}
223 2 Create disjoint canary sets $E = \{e_i\}_{i=1}^{m/2}$ by randomly pairing canaries from C_{IN} and C_{OUT}
224 such that $e_i = (c_{i,1}, c_{i,2})$ for $c_{i,1} \in C_{\text{IN}}$ and $c_{i,2} \in C_{\text{OUT}}$ (each canary $c \in C$ appears in
225 **exactly** one set e_i)
226 3 Train model $w \leftarrow \mathcal{A}(D \cup C_{\text{IN}})$
227 4 Compute vector of scores $Y = \{|\text{score}(w, c_{i,1}) - \text{score}(w, c_{i,2})|\}_{i=1}^{m/2}$
228 5 Sort scores in ascending order $Y' \leftarrow \text{sort}(Y)$
229 6 Construct vector of guesses $T = \{t_i\}_{i=1}^{m/2}$, where
230
$$t_i = \begin{cases} 1 & \text{if } Y_i \text{ is among the top } k \text{ values in } Y \text{ (i.e., } Y_i \geq Y'_{m-k} \text{)} \\ & \text{and } \text{score}(w, c_{i,1}) > \text{score}(w, c_{i,2}) // \text{guess } c_{i,1} \in C_{\text{IN}} \\ -1 & \text{if } Y_i \text{ is among the top } k \text{ values in } Y \text{ (i.e., } Y_i \geq Y'_{m-k} \text{)} \\ & \text{and } \text{score}(w, c_{i,1}) \leq \text{score}(w, c_{i,2}) // \text{guess } c_{i,2} \in C_{\text{IN}} \\ 0 & \text{otherwise} // \text{abstain} \end{cases}$$

231 7 Let number of correct guesses $k' = \sum_{i=1}^{m/2} \mathbb{1}\{t_i = 1\}$
232 8 Compute empirical epsilon $\tilde{\epsilon}$ (i.e., find the largest $\tilde{\epsilon}$ whose corresponding f -DP function f
233 passes Algorithm 4 for m, k, k', τ , and δ .)
234 **Output:** $\tilde{\epsilon}$

240 **Algorithm 4:** Upper bound probability of making correct guesses (Mahloujifar et al., 2024)
241
242 **Input:** probability threshold τ , functions f and f^{-1} , number of guesses k , number of correct
243 guesses k' , number of samples m , alphabet size s
244 1 $\forall 0 < i < k'$ set $h[i] = 0$, and $r[i] = 0$
245 2 Set $r[k'] = \tau \cdot \frac{c}{m}$
246 3 Set $h[k'] = \tau \cdot \frac{c' - c}{m}$
247 4 **for** $i \in [k' - 1, \dots, 0]$ **do**
248 5
$$h[i] = (s - 1)f^{-1}(r[i + 1])$$

249 6
$$r[i] = r[i + 1] + \frac{i}{k - i} \cdot (h[i] - h[i + 1])$$

250 7 **if** $r[0] + h[0] \geq \frac{k}{m}$ **then**
251 8
$$| \text{Return True (probability of } k' \text{ correct guesses (out of } k \text{) is less than } \tau)$$

252 9 **else**
253 10
$$| \text{Return False (probability of having } k' \text{ correct guesses (out of } k \text{) could be more than } \tau)$$

255
256 this procedure in Algorithm 2. The final lower bound on ϵ is determined using Theorem 1, which is
257 based on the total number of canaries, the number of guesses, and the number of correct guesses.

258 **Theorem 1** (Analytic result for approximate DP (Steinke et al., 2023)). Suppose $\mathcal{A} : \{-1, 1\}^m \rightarrow$
259 $\{-1, 0, 1\}^m$ satisfy (ϵ, δ) -DP. Let $S \in \{-1, 1\}^m$ be uniformly random and $T = \mathcal{A}(S)$. Suppose
260 $\mathbb{P}[\|T\|_1 \leq r] = 1$. Then, for all $v \in \mathbb{R}$,

$$262 \mathbb{P}_{\substack{S \leftarrow \{-1, 1\}^m \\ T \leftarrow \mathcal{A}(S)}} \left[\sum_{i=1}^m \max\{0, T_i \cdot S_i\} \geq v \right] \leq f(v) + 2m\delta \cdot \max_{i \in \{1, \dots, m\}} \left\{ \frac{f(v - i) - f(v)}{i} \right\},$$

263 where

$$264 f(v) := \mathbb{P}_{\tilde{W} \leftarrow \text{Binomial}\left(r, \frac{e^\epsilon}{e^\epsilon + 1}\right)} \left[\tilde{W} \geq v \right].$$

265 At a very high level, \mathcal{A} is DP-SGD, which takes in as input some set of m canaries that are labeled
266 ($S \in \{-1, 1\}^m$) as being included or excluded from the training set. The auditor uses the output of

270 DP-SGD to produce a vector of guesses $T \in \{-1, 0, 1\}^m$ for the m canaries. Theorem 1 bounds the
 271 probability of making at least v correct guesses ($\sum_{i=1}^m \max\{0, T_i \cdot S_i\} \geq v$, where $T_i \cdot S_i = 1$ if the
 272 guess is correct). More informally, this theorem bounds the success rate (number of correct guesses)
 273 of the auditor assuming the parameter ε . Practically speaking, one runs binary search (Steinke et al.,
 274 2023, Appendix D) to estimate the largest ε such that Theorem 1 still holds.

275 (2) Mahloujifar et al. (2024) propose an alternative auditing procedure that empirically achieves
 276 tighter privacy estimates in the white-box setting. In their guessing game, the set of canaries C is
 277 randomly partitioned in disjoint sets. One canary is sampled from each set and inserted into the
 278 training set. Again, once the model is trained with DP-SGD, the auditor must make guesses. Unlike
 279 in Steinke et al. (2023), however, the auditor must guess which canary out of each set was included
 280 in training. Algorithm 3 presents this procedure for canary sets of size 2.

281 Similar to Steinke et al. (2023), the final lower bound on ε is determined based on the total number
 282 of canary sets, the number of guesses, and the number of correct guesses. At a high level, Mahloujifar
 283 et al. (2024) first construct a set of candidate values for ε and a corresponding f -DP function for
 284 each. Using Algorithm 4, they then run a hypothesis test, with probability threshold τ , for the number
 285 of correct guesses (i.e., output of Algorithm 4) occurring given function f . The final empirical
 286 lower bound is the maximum ε among those corresponding to the functions f that pass Algorithm 4.

287 **Scoring function.** Finally, to determine membership for either procedure, the auditor must first
 288 choose some score function $s(\cdot)$ from the training process. In the black-box setting for image
 289 classification models, one natural choice for $s(\cdot)$ is to use negative cross-entropy loss (Steinke et al.,
 290 2023). When $s(w, x)$ is large (i.e., cross-entropy loss is small) for some canary x and model w ,
 291 the auditor guesses that x was included in training, and vice-versa. In Section 4, we provide more
 292 details about how we use the score function for Algorithms 2 and 3.

295 3 CANARY OPTIMIZATION WITH METAGRADIENT DESCENT

296 For a fixed black-box auditing algorithm $\text{BBaudit} : (\tau, \delta, \mathcal{A}, D, C) \rightarrow \tilde{\varepsilon}$ (e.g., Algorithm 2 or 3),
 297 the main degree of freedom available to the auditor is the choice of canary set C . Typically, one
 298 chooses C to be a random subset of the training dataset D , or a random set of mislabeled examples
 299 (Steinke et al., 2023; Mahloujifar et al., 2024). A natural question to ask is whether such choices
 300 are (near-)optimal; in other words, *can we significantly improve the efficacy of a given auditing*
 301 *algorithm by carefully designing the canary set C ?*

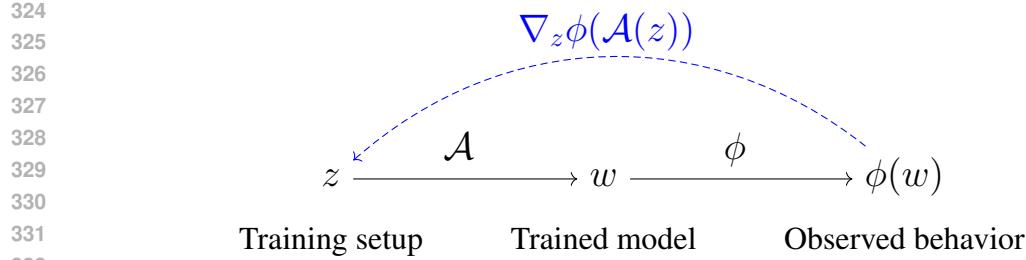
302 In this section, we describe an optimization-based approach to choosing the canary set. At a high
 303 level, our goal is to solve an optimization problem of the form

$$306 \max_C \text{BBaudit}(\tau, \delta, \mathcal{A}, D, C), \quad (2)$$

307 where BBaudit is the (fixed) differential privacy auditing algorithm, τ and δ are the privacy
 308 parameters, \mathcal{A} is the learning algorithm (e.g., DP-SGD), D is the dataset, and C is the set of canary
 309 samples. The high-dimensional nature of this problem (e.g., for CIFAR-10, $C \in \mathbb{R}^{m \times 32 \times 32 \times 3}$)
 310 makes it impossible to exhaustively search over all possible canary sets C .

311 Instead, the main idea behind our approach is to use *gradient descent* to optimize the canary set
 312 C . To do so, we first design a surrogate objective function to audit by leveraging the connection
 313 between membership inference and differential privacy auditing. We then use recent advances in
 314 *metagradient* computation (Engstrom et al., 2025) to optimize this surrogate objective with respect
 315 to the canary set C .

316 **Key primitive: metagradient descent.** A metagradient is a gradient taken *through* the process
 317 of training a machine learning model (Maclaurin et al., 2015; Domke, 2012; Bengio, 2000; Baydin
 318 & Pearlmutter, 2014). Specifically, given a learning algorithm \mathcal{A} , a (continuous) design parameter
 319 z (e.g., learning rate, weight decay, data weights, etc.), and a loss function ϕ , the metagradient
 320 $\nabla_z \phi(\mathcal{A}(z))$ is the gradient of the final loss ϕ with respect to the design parameter z (see Figure 1).
 321 For very small-scale learning algorithms (e.g., training shallow neural networks), one can compute
 322 metagradients by backpropagating through the entire model training process.



Algorithm 5: Metagradient Canary Optimization

378
 379 **Input:** dataset D
 380 **Requires:** training algorithm \mathcal{A} , loss function \mathcal{L}
 381 **Parameters:** number of canaries m , number of meta-iterations N
 382 1 Initialize canaries $C_0 = \{c_1, \dots, c_m\}$
 383 2 **for** $t \leftarrow 0$ **to** $N - 1$ **do**
 384 3 Randomly split C_t into two equally-sized sets: $C_{\text{IN},t}$ and $C_{\text{OUT},t}$
 385 4 Train model: $w_t \leftarrow \mathcal{A}(D \cup C_{\text{IN},t})$
 386 5 Compute loss gap $\phi(w_t) = \mathcal{L}(w_t, C_{\text{IN},t}) - \mathcal{L}(w_t, C_{\text{OUT},t})$
 387 6 Compute gradient w.r.t. canaries: $\nabla_{C_t} \leftarrow \text{REPLAY}(w_t, \phi(\theta_t))$
 388 7 Update canaries: $C_{i+1} \leftarrow \text{update}(C_i, \nabla_{C_i})$
 389 **Output:** optimized canaries C_N

390
 391
 392 a model $w = \mathcal{A}(z)$, we take a gradient step to minimize the objective (equation 3) with respect to
 393 the canary set C . By repeating this process several times (essentially running stochastic gradient
 394 descent across random seeds and random data orderings partitionings of the canary set), we obtain
 395 a set of canary examples that are robustly memorizable and non-generalizable.

4 EMPIRICAL EVALUATION

4.1 SETUP

401 **Audited models.** Following prior work (Nasr et al., 2023; Steinke et al., 2023; Mahloujifar
 402 et al., 2024), we audit Wide ResNet models (Zagoruyko & Komodakis, 2016) trained on CIFAR-
 403 10 (Krizhevsky et al., 2009) with DP-SGD. We use the Wide ResNet 16-4 architecture proposed by
 404 De et al. (2022), which they modify for DP training, and train the model using the JAX-Privacy
 405 package (Balle et al., 2025).

406 To audit the models, we use canary sets of size $m = 1000$. To remain consistent with Steinke et al.
 407 (2023) and Mahloujifar et al. (2024), where C is sampled from the training set, we have in total
 408 $r = 49000$ non-canaries training images for CIFAR-10. Thus, in total, $n = 49500$ images are used
 409 in training for any given run. We run DP-SGD on models both initialized randomly and pretrained
 410 nonprivately (i.e., DP-finetuning). For DP-finetuning experiments, we use CINIC-10 (Darlow et al.,
 411 2018), which combines images from CIFAR-10 with images from ImageNet (Deng et al., 2009)
 412 that correspond to the classes in CIFAR-10. For our pretraining dataset, we use CINIC-10 with the
 413 CIFAR-10 images removed. We present hyperparameters in Table 2 of the appendix.

414
 415 **Baselines.** We compare our method against canaries randomly sampled from the training set
 416 (Steinke et al., 2023; Mahloujifar et al., 2024), as well as canaries that have been mislabeled (Nasr
 417 et al., 2023; Steinke et al., 2023).

4.2 RESULTS

418
 419 We first evaluate our metagradient canaries when auditing models trained with *non-private* SGD. In
 420 Figure 2, we plot the empirical epsilon estimated by the auditing procedures introduced in Steinke
 421 et al. (2023) and Mahloujifar et al. (2024) against the number of steps that the Wide ResNet 16-
 422 4 model is trained for. We observe that even when applied on different model architectures (i.e.,
 423 transferring from ResNet-9 to WRN 16-4), our metagradient canaries perform strongly. Using the
 424 auditing procedure of Mahloujifar et al. (2024), for example, our canaries outperform the two base-
 425 lines across any number of training steps.

426 Having verified that our metagradient canaries work properly for auditing SGD, we now evaluate
 427 their effectiveness in auditing *DP-SGD*. In Table 1, we present our main results for both DP training
 428 (i.e., training from scratch) and DP finetuning (i.e., first pretraining non-privately). We find that our
 429 method performs the best, exceeding the empirical epsilon of baseline canaries, regardless of the
 430 auditing procedure used ($\approx 25\%$ for Steinke et al. (2023) and $\approx 75\%$ for Mahloujifar et al. (2024)).

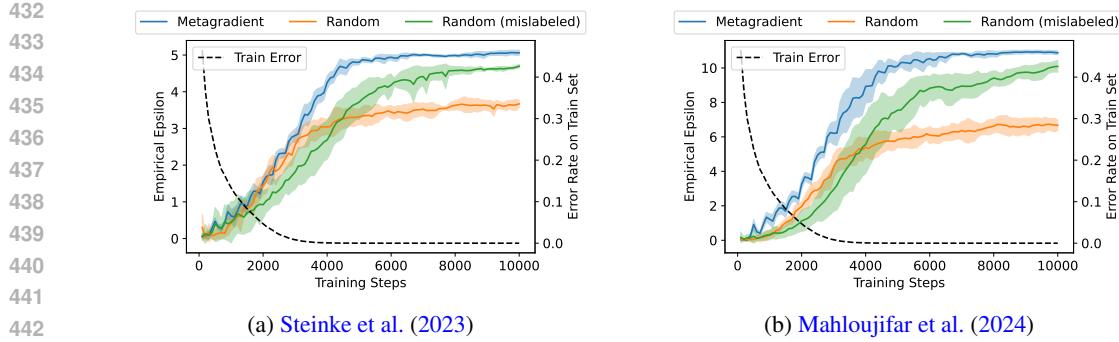


Figure 2: We evaluate the effectiveness of our metagradient canaries for the purpose of auditing *non-private* SGD. We train a Wide ResNet 16-4 model on CIFAR-10 for 10k steps with each canary type, plotting the empirical epsilon when auditing the model at every 100 steps with the auditing procedures introduced by (a) Steinke et al. (2023) and (b) Mahloujifar et al. (2024). We take an average over 5 runs and plot an error band to denote ± 1 standard deviation. For reference, we plot the training error of the model trained on our metagradient canaries (note that the training accuracy is approximately the same, regardless of choice of canary).

Table 1: We audit a Wide ResNet 16-4 model that has been trained with DP-SGD ($\varepsilon = 8.0$, $\delta = 10^{-5}$) on CIFAR-10 with the auditing parameters: $n = 49500$, $m = 1000$, and $r = 49000$. We present results for models (a) initialized from scratch and (b) pretrained on CINIC-10 (with CIFAR-10 images removed). We report the average empirical epsilon and standard error over 5 runs for auditing procedures introduced by (1) Steinke et al. (2023) and (2) Mahloujifar et al. (2024).

Audit Procedure	Canary Type	(a) DP Training		(b) DP Finetuning	
		Avg.	Std.	Avg.	Std.
(1) Steinke et al. (2023)	random	0.285	0.163	0.477	0.197
	random mislabeled	0.308	0.249	0.489	0.316
	metagradient (<i>ours</i>)	0.392	0.139	0.665	0.054
(2) Mahloujifar et al. (2024)	random	0.405	0.428	0.687	0.229
	random mislabeled	0.225	0.167	0.632	0.123
	metagradient (<i>ours</i>)	0.732	0.274	1.207	0.247

Moreover, this advantage holds even when evaluating on DP finetuning, despite our metagradient optimization process not using CINIC-10 for pretraining w at each metagradient step of Algorithm 5.

5 CONCLUSION

We propose an efficient method for canary optimization that leverages metagradient descent. Optimizing for an objective tailored towards privacy auditing, our canaries significantly outperform standard canaries, which are sampled from the training dataset. Specifically, we show that despite being optimized for non-private SGD on a small ResNet model, our canaries work better on larger Wide ResNets for both DP-training and DP-finetuning. Using our canaries, we significantly tighten privacy bounds, nearly doubling the empirical epsilon. Furthermore, this improvement holds, regardless of whether DP-SGD is run from scratch or after non-private finetuning.

6 REPRODUCIBILITY STATEMENT

In our paper, we describe in detail the algorithms for both our metagradient optimization procedure (Algorithm 5) and the one-run auditing procedures from Steinke et al. (2023) (Algorithm 2) and Mahloujifar et al. (2024) (Algorithms 3 and 4). Additional implementation details and hyperparameters for running these algorithms are described in Appendix A. To ensure reproducibility of our results, we also provide code used for all our experiments in the supplementary materials. There are

486 two main parts: code for metagradient canary optimization and code for training and auditing image
 487 classification models with DP-SGD. Instructions for running the code are available in an included
 488 README file. In the final version of our paper, we will include a link to a public repository.
 489

490 **REFERENCES**
 491

492 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
 493 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC*
 494 *conference on computer and communications security*, pp. 308–318, 2016.

495 Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions
 496 are the answer, then what is the question? *Advances in Neural Information Processing Systems*,
 497 35:17953–17967, 2022.

498 Borja Balle, Leonard Berrada, Zachary Charles, Christopher A Choquette-Choo, Soham De,
 500 Vadym Doroshenko, Dj Djvijotham, Andrew Galen, Arun Ganesh, Sahra Ghalebikesabi, Jamie
 501 Hayes, Peter Kairouz, Ryan McKenna, Brendan McMahan, Aneesh Pappu, Natalia Ponomareva,
 502 Mikhail Pravilov, Keith Rush, Samuel L Smith, and Robert Stanforth. JAX-Privacy: Algo-
 503 rithms for privacy-preserving machine learning in jax, 2025. URL http://github.com/google-deepmind/jax_privacy.

504 Atilim Gunes Baydin and Barak A Pearlmutter. Automatic differentiation of algorithms for machine
 505 learning. *arXiv preprint arXiv:1404.7456*, 2014.

506 Yoshua Bengio. Gradient-based optimization of hyperparameters. *Neural computation*, 12(8):1889–
 507 1900, 2000.

508 Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov, and Martin Vechev. Dp-
 509 finder: Finding differential privacy violations by sampling and optimization. In *Proceed-
 510 ings of the 2018 ACM SIGSAC Conference on Computer and Communications Security*, CCS
 511 '18, pp. 508–524, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
 512 9781450356930. doi: 10.1145/3243734.3243863. URL <https://doi.org/10.1145/3243734.3243863>.

513 Tudor Ioan Cebere, Aurélien Bellet, and Nicolas Papernot. Tighter privacy auditing of DP-SGD in
 514 the hidden state threat model. In *The Thirteenth International Conference on Learning Represen-
 515 tations*, 2025. URL <https://openreview.net/forum?id=xzKFnsJIXL>.

516 Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via perturbation-
 517 based regularization. In *International conference on machine learning*, pp. 1554–1565. PMLR,
 518 2020.

519 Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet
 520 or cifar-10. *arXiv preprint arXiv:1810.03505*, 2018.

521 Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlock-
 522 ing high-accuracy differentially private image classification through scale. *arXiv preprint*
 523 *arXiv:2204.13650*, 2022.

524 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 525 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 526 pp. 248–255. Ieee, 2009.

527 Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng Zhang, and Daniel Kifer. Detecting violations
 528 of differential privacy. In *Proceedings of the 2018 ACM SIGSAC Conference on Computer and*
 529 *Communications Security*, pp. 475–489, 2018.

530 Justin Domke. Generic methods for optimization-based modeling. In *Artificial Intelligence and*
 531 *Statistics*, pp. 318–326. PMLR, 2012.

532 Jinshuo Dong, Aaron Roth, and Weijie J. Su. Gaussian differential privacy. *Journal of the Royal*
 533 *Statistical Society: Series B (Statistical Methodology)*, 84(1):3–37, 2022.

540 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
 541 in private data analysis. In *Theory of cryptography conference*, pp. 265–284. Springer, 2006.
 542

543 Logan Engstrom, Andrew Ilyas, Benjamin Chen, Axel Feldmann, William Moses, and Aleksander
 544 Madry. Optimizing ml training with metagradient descent. *arXiv preprint arXiv:2503.13751*,
 545 2025.

546 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
 547 of deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.
 548

549 Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
 550 gradient-based hyperparameter optimization. In *International conference on machine learning*,
 551 pp. 1165–1173. PMLR, 2017.

552 Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private machine
 553 learning: How private is private sgd? *Advances in Neural Information Processing Systems*, 33:
 554 22205–22216, 2020.
 555

556 Mishael Kazmi, Hadrien Lautraite, Alireza Akbari, Qiaoyue Tang, Mauricio Soroco, Tao Wang,
 557 Sébastien Gambs, and Mathias Lécuyer. Panoramia: Privacy auditing of machine learning models
 558 without retraining. *Advances in Neural Information Processing Systems*, 37:57262–57300, 2024.

559 Amit Keinan, Moshe Shenfeld, and Katrina Ligett. How well can differential privacy be audited in
 560 one run? *arXiv preprint arXiv:2503.07199*, 2025.
 561

562 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 563 *International conference on machine learning*, pp. 1885–1894. PMLR, 2017.
 564

565 Antti Koskela and Jafar Aco Mohammadi. Auditing differential privacy guarantees using density
 566 estimation. In *2025 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)*,
 567 pp. 1007–1026. IEEE, 2025.

568 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 569 *University of Toronto*, 2009.
 570

571 Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. *arXiv
 572 preprint arXiv:1806.09055*, 2018.

573 Terrance Liu, Matteo Boglioni, Yiwei Fu, Shengyuan Hu, Pratiksha Thaker, and Zhiwei Steven Wu.
 574 Enhancing one-run privacy auditing with quantile regression-based membership inference. *arXiv
 575 preprint arXiv:2506.15349*, 2025.
 576

577 Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
 578 implicit differentiation. In *International conference on artificial intelligence and statistics*, pp.
 579 1540–1552. PMLR, 2020.

580 Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
 581 tion through reversible learning. In *International conference on machine learning*, pp. 2113–2122.
 582 PMLR, 2015.
 583

584 Samuel Maddock, Alexandre Sablayrolles, and Pierre Stock. Canife: Crafting canaries for empirical
 585 privacy measurement in federated learning. In *ICLR*, 2023.

586 Saeed Mahloujifar, Luca Melis, and Kamalika Chaudhuri. Auditing f -differential privacy in one
 587 run. *arXiv preprint arXiv:2410.22235*, 2024.
 588

589 Matthieu Meeus, Lukas Wutschitz, Santiago Zanella-Beguelin, Shruti Tople, and Reza Shokri. The
 590 canary’s echo: Auditing privacy risks of llm-generated synthetic text. In *Forty-second Interna-
 591 tional Conference on Machine Learning*, 2025.

592 Paul Micaelli and Amos J Storkey. Gradient-based hyperparameter optimization over long horizons.
 593 *Advances in Neural Information Processing Systems*, 34:10798–10809, 2021.

594 Meenatchi Sundaram Muthu Selva Annamalai. It's our loss: No privacy amplification for hidden
 595 state dp-sgd with non-convex loss. In *Proceedings of the 2024 Workshop on Artificial Intelligence*
 596 and *Security*, AISec '24, pp. 24–30, New York, NY, USA, 2024. Association for Computing
 597 Machinery. ISBN 9798400712289. doi: 10.1145/3689932.3694767. URL <https://doi.org/10.1145/3689932.3694767>.

598
 599 Meenatchi Sundaram Muthu Selva Annamalai and Emiliano De Cristofaro. Nearly tight black-box
 600 auditing of differentially private machine learning. *Advances in Neural Information Processing*
 601 *Systems*, 37:131482–131502, 2024.

602
 603 Milad Nasr, Shuang Songi, Abhradeep Thakurta, Nicolas Papernot, and Nicholas Carlin. Adversary
 604 instantiation: Lower bounds for differentially private machine learning. In *2021 IEEE Symposium*
 605 *on security and privacy (SP)*, pp. 866–882. IEEE, 2021.

606 Milad Nasr, Jamie Hayes, Thomas Steinke, Borja Balle, Florian Tramèr, Matthew Jagielski,
 607 Nicholas Carlini, and Andreas Terzis. Tight auditing of differentially private machine learning.
 608 In *32nd USENIX Security Symposium (USENIX Security 23)*, pp. 1631–1648, 2023.

609
 610 Milad Nasr, Thomas Steinke, Borja Balle, Christopher A. Choquette-Choo, Arun Ganesh, Matthew
 611 Jagielski, Jamie Hayes, Abhradeep Guha Thakurta, Adam Smith, and Andreas Terzis. The last
 612 iterate advantage: Empirical auditing and principled heuristic analysis of differentially private
 613 SGD. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
<https://openreview.net/forum?id=DwqoBkj2Mw>.

614
 615 Ashwinee Panda, Xinyu Tang, Christopher A. Choquette-Choo, Milad Nasr, and Prateek Mittal. Pri-
 616 vacy auditing of large language models. In *The Thirteenth International Conference on Learning*
 617 *Representations*, 2025. URL <https://openreview.net/forum?id=60Vd7QOX1M>.

618 Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
 619 plicit gradients. *Advances in neural information processing systems*, 32, 2019.

620
 621 Thomas Steinke, Milad Nasr, and Matthew Jagielski. Privacy auditing with one (1) training run. In
 622 *Proceedings of the 37th International Conference on Neural Information Processing Systems*, pp.
 623 49268–49280, 2023.

624 Florian Tramer, Andreas Terzis, Thomas Steinke, Shuang Song, Matthew Jagielski, and Nicholas
 625 Carlini. Debugging differential privacy: A case study for privacy auditing, 2022. URL <https://arxiv.org/abs/2202.12219>.

626
 627 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint*
 628 *arXiv:1605.07146*, 2016.

629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648
649
A APPENDIX650
651 Table 2: Hyperparameters for training Wide ResNet 16-4 models using DP-SGD with $\varepsilon = 8.0$ and
652 $\delta = 10^{-5}$. For training from scratch, we follow prior work (Nasr et al., 2021; Steinke et al., 2023).
653 For DP finetuning, we instead train for 1000 steps, which we found achieves decent test accuracy
654 ($\approx 90\%$).
655

655 Hyperparameter	656 DP Training	657 DP Finetuning
# steps	2500	1000
Batch size	4096	4096
Clipping norm	1.0	1.0
Learning rate	4.0	4.0

661
662 **Metagradient canary optimization.** Following Engstrom et al. (2025), we optimize the canary
663 samples by training a ResNet-9 model (i.e., w in Algorithm 5), allowing us to optimize C effi-
664 ciently. For step 1 of Algorithm 5, we initialize C_0 to m samples randomly sampled from D (i.e.,
665 CIFAR-10). We optimize for 500 metagradient steps. As demonstrated in Section 4.2, despite using
666 a relatively compact model, our metagradient canaries are effective for much larger model architec-
667 tures (i.e., Wide ResNets).
668669 **Additional auditing procedure details.** As implemented in Mahloujifar et al. (2024), we align
670 Algorithms 2 and 3 by fixing the canary set size to 2 so that half of C is included in training for both
671 auditing setups. When running Algorithm 2, we split C randomly in half (instead of sampling with
672 probability half) so that the set of r non-auditing examples are the same for both auditing procedures.
673 In addition, we use negative cross-entropy loss as the scoring function $s(\cdot)$ for both algorithms. In
674 more detail,675

- 676 • [Steinke et al. (2023), Algorithm 2] We sort the canaries $x \in C$ by $s(x)$ and take the top k_+
canaries in the sorted list as positive guesses and bottom k_- as negative guesses.
- 677 • [Mahloujifar et al. (2024), Algorithm 3] We score canaries in each pair and predict the one
678 with the higher score to have been included in training. We then score each pairing by taking
679 the absolute difference scores $s(\cdot)$ between the canaries in each set and ranking the pairs by the
680 difference. We take the top k sets as our guesses.

681 For both procedures, we follow prior work (Steinke et al., 2023; Mahloujifar et al., 2024), varying
682 the number of guesses from 10 up to m , in increments of 10, and reporting the max empirical ε .
683684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701