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ABSTRACT

In this work we study black-box privacy auditing, where the goal is to lower bound
the privacy parameter of a differentially private learning algorithm using only the
algorithm’s outputs (i.e., final trained model). For DP-SGD (the most successful
method for training differentially private deep learning models), the canonical ap-
proach auditing uses membership inference—an auditor comes with a small set
of special “canary” examples, inserts a random subset of them into the training
set, and then tries to discern which of their canaries were included in the training
set (typically via a membership inference attack). The auditor’s success rate then
provides a lower bound on the privacy parameters of the learning algorithm. Our
main contribution is a method for optimizing the auditor’s canary set to improve
privacy auditing, leveraging recent work on metagradient optimization (Engstrom
et al., 2025). Our empirical evaluation demonstrates that by using such optimized
canaries, we can improve empirical lower bounds for differentially private image
classification models by over 1.8x in certain instances. Furthermore, we demon-
strate that our method is DP-SGD agnostic and efficient: canaries optimized for
non-private SGD with a small model architecture remain effective when auditing
larger models trained with DP-SGD.

1 INTRODUCTION

Differential privacy (DP) (Dwork et al., 2006) offers a rigorous mathematical framework for safe-
guarding individual data in machine learning. Within this framework, differentially private stochas-
tic gradient descent (DP-SGD) (Abadi et al., 2016) has emerged as the standard for training dif-
ferentially private deep learning models. Although DP-SGD provides theoretical upper bounds on
privacy loss based on its hyperparameters, these guarantees are likely conservative, which mean they
tend to overestimate the privacy leakage in practice (Nasr et al., 2023). In many cases, however, they
may not reflect the true privacy leakage that occurs during training. To address this gap, researchers
have developed empirical techniques known as privacy audits, which aim to establish lower bounds
on privacy loss. In addition to quantifying real-world leakage, privacy auditing can also help detect
bugs or unintended behaviors in the implementation of private algorithms (Tramer et al., 2022).

Providing a lower bound on the privacy leakage of an algorithm typically requires the auditor to
guess some private information (membership inference) using a set of examples (also referred to
as canaries). For example, in one-run auditing procedures (Steinke et al., 2023; Mahloujifar et al.,
2024) (which we discuss further in Section 2.1.2), a random subset of these canaries is inserted into
the training dataset, and once the model is trained, the auditor guesses which of these samples belong
to the subset. While recent work has made significant progress in tightening these bounds through
privacy auditing, the strongest results typically assume unrealistic levels of access or control of the
private training process (broadly speaking, such settings fall under the term white-box auditing (Nasr
et al., 2023)). In contrast, this work focuses on a more practical and restrictive black-box setting.
Here, the auditor can only insert a subset of carefully crafted examples (called the canaries) into
the training set and observe the model’s output at the last iterate (without access to intermediate
model states or gradient computations). In other words, the goal of black-box DP auditing reduces
to performing membership inference on the canaries based on the final model output.

In this work, we study how to optimize canary samples for the purpose of black-box auditing in
differentially private stochastic gradient descent (DP-SGD). Leveraging metagradient descent (En-
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gstrom et al., 2025), we introduce an approach for crafting canaries specifically tailored for insertion
into the training set during DP auditing. Through empirical evaluation on single-run auditing pro-
tocols for DP image classification models, we find that our method consistently yields canaries that
surpass standard baselines by more than a factor of two in certain regimes. Notably, our algorithm is
computationally efficient: although it involves running (non-private) SGD on a lightweight ResNet-
9 architecture, the resulting canaries demonstrate strong performance even when deployed in larger
models, such as Wide ResNets, trained under DP-SGD. Furthermore, this improvement persists
whether DP-SGD is used for end-to-end training or private finetuning on pretrained networks.

1.1 RELATED WORK

Early works in DP auditing (Ding et al., 2018; Bichsel et al., 2018) introduce methods that detect
violations of formal DP guarantees, relying on a large number of runs to identify deviations from
expected behavior. These techniques, however, are not directly applicable to the domain of differ-
entially private machine learning, as they were developed for auditing simpler DP mechanisms. To
tackle this issue, Jagielski et al. (2020) and Nasr et al. (2021) introduce new approaches based on
membership inference attacks (MIA) to empirically determine privacy lower bounds for more com-
plex algorithms like DP-SGD. Membership inference consists of accurately determining whether
a specific sample was part of the model’s training dataset. If the guesser (i.e. attacker) can reli-
ably make accurate guesses, it suggests that the model retains information about individual samples
observed during training, thereby comprising individuals’ privacy. Hence, MIA can be used as a
practical DP auditing tool in which lower bounds on how much privacy leakage has occurred can be
directly be estimated from the success rate of the attacker.

One-run auditing. The first auditing methods for DP-SGD relied on many runs of the algorithm,
making auditing very expensive and often impractical. To remedy this issue, Steinke et al. (2023);
Mahloujifar et al. (2024) reduce the computational cost of auditing by proposing procedures that
require only one training run. Kazmi et al. (2024) and Liu et al. (2025) further study how to in-
corporate stronger MIA methods to empirically improve auditing in this one-run setting. Similarly,
Keinan et al. (2025) study the theoretical maximum efficacy of one-run auditing.

Last-iterate auditing. Our work builds on the aforementioned one-run auditing methods and fo-
cuses specifically on the last-iterate auditing regime, which restricts the auditor’s access to just the
final model weights after the last iteration of DP-SGD. Related work to this regime from Muthu
Selva Annamalai (2024) investigates whether the analysis on the last iteration can be as tight as
analysis on the sequence of all iterates. Meanwhile, Nasr et al. (2025) propose a heuristic that
predicts empirical lower bounds derived from auditing the last iterate. Other works instead focus
on on partial relaxations of the problem: Cebere et al. (2025) assume that the auditor can inject
crafted-gradients, and Muthu Selva Annamalai & De Cristofaro (2024) audit models that initialized
to worst-case parameters.

Canaries Optimization. Rather than proposing new auditing procedures, our work studies how to
make existing ones more effective by focusing on optimizing canary sets for privacy auditing. Sim-
ilarly, Jagielski et al. (2020) develop a method,CLIPBKD, that uses singular value decomposition to
obtain canaries more robust to gradient clipping. Nasr et al. (2023) evaluate various procedures to
optimize canaries for their white-box auditing experiments. To better audit differentially private fed-
erated learning, Maddock et al. (2023) craft an adversarial sample that is added to a client’s dataset
used to send model updates. Finally, in the context of auditing LLMs, Panda et al. (2025) proposes
using tokens sequences not present in the training dataset as canaries, while Meeus et al. (2025)
create canaries with a low-perplexity, in-distribution prefixes and high-perplexity suffixes.

Metagradient computation. Our work also makes use of recent advancements in computing
metagradients, gradients of machine learning models’ outputs with respect to their hyperparameters
or other quantities decided on prior to training. Prior work on metagradient computation falls under
two categories: implicit differentiation (Bengio, 2000; Koh & Liang, 2017; Rajeswaran et al., 2019;
Finn et al., 2017; Lorraine et al., 2020; Chen & Hsieh, 2020; Bae et al., 2022) aims to approximate
the metagradient. On one hand, approximating metagradients allows for scalability to large-scale
metagradient computation; on the other, this approach loosens correctness guarantees and imposes
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restrictions on what learning algorithms can be used. In contrast, explicit differentiation directly
computes metagradients using automatic differentiation. However, these works (Maclaurin et al.,
2015; Micaelli & Storkey, 2021; Franceschi et al., 2017; Liu et al., 2018) are limited by their scal-
ability to larger models and number of hyperparameters and by numerical instability. We leverage
recent work by Engstrom et al. (2025), which takes the explicit approach, but addresses the afore-
mentioned issues by proposing a scalable and memory-efficient method to computing metagradients.

2 PRELIMINARIES

Informally, differential privacy provides bounds on the extent to which the output distribution of a
randomized algorithmM can change when a data point is removed or swapped out.

Definition 2.1 ((Approximate-) Differential Privacy (DP) (Dwork et al., 2006)). A randomized al-
gorithmM : XN → R satisfies (ε, δ)-differential privacy if for all neighboring datasets D,D′ (i.e.,
all D,D′ such that |D′ \D| = 1 and for all outcomes S ⊆ R we have

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ

In the context of machine learning, M would be a learning algorithm, and this definition requires
the model to be insensitive to the exclusion of one training data point. In essence, it bounds the
change in the output distribution of the model when trained on neighboring datasets. This implies
that the model does not overly depend on any single sample observed.

Since the seminal work of Dwork et al. (2006), various relaxations of differential privacy have been
proposed. Below, we define f -differential privacy, which we later reference when describing the
auditing procedure proposed by Mahloujifar et al. (2024).

Definition 2.2 (f -Differential Privacy (Dong et al., 2022)). A mechanism M is f -DP if for all
neighboring datasets S,S ′ and all measurable sets T with |S△S ′| = 1, we have

Pr[M(S) ∈ T ] ≤ f̄ (Pr[M(S ′) ∈ T ]) . (1)

Importantly, f -DP relates to approximate DP in the following way:

Proposition 1. A mechanism is (ε, δ)-DP if it is f -DP with respect to f̄(x) = eεx + δ, where
f̄(x) = 1− f(x).

While a wide range of methods for adding differentially private guarantees to machine learning
algorithms have been proposed over the years, DP-SGD (Abadi et al., 2016) has been established as
one of the de facto algorithms for training deep neural networks with DP. At a high-level, DP-SGD
makes SGD differentially private by modifying it in the following ways: (1) gradients are clipped
to some maximum Euclidean norm and (2) random noise is added to the clipped gradients prior to
each update step. In Algorithm 1, we present DP-SGD in detail.

2.1 AUDITING DIFFERENTIAL PRIVACY

Differentially private algorithms are accompanied by analysis upper bounding the DP parameters
ε and δ. Privacy auditing instead provides an empirical lower bound on these parameters. In this
work, we focus on a specific formulation of privacy audits: last-iterate, black-box, one-run auditing.

2.1.1 LAST-ITERATE BLACK-BOX AUDITING

Our work focuses on last-iterate black-box auditing, where the auditor can only insert samples (i.e.,
canaries) into the training set and can only access the resulting model at the final training iteration.
We note that, in contrast, previous works have also studied white-box settings. While the exact
assumptions made in this setting can vary (Nasr et al., 2021; 2023; Steinke et al., 2023; Koskela &
Mohammadi, 2025), it can be characterized as having fewer restrictions (e.g., access to intermediate
training iterations or the ability to inject and modify gradients). While auditing in white-box settings
generally leads to higher lower bound estimates due to the strength of the auditor, its assumptions
are often far less realistic than those made in black-box auditing.
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Algorithm 1: Differentially Private Stochastic Gradient Descent (DP-SGD)
Input: x ∈ Xn

Requires: Loss function f : Rd ×X → R
Parameters: Number of iterations ℓ, learning rate η, clipping threshold c > 0, noise multiplier

σ > 0, sampling probability q ∈ (0, 1]
1 Initialize w0 ∈ Rd;
2 for t = 1, . . . , ℓ do
3 Sample St ⊆ [n] where each i ∈ [n] is included independently with probability q;
4 Compute gti = ∇wt−1f(wt−1, xi) ∈ Rd for all i ∈ St;

5 Clip g̃ti = min
{
1, c
∥gt

i∥2

}
· gti ∈ Rd for all i ∈ St;

6 Sample ξt ∈ Rd from N (0, σ2c2I);
7 Sum g̃t = ξt +

∑
i∈St g̃ti ∈ Rd;

8 Update wt = wt−1 − η · g̃t ∈ Rd;

Output: w0, w1, . . . , wℓ

Algorithm 2: Black-box Auditing - One Run (Steinke et al., 2023)
Input: probability threshold τ , privacy parameter δ, training algorithm A, dataset D, set of m

canaries C = {c1, . . . , cm}
Requires: scoring function score
Parameters: number of positive and negative guesses k+ and k−

1 Randomly split canaries C into two equally-sized sets CIN and COUT

2 Let S = {si}mi=1, where si =

{
1 if ci ∈ CIN

−1 if ci ∈ COUT

3 Train model w ← A(D ∪ CIN)
4 Compute vector of scores Y = {score(w, ci)}mi=1
5 Sort scores in ascending order Y ′ ← sort(Y )
6 Construct vector of guesses T = {ti}mi=1, where ti =

1 if Yi is among the top k+ scores in Y (i.e., Yi ≥ Y ′m−k+
) // guess ci ∈ CIN

−1 if Yi is among the bottom k− scores in Y (i.e., Yi ≤ Y ′k−
) // guess ci ∈ COUT

0 otherwise // abstain

7 Compute empirical epsilon ε̃ (i.e., find the largest ε̃ such that S, T , τ , and δ satisfy Theorem 1)
Output: ε̃

2.1.2 ONE-RUN AUDITING

Early works (Jagielski et al., 2020; Tramer et al., 2022; Nasr et al., 2023) design privacy auditing
“attacks” that align with the definition of DP, which bounds the difference in outputs on neighboring
datasets that differ by one sample. These audits detect the presence (or absence) of an individual
sample over hundreds—if not, thousands—of runs of DP-SGD. The auditing procedure then gives a
lower bound on ε based on the true and false positive rates of the membership inference attacks.

While effective, these multi-run auditing procedures are computational expensive. Consequently,
Steinke et al. (2023) propose an alternative procedure that requires only one training run. Their
strategy inserts multiple canary examples and obtains a lower bound based on how well an attacker
can guess whether some canary was used in training. While one-run auditing can sacrifice bound
tightness, its ability to audit without multiple runs of DP-SGD make it much more efficient and
therefore, practical for larger models. In our work, we consider two primary auditing procedures:

(1) Steinke et al. (2023) introduce the concept of privacy auditing using one training run. Given
some set of canaries C, samples are randomly sampled from C with probability 1

2 and inserted into
the training set. Once the model is trained, the auditor guesses which samples in C were or were
not included in the training set. The auditor can make any number of guesses or abstain. We present
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Algorithm 3: Black-box Auditing - One Run (Mahloujifar et al., 2024)
Input: privacy parameter δ, training algorithm A, dataset D, set of m canaries

C = {c1, . . . , cm}
Requires: scoring function score
Parameters: number of guesses k

1 Randomly split canaries C into two equally-sized sets CIN and COUT

2 Create disjoint canary sets E = {ei}m/2
i=1 by randomly pairing canaries from CIN and COUT

such that ei = (ci,1, ci,2) for ci,1 ∈ CIN and ci,2 ∈ COUT (each canary c ∈ C appears in
exactly one set ei)

3 Train model w ← A(D ∪ CIN)

4 Compute vector of scores Y = {|score(w, ci,1)− score(w, ci,2)|}m/2
i=1

5 Sort scores in ascending order Y ′ ← sort(Y )

6 Construct vector of guesses T = {ti}m/2
i=1 , where

ti =



1 if Yi is among the top k values in Y (i.e., Yi ≥ Y ′m−k)
and score(w, ci,1) > score(w, ci,2)// guess ci,1 ∈ CIN

−1 if Yi is among the top k values in Y (i.e., Yi ≥ Y ′m−k)
and score(w, ci,1) ≤ score(w, ci,2)// guess ci,2 ∈ CIN

0 otherwise // abstain

7 Let number of correct guesses k′ =
∑m/2

i=1 1{ti = 1}
8 Compute empirical epsilon ε̃ (i.e., find the largest ε̃ whose corresponding f -DP function f

passes Algorithm 4 for m, k, k′ τ , and δ.)
Output: ε̃

Algorithm 4: Upper bound probability of making correct guesses (Mahloujifar et al., 2024)

Input: probability threshold τ , functions f and f−1, number of guesses k, number of correct
guesses k′, number of samples m, alphabet size s

1 ∀0 < i < k′ set h[i] = 0, and r[i] = 0
2 Set r[k′] = τ · c

m

3 Set h[k′] = τ · c
′−c
m

4 for i ∈ [k′ − 1, . . . , 0] do
5 h[i] = (s− 1)f−1(r[i+ 1])

6 r[i] = r[i+ 1] + i
k−i · (h[i]− h[i+ 1])

7 if r[0] + h[0] ≥ k
m then

8 Return True (probability of k′ correct guesses (out of k) is less than τ )
9 else

10 Return False (probability of having k′ correct guesses (out of k) could be more than τ )

this procedure in Algorithm 2. The final lower bound on ε is determined using Theorem 1, which is
based on the total number of canaries, the number of guesses, and the number of correct guesses.
Theorem 1 (Analytic result for approximate DP (Steinke et al., 2023)). Suppose A : {−1, 1}m →
{−1, 0, 1}m satisfy (ε, δ)-DP. Let S ∈ {−1, 1}m be uniformly random and T = A(S). Suppose
P[∥T∥1 ≤ r] = 1. Then, for all v ∈ R,

PS←{−1,1}m
T←M(S)

[
m∑
i=1

max{0, Ti · Si} ≥ v

]
≤ f(v) + 2mδ · max

i∈{1,...,m}

{
f(v − i)− f(v)

i

}
,

where

f(v) := PW̃←Binomial(r, eε

eε+1 )

[
W̃ ≥ v

]
.

At a very high level, A is DP-SGD, which takes in as input some set of m canaries that are labeled
(S ∈ {−1, 1}m) as being included or excluded from the training set. The auditor uses the output of
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DP-SGD to produce a vector of guesses T ∈ {−1, 0, 1}m for the m canaries. Theorem 1 bounds the
probability of making at least v correct guesses (

∑m
i=1 max{0, Ti ·Si} ≥ v, where Ti ·Si = 1 if the

guess is correct). More informally, this theorem bounds the success rate (number of correct guesses)
of the auditor assuming the parameter ε. Practically speaking, one runs binary search (Steinke et al.,
2023, Appendix D) to estimate the largest ε such that Theorem 1 still holds.

(2) Mahloujifar et al. (2024) propose an alternative auditing procedure that empirically achieves
tighter privacy estimates in the white-box setting. In their guessing game, the set of canaries C is
randomly partitioned in disjoint sets. One canary is sampled from each set and inserted into the
training set. Again, once the model is trained with DP-SGD, the auditor must make guesses. Unlike
in Steinke et al. (2023), however, the auditor must guess which canary out of each set was included
in training. Algorithm 3 presents this procedure for canary sets of size 2.

Similar to Steinke et al. (2023), the final lower bound on ε is determined based on the total number
of canary sets, the number of guesses, and the number of correct guesses. At a high level, Mahlouji-
far et al. (2024) first construct a set of candidate values for ε and a corresponding f -DP function for
each. Using Algorithm 4, they then run a hypothesis test, with probability threshold τ , for the num-
ber of correct guesses (i.e., output of Algorithm 4) occurring given function f . The final empirical
lower bound is the maximum ε among those corresponding to the functions f that pass Algorithm 4.

Scoring function. Finally, to determine membership for either procedure, the auditor must first
choose some score function s(·) from the training process. In the black-box setting for image
classification models, one natural choice for s(·) is to use negative cross-entropy loss (Steinke et al.,
2023). When s(w, x) is large (i.e., cross-entropy loss is small) for some canary x and model w,
the auditor guesses that x was included in training, and vice-versa. In Section 4, we provide more
details about how we use the score function for Algorithms 2 and 3.

3 CANARY OPTIMIZATION WITH METAGRADIENT DESCENT

For a fixed black-box auditing algorithm BBaudit : (τ, δ,A, D,C) → ε̃ (e.g., Algorithm 2 or 3),
the main degree of freedom available to the auditor is the choice of canary set C. Typically, one
chooses C to be a random subset of the training dataset D, or a random set of mislabled examples
(Steinke et al., 2023; Mahloujifar et al., 2024). A natural question to ask is whether such choices
are (near-)optimal; in other words, can we significantly improve the efficacy of a given auditing
algorithm by carefully designing the canary set C?

In this section, we describe an optimization-based approach to choosing the canary set. At a high
level, our goal is to solve an optimization problem of the form

max
C

BBaudit(τ, δ,A, D,C), (2)

where BBaudit is the (fixed) differential privacy auditing algorithm, τ and δ are the privacy pa-
rameters, A is the learning algorithm (e.g., DP-SGD), D is the dataset, and C is the set of canary
samples. The high-dimensional nature of this problem (e.g., for CIFAR-10, C ∈ Rm×32×32×3)
makes it impossible to exhaustively search over all possible canary sets C.

Instead, the main idea behind our approach is to use gradient descent to optimize the canary set
C. To do so, we first design a surrogate objective function to audit by leveraging the connection
between membership inference and differential privacy auditing. We then use recent advances in
metagradient computation (Engstrom et al., 2025) to optimize this surrogate objective with respect
to the canary set C.

Key primitive: metagradient descent. A metagradient is a gradient taken through the process
of training a machine learning model (Maclaurin et al., 2015; Domke, 2012; Bengio, 2000; Baydin
& Pearlmutter, 2014). Specifically, given a learning algorithm A, a (continuous) design parameter
z (e.g., learning rate, weight decay, data weights, etc.), and a loss function ϕ, the metagradient
∇zϕ(A(z)) is the gradient of the final loss ϕ with respect to the design parameter z (see Figure 1).
For very small-scale learning algorithms (e.g., training shallow neural networks), one can compute
metagradients by backpropagating through the entire model training process.
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z w ϕ(w)

Training setup Trained model Observed behavior

A ϕ

∇zϕ(A(z))

Figure 1: An illustration of the metagradient. We embed the canaries into a continuous metaparame-
ter z ∈ Rm×H×W×C with one coordinate per training data pixel. All aspects of the learning process
other than z—the base training data, optimizer hyperparameters, etc.—are baked into the learning
algorithm A. The metaparameter thus defines a model w = A(z), which we use to compute an
output metric ϕ(w). The metagradient ∇zϕ(A(z)) is the gradient of the metric with respect to the
metaparameter z.

While this approach does not scale directly to larger-scale training routines, the recent work of
Engstrom et al. (2025) proposes a method to compute metagradients efficiently and at scale. The
method, called REPLAY, enables gradient-based optimization of data importance weights, train-
ing hyperparameters, and—most relevant to our setting—poisonous training data that hurts overall
model accuracy. To tackle the latter setting, Engstrom et al. (2025) show how to compute meta-
gradients of a model’s final test loss with respect to the pixels in its training data. Leveraging this
method, we will assume that we can efficiently compute metagradients of any differentiable loss
function with respect to the pixels of any number of training data points.

Surrogate objective function. Even with the ability to compute metagradients efficiently, the op-
timization problem in (2) is still challenging to solve in the black-box setting. First, the objective
function BBaudit has explicit non-differentiable components (e.g., thresholding). Second, tak-
ing the metagradient requires more fine-grained access to the model training process than simply
observing the final model outputs.

To address both these challenges, we design a surrogate objective function that approximates the
original objective (2), inspired by the connection between black-box privacy auditing and member-
ship inference. In particular, inspecting Algorithms 2 and 3, we observe that in both algorithms, we
randomly split the canary set into two sets CIN and COUT; trains a model on D ∪ CIN; and runs a
membership inference attack to distinguish between samples in CIN and COUT. Intuitively, a good
canary sample zi should thus satisfy the following properties: (1) memorizability: if zi ∈ Cin, the
model should have low loss on zi and (2) non-generalizability: if zi ∈ Cout, the model should have
high loss on zi. These properties motivate the following simple surrogate objective function:

ϕ(w) =

m∑
i=1

(1{zi ∈ Cin} − 1{zi ∈ Cout}) · L(w, zi), (3)

where L is the training loss (i.e., cross-entropy) and 1{·} is the indicator function.1 Finally, to
optimize this objective in the black-box setting, we consider a “standard” (i.e., not differentially
private) training algorithmA, and then transfer the resulting canaries to whatever learning algorithm
we are auditing.

Optimizing canaries with (meta-)gradients. Our final optimization process (given in more detail
in Algorithm 5) proceeds in T > 1 metasteps. Let D be the set of non-canaries (e.g., the CIFAR-
10 dataset) and C be the set of canaries (i.e., metaparameters z) we are optimizing. During each
metastep t, we randomly partition the canaries C into two sets CIN,t and COUT,t, and randomly
sample a model initialization and data ordering which define a learning algorithm A. After training

1We note that in this case, ϕ depends on the model weights w but also has a direct dependence on the canary
set (i.e., the metaparameters z), making Figure 1 a slight over-simplification. In practice, we can still use the
law of total derivative to compute the gradient of ϕ with respect to z, since ∇zϕ(z,A(z)) = ∂ϕ

∂w
·∇zA(z)+ ∂ϕ

∂z
.
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Algorithm 5: Metagradient Canary Optimization
Input: dataset D
Requires: training algorithm A, loss function L
Parameters: number of canaries m, number of meta-iterations N

1 Initialize canaries C0 = {c1, . . . , cm}
2 for t← 0 to N − 1 do
3 Randomly split Ct into two equally-sized sets: CIN,t and COUT,t
4 Train model: wt ← A(D ∪ CIN,t)
5 Compute loss gap ϕ(wt) = L(wt, CIN,t)− L(wt, COUT,t)
6 Compute gradient w.r.t. canaries: ∇Ct

← REPLAY(wt, ϕ(θt))
7 Update canaries: Ci+1 ← update(Ci,∇Ci

)

Output: optimized canaries CN

a model w = A(z), we take a gradient step to minimize the objective (equation 3) with respect to
the canary set C. By repeating this process several times (essentially running stochastic gradient
descent across random seeds and random data orderings partitionings of the canary set), we obtain
a set of canary examples that are robustly memorizable and non-generalizable.

4 EMPIRICAL EVALUATION

4.1 SETUP

Audited models. Following prior work (Nasr et al., 2023; Steinke et al., 2023; Mahloujifar
et al., 2024), we audit Wide ResNet models (Zagoruyko & Komodakis, 2016) trained on CIFAR-
10 (Krizhevsky et al., 2009) with DP-SGD. We use the Wide ResNet 16-4 architecture proposed by
De et al. (2022), which they modify for DP training, and train the model using the JAX-Privacy
package (Balle et al., 2025).

To audit the models, we use canary sets of size m = 1000. To remain consistent with Steinke et al.
(2023) and Mahloujifar et al. (2024), where C is sampled from the training set, we have in total
r = 49000 non-canaries training images for CIFAR-10. Thus, in total, n = 49500 images are used
in training for any given run. We run DP-SGD on models both initialized randomly and pretrained
nonprivately (i.e., DP-finetuning). For DP-finetuning experiments, we use CINIC-10 (Darlow et al.,
2018), which combines images from CIFAR-10 with images from ImageNet (Deng et al., 2009)
that correspond to the classes in CIFAR-10. For our pretraining dataset, we use CINIC-10 with the
CIFAR-10 images removed. We present hyperparameters in Table 2 of the appendix.

Baselines. We compare our method against canaries randomly sampled from the training set
(Steinke et al., 2023; Mahloujifar et al., 2024), as well as canaries that have been mislabeled (Nasr
et al., 2023; Steinke et al., 2023).

4.2 RESULTS

We first evaluate our metagradient canaries when auditing models trained with non-private SGD. In
Figure 2, we plot the empirical epsilon estimated by the auditing procedures introduced in Steinke
et al. (2023) and Mahloujifar et al. (2024) against the number of steps that the Wide ResNet 16-
4 model is trained for. We observe that even when applied on different model architectures (i.e.,
transferring from ResNet-9 to WRN 16-4), our metagradient canaries perform strongly. Using the
auditing procedure of Mahloujifar et al. (2024), for example, our canaries outperform the two base-
lines across any number of training steps.

Having verified that our metagradient canaries work properly for auditing SGD, we now evaluate
their effectiveness in auditing DP-SGD. In Table 1, we present our main results for both DP training
(i.e., training from scratch) and DP finetuning (i.e., first pretraining non-privately). We find that our
method performs the best, exceeding the empirical epsilon of baseline canaries, regardless of the
auditing procedure used (≈ 25% for Steinke et al. (2023) and ≈ 75% for Mahloujifar et al. (2024)).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000
Training Steps

0

1

2

3

4

5

Em
pi

ric
al

 E
ps

ilo
n

Metagradient Random Random (mislabeled)

0.0

0.1

0.2

0.3

0.4

Er
ro

r R
at

e 
on

 Tr
ai

n 
Se

t

Train Error

(a) Steinke et al. (2023)
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(b) Mahloujifar et al. (2024)

Figure 2: We evaluate the effectiveness of our metagradient canaries for the purpose of auditing
non-private SGD. We train a Wide ResNet 16-4 model on CIFAR-10 for 10k steps with each canary
type, plotting the empirical epsilon when auditing the model at every 100 steps with the auditing
procedures introduced by (a) Steinke et al. (2023) and (b) Mahloujifar et al. (2024). We take an
average over 5 runs and plot an error band to denote ±1 standard deviation. For reference, we plot
the training error of the model trained on our metagradient canaries (note that the training accuracy
is approximately the same, regardless of choice of canary).

Table 1: We audit a Wide ResNet 16-4 model that has been trained with DP-SGD (ε = 8.0, δ =
10−5) on CIFAR-10 with the auditing parameters: n = 49500, m = 1000, and r = 49000. We
present results for models (a) initialized from scratch and (b) pretrained on CINIC-10 (with CIFAR-
10 images removed). We report the average empirical epsilon and standard error over 5 runs for
auditing procedures introduced by (1) Steinke et al. (2023) and (2) Mahloujifar et al. (2024).

(a) DP Training (b) DP Finetuning
Audit Procedure Canary Type Avg. Std. Avg. Std.

(1) Steinke et al. (2023)
random 0.285 0.163 0.477 0.197
random mislabeled 0.308 0.249 0.489 0.316
metagradient (ours) 0.392 0.139 0.665 0.054

(2) Mahloujifar et al. (2024)
random 0.405 0.428 0.687 0.229
random mislabeled 0.225 0.167 0.632 0.123
metagradient (ours) 0.732 0.274 1.207 0.247

Moreover, this advantage holds even when evaluating on DP finetuning, despite our metagradient
optimization process not using CINIC-10 for pretraining w at each metagradient step of Algorithm 5.

5 CONCLUSION

We propose an efficient method for canary optimization that leverages metagradient descent. Op-
timizing for an objective tailored towards privacy auditing, our canaries significantly outperform
standard canaries, which are sampled from the training dataset. Specifically, we show that despite
being optimized for non-private SGD on a small ResNet model, our canaries work better on larger
Wide ResNets for both DP-training and DP-finetuning. Using our canaries, we significantly tighten
privacy bounds, nearly doubling the empirical epsilon. Furthermore, this improvement holds, re-
gardless of whether DP-SGD is run from scratch or after non-private finetuning.

6 REPRODUCIBILITY STATEMENT

In our paper, we describe in detail the algorithms for both our metagradient optimization procedure
(Algorithm 5) and the one-run auditing procedures from Steinke et al. (2023) (Algorithm 2) and
Mahloujifar et al. (2024) (Algorithms 3 and 4). Additional implementation details and hyperparam-
eters for running these algorithms are described in Appendix A. To ensure reproducibility of our
results, we also provide code used for all our experiments in the supplementary materials. There are
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two main parts: code for metagradient canary optimization and code for training and auditing image
classification models with DP-SGD. Instructions for running the code are available in an included
README file. In the final version of our paper, we will include a link to a public repository.
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A APPENDIX

Table 2: Hyperparameters for training Wide ResNet 16-4 models using DP-SGD with ε = 8.0 and
δ = 10−5. For training from scratch, we follow prior work (Nasr et al., 2021; Steinke et al., 2023).
For DP finetuning, we instead train for 1000 steps, which we found achieves decent test accuracy
(≈ 90%).

Hyperparameter DP Training DP Finetuning
# steps 2500 1000
Batch size 4096 4096
Clipping norm 1.0 1.0
Learning rate 4.0 4.0

Metagradient canary optimization. Following Engstrom et al. (2025), we optimize the canary
samples by training a ResNet-9 model (i.e., w in Algorithm 5), allowing us to optimize C effi-
ciently. For step 1 of Algorithm 5, we initialize C0 to m samples randomly sampled from D (i.e.,
CIFAR-10). We optimize for 500 metagradient steps. As demonstrated in Section 4.2, despite using
a relatively compact model, our metagradient canaries are effective for much larger model architec-
tures (i.e., Wide ResNets).

Additional auditing procedure details. As implemented in Mahloujifar et al. (2024), we align
Algorithms 2 and 3 by fixing the canary set size to 2 so that half of C is included in training for both
auditing setups. When running Algorithm 2, we split C randomly in half (instead of sampling with
probability half) so that the set of r non-auditing examples are the same for both auditing procedures.
In addition, we use negative cross-entropy loss as the scoring function s(·) for both algorithms. In
more detail,

• [Steinke et al. (2023), Algorithm 2] We sort the canaries x ∈ C by s(x) and take the top k+
canaries in the sorted list as positive guesses and bottom k− as negative guesses.

• [Mahloujifar et al. (2024), Algorithm 3] We score canaries in each pair and predict the one
with the higher score to have been included in training. We then score each pairing by taking
the absolute difference scores s(·) between the canaries in each set and ranking the pairs by the
difference. We take the top k sets as our guesses.

For both procedures, we follow prior work (Steinke et al., 2023; Mahloujifar et al., 2024), varying
the number of guesses from 10 up to m, in increments of 10, and reporting the max empirical ε.
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