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Abstract10

Nuclear DNA is organized into a compact three-dimensional (3D) structure that impacts critical cellu-11

lar processes. High-throughput chromosome conformation capture (Hi-C) is the most widely used method12

for measuring 3D genome architecture, while linear epigenomic assays, such as ATAC-seq, DNase-seq,13

and ChIP-seq, are extensively employed to characterize epigenomic regulation. However, the integrative14

analysis of chromatin interactions and associated epigenomic regulation remains challenging due to the15

pairwise nature of Hi-C data, mismatched resolution between Hi-C and epigenomic assays, and incon-16

sistencies among analysis tools. Here we propose HiCFoundation, a Hi-C-based foundation model for17

integrative analysis linking chromatin structure to downstream regulatory function. HiCFoundation is18

trained from hundreds of Hi-C assays encompassing 118 million contact matrix submatrices. The model19

achieves state-of-the-art performance on multiple types of 3D genome analysis, including reproducibility20

analysis, resolution enhancement, and loop detection. We further demonstrate the model’s generalizabil-21

ity through genome architecture analysis of 316 species. Notably, by enhancing low-coverage experimental22

Hi-C data, HiCFoundation reveals genome-wide loop loss during di!erentiation of hematopoietic stem23

and progenitor cells (HSPCs) to neutrophils. Additionally, HiCFoundation is able to predict multiple24

types of epigenomic activity from Hi-C input and further interprets the link between Hi-C input and25

epigenomic output to reveal the relationship between chromatin conformation and genome function. Fi-26

nally, HiCFoundation can analyze single-cell Hi-C data, shedding light on genome structure at single-cell27

resolution. HiCFoundation thus provides a unified, e”cient, generalizable, and interpretable founda-28

tion for genome architecture, single-cell and multi-omics analysis across species, paving the path for29

systematically studying genome 3D architecture and its regulatory mechanisms.30
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Main31

Genomes are physical objects organized in a compact 3D structure within the cell nucleus. This spatial32

organization impacts various genome functions, such as DNA replication, transcription, cell di!erentiation,33

and cell senescence, in ways that cannot be fully understood only from the one-dimensional DNA sequence34

[1]. As a result, many experimental methods have been developed over the last two decades to measure35

the 3D conformation of DNA within the nucleus. In particular, high-throughput chromosome conformation36

capture (Hi-C) [2] provides a genome-wide “contact matrix,” where the two axes are genomic loci and values37

in the matrix represent proximity in 3D. Single-cell Hi-C (scHi-C) [3] further extends Hi-C by measuring38

genome architecture in individual cells. In parallel, epigenomic assays such as ATAC-seq [4], DNase-seq [5],39

transcription factor (TF) ChIP-seq [6], and histone ChIP-seq [7] measure, respectively, chromatin accessi-40

bility, transcription factor binding, and histone post-translational modifications. Because Hi-C and these41

epigenomic assays provide complementary information about the genome, their joint analysis can deepen42

our understanding of the links between genome architecture and epigenomic regulation.43

However, two key challenges hinder progress towards jointly analyzing these data. First, Hi-C data and44

epigenomic assays typically have di!erent resolutions. Epigenomic assays are usually represented at base-45

pair resolution, whereas Hi-C data is often analyzed at 10 kb or coarser resolution due to the limitation of46

sequencing depth; e.g., doubling the resolution of the Hi-C contact matrix requires a fourfold increase in47

sequencing cost. This lack of depth makes detecting some 3D structures especially challenging. Notably,48

the robust detection of chromatin loops, a dynamic 3D genome feature that is closely associated with gene49

regulation [8], requires deeply sequenced Hi-C data. In many settings, Hi-C resolution is further constrained50

by the limited availability of biologically important cell types, such as hematopoietic stem and progenitor cells51

(HSPCs) and rare populations of immune cells. The scHi-C assay partially addresses this issue by providing52

cell-type-specific measurements of chromatin architectures. However, the resolution mismatch becomes even53

more severe in the scHi-C assay, where its coverage is orders of magnitude lower than bulk Hi-C. The second54

challenge is that di!erent types of 3D structures exhibit complex interdependencies, but separate tools are55

typically used to identify these structures, which can yield inconsistent results. For example, a common56

feature of 3D chromatin arises due to cohesin-mediated loop extrusion [9]. As a result, such loops typically57

link together the two boundaries of topologically associating domains (TADs), so calling TADs and loops58

independently is potentially problematic. Therefore, there is a pressing need for a unified computational59

framework that leverages the dependencies among 3D structures and epigenomic regulation and facilitates60

the analysis of Hi-C data, scHi-C data and epigenomic data for systematically studying genome architecture61

and its functional implications.62

This need for a unified framework aligns perfectly with the foundation modeling paradigm in machine63

learning. The key idea behind a foundation model is to simultaneously tackle many tasks by learning64

a shared model using a large collection of datasets [10]. In particular, foundation models are typically65

developed using a two-stage approach. First, in the pre-training stage, a deep neural network model is66

trained in a self-supervised fashion on massive quantities of unlabeled data. Second, this foundation model67

is separately fine-tuned in a supervised fashion for each of the downstream tasks using a smaller amount68

of task-specific labeled data. Intuitively, a foundation model that learns from a large number of Hi-C69

experiments can increase the signal-to-noise ratio of its input data by learning patterns from many contact70

matrices, leveraging dependencies among di!erent Hi-C applications, and later enabling joint analysis with71

epigenomic assays in a data-driven way. Recognizing the transformative potential of foundation models, the72

wealth of genomic information embedded in Hi-C data, and the intrinsic similarity between Hi-C and scHi-C,73

we hypothesized that a foundation model approach could provide a unified framework for solving diverse74

genome architecture-related problems, including analysis of bulk and single-cell data as well as translation75

between Hi-C and epigenomic data.76

To this end, we developed HiCFoundation, a foundation model for genome architecture and function77

analysis. HiCFoundation is trained from hundreds of Hi-C assays in 81 human cell lines or tissue types78

(“biosamples”), encompassing 118 million contact submatrices. We propose an encoder-decoder pre-training79

architecture that exploits a novel patch-wise contrastive loss to overcome the extreme sparsity in Hi-C80

data. The trained HiCFoundation model is able to generate three levels of general-purpose embeddings:81

embeddings of spatial contact information for a full chromosome, for a set of contiguous genomic loci (i.e.,82

a submatrix of the Hi-C contact matrix), and for a single genomic locus (i.e., one row or column of the83

2
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Hi-C contact matrix). These three embeddings enable diverse types of Hi-C analyses, including investigating84

genome architecture at di!erent scales and resolutions.85

We evaluate the multi-scale embeddings provided by HiCFoundation on many di!erent tasks. We demon-86

strate that HiCFoundation o!ers a generalizable analysis engine for genome architecture, delivering state-87

of-the-art performance across various tasks, including reproducibility analysis, resolution enhancement, and88

chromatin loop detection. We further show the cross-species generalizability of HiCFoundation by empiri-89

cally validating the model using Hi-C data from 316 species, many of which exhibit substantial evolutionary90

divergence from humans. HiCFoundation also reveals a genome-wide loss of chromatin loops during di!er-91

entiation of HSPCs to neutrophils, while loops around genes essential for neutrophil function are maintained92

and refined for optimal expression. Additionally, loss of nuclear lamin B1 reduces the overall loop strength93

in both HSPC and neutrophils. Furthermore, HiCFoundation extends beyond genome architecture analy-94

sis by predicting epigenomic activity, such as chromatin accessibility (DNase-seq/ATAC-seq), transcription95

factor binding (TF ChIP-seq), and histone modifications profiles (histone ChIP-seq), directly from Hi-C96

data. To our knowledge, this is the first model that successfully infers genome activity from the coarse97

genomic contact maps provided by Hi-C. Our interpretability analysis using HiCFoundation [11, 12] further98

reveals the relationship between chromatin loop structure and corresponding epigenomic features, thereby99

enabling systematic hypothesis generation at the interface between genome architecture and function. Fi-100

nally, HiCFoundation alleviates the sparsity challenge in scHi-C data by leveraging patterns from bulk Hi-C101

to enhance scHi-C contact matrices. Compared with state-of-the-art methods, our model achieves superior102

performance across four scHi-C datasets and reveals genome compartments that are validated by ATAC-103

seq data. HiCFoundation thus o!ers a unified foundation for jointly analyzing genome architecture and104

associated epigenomic activity.105

Results106

HiCFoundation is pre-trained from unlabeled Hi-C experiments107

The key idea of HiCFoundation is to train one model from a large number of Hi-C experiments and fine-tune108

it to quickly adapt to new cell types, species and modalities (Fig. 1). To this end, HiCFoundation leverages109

1015 Hi-C experiments from over 300 species, sourced from the ENCODE [13], 4D Nucleome (4DN) [14],110

and DNA Zoo [15] datasets. Pre-training is carried out in a self-supervised fashion on Hi-C data from a111

designated set of training chromosomes, across 101 human biosamples (Fig. 1a, Supplementary Table112

1). Subsequently, the model is fine-tuned using task-specific signals for di!erent downstream analyses in a113

supervised fashion. Following training, HiCFoundation is benchmarked on 117 Hi-C experiments from 18114

human biosamples, as well as 494 Hi-C experiments from more than 300 species.115

During the pre-training stage, we first randomly sampled 118 million submatrices from the training set116

(Fig. 1b). Each Hi-C submatrix is further divided into regular, non-overlapping patches of 16→16 bins,117

which serve as the input for the deep learning model (Fig. 1b). During the pre-training stage, HiCFoun-118

dation takes partially masked Hi-C submatrices as input and is optimized to reconstruct full submatrices119

(Fig. 1c). Inspired by masked autoencoders [16], this reconstruction is implemented using an encoder-120

decoder architecture based on the Vision Transformer [17, 18]. We introduced a novel patch-wise contrastive121

loss term to alleviate the sparsity within certain patches, especially those that are far away from the diagonal122

Figure 1 (following page): Overview of HiCFoundation. a. Illustration of the data used in the development of HiCFoundation.
Human Hi-C experiments are used for training and testing of HiCFoundation, including 521 Hi-C experiments spanning 119 cell lines
from 33 organs. Human chromosomes are split into training and testing chromosomes, where pre-training and fine-tuning are only
done using the training chromosomes. HiCFoundation is subsequently benchmarked on testing chromosomes from human cell lines and
all chromosomes from 316 di!erent species. b. Illustration of Hi-C data and embeddings at di!erent scales. We collected 404 Hi-C
experiments, encompassing a total of 7,676 training chromosomes. From these, we extracted 118 million non-overlapping submatrices,
each sized 224→224, as inputs for the HiCFoundation model. These submatrices were further divided into 23 billion non-overlapping
patches, serving as inputs for the model. HiCFoundation is designed to generate embeddings at di!erent scales corresponding to these
data scales. c. Pre-training framework of HiCFoundation. HiCFoundation is pre-trained using masked Hi-C submatrices as input,
optimizing for the reconstruction of the full submatrix. Specifically, its encoder processes visible patches to generate their embeddings,
while the decoder leverages these embeddings along with masked token embeddings to reconstruct all patches. This framework is trained
using a novel patch-wise contrastive loss and SSIM loss. d. HiCFoundation applications. Following pre-training, HiCFoundation is
fine-tuned and tested for diverse downstream tasks, including genome architecture, multi-species, neutrophil, multi-omics and single-cell
analyses.
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[19] (see Methods). During the fine-tuning stage, the encoder is frozen and shared across various tasks,123

while the decoder is optimized to be task-specific. As a result, we use a larger encoder (304M parameters)124

and a smaller decoder (26M parameters) to maximize learning capacity during pre-training while minimizing125

the fine-tuning cost. Pre-training required two weeks on a server with 8 A100 (80GB) GPUs.126

Before applying HiCFoundation to downstream applications, we first examined the reconstruction of127

submatrices in the test set to ensure the success of the pre-training. On this task, we compared HiC-128

Foundation with three baselines: using the masked Hi-C as a prediction (“raw”), filling masked patches129

with the unmasked diagonal average values (“diag avg”), and filling masked patches with the mean values130

of the unmasked submatrix regions (“submat avg”). HiCFoundation achieved the best performance, with131

17.7% structural similarity index measure (SSIM) improvement, 15.2% Pearson correlation improvement,132

and 19.1% Spearman correlation improvement over the best-performing baseline (Supplementary Table133

2, Extended Data S1a). Visualizations of reconstructed examples across diverse species from the test set134

are shown in Extended Data S1b. The exceptional performance of HiCFoundation on the reconstruction135

task validates the success of its pre-training procedure, further motivating us to evaluate its performance on136

real-world applications.137

After pre-training, HiCFoundation is fine-tuned and evaluated for Hi-C analysis to investigate genome138

architecture across species, di!erential Hi-C analysis to study chromatin organization changes in neutrophil,139

multi-omics analysis to explore the relationship between genome architecture and function, and single-cell140

analysis to characterize the structural organization of individual cells (Fig. 1d).141

HiCFoundation enables multiple types of chromatin architecture analysis142

Hi-C has emerged as an indispensable tool for characterizing 3D chromatin architecture, supported by a143

wide array of computational methods [20, 21, 22, 23, 24, 25, 26, 8]. To validate HiCFoundation’s capacity144

for chromatin architecture analysis, we focus on three important tasks.145

• Reproducibility analysis evaluates the consistency between biological replicates and is critical for146

Hi-C quality control. Reproducibility measures are important for deciding whether two replicates147

can be pooled. It is also an essential step for di!erential chromatin architecture analysis, where148

the di!erences between various conditions can only be trusted if they exceed the di!erences between149

biological replicates. To this end, several reproducibility approaches have been developed and widely150

adopted [23, 27, 28, 29, 30].151

• Chromatin loop detection identifies pairs of genomic loci that are in close spatial proximity relative152

to their local background [8, 31, 32]. Loop detection can provide insights into regulatory interactions153

and genome organization. For example, some loops are mediated by cohesin-driven loop extrusion,154

which is closely associated with gene regulation [9].155

• Resolution enhancement aims to increase the e!ective sequencing depth of Hi-C data, thereby156

allowing for the detection of finer-scale chromatin features. Given that experimental doubling of reso-157

lution incurs a fourfold increase in cost, numerous computational methods for resolution enhancement158

have been developed to complement experimental approaches [33, 34, 35, 21, 36, 20, 37].159

For each of these tasks, HiCFoundation takes Hi-C data as input, processed by the pre-trained encoder160

and a task-specific decoder. The model outputs a submatrix embedding for reproducibility analysis, a list161

Figure 2 (following page): HiCFoundation for chromatin architecture analysis. a. Overview of HiCFoundation for di!erent
chromatin architecture analyses from Hi-C. The model takes a Hi-C submatrix as input, processed by a frozen encoder and a task-
specific decoder, and outputs an embedding vector for reproducibility analysis, an enhanced Hi-C matrix, or a list of detected chromatin
loops. b. Evaluation on reproducibility analysis. Box plot comparing pairwise embedding similarities between biological replicates
(BR) and non-replicates (NR) across various biosamples from human and mouse. The embedding is derived using HiCFoundation. c.
Box plot comparing BR–NR margin across di!erent methods. The BR–NR distribution of other methods across cell lines are included in
Extended Data S3. d. Box plot comparing the loop detection F1 scores across di!erent methods on high-coverage and low-coverage
Hi-C. e. Case studies of the detected loops from high-coverage and low-coverage Hi-C on the IMR-90 cell line (ENCSR852KQC) from
the ADH gene family region. Hi-C data, corresponding CTCF ChIP-seq signals (ENCSR000EFI), reference genes, and loop detections
(blue squares) are also included. f. Box plots comparing HiCFoundation with competing methods on resolution enhancement using
seven di!erent evaluation measures: SSIM, PSNR, Pearson correlation, Spearman correlation, TAD F1 score, Loop F1 score, and mean
rank. Mean rank is the mean of the rank in each of the other six metrics. The datasets used for reproducibility analysis, loop detection,
and resolution enhancement are detailed in Supplementary Tables 3, 5, and 7, respectively. The detailed scores of these metrics
are provided in Supplementary Tables 4, 6, and 8, respectively. ”***” indicates significance based on the sign test with p < 10→3.
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of detected chromatin loops for loop detection, or an enhanced Hi-C matrix for resolution enhancement162

(Fig. 2a). The encoder is frozen and shared across tasks, whereas the decoder is fine-tuned in a task-specific163

fashion (Extended Data S2, see details in Methods).164

For reproducibility analysis, HiCFoundation derives submatrix embeddings to calculate a similarity score165

between two Hi-C matrices. A good Hi-C similarity metric should assign a higher score to pairs of Hi-C166

experiments that are derived from the same or similar biological samples (“biological replicates”—BR) than167

to pairs derived from di!erent samples (“non-replicates”—NR) [38, 30]. Accordingly, HiCFoundation takes168

three input submatrices from BR1, BR2, and NR and generates three corresponding embeddings (Extended169

Data S2a, see Methods). We fine-tune the lightweight decoder using a triplet margin loss by minimizing170

the distance between BR1 and BR2 and maximizing the distance between BR1/BR2 and NR.171

The learned embeddings of the fine-tuned model, HiCFoundation-Repro, yield consistently higher simi-172

larity between BRs than NRs (Fig. 2b and Extended Data S3) across various test set biosamples from173

human and mouse, demonstrating the model’s ability to e!ectively distinguish between BR and NR pairs.174

We observed that HiCFoundation achieves the largest BR–NR margin, which measures the di!erence be-175

tween the score of the BR pair and the 95th percentile of reproducibility scores of NR pairs within each176

biosample, among all methods, with 110% and 158% improvement relative to the second-best method on177

the human and mouse test sets, respectively (Fig. 2c, Supplementary Table 4).178

Next, we examined whether HiCFoundation can provide robust loop detection across varying coverage179

levels. To achieve this, we fine-tuned two HiCFoundation-Loop models for high-coverage (HC) and low-180

coverage (LC) Hi-C data, respectively. In each case, we train and evaluate the model using consensus loop181

calls produced by HiCCUPs [8] on two replicated HC Hi-C experiments at 10 kb resolution (see Methods).182

Following pixel-level predictions by HiCFoundation-Loop, the mean-shift algorithm [39] is employed to cluster183

pixel-wise predictions to yield a final set of loop calls. Comparing the loop F1 score of di!erent methods on184

various biosamples in the test set (Fig. 2d, Supplementary Table 6), HiCFoundation-loop achieves mean185

loop F1 scores of 81.6% and 75.1% in the HC and LC settings, substantially outperforming other methods186

(sign test p < 0.001 relative to second best HiCCUPs on HC Hi-C data, and second best Chromosight on LC187

Hi-C data). Loops detected in the ADH gene family region [40] in IMR-90 data exhibit strong consistency188

with the corresponding CTCF ChIP signals and gene annotations (Fig. 2e). We successfully captured 100%189

of the target loops (consensus loops in Extended Data S4a by HiCCUPs on two biological replicates). In190

contrast, HiCCUPs failed to detect any loops in this region from the low-coverage Hi-C (Extended Data191

S4b). These results indicate HiCFoundation-Loop’s ability to detect chromatin loop architecture accurately192

at varying coverage levels.193

Finally, we evaluated HiCFoundation on resolution enhancement, where the model takes as input an LC194

Hi-C submatrix and is optimized to generate the corresponding HC submatrix. The input and output are195

both raw count matrices. We intentionally deviated from the common practice of using normalized Hi-C196

for this task because we identified a systematic problem associated with the Hi-C normalization approach197

adopted by previous methods (Supplementary Note 1). The fine-tuned model, HiCFoundation-Reso,198

was then compared to HiCARN [33], HiCNN [34] and HiCSR [41], each of which was re-trained using the199

same data and chromosome split to ensure a fair comparison. For evaluation, we adopt the six performance200

measures outlined in previous work [42]: SSIM, peak signal-to-noise ratio (PSNR), Pearson correlation,201

Spearman correlation, TAD F1 score, and loop F1 score (with loops called by HiCFoundation-Loop). Among202

all six di!erent evaluation metrics, HiCFoundation achieves the best performance across both the mouse and203

human test sets (Fig. 2f, Supplementary Table 8). To summarize across all six performance measures,204

we defined a mean rank metric, which is the average rank of a given method relative to its competitors205

across all six metrics. HiCFoundation achieves a mean rank of 1.08 on human and 1.05 on mouse, which206

is substantially lower than that of the next best method (2.38/2.38 for HiCARN1, Fig. 2f), demonstrating207

the superior performance of HiCFoundation on resolution enhancement.208

To assess the necessity of pre-training, we also include a “No pretrain” baseline, which uses the same209

network architecture but with random initialization, where the entire backbone is optimized using only task-210

specific signals. Across three chromatin architecture analyses, HiCFoundation consistently outperforms the211

No-pretrain model (Extended Data S5). The substantial performance gains achieved by HiCFoundation212

in this setting highlight the e!ectiveness of pre-training on massive unlabeled Hi-C data. Additionally,213

HiCFoundation is substantially more e”cient in downstream analyses, achieving approximately 10 times214

faster training than the No-pretrain model by requiring fine-tuning on only a small decoder rather than the215
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Figure 3: Multi-species evaluation of HiCFoundation on DNA Zoo dataset. a. Dot plots showing the improvement of
HiCFoundation over existing methods on resolution enhancement. Each dot shows the di!erence between HiCFoundation and other
methods for a Hi-C experiment from a specific species in terms of the metric shown on the x-axis. A positive (negative) di!erence
indicates HiCFoundation is better (worse) than the competing method. The numbers of di!erences greater than or less than zero are
also shown in the figure. b. The improvement of HiCFoundation over No-pretrain across di!erent coverages relative to the depth of
the raw data. c. TAD F1 score improvement of HiCFoundation over No-pretrain across 316 species. Results using other evaluation
metrics are available in Supplementary Table 10 and Extended Data S6.
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entire network.216

To further assess the utility of HiCFoundation, we benchmarked it on the DNA Zoo dataset [15], which217

contains Hi-C data from more than 300 primarily mammalian species. Given that HiCFoundation has been218

pre-trained and fine-tuned solely on human data, the DNA Zoo data allows us to test the model’s abil-219

ity to generalize across species. Using the same settings and evaluation protocols as before, we compared220

HiCFoundation-Reso against other methods on the resolution enhancement task. Across all our performance221

measures, HiCFoundation-Reso again consistently outperforms its competitors (Fig. 3a, Supplementary222

Table 10). This result indicates the applicability of HiCFoundation across a wide variety of species. To223

test HiCFoundation’s generalizability, we further compared HiCFoundation against No-pretrain under dif-224

ferent coverage settings by varying the downsampling ratio in our evaluation framework. HiCFoundation225

consistently delivers better performance relative to the No-pretrain model (Fig. 3b). Most notably, we226

observed that the improvement of HiCFoundation over No-pretrain is higher in non-mammalian species than227

mammalian species across di!erent evaluation metrics (Fig. 3c and Extended Data S6), suggesting that228

the pre-training stage enhances the generalizability of HiCFoundation. The self-supervised training during229

pre-training eliminates inductive bias, allowing the model to better adapt to evolutionarily distant species.230

HiCFoundation reveals 3D chromatin organization changes in HSPCs and neu-231

trophils232

Having established HiCFoundation’s superior performance across multiple chromatin architecture analysis233

tasks, we next applied the model to analyze a challenging collection of Hi-C data. Hematopoietic stem and234

progenitor cells (HSPCs) give rise to all blood and immune cell lineages [45]. Lineage determination in-235

volves an interplay between epigenetic modifications, key transcription factors, and alteration of 3D genome236

architecture. Nuclear lamin B1 (LMNB1), a structural protein essential for maintaining the integrity and237

morphology of the nuclear envelope [46], alters 3D chromatin organization in HSPCs and causes Pelger-Huët238

nuclear anomaly, a distinct abnormality in neutrophils resulting in mono- or bi-lobed nuclear morphology.239

However, global Hi-C analysis in these cells has been challenging due to the limited number of primary240

HSPCs, resulting in Hi-C contact maps with limited resolution [47]. Notably, the detection of chromatin241

loops, which are the most dynamic 3D genome feature and are closely associated with gene regulation,242

has been very challenging. To address these challenges, we used HiCFoundation to characterize dynamic243

changes in chromatin loop organization during HSPC di!erentiation into neutrophils. We first applied244

HiCFoundation-Reso to enhance the Hi-C matrices from control and LB1LO human CD34+ HSPCs and245

neutrophils, where LB1LO represents LMNB1 knockdown resulting in low level (↑25%) of lamin B1 ex-246

pression [47]. The enhancement substantially improved overall coverage and reduced noise while preserving247

relative coverage di!erences across samples (Extended Data S7a). The enhanced data was further vali-248

dated by comparing di!erent TAD insulation score patterns across four samples, where we observed similar249

patterns between raw and enhanced data (Extended Data S7e). Enhancing the Hi-C data increased dif-250

ferences in strength between the boundary and o!-boundary regions, which helped TAD identification and251

di!erential analysis. This analysis revealed that TAD boundary strength is lower in neutrophils compared252

to HSPC and also upon lamin B1 loss in both cell types.253

The enhanced, high-resolution Hi-C matrix resulted in the identification of chromatin loops that were254

previously undetected from the low-coverage data (Fig. 4a). We were able to detect as many as >7-fold255

more short-range chromatin loops across all samples. Notably, neutrophils had overall fewer chromatin loops256

across the genome compared to HSPCs, a di!erence that was also observed in the unenhanced data but with257

Figure 4 (following page): 3D chromatin architecture changes revealed by HiCFoundation in HSPCs and neutrophils. The
comparisons are made using four samples: control HSPC, LB1LO HSPC, control neutrophil, and LB1LO neutrophil. a. Representative
Hi-C contact matrices on low coverage raw data and post-enhancement (blue dots indicate annotated loops). b. Loop counts in all
samples on raw and enhanced data. c. Loop strength (peak to lower-left ratios, P2LL) comparison across samples via enhanced Hi-C.
The left panel compares all loops across four samples. The right three panels compare the loop strength on conserved loops, defined as
loops called in all four samples. d. Aggregate peak analysis of chromatin loops across samples. The left panel compares loop strength
of all loops across four samples. The right panel presents the loop strength of conserved loops. The three comparisons are the same as
panel c. e. Upset plot of gene-annotated loops from control HSPC and neutrophils. A gene is assigned to a loop if it is entirely within
one of the associated 10 kb loop anchors. f. Chromatin loops observed at the CEBPE and CEBPA loci aligned to CTCF ChIP-seq
from neutrophil (GSE101279), CD34+ HSPC, and GeneHancer track [43]. g. Gene Ontology analysis using Metascape [44] on genes
associated with loops having higher strength in neutrophils vs. HSPC.
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low confidence given the unreliable loop calling (Fig. 4b). The distribution of loop lengths was similar across258

all samples, suggesting that the relative distribution of short-range, mid-range, and long-range chromatin259

interactions remains unchanged (Extended Data S7b,c). The enhanced dataset confirms that lamin B1260

loss results in both loop loss and loop gain; however, interestingly, the total number of loops in LB1LO
261

HSPCs or neutrophils was not substantially altered (Fig 4b, Extended Data S7d). We next compared262

loop strength as measured by peak-to-lower-left ratios (P2LL, see Methods) [48, 49]. This analysis showed263

a reduction in loop strength in neutrophils relative to HSPCs, and as a result of lamin B1 loss in both HSPCs264

and neutrophils (all sign tests yield p < 0.001, Fig. 4c). The decrease in strength is consistent across all265

loops as well as in comparisons of conserved loops. Aggregate peak analysis across samples revealed patterned266

changes in loop architecture (Fig. 4d). In particular, we observed that LB1LO neutrophils exhibit the lowest267

loop strength, primarily due to stronger signals in the lower-left region. Furthermore, the loop peak signal268

in control neutrophils is significantly weaker than that in control HSPCs on shared loops. These enhanced269

data thus reveal a global loss of short-range chromatin loops in neutrophils, consistent with the finding that270

halting loop extrusion is essential for neutrophil di!erentiation [50]. Moreover, our findings show that lamin271

B1 loss results in global weakening of loop strength in both HSPCs and neutrophils.272

Although neutrophils predominantly lose chromatin loops that were present in HSPCs, we found that 806273

new loops were gained in neutrophils compared to HSPCs (Fig. 4e). We hypothesized that these neutrophil-274

specific loops correspond to genes essential for neutrophil cell identity and function. To this end, we first275

examined looping at genes essential for neutrophil di!erentiation, including the C/EBP-family TFs CEBPA276

and CEBPE (Fig. 4f). At both loci, we observed reconfiguration of enhancer-promoter loops to alternative277

distal or proximal enhancers, corresponding with increased gene expression. We next performed an unbi-278

ased Gene Ontology analysis on loops that gained loop strength in neutrophils (log2(P2LLHSPC vs. neutrophil279

>0.5)), which revealed a significant enrichment of genes involved in secretion, including AQP5, CHRM1,280

LTBP4, ABCC4 and TSPAN18 (Fig. 4g). Taken together, our enhanced dataset shows that although281

neutrophil di!erentiation is accompanied by loss of loops genome-wide, likely reflecting global chromatin282

compaction, looping around genes essential for neutrophil function is maintained and reconfigured to permit283

their continued expression. Moreover, lamin B1 may contribute to neutrophil di!erentiation by stabilizing284

loop configurations, with lamin B1 depletion resulting in weakening of loop strength.285

HiCFoundation profiles epigenomic assays286

One of the main incentives for interpreting 3D genome architecture is to understand the regulatory implica-287

tions of DNA 3D organization. Integrative analyses combining Hi-C with assays measuring local chromatin288

accessibility, TF binding, and histone modification profiles have revealed how 3D genome architecture in-289

fluences gene activity [1]. For example, loop interactions identified by Hi-C are significantly enriched with290

cis-regulatory elements, particularly active promoters, enhancers, and CTCF binding sites [51, 52]. Lever-291

aging this relationship between 1D and 3D organization, a recent deep learning model, Epiphany [53], has292

demonstrated the feasibility of predicting Hi-C contact maps from a collection of epigenomic measurements,293

including DNase I hypersensitive sites and CTCF, H3K27ac, H3K27me3, and H3K4me3 ChIP-seq. However,294

because the resolution of Hi-C data is often much lower than that of other epigenomic signals, predicting in295

the reverse direction—that is, predicting epigenomic signals using Hi-C data—remains challenging.296

We hypothesized that HiCFoundation could tackle this resolution disparity problem by aggregating the297

Figure 5 (following page): HiCFoundation for profiling epigenomic assays. a. HiCFoundation takes as input a raw 128kb→4Mb
Hi-C matrix and outputs the corresponding six 128kb epigenomic assays at 1kb resolution. The decoder is fine-tuned via multi-task
training. b. Benchmark of HiCFoundation for epigenomic assays profiling. Each axis corresponds to the pearson correlation of di!erent
epigenomic assays across three di!erent test sets: cross-chromosome, cross-cell line, and cross-chromosome and cross-cell line. c.
Visualization of six epigenomic signal predictions on the K562 cell line in the CXCL1–CXCL3 gene region. A zoomed in view compared
the predictions at 1 kb resolution and the experimental measurement at 1 bp resolution. d. Performance of HiCFoundation across
varying Hi-C input coverage levels. e. Interpreablility analysis of HiCFoundation. That includes two settings to study the impact of
CTCF loops on epigenomic assay profiling. In the first setting, for each loop, we compare two versions of the predicted epigenomic
signals: one derived from the original Hi-C matrix and the other from the Hi-C matrix after masking out the CTCF loop regions. In the
second setting, we analyze the attribution score of HiCFoundation for the input Hi-C using integrated gradients. This interpretation
algorithm assigns attribution scores to the Hi-C input, indicating the relative importance of each contact within the Hi-C matrix. f.
CTCF ChIP-seq and ATAC-seq predicted signal with and without CTCF loops. g. Attribution score distribution for CTCF ChIP-
seq and ATAC-seq predictions relative to the distance from the loop. Values are averaged over 392 loops, and error bars correspond
to standard deviation. Dataset details are available in Supplementary Table 11, and the benchmark of di!erent methods is in
Supplementary Table 12.
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chromatin structure patterns from a large quantity of Hi-C data, even though these data are at a relatively low298

resolution. We therefore created HiCFoundation-epi to generate a collection of 1D epigenomic measurements299

by using Hi-C data as input, thereby allowing us to study the e!ects of chromatin contacts on gene regulation.300

To this end, we fine-tuned HiCFoundation-epi using a submatrix of 128 kb by 4 Mb at 1 kb resolution, to301

produce six epigenomic signals for the corresponding 128 kb region, including two measurements of chromatin302

accessibility (DNase-seq and ATAC-seq), CTCF ChIP-seq, and three histone ChIP-seq profiles (H3K4me3,303

H3K27ac, and H3K27me3). The resulting model can thus generate genome-wide epigenomic profiles of these304

six assays (Fig. 5a, see Methods).305

HiCFoundation-epi was fine-tuned on data from two human cell lines, GM12878 and H1ESC, and then306

evaluated in three distinct settings: 1) cross-chromosome testing on GM12878 and H1ESC; 2) cross-cell line307

testing on K562; and 3) cross-cell line and cross-chromosome testing on K562. To the best of our knowledge,308

there is no existing method that can systematically predict epigenomic profiles from Hi-C data. Therefore,309

we compared HiCFoundation-epi to two baselines: No-pretrain and HiCPCA [54], which uses principal310

component analysis (PCA) to reduce the 2D Hi-C matrix to a 1D track. HiCFoundation-epi consistently311

yields superior performance against these baselines in all three settings (Fig. 5b, Supplementary Table312

12). For example, HiCFoundation-epi achieves Pearson correlations of 0.294, 0.549, 0.537, 0.292, 0.500,313

0.544 for CTCF, H3K4me3, H3K27ac, H3K27me3, ATAC-seq, and DNase-seq, respectively, representing314

an average improvement of 0.192 (min=0.103, max=0.255) relative to No-pretrain and 0.365 (min=0.141,315

max=0.485) relative to HiCPCA. We further evaluated HiCFoundation’s performance under varying coverage316

levels by downsampling. HiCFoundation achieved comparable performance to the No-pretrain model with317

only around 25% of the original coverage (Fig. 5d). This demonstrates HiCFoundation’s robustness across318

di!erent coverage levels and highlights its predictive power even with shallow read depth, reducing both319

experimental complexity and financial cost.320

Visual examination of chromosome 4 in K562 cells (Fig. 5c) suggests that HiCFoundation-epi yields321

qualitatively accurate predictions, even in the most challenging cross-cell line and cross-chromosome setting.322

Specifically, we observed strong consistency between the predicted and measured epigenomic signals at323

the CXCL1–CXCL3 locus. These genes, which encode chemokines from the CXC family, serve as critical324

regulators of immune and inflammatory responses [55]. Notably, data from the BBcancer database [56] reveal325

significant expression di!erences in these genes between cancer patients and normal controls. Consequently,326

accurate profiling of the associated epigenomic signals is essential for enabling robust downstream analyses,327

which also highlights the great potential of HiCFoundation.328

Given the strong performance of HiCoundation-epi, we hypothesized that the model should be able to329

reveal the relationship between genome architecture changes and corresponding epigenomic signal changes.330

To validate this hypothesis, we exploit the known association between CTCF ChIP-seq peaks and Hi-C331

loops, which arises due to cohesin-mediated chromatin loop formation [51, 52]. In particular, we first used332

HiCFoundation-loop to detect loops in test set chromosomes from the K562 cell line, and we restricted our333

analysis only to the 392 loops that contain convergent CTCF motifs identified using FIMO [57]. Next, for334

each loop, we compared the two versions of the predicted CTCF ChIP-seq signals at the loop anchor. One335

is predicted using the original contact matrix; the other is predicted using the contact matrix that zeros336

out the 30→30 kb region around the loop (Fig. 5e). This comparison tests whether HiCFoundation-epi can337

correctly capture the change in CTCF ChIP-seq signals due to the presence of CTCF loops.338

We found that in 97.8% (383 out of 392) of cases, the ablation of the loop leads HiCFoundation-epi to339

predict decreased CTCF ChIP-seq signal, with an average decrease of 41.8% (Fig. 5f). The same relationship340

is observed between the predicted ATAC-seq signal and CTCF loops using a similar analysis. To further341

assess the generated profiles, we used Integrated Gradients [12] to assign an attribution score to each contact342

in the input locus Hi-C (Fig. 5e). We observed that the attribution score of a contact is strongly correlated343

with its distance to the loop, indicating that HiCFoundation-epi used the correct contact information to344

predict epigenomic signals (Fig. 5g). These two interpretability analyses of HiCFoundation-epi validate its345

utility for investigating relationships between genome architecture and epigenomic assay profiling, paving346

the path for integrative studies of gene regulation.347
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HiCFoundation generalizes to single-cell Hi-C analysis348

Hi-C captures DNA–DNA contacts from cell populations, producing a population average 3D genome struc-349

ture that may not reflect 3D genome architecture in individual cells. Accordingly, scHi-C was developed to350

measure chromatin architecture within a single nucleus [3]. However, its coverage is orders of magnitude351

lower than bulk Hi-C, resulting in a low signal-to-noise ratio and posing challenges for downstream analysis352

[61]. Thus, resolution enhancement is particularly valuable for scHi-C analysis. To address this challenge,353

several scHi-C resolution enhancement methods have been developed [62, 63, 64]. However, these methods354

are unsupervised methods that rely on certain assumptions on the contact distribution, such as that nearby355

loci exhibit similar contacts, which might lead to less accurate performance on cells with low coverage.356

Furthermore, many of these methods work by borrowing information from neighboring cells (i.e., cells with357

similar patterns of scHi-C data), which potentially reduces the true cell-to-cell variability in the data.358

We hypothesize that HiCFoundation can leverage patterns from bulk Hi-C data to enhance resolution for359

scHi-C by fine-tuning on scHi-C data. To this end, we fine-tuned HiCFoundation-sc for scHi-C resolution360

enhancement using scHi-C data from 6060 single cells from developing mouse embryos and brains, generated361

using the HiRES scHi-C/scRNA-seq co-assay (HiRES dataset) [58]. The HiCFoundation-sc model takes as362

input a full chromosome of scHi-C data at 1 Mb resolution and then outputs a corresponding enhanced363

matrix (Fig. 6a). The scHi-C-specific decoder is optimized using pairs of raw scHi-C data and 4 times-364

downsampled scHi-C data. To cope with the extreme sparsity of scHi-C data, we propose a novel rank-based365

MSE loss that e!ectively reduces the sensitivity of the loss gradients to large values (see Methods and366

Extended Data S8a).367

We evaluated HiCFoundation-sc in three settings: 1) cross-chromosome testing using held-out chromo-368

somes from the HiRES dataset; 2) cross-chromosome and cross-dataset testing on mouse forebrain cortex369

cells [59]; and 3) cross-species testing on data from the human cell line WTC11 [14] (Supplementary Table370

13). In each setting, performance is evaluated by comparing the enhanced scHi-C data to the original scHi-C371

data. Across all three settings, HiCFoundation consistently delivers superior performance compared to three372

state-of-the-art methods, Higashi [62], scHiCluster [63], and scVI-3D [64] across various metrics (Fig. 6b373

Extended Data S8b-d, Supplementary Table 14). Moreover, HiCFoundation yields the largest im-374

provement in the most challenging cross-species setting, where it attains 35.9% improvement on Pearson375

correlation, 20.0% improvement on SSIM, and 30.2% improvement in PSNR over the second best method,376

scHiCluster (all sign tests, p < 0.001). For this setting, HiCFoundation is directly applied without training377

on WTC11 data, whereas all other methods are retrained on the WTC11 dataset, further validating the378

generalizability and power of HiCFoundation.379

We further validated the generalizability of HiCFoundation-sc using human K562 cell line data generated380

in the GAGE-seq co-assay [60]. Rather than evaluating on downsampled data, this evaluation compares381

pseudo-bulk from enhanced scHi-C against bulk Hi-C data from the same cell line (Fig. 6b). HiCFoundation-382

sc is directly applied without training, whereas all other methods are trained directly on the GAGE-seq383

dataset (see Methods). Due to coverage di!erences between pseudo-bulk and bulk Hi-C data, SSIM and384

PSNR were excluded as evaluation metrics. We found that HiCFoundation-sc achieves the best performance385

across metrics, with a Mean rank of 1.167, which is substantially better than competing methods (right-most386

panels of Fig. 6b). A visual comparison between HiCFoundation-sc and ground truth across four datasets387

further highlights its strong enhancement capability (Fig. 6c). We further applied HiCPCA [54] to the388

Figure 6 (following page): HiCFoundation for single-cell Hi-C analysis. a. Inference pipeline of HiCFoundation-sc on single-cell Hi-
C resolution enhancement. HiCFoundation-sc can takes chromosome scHi-C matrix as input and output the enhanced scHi-C matrix.
This can be further merged into pseduo-bulk Hi-C to compare against bulk Hi-C. b. Benchmark on four di!erent datasets of four
settings: 1) cross-cell and cross chromosome setting on developing mouse embryos cells HiRES dataset [58]. 2) cross-chromosome and
cross-dataset testing on mouse forebrain cortex cells [59]. 3) cross-species testing on data from the human cell line WTC11 [14]. 4)
pseudo-bulk and bulk Hi-C benchmark on human cell line K562 [60]. The other evaluation metrics are included in Extended Data
S8b-e c. Visual comparisons between enhanced matrices (lower left) generated by HiCFoundation-sc and the ground truth (GT) (upper
right). The left three panels display three randomly selected single-cell enhancements and their corresponding ground truth from the
HiRES, Tan2021, and WTC11 datasets. The right panel shows pooled enhanced scHi-C (pseudo-bulk) compared to bulk Hi-C from
the GAGE-seq dataset. d. Genome compartment detection example. We compared the correlation between the PCA of pseudo-bulk
Hi-C by HiCFoundation-sc and bulk Hi-C with the corresponding bulk ATAC-seq measurements. e. Performance comparison of various
approaches across di!erent reads per cell on GAGE-seq dataset. f. Performance of HiCFoundation-sc across varying single-cell dataset
sizes (number of cells) on GAGE-seq dataset. The HiCRep evaluations of panel e and f are included in Extended Data S9e,f The
dataset information is available at Supplementary Table 13 and the benchmark performance is available at Supplementary Table
14. ”***” in the panels indicates significance based on the sign test with (p < 10→3).

14



a Raw single-cell Hi-C Enhanced single-cell Hi-C Pseudo-bulk Hi-C

Merge

Truth

Pred

HiRES Tan2021 WTC11 GAGE-seqb

e

c

Pseudo bulk Hi-C

Bulk Hi-C

Bulk ATAC-seq

Cell 1

Cell 2

Cell N

Cell 1

Cell 2

Cell N

Pre-trained and frozen Fine-tuned with single-cell Hi-C

f

d

0.79
Pearson:0.83

Genome compartment comparison 

15



merged enhanced scHi-C data (pseudo-bulk Hi-C) and bulk Hi-C data on GAGE-seq dataset. We observed389

that the compartments detected by the pseudo-bulk Hi-C show strong consistency with the compartments390

revealed by the corresponding ATAC-seq measurements (Fig. 6d), comparable to the compartments observed391

from bulk Hi-C.392

Following the same setting as before, we also compared the performances of HiCFoundation relative to393

No-pretrain for scHi-C resolution enhancement (Extended Data S9). The relatively poor performance of394

No-pretrain reflects the di”culty of applying supervised models across datasets with varying coverages. In395

contrast, HiCFoundation-sc consistently delivers strong results with a large margin over other approaches,396

underscoring the strong generalization of HiCFoundation’s embeddings across diverse assays, even at single-397

cell resolution.398

Lastly, we evaluated the robustness of HiCFoundation-sc across varying coverage levels and numbers of399

individual cells on the GAGE-seq dataset. First, we curated a fixed-coverage scHi-C dataset with uniform400

reads per cell by discarding 50% of the cells with reads below the 50th percentile and downsampling the401

remaining cells to equal read counts. Next, we compared the performance of pseudo-bulk data derived from402

raw data, No-pretrain, and HiCFoundation-sc under varying coverage levels by downsampling the fixed-403

coverage dataset (Fig. 6e and Extended Data S9e). Compared to raw and No-pretrain, we observed that404

HiCFoundation’s performance is stable with more than 85k reads per cell, which suggests the robustness of405

HiCFoundation. Next, we investigated the performance of HiCFoundation with di!erent numbers of cells in406

the dataset (Fig. 6f and Extended Data S9f). Notably, HiCFoundation requires only 150 cells to generate407

a pseudo-bulk dataset with performance comparable to that achieved using around 600 cells from raw scHi-C408

data. Together, these results validate the stability and e!ectiveness of HiCFoundation for scHi-C analysis,409

highlighting its potential in cases where achieving su”cient coverage or obtaining an adequate number of410

single cells is experimentally challenging.411

Discussion412

HiCFoundation generates various types of embeddings that are broadly useful for a wide variety of Hi-C-413

related analysis tasks. Through extensive benchmarking, we show that HiCFoundation consistently delivers414

state-of-the-art performance across diverse tasks. Furthermore, fine-tuned models derived from HiCFounda-415

tion can be integrated in a unified framework for genome architecture and epigenomic functional analysis. For416

example, HiCFoundation-Reso and HiCFoundation-Loop can be combined to accurately detect chromatin417

loops from low-coverage Hi-C data, including human HSPCs and other rare primary cell types. Meanwhile,418

HiCFoundation-epi enables the profiling of chromatin accessibility, transcription factor binding, and histone419

modifications. Interpretability analysis of HiCFoundation-epi reveals its ability to e!ectively capture epige-420

nomic signal at chromatin loop anchors. HiCFoundation thus provides a unified framework for Hi-C analysis,421

facilitating integrative, multi-species, multi-omics, and single-cell studies. With its streamlined and e”cient422

fine-tuning pipeline, this framework can be applied to a wide range of genomic and epigenomic analyses.423

The most compelling advantage of HiCFoundation is its strong adaptability, which is facilitated by three424

factors. First, adapting HiCFoundation to new tasks is time e”cient. The pre-training of HiCFounda-425

tion from hundreds of Hi-C experiments is time-consuming, requiring approximately two weeks on a server426

equipped with 8 A100 GPUs. In contrast, fine-tuning HiCFoundation on a specific downstream tasks takes427

less than 10 hours due to HiCFoundation’s asymmetric encoder-decoder architecture, where the decoder is428

much smaller than the encoder. Only parameters of the lightweight decoder are updated using task-specific429

labels, while the encoder remains frozen during fine-tuning. Second, adapting HiCFoundation to new tasks430

is “label e”cient,” meaning that only a small amount of labeled data is required. This e”ciency allows431

the model to achieve substantial improvement over models trained from scratch, as demonstrated by our432

experiments. Third, HiCFoundation can produce various types of embeddings, including locus embeddings,433

patch embeddings, submatrix embeddings, and chromosome embeddings, making the model applicable to434

genomic and epigenomic analyses at di!erent scales.435

Hi-C datasets of human HSPCs have low coverage, limiting detection of chromatin loops and biological436

insights into gene regulation. By applying HiCFoundation to a dataset of human HSPCs and neutrophils,437

we improved detection of chromatin loops by over 7-fold. These data have uncovered a dramatic loss of438

chromatin loops and weakening of loop strength during neutrophil di!erentiation, while looping at genes439
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essential for neutrophil function is preserved. Chromatin in neutrophils undergoes profound compaction as440

it is partitioned into 3–5 distinct nuclear lobes [65]. Loss of chromatin loops may be essential to achieve a441

high degree of physical compaction, consistent with the recent finding that halting loop extrusion is essential442

for neutrophil di!erentiation [50].443

Although HiCFoundation already provides excellent performance across a variety of downstream tasks,444

some avenues for future research remain open. First, HiCFoundation currently does not incorporate sequence445

information, which might enhance its accuracy and utility for genome structure and functional analysis.446

Prior studies [66, 67, 68, 69, 70, 11] have shown the power of sequence-based approaches in predicting447

chromatin contacts and epigenomic assays. Integrating sequence information into HiCFoundation should448

further improve its performance. Second, although HiCFoundation excels at predicting epigenomic assays449

from Hi-C data, we hypothesize that bidirectional translation between Hi-C and epigenomic data, perhaps450

by integrating with a model like Epiphany, could allow the model to improve on both of these translation451

tasks.452
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[64] Ye Zheng, Siqi Shen, and Sündüz Keleş. “Normalization and de-noising of single-cell Hi-C data with617

BandNorm and scVI-3D”. In: Genome biology 23.1 (2022), p. 222.618

[65] Yina Zhu et al. “Comprehensive characterization of neutrophil genome topology”. In: Genes & Devel-619

opment 31.2 (2017), pp. 141–153.620

[66] Anupama Jha et al. “Prediction and functional interpretation of inter-chromosomal genome architec-621

ture from DNA sequence with TwinC”. In: bioRxiv (2024).622

21



[67] R. Schwessinger et al. “DeepC: predicting 3D genome folding using megabase-scale transfer learning”.623

In: Nature methods 17.11 (2020), pp. 1118–1124.624

[68] J. Zhou. “Sequence-based modeling of three-dimensional genome architecture from kilobase to chro-625

mosome scale”. In: Nature Genetics 54 (2022), pp. 725–734.626

[69] Geo! Fudenberg, David R Kelley, and Katherine S Pollard. “Predicting 3D genome folding from DNA627

sequence with Akita”. In: Nature methods 17.11 (2020), pp. 1111–1117.628

[70] J. Zhou and O. Troyanskaya. “Predicting e!ects of noncoding variants with deep learning–based se-629

quence model”. In: Nature Methods 12 (2015), pp. 931–934.630

[71] Suhas SP Rao et al. “A 3D map of the human genome at kilobase resolution reveals principles of631

chromatin looping”. In: Cell 159.7 (2014), pp. 1665–1680.632

[72] Tsung-Han S Hsieh et al. “Mapping nucleosome resolution chromosome folding in yeast by micro-C”.633

In: Cell 162.1 (2015), pp. 108–119.634

[73] Vijay Ramani et al. “Mapping 3D genome architecture through in situ DNase Hi-C”. In: Nature635

protocols 11.11 (2016), pp. 2104–2121.636

[74] Hao Hong et al. “DeepHiC: A generative adversarial network for enhancing Hi-C data resolution”. In:637

PLoS computational biology 16.2 (2020), e1007287.638

[75] S. B. Rei! et al. “The 4D Nucleome Data Portal: a resource for searching and visualizing curated639

nucleomics data”. In: Nature Communications 13.1 (2022), p. 2365.640

[76] Pascal Vincent et al. “Extracting and composing robust features with denoising autoencoders”. In:641

Proceedings of the 25th international conference on Machine learning. 2008, pp. 1096–1103.642

[77] Pascal Vincent et al. “Stacked denoising autoencoders: Learning useful representations in a deep net-643

work with a local denoising criterion.” In: Journal of machine learning research 11.12 (2010).644

[78] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image recognition at645

scale”. In: arXiv preprint arXiv:2010.11929 (2020).646

[79] A. Vaswani et al. “Attention Is All You Need”. en. In: Advances in Neural Information Processing647

Systems 30 (2017).648

[80] Zhenda Xie et al. “SimMIM: A Simple Framework for Masked Image Modeling”. In: International649

Conference on Computer Vision and Pattern Recognition (CVPR). 2022.650

[81] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning with contrastive predictive651

coding”. In: arXiv preprint arXiv:1807.03748 (2018).652

[82] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”. In: arXiv preprint arXiv:1711.05101653

(2017).654

[83] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In: arXiv preprint arXiv:1609.04747655

(2016).656

[84] Ilya Loshchilov and Frank Hutter. “Sgdr: Stochastic gradient descent with warm restarts”. In: arXiv657

preprint arXiv:1608.03983 (2016).658

[85] Priya Goyal et al. “Accurate, large minibatch sgd: Training imagenet in 1 hour”. In: arXiv preprint659

arXiv:1706.02677 (2017).660

[86] Xavier Glorot and Yoshua Bengio. “Understanding the di”culty of training deep feedforward neu-661

ral networks”. In: Proceedings of the thirteenth international conference on artificial intelligence and662

statistics. JMLR Workshop and Conference Proceedings. 2010, pp. 249–256.663

[87] Dejun Lin, Justin Sanders, and William Sta!ord Noble. “HiCRep. py: fast comparison of Hi-C contact664

matrices in Python”. In: Bioinformatics 37.18 (2021), pp. 2996–2997.665

[88] Carole H Sudre et al. “Generalised dice overlap as a deep learning loss function for highly unbalanced666

segmentations”. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clini-667

cal Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop,668

ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14,669

Proceedings 3. Springer. 2017, pp. 240–248.670

22



[89] Emily Crane et al. “Condensin-driven remodelling of X chromosome topology during dosage compen-671

sation”. In: Nature 523.7559 (2015), pp. 240–244.672

[90] Sudhir Kumar et al. “TimeTree: a resource for timelines, timetrees, and divergence times”. In:Molecular673

biology and evolution 34.7 (2017), pp. 1812–1819.674

[91] J. Grill et al. “Bootstrap your own latent: A new approach to self-supervised learning”. In: arXiv675

preprint arXiv:2006.07733 (2020).676

[92] Sven Heinz et al. “Simple combinations of lineage-determining transcription factors prime cis-regulatory677

elements required for macrophage and B cell identities”. In: Molecular cell 38.4 (2010), pp. 576–589.678

23



Methods679

Pre-training data sets680

We began by collecting a large set of Hi-C experiments, from which we created a pre-training set and a test681

set, as well as train and test sets for each of the three downstream tasks.682

The full dataset consists of 678 Hi-C experiments generated by two National Institutes of Health con-683

sortia, ENCODE [13] and 4D Nucleome [14]. We used contact maps generated using the in situ Hi-C [71],684

dilution Hi-C [2], intact Hi-C, Micro-C [72], and DNase Hi-C [73] protocols. The data are derived from685

five di!erent organisms: human, mouse, chicken, zebrafish and fruit fly. We only included in our dataset686

Hi-C experiments that contain at least 10 million non-diagonal mapped read pairs. We use the ENCODE687

terminology “biosample” to refer to the cell line or tissue type from which the sample is derived. Our688

dataset contains Hi-C data from 146 distinct biosamples. The Hi-C experiments vary substantially in the689

total number of read pairs, with a trend of increasing coverage over time. The full set of accession codes is690

provided in Supplementary Table 1.691

We split this dataset into training, validation, and test sets. The splitting is done at the level of (human)692

biosamples, with 81 used for training, 20 for validation, and 18 for testing. This split corresponds to 368693

Hi-C experiments in the training set, 36 in the validation set, and 117 in the test set. In addition, all694

non-human Hi-C data, consisting of 157 experiments, are used for testing. Supplementary Table 1 shows695

which subset (training, validation, or test) each Hi-C experiment was assigned to. The training set is also696

referred to as the “pre-training set” in the literature of foundation models. The validation set is used during697

training to select the best-performing model, and the test set is used to evaluate model generalizability over698

unseen data.699

We use a two-step procedure to prepare each Hi-C experiment for input to our model. First, we partition700

the collection of Hi-C matrices into a set of pairwise chromosome matrices. Each pairwise matrix comes from701

a single Hi-C experiment and contains data from two distinct chromosomes, excluding the Y chromosome.702

This design ensures that there is no information loss, as both intra-chromosomal and inter-chromosomal703

information is preserved within the pairwise chromosome Hi-C matrices. In total, we obtain
(23
2

)
= 253704

chromosome pairs per Hi-C experiment; thus, the training and validation sets yield a collection of 253→404 =705

102, 212 pairwise chromosome Hi-C matrices for pre-training. Second, each pairwise matrix is decomposed706

into 224→224 submatrices at 5 kb resolution. Submatrices that overlap chromosome boundaries are excluded,707

as are submatrices with >95% zero values. This procedure produces ↑116 million submatrices for training708

and 19 million submatrices for validation. In practice, during each training and validation epoch we randomly709

sample 1.16 million submatrices for training and 0.2 million submatrices for validation.710

Benchmarking data sets711

For the Hi-C reproducibility task, we select a subset of the training set for training and a subset of the test set712

for testing. For training, we begin by selecting 109 experiments that have at least two biological replicates.713

Of these 109, we eliminate 80 experiments in which at least one of the two replicates has fewer than 10714

million non-diagonal mapped read pairs. The remaining 29 experiments are drawn from 29 distinct human715

biosamples, which we randomly split into 24 for training and 5 for validation. In the ENCODE and 4DN716

repositories, each Hi-C experiment consists of at least two biological replicates. For each such experiment,717

we create one matrix from each biological replicate (BR). The training set thus consists of 24 BR pairs and718

1104 non-replicate (NR) pairs, and the validation set consists of 5 BR pairs and 40 NR pairs. For the test719

set, we apply a similar procedure, yielding 15 BR pairs from human and 20 BR pairs from mouse, as well720

as 420 human NR pairs and 760 mouse NR pairs. Note that both BR and NR pairs are derived from single721

replicates, not pooled replicates as in the pre-training stage.722

Similarly, for the Hi-C loop detection task we construct our dataset by selecting subsets from the training723

and test sets. We exclude experiments 1) with one biological replicate, 2) if either of the two biological724

replicates had fewer than 100 million non-diagonal mapped read pairs, or 3) if HiCCUPs called fewer than725

1000 loops in either of the two replicates. This process results in 15 experiments sourced from 15 biosamples,726

including 6 from human and 9 from mouse. From these, we select 4 experiments from human biosamples727

that are in the training set of the pre-training stage to serve as the training and validation set for the loop728

detection task. In this set, chromosomes 4, 5, 11, and 14 are designated as the validation set, while all729
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other chromosomes are used for training. The testing set includes chromosomes 4, 5, 11, and 14 from the730

remaining 2 experiments from human, plus all chromosomes from the 9 experiments sourced from mouse.731

For resolution enhancement, we construct our dataset using subsets from the training and testing sets.732

To ensure that the down-sampled Hi-C data has reasonable read counts, we first filter out experiments733

with fewer than 500 million reads. This leaves us with 124 experiments for training and validation, and 27734

experiments for testing. Among the training and validation experiments, chromosomes 4, 5, 11, and 14 are735

designated as the validation set, following the procedure used in HiCARN [33] and DeepHiC [74] to enable736

a fair comparison. All other chromosomes are used for training. Our testing set includes 16 experiments737

sourced from humans and 11 experiments sourced from mouse. To test the generalizability of our model,738

we benchmark it on chromosomes 4, 5, 11, and 14 from human, and on all chromosomes from mouse, which739

were never seen during training.740

For the task of predicting 1D epigenomic signals from Hi-C, we construct our dataset using ENCODE741

and 4DN data, following the approach adopted by Epiphany [53]. Specifically, we gather seven types of data:742

Hi-C, ATAC-seq, and DNase-seq, as well as ChIP-seq for CTCF and three types of histone modifications743

(H3K4me3, H3K27ac, H3K27me3). All data types are collected from the GM12878, K562, and H1ESC cell744

lines. Accession codes can be found in Supplementary Table 11. To prevent any potential data leakage,745

all three cell lines used here are excluded from the pre-training stage training set. For training and validation746

of the 1D epigenomic predictor, we use Hi-C and the corresponding epigenomic signal data from GM12878747

and H1ESC, excluding chromosomes 4, 5, 11, 14, and X. After training, we evaluate our model across three748

di!erent testing settings: 1) cross-chromosome setting, testing on chromosomes 4, 5, 11, and 14 of GM12878749

and H1ESC; 2) cross-cell line setting, testing on all chromosomes, except 4, 5, 11, 14, and X, of K562; and750

3) cross-cell line and cross-chromosome setting, testing on chromosomes 4, 5, 11, and 14 of K562.751

For single-cell Hi-C analysis, we train, validate and test our model using four publicly available scHi-C752

datasets (see Supplementary Table 13 for more information). For these datasets, we keep cells with more753

than 100,000 intra-chromosomal contact reads. After this filtering process, the WTC11 dataset [75] contains754

185 cells, the Tan2021 dataset [59] contains 1,943 cells, the HiRES dataset [58] contains 7,576 cells, and755

the GAGE-seq dataset [60] contains 593 cells from the K562 cell line. Given the quality and size of each756

dataset, we selected the HiRES dataset for model training and validation. We train the model on all train757

chromosomes using 80% of the cells, validate the model on chromosomes 4, 5, 11, and 14 on the training cells,758

and test the model on chromosomes 2, 6, 10, and 12 using the testing cells. For the Tan2021 dataset, 1,943759

mouse cells with chromosome 2, 6, 10 and 12 are used for testing in the cross-dataset, cross-chromosome760

setting. Furthermore, we used the test chromosomes 4, 5, 11 and 14 on human cells, similar to the other761

downstream tasks. For the WTC11 dataset, 185 human cells along with chromosome 4, 5, 11, and 14 are762

benchmarked for the cross-species experiment. For the GAGE-seq dataset, 593 K562 cells are used for763

comparison with bulk HiC, focusing on chromosomes 4, 5, 11 and 14. Detailed information about all four764

datasets is available in Supplementary Table 13.765

HiCFoundation pre-trained model architecture and pre-training details766

The HiCFoundation model training can be divided into two stages: the pre-training stage, which uses self-767

supervised learning to train from a large collection of unlabeled data, and the fine-tuning stage, which adapts768

the pre-trained HiCFoundation model for di!erent downstream tasks using task-specific labelled data.769

The self-supervised pre-training involves randomly masking some parts of a given submatrix and then770

training the model to fill in the masked regions. In particular, for every training epoch, we randomly771

sample 1.16 million 224 → 224 submatrices. Hence, each submatrix spans 5 kb → 224 = 1.12 Mb. Each of772

these submatrices is divided into a collection of 196 non-overlapping 16→16 patches. A random selection of773

75% of these patches is masked, leaving 25% unmasked patches as input to HiCFoundation. Because Hi-C774

data is symmetric along the diagonal, we apply symmetric masking for any submatrix that includes any775

diagonal regions. For the output, the complete set of 196 patches from the input submatrix is used as the776

reconstruction target.777

Similar to other approaches optimized for reconstruction, we used an encoder-decoder architecture. In778

particular, we adopt the widely used masked auto-encoder architecture (MAE) [76, 77] as the backbone of779

HiCFoundation due to its strong performance on images [16]. As shown in Fig. 1c, the MAE first splits780

an image into patches and then randomly masks a large fraction of these patches. The encoder converts781
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each unmasked patch to an embedding vector, and the masked patches are mapped to a shared, learnable782

embedding vector. The MAE adds a sinusoidal positional embedding to the embedding of each masked783

and unmasked patch. The resulting combined embeddings are then used as the input for the decoder to784

reconstruct the entire image, including the masked patches. After pre-training the MAE, the encoder is785

used to embed new Hi-C submatrices for various downstream tasks, while the decoder is replaced by a task-786

specific architecture. Accordingly, the MAE architecture often uses a large encoder with many parameters787

and a simple decoder to maximize the e!ectiveness of the encoder. Moreover, previous work has empirically788

found that masking a very large proportion of patches leads to better results, since this approach makes789

the pre-training task more challenging [16]. Here we masked 75% of the patches and optimized the model790

to reconstruct the masked patches. The model uses an asymmetric encoder-decoder architecture design,791

where we adopted a larger encoder (304M parameters) and a smaller decoder (26M parameters) to maximize792

learning capacity during pre-training while minimizing fine-tuning costs.793

Along with the patch embeddings from the Hi-C submatrices, our model also takes two additional em-794

beddings as input. Because the Vision Transformer architecture typically includes in its input a class token795

embedding [78] to represent the entire submatrix’s embedding, we also append an auxiliary dummy em-796

bedding to the encoder input. This class token embedding can be used for fine-tuning downstream tasks.797

Additionally, we added as another input embedding a sinusoidally encoded count of the total number of798

mapped reads pairs associated with the corresponding Hi-C experiment799

posi
ω
=

{
sin(wk ↓ ω), i = 2k
cos(wk ↓ ω), i = 2k + 1

, wk =
1

100002k/D
(1)

where ω = log10(reads + 1), D is the feature dimension, and posi
l
is ith element of vector posl [79, 78].800

For the encoder, we employ the Vision-Transformer Large (ViT-L) architecture [78]. In this step, we801

define the 2D positional embedding posi
l,m

↔ RD for the patch at row l and column m analogously to802

Equation 1:803

posi
l,m

= cat(posi
l
, posi

m
) (2)

where posi
l
↔ RD/2 and posi

m
↔ RD/2 are the 1D positional embeddings of lth and mth patch, respectively.804

We couple this encoder with a light-weight decoder consisting of eight transformer blocks with a latent805

dimension of 512. Note that the decoder is discarded after the pre-training stage, and only the pre-trained806

encoder is used in the subsequent fine-tuning procedures.807

Many self-supervised learning frameworks for image reconstruction optimize an MSE loss between the808

reconstructed and original images in the pixel space [80, 16]. However, we found that the MSE loss applied809

to Hi-C data yields trivial solutions because of the high degree of sparsity in the data. Instead, the HiC-810

Foundation pre-training procedure optimizes a two-component loss function, with one component akin to811

a cross-entropy loss and a second component modeled after the structural similarity index measure (SSIM)812

[19].813

Our first loss term is a contrastive loss function, called InfoNCE [81], applied at the level of patches:814

ωC(q) = ↗ log
exp(q · k+)

∑
N

j=1 exp(q · kj)
(3)

where N is the number of patches output by the model, and q is a given patch’s embedding, k+ is the815

embedding of the corresponding patch at the same row and the same column in the ground truth matrix.816

Here all embeddings are already L2 normalized. This loss function captures the intuition that q should817

be similar to its corresponding patch in the ground truth k+ and dissimilar to all other patches in the818

ground truth. The InfoNCE loss can be conceptualized as a variant of cross-entropy loss. The similarity is819

subsequently normalized by the softmax function to yield a pseudo-probability.820

Whereas Equation 3 primarily focuses on local similarities, the second term of our loss function aims to821

enhance the global structural similarity between the reconstructed Hi-C submatrix and the ground truth822

Hi-C submatrix. This term is modeled on the SSIM:823

ωSSIM(x) = 1↗ (2µxµy + c1)(2εxy + c2)

(µ2
x
+ µ2

y
+ c1)(ε2

x
+ ε2

y
+ c2)

(4)
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where x is the reconstructed Hi-C submatrix; y is the ground truth Hi-C submatrix; µx and εx are the pixel824

sample mean and variance of x; µy and εy are the pixel sample mean and variance of y; εxy is the covariance825

of x and y; and c1 and c2 are two constants that stabilize the division.826

Combining the two loss terms, the HiCFoundation model is optimized by827

ωHiCFoundation = ωC + ϑ ↓ ωSSIM (5)

where ϑ is a hyperparameter that balances the two loss terms. In this work, we fix ϑ = 1.828

The overall network is optimized using the AdamW [82] optimizer with an initial learning rate of 2.4→829

10↑3, weight decay of 0.05, a batch size of 4096 and momentum parameters of ϖ1 = 0.9 and ϖ2 = 0.95. Due830

to limitations in available GPU resources, gradient accumulation [83] was employed to achieve a large batch831

size. The learning rate follows a decay schedule during the training process based on a cosine annealing832

schedule [84]. The pre-training phase consists of 100 epochs, with 5 epochs designated as warm-up epochs833

[85]. During the warm-up epochs the learning rate is increased in a linear fashion at each iteration such834

that the desired learning rate (2.4→ 10↑3) is achieved after 5 epochs. This learning rate annealing approach835

is commonly used in training deep learning models to prevent instability or divergence in the early stages836

of training. After each epoch, we evaluated the model using the validation set, and we selected the model837

with the minimum validation loss as our final model for downstream tasks. The model was trained on838

a server equipped with 8 A100 GPUs, each with 80GB of memory, and the pre-training process required839

approximately two weeks.840

Fine-tuning HiCFoundation for the reproducibility task841

For the reproducibility task, we use the pre-training encoder-decoder architecture. Specifically, we transfer842

the encoder weights from the pre-trained final model, while initializing the decoder weights via xavier uniform843

initialization [86]. During the fine-tuning stage, we keep the encoder weights frozen and only fine-tune the844

decoder weights.845

Training the model to measure Hi-C reproducibility requires creating triplets of submatrices, derived846

from two replicates and one non-replicate from a given locus (Extended Data S2a). Initially, following847

HiCRep [23], we smoothed all our input contact maps using a 2D mean filter with a smoothing factor h = 11848

for Hi-C at 25 kb resolution. This smoothing filter replaces each entry in the contact map with the average849

counts of all contacts in its size-h neighborhood. We then identify, for a given biosample, one BR pair and a850

corresponding NR experiment. We randomly sample a 224 → 224 diagonal submatrix from the first biological851

replicate as our anchor input. The corresponding submatrix from the second biological replicate serves as852

the positive input, and the corresponding matrix from the non-replicate serves as the negative input.853

For each example in the mini-batch, we begin by randomly selecting one BR Hi-C pair out of the 24854

available human BR pairs. From this selected pair, we then randomly choose a pair of 224 → 224 diagonal855

submatrices from the same genomic region within the BR Hi-C pair. This process is repeated 256 times to856

from a set of 256 anchor-positive submatrix pairs. Next, for every BR submatrix pair in the set, we sample857

a submatrix from the same genomic region, but from the NR Hi-C experiments, as the negative submatrix858

to form a triplet for training. However, because there many NR pairs for each BR pair, it is impractical to859

sample all possible triplets. Instead, for every anchor-positive submatrix pair we sample 10 NR submatrices.860

This results in a total of 2,560 triplets within the mini-batch for training purposes. For one training epoch,861

we include 1000 iterations, with each iteration involving training on these 2,560 triplets.862

The model employs a conjoined network architecture, wherein the three inputs are fed in parallel into863

the encoder, resulting in three embeddings: the anchor embedding a, the positive embedding p, and the864

negative embedding n. We aim for a and p to be as similar as possible, while a and n should be as dissimilar865

as possible. To achieve this, we use the triplet margin loss:866

ωtriplet(a,p,n) = max(d(a, p)↗ d(a, n) +m, 0) (6)

where d represents the cosine distance between two embeddings, d(a, p) = 1↗cosine(a, p), and m is a margin.867

We use m = 1 in our experiments.868

Similar to the pre-training phase, the model is optimized using the AdamW optimizer with a cosine decay869

learning rate schedule. We use an initial learning rate of 10↑3, weight decay of 0.05, a batch size of 256,870
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and momentum parameters of ϖ1 = 0.9 and ϖ2 = 0.95. The fine-tuning consists of 50 epochs, with 5 epochs871

designated as warm-up epochs [85].872

Following the fine-tuning process, we employ the trained model by scanning along the diagonal of a given873

Hi-C matrix with a submatrix size of 224 → 224 and a step size of 100. The overall reproducibility score874

between two Hi-C matrices is calculated by averaging the cosine similarities of the embeddings of this series875

of diagonal submatrices. Similar to HiCRep and GenomeDISCO, the average is calculated separately for876

each chromosome (excluding chrM and chrY) and then averaged across di!erent chromosomes.877

Other methods HiCRep [23] assesses the reproducibility of Hi-C data using a stratum-adjusted correlation878

coe”cient. We used the Python implementation [87] available at https://github.com/dejunlin/hicrep.879

Genome-DISCO [27] uses random walks to smooth the contact map and then computes a concordance score to880

compare the contact maps (https://github.com/kundajelab/genomedisco). HiC-Spector [28] uses spec-881

tral decomposition to quantify the reproducibility of the Hi-C maps (https://github.com/gersteinlab/882

HiC-spector).883

Fine-tuning HiCFoundation for the loop detection task884

To train HiCFoundation for loop detection, we use HiCCUPs [71] to identify loops that are observed in885

two BR Hi-C experiments. We begin by independently calling loops from two BR Hi-C matrices at 10 kb886

resolution, restricting to regions within 5 Mb of the diagonal. We use the recommended settings for HiCCUPs887

[71], including a peak width of 2, window size of 5, cluster radius of 20 kb, and false discovery rate (FDR)888

threshold of 0.1. We then identified consensus loop calls from two BRs (with centers ↘50 kb apart [21]) as our889

target for training. We define the neighboring 5→5 pixels (50 kb→50 kb) of the loop calls as loop regions L.890

Next, we identify unlabeled regions by running HiCCUPs with a relaxed FDR threshold of 0.35. We gather891

all loop calls from any BR with this relaxed setting, excluding those already included in the consensus loops892

obtained earlier. The neighboring 5→5 pixels of these excluded loops are designated as unlabeled regions U .893

All remaining pixels are assigned as background regions B.894

After assigning a label to each pixel of the Hi-C contact matrix, we randomly sample two 224 → 224895

submatrices from the BR1 and BR2 Hi-C contact maps that include consensus loops from L. We then896

combine the two submatrices using a coe”cient ϱ to create a mixed submatrix as the input for the model.897

Here, ϱ is uniformly sampled from [0, 0.2, 0.4, 0.6, 0.8, 1.0]. We apply this data augmentation step to ensure898

that the consensus loop is detectable from any mixed submatrix. The corresponding pixel assignments from899

L, U , and B are sampled as the target G. Mini-batches for training the model are generated by randomly900

sampling such submatrices and corresponding target submatrix at di!erent genomic regions from di!erent901

Hi-C experiments.902

The HiCFoundation model processes a submatrix as input and generates a corresponding pixel-level loop903

prediction matrix P . The entire framework is then optimized using the Dice loss [88] (Extended Data904

S2b),905

ωdice(P,G) = 1↗
2→

∑
i↓L,B

pigi∑
i↓L,B

p2
i
+
∑

i↓L,B
g2
i
+ ς

(7)

where ωdice represents the Dice loss of a pixel-wise loop prediction matrix P and a corresponding ground906

truth loop detection G, pi ↔ P is the predicted probability of the ith pixel in the prediction matrix, and907

gi ↔ G is the ground truth loop assignment of the ith pixel. We only consider consensus loop regions and908

background regions (i ↔ L,B) during optimization, and any pixels belonging to the unlabeled regions U are909

not considered. The smoothing factor ς is set to 1→ 10↑6. With the defined Dice loss to optimize the loop910

detection task, all other fine-tuning settings remain the same as those used for the reproducibility analysis.911

In particular, we freeze the pre-trained encoder and initialize the decoder weights using the the pre-trained912

decoder.913

After fine-tuning, we used the fine-tuned model to detect loops by scanning the merged Hi-C contact914

map using a submatrix size of 224 → 224 and a step size of 100 at 10 kb resolution. The final prediction for915

a given pixel is the mean of the predictions from each overlapping submatrix. This process enabled us to916

obtain pixel-wise loop probability predictions for the input Hi-C contact map within the 5 Mb o!-diagonal917

region.918

28



To obtain the final loop calls from pixel-wise predictions, we use the mean-shift algorithm [39] to cluster919

pixels into loop calls. The mean-shift algorithm is a non-parametric clustering algorithm widely used for920

image processing and analysis. In our setting, the mean-shift algorithm takes a pixel-wise prediction matrix921

P as input, where each pixel value Pi (computed loop probability values, in our case) has corresponding922

2D coordinates xi. The algorithm iteratively updates the matrix values and the corresponding coordinates.923

Here we only consider points with confident predictions (Pi ≃ 0.9) from HiCFoundation. The coordinates of924

pixel i are iteratively updated following xt+1
i

= f(xt

i
) until convergence when ||xt+1

i
↗ xt

i
||2 ↘ φ, with φ set925

to 0.001. Here the update function is926

f(xi) =

∑
xj↓N(xi)

K(xi ↗ xj)Pjxj∑
xj↓N(xi)

K(xi ↗ xj)Pj

(8)

where N(xi) is the set of neighboring grid points of xi, with locations satisfying ||xj ↗ xi||2 ↘ 2ε, and K(p)927

is a Gaussian kernel function with bandwidth ε = 2:928

K(p) = e

(
↑1.5|| p

2

ω
||2

)

. (9)

At the same time, the value of pixel i is also updated by929

Pi =
1

||N(xi)||
∑

xj↓N(xi)

K(xi ↗ xj)Pj . (10)

After applying the mean-shift algorithm, all points tend to move toward nearby locations with the highest930

density. Subsequently, any shifted points that are closer than a threshold distance of 2 are clustered together,931

and the grid point with the maximum density or probability is selected as the final loop detection point.932

We also fine-tune HiCFoundation for loop calling using LC Hi-C data. To simulate LC Hi-C, we down-933

sample the Hi-C contact map to 1/16 of the original read count. Specifically, for a Hi-C contact map with934

a total read count K, the probability of sampling a read count k is k

K
. This process is repeated K

16 times935

without replacement. Keeping all other settings fixed, we fine-tune HiCFoundation with the downsampled936

Hi-C data as input and the labels derived from the original data. This process results in a new model tailored937

specifically for LC Hi-C data.938

Performance evaluation To evaluate loop detection performance, we use the F1 score, computed by939

comparing the loop predictions against the consensus ground truth loops. The loop F1 is defined as940

F1loop =
2 ↓ TP

2 ↓ TP + FP + FN
(11)

where TP represents true positive loop calls, which are predicted loop calls within a 5-pixel range of a ground941

truth loop; FP stands for false positive loop calls that only appear in the predicted loops; and FN indicates942

false negative loops that are only called in the ground truth but are not detected by the predictions with943

the specified range tolerance.944

Parameter settings of comparison methods For HiCCUPs, we use juicer tools.jar (v1.22.01)945

downloaded from https://github.com/aidenlab/juicer/wiki/Download. The command for general946

loop calling is java -Xmx64g -jar juicer tools.jar hiccups -r 10000 -f 0.1 -p 2 -w 5 -d 20000947

-k KR {input.HiC} {output loop.bedpe}. For relaxed loop calls, the FDR threshold (-f) is changed948

from 0.1 to 0.35. For Chromosight, we downloaded and installed the code from https://github.949

com/koszullab/chromosight. The command for the loop calling is chromosight detect --thread 8950

--max-dist 5000000 --pattern=loops small {input.cool} {output prefix}. The loop calls are saved951

in output prefix.tsv. For Mustache, we downloaded and installed the code from https://github.com/952

ay-lab/mustache. The command for loop calling is mustache -f input.hic -r 10000 -o output.loop953

-p 16 -d 5000000, where “-p” specifies the number of parallel processes to run.954
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Fine-tuning HiCFoundation for the resolution enhancement task955

For the resolution enhancement task, we adopt the same network architecture as in previous tasks. During956

the fine-tuning stage, we transfer the initial weights from the final pre-trained model, freeze the encoder957

weights, and only fine-tune the decoder weights.958

To train the HiCFoundation model for resolution enhancement, we prepare the LC Hi-C submatrices959

as input and the HC Hi-C submatrices as output. As in previous work [33, 41, 74, 21], we downsampled960

the Hi-C contact map to 1/16 of the original read count to obtain a LC matrix for each HC Hi-C matrix961

This downsampling is done via iterative sampling. For a Hi-C contact map with a total read count K,962

the probability of sampling a read at a locus pair with k reads is k

K
. This sampling operation is repeated963

K

16 times without replacement to obtain a LC Hi-C matrix with K

16 total reads. Furthermore, similar to964

most previous resolution enhancement methods, we carry out the analysis using 10 kb resolution, and we965

restrict the model to consider only intra-chromosomal contacts that span up to 2 Mb. Note that, given966

HiCFoundation’s input submatrix size of 224→224, our model covers a slightly larger region of 2.24 Mb.967

We randomly sample 224→224 diagonal submatrices from the down-sampled LC Hi-C X as our input and968

the corresponding diagonal submatrices from HC Hi-C as our target Y . Considering the limited biological969

significance of diagonal counts, we set the diagonal reads in each submatrix to 0. We further normalize the970

input X and target Y for better optimization. Specifically, the HC target Y is clamped to [0, 1000] and971

then normalized to [0, 1] using min-max normalization. Similarly, the LC input X is clamped to [0, 100] and972

normalized to [0, 1] using min-max normalization.973

Taking the LC submatrix X as input, the HiCFoundation model generates a corresponding enhanced974

submatrix P . With the HC submatrix Y as the target, the entire framework is optimized via pixel-wise975

MSE:976

ωMSE(P,Y) =

∑
i↓N

(pi ↗ yi)2

|N | (12)

where N is the set of all non-diagonal pixels in the submatrices, pi is the ith pixel’s prediction by HiCFoun-977

dation, and yi is the ith pixel’s target from Y . All other fine-tuning settings remain the same as those used978

for the reproducibility analysis and loop detection tasks.979

After fine-tuning, we use the fine-tuned model to enhance the LC Hi-C data. This enhancement is980

achieved by scanning the LC Hi-C contact map using a submatrix size of 224→224 and a small step size of981

20 along the diagonal at a resolution of 10 kb to ensure that all o!-diagonal 2 Mb regions are enhanced. The982

final enhancement output for a given pixel is determined by averaging the predictions from each overlapping983

submatrix. This process allows us to obtain pixel-wise enhancement results for the input LC Hi-C contact984

map within the 2 Mb o!-diagonal region.985

Performance evaluation To evaluate resolution enhancement performance, we followed the comprehen-986

sive evaluation pipeline in [42]. Specifically, the evaluation includes six metrics:987

1. Pearson’s correlation coe!cient (PCC): Considering the genomic distance e!ect in Hi-C matrices,988

the correlation measurement is not performed across the Hi-C matrix. Instead, the correlation is989

assessed by comparing corresponding diagonals of the two input matrices. Specifically, the correlation990

score is defined as991

ScoreCC =

∑
K

i=0 CC(diag(P, k), diag(Y, k))

K
(13)

where ScoreCC is the correlation coe”cient score; CC is the Pearson correlation coe”cient function;992

K is the number of diagonals considered, set to 100; diag(P, k) refers to the k-th diagonal above the993

main diagonal from the enhanced Hi-C matrix P ; and diag(Y, k) refers to the k-th diagonal above the994

main diagonal from the HC Hi-C matrix Y .995

2. Spearman’s correlation coe!cient (SCC): Same as PCC, but using the Spearman correlation996

coe”cient for ScoreCC .997

3. Structural similarity index measure(SSIM): Defined in Eq.4, calculated with respect to the998

enhanced and HC Hi-C matrices.999
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4. Peak signal-to-noise ratio (PSNR): PSNR is a ratio between the maximum possible value (power)1000

of a signal and the power of distorting noise that a!ects the quality of its representation:1001

PSNR = 10→ log10
MAX

ωMSE(P,Y)
(14)

where MAX is the maximum signal value, which is 1 because of our normalization; ωMSE(P,Y)1002

measures the MSE (defined in Eq. 12) between the enhanced matrix P and HC matrix Y .1003

5. Loop F1 score (F1loop): For loop detection, we employed the fine-tuned loop HiCFoundation model1004

as our loop caller. The loop F1 score (Eq. 11) is evaluated by comparing the loop calling results from1005

the enhanced Hi-C data with the loop calls derived from the HC Hi-C data.1006

6. TAD F1 score (F1TAD): Similarly, the TAD F1 score is computed using the Insulation Score [89]1007

for TAD detection, as implemented in [21], applied separately to the enhanced and HC Hi-C data.1008

The calculation of these six metrics is done at the chromosome level instead of the submatrix level. The1009

final scores are averaged across chromosomes. We used the mean rank as our final score, which is defined as1010

the mean of the ranks from the di!erent methods on the di!erent metrics:1011

scorerankmean =

∑
i↓E

ranki
|E| (15)

where E is the set of evaluation metrics, and ranki is the rank of ith metric from the three evaluation1012

categories. Thus, a smaller mean rank is better.1013

Comparisons with other methods To compare against other methods, we follow the training code and1014

default training settings for each method, using our training data and benchmarked on our test set. The1015

HiCSR, HiCNN, and HiCARN code are from, respectively, https://github.com/PSI-Lab/HiCSR, http:1016

//dna.cs.miami.edu/HiCNN2, and https://github.com/OluwadareLab/HiCARN.1017

Benchmarking on the multi-species dataset1018

To benchmark HiCFoundation on multi-species dataset, we collected 337 Hi-C experiments from the DNA1019

Zoo database (https://www.dnazoo.org/).1020

For the HiCFoundation-Reso benchmark, we downsample the Hi-C contact maps to 1/16 of their original1021

read count to generate LC Hi-C inputs for HiCFoundation-Reso. Performance is then assessed by comparing1022

the enhanced Hi-C data against the raw Hi-C data using six previously defined evaluation metrics, along1023

with the overall summary mean rank.1024

To investigate the relationship between performance and species similarity relative to humans, we use1025

TimeTree [90] to measure species divergence time from humans. Only human data are used to train di!erent1026

HiCFoundation downstream models.1027

Fine-tuning HiCFoundation for the epigenomic signal prediction task1028

For the epigenomic signal prediction task, we adopt the same network architecture as in the other HiC-1029

Foundation tasks, with model weights initialized using the final pre-trained model. The HiCFoundation-epi1030

model takes a Hi-C submatrix as input and outputs six di!erent epigenomic signals. Accordingly, to map1031

the output embedding of HiCFoundation-epi to various track signals, six distinct, fully connected layers are1032

used, each processing the embedding independently. During the fine-tuning stage, the encoder is frozen, and1033

the decoder and fully connected layers are updated using objective defined below.1034

To train the HiCFoundation-epi model, we first process the Hi-C and other epigenomic signal data to a1035

resolution of 1 kb. For the input Hi-C data, we use the total interaction counts binned at 1 kb resolution as1036

input. For the output epigenomic signal, we use the normalized read-depth signal, as provided in the files1037

from ENCODE and 4DN, and then average these at the same 1 kb resolution as the target. We further1038

normalize each epigenomic signal track for better optimization by first clamping to the 98th percentile (non-1039

zero) value and then normalizing to [0, 1] using min-max normalization. We generate training examples by1040
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scanning the Hi-C matrix along the diagonal with 128→4000 submatrix, with a stride of 64. Each such1041

submatrix thus represents the entire 2 Mb diagonal region associated with a specific bin. We randomly1042

sample batches of these submatrices at every training epoch. The position embedding in Equation 2 is1043

applied to each submatrix, after adjusting for the size of the input. The corresponding epigenomic signals1044

at each locus comprise the target output Y , with dimension 6→128. Taking the Hi-C submatrix X as input,1045

the HiCFoundation model generates a corresponding predicted epigenomic signal matrix P .1046

With the experimental epigenomic track Y as the target, the entire framework is optimized via a loss1047

function consisting of two terms. The first term is the mean-squared error loss between the predicted signal1048

and the target experimental signal:1049

ωMSE(P,Y) =

∑
i↓C

∑
j↓L

(pi,j ↗ yi,j)2

|C||L| (16)

where pi,j and yi,j are, respectively, the predicted and target signals of the ith epigenomic track at the jth1050

position in the ouput window L. The second term is the cosine loss between the predicted signal and the1051

target experimental signal,1052

ωcos(P,Y) =

∑
i↓C

(1↗ cosine(pi, yi)

|C| (17)

where pi ↔ RL and yi ↔ RL are, respectively, the predicted and target signals of the ith epigenomic track in1053

a window of size L; cosine(pi, yi) measures the similarity between the predicted signal pi and target signal1054

yi. The combined loss function is1055

ωsignal(P,Y) = ωMSE(P,Y) + ϑ ↓ ωcos(P,Y) (18)

where P ↔ RC,L and Y ↔ RC,L are the predicted signal and target signals, respectively. Here, C = 6 is the1056

number of epigenomic signal tracks, and L = 128 is the length of the signal window. The coe”cient lambda,1057

which balances the two loss terms, is set to 1. During the optimization process, ωMSE(P,Y) encourages1058

locally accurate signal prediction, and ωcos(P,Y) enforces the model to capture the global profiles of the1059

target signal [91].1060

After the fine-tuning process, the model infers epigenomic data from Hi-C input by scanning the raw1061

Hi-C contact map using a submatrix size of 128→2000 and a step size of 64 along the diagonal at a resolution1062

of 1 kb. The overlapping predictions are averaged to obtain the final predictions. After this process, the1063

predicted epigenomic tracks at 1 kb resolution are available for downstream analysis.1064

To evaluate the performance of HiCFoundation-epi, we compute the Pearson’s correlation between the1065

predicted and target signal.1066

We include two baseline methods for comparison with HiCFoundation-epi. The first baseline is principal1067

component analysis (PCA) of Hi-C data [2], implemented in Homer [92]. PCA is a widely used method for1068

dimensionality reduction, which redefines a given coordinate system so that the data can be described with1069

as few dimensions as possible. The axes of this new coordinate system are called “principal components.”1070

The first principal component is identified to account for the maximum variance in the data, while the second1071

principal component captures as much of the remaining variance as possible, and so on. PCA is often applied1072

to full chromosome matrices to identify important features, with the principal component serving as a 1D1073

view of the Hi-C matrix that can be compared with di!erent tracks. The second baseline is a network with1074

the same architecture as HiCFoundation-epi, but without the pre-training stage. We adopted the same input,1075

output, and optimization settings as HiCFoundation, but instead of transferring weights from pre-training1076

and using a frozen encoder, the encoder and decoder are randomly initialized and optimized by the same1077

loss objectives used in HiCFoundation. Because the encoder is optimized during training, this approach1078

requires extra backpropagation through the encoder, resulting in a training time approximately five times1079

longer than the fine-tuning of HiCFoundation.1080

Fine-tuning HiCFoundation for single-cell resolution enhancement1081

For single-cell Hi-C analysis, we adopt the same fine-tuning setup as we do for bulk Hi-C analysis. We focus1082

on the single-cell Hi-C resolution enhancement task, where the model takes low-coverage scHi-C as input1083

and outputs corresponding high-coverage scHi-C at the same resolution.1084
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We prepared the training examples in three steps. First, each raw scHi-C matrix is binned at a resolution1085

of 1MB. Second, for each chromosome, the raw matrix is either padded or randomly cropped to a fixed size1086

of 224 → 224 to ensure compatibility with the input dimensions of HiCFoundation. Third, a downsampled1087

matrix is generated by randomly reducing the number of contacts by a specified proportion (1/4). The1088

downsampling procedure is the same as in the resolution enhancement task for bulk Hi-C.1089

For training the model, the downsampled scHi-C matrix is used as the input, while the raw scHi-C1090

matrix serves as the target for fine-tuning HiCFoundation. We use a weighted MSE loss function, in which1091

the weighting mechanism aims to reduces the sensitivity of the loss gradients to large values, defined as1092

ωMSE(P,Y) =
∑

i↓values

wi ·
∑

(yi ↗ pi)2

Ni

(19)

where values is the collection of distinct true values at each batch training, i is any value in values, wi is1093

the weight for the MSE loss on value i, yi represents all the true values of i, pi are the predicted values of1094

i, and Ni is the number of true value i. The weights range from 0 to 1, increasing linearly with the rank of1095

the true value:1096

wi =
n↗ ranki + 1

n(n+ 1)/2
(20)

where n is the total number of distinct values, and ranki is the rank position of i in ascending order.1097

The model, HiCFoundation-sc, is fine-tuned for 50 epochs, updating only the weights in the decoder. We1098

use the AdamW optimizer with parameters of ϖ1 = 0.9 and ϖ2 = 0.95. A warm-up learning rate adjustment1099

strategy is applied, where the learning rate begins at 0 and gradually increases. After reaching a fixed1100

learning rate of 0.003, it then decays linearly to zero at the last epoch.1101

For evaluation, we adopt five performance measures. This includes four of the measures used in the bulk1102

Hi-C resolution enhancement task, as well as HiCRep [23], which was used in previous work [62]. Additionally,1103

following Higashi [62], we applied quantile normalization to both the ground-truth and enhanced Hi-C1104

matrices prior to calculating Pearson, Spearman and HiCRep.1105

Comparisons with other methods To compare against other methods, we follow the training code and1106

default training settings for each method, using our data and benchmarked on our test set. The scHiCluster,1107

Higashi, and scVI-3D code are from, respectively, https://github.com/zhoujt1994/scHiCluster, https:1108

//github.com/ma-compbio/Higashi, and https://github.com/yezhengSTAT/scVI-3D.1109
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Extended Data S1: Benchmark of pre-training performance. a. Performance comparison of di!erent methods on reconstruction.
b. Visual example of HiCFoundation on testing sets across di!erent species.
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Extended Data S2: Fine-tune protocol of HiCFoundation for di!erent Hi-C analysis tasks. During fine-tuning, the encoder
remains frozen and the decoder is updated according to task-specific signals. a. Fine-tuning protocol for reproducibility analysis. The
model takes as input submatrices from biological replicate 1, biological replicate 2, and a randomly sampled non-replicate, generating
corresponding embeddings. The framework is then optimized using a triplet loss function, which minimizes the distance between
embeddings of the biological replicates while maximizing the distance between the embeddings of the biological replicate and the non-
replicate. b. Fine-tuning protocol for the chromatin loop detection task. During fine-tuning, corresponding submatrices from two BR
experiments serve as the input, and consensus loops from HiCCUPs are used as the target for optimizing the decoder. c. Fine-tune
protocol for resolution enhancement. The decoder is optimized to generate high-coverage Hi-C by taking the low-coverage Hi-C as
input.
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Extended Data S3: Reproducibility Analysis of other methods. a. The total number of non-diagonal mapped reads of biological
replicates in the reproducibility testing dataset, including human and mouse data. b. Reproducibility scores of HiCFoundation on
di!erent cell types from the human and mouse datasets, respectively. Here a red square indicates the score between biological replicates
and the blue dots refers to the non-replicates. c. Reproducibility scores of the No-pretrain model on di!erent cell types from human
and mouse datasets. d. Reproducibility scores of HiCRep on di!erent cell types from human and mouse datasets. e. Reproducibility
scores of Genome-DISCO on di!erent cell types from human and mouse datasets. f. Reproducibility scores of HiC-Spector on di!erent
cell types from human and mouse datasets.
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Extended Data S4: Loop detection example by HiCCUPs. The panels include Hi-C data, corresponding CTCF ChIP-seq signals
(ENCSR000EFI), reference genes, and loop detections (blue squares). a. HiCCUPs loop call on two biological replicates. The consensus
one are treated as our ground truth loop. b. HiCCUPs loop call on high-coverage Hi-C and the low-coverage Hi-C.

38



c

a Reproducibility analysis Chromatin loop detectionb

Resolution enhancement

Extended Data S5: Benchmark of HiCFoundation and No-pretrain on di!erent chromatin architecture analysis tasks. a.
Comparisons on reproducibility analysis. b. Comparisons on chromatin loop detection. c. Comparisons on resolution enhancement.
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1112

Extended Data S6: HiCFoundation improvement over No-pretrain on multi-species DNA Zoo dataset.. a. Pearson correlation
improvment of HiCFoundation relative to No-pretrain. b. Spearman correlation improvment of HiCFoundation relative to No-pretrain.

40



Raw Enhanced

d

Raw

Enhanced

a

c

b

e Raw Enhanced

Extended Data S7: Chromatin architecture change analysis in HSPCs and neutrophils . The comparisons are made from four
di!erent samples: control HSPC, LB1LO HSPC, control neutrophil, and LB1LO neutrophil. Here LB1LO represents the loss of lamin
B1, a. Contact frequency as a function of genomic distance for di!erent samples. The comparisons between and enhanced data are
presented. The right panel provides a detailed view of the mean whole-genome Hi-C contact frequencies (normalized for depth) over
genomic distance for di!erent samples. b. Loop length comparison of di!erent samples with enhanced Hi-C. c. Loop length comparison
of di!erent samples with raw Hi-C. d. Loop change comparison under two settings: control neutrophil vs. LB1LO neutrophil, and
ontrol neutrophil vs. LB1LO HSPC. e. Average insulation score around TAD boundaries (±0.5 Mb). The two panel represents the raw
and enhanced results, respectively.
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Extended Data S8: HiCFoundation for single-cell Hi-C analysis. a. The fine-tuning pipeline of HiCFoundation for single-cell
Hi-C resolution enhancement. HiCFoundation-sc takes a downsampled scHi-C matrix as input and is fine-tuned to generate the original
scHi-C matrix. b. Benchmark of HiCFoundation-sc on HiRES dataset, consisting of single cells from developing mouse embryos.
c. Benchmark of HiCFoundation-sc on Tan2021 dataset, consisting of single cells from mouse forebrain cortex. d. Benchmark of
HiCFoundation-sc on human WTC11 dataset. e. Benchmark of HiCFoundation-sc on GAGE-seq datasets from the K562 human cell
line. Panels b-e include other evaluation metrics that are not listed in Fig. 6b.
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Extended Data S9: Comparison of HiCFoundation and No-pretrain for single-cell analysis. a. Benchmark of HiCFoundation-sc
on HiRES dataset, consisting of single cells from developing mouse embryos. b. Benchmark of HiCFoundation-sc on Tan2021 dataset,
consisting of single cells from mouse forebrain cortex. c. Benchmark of HiCFoundation-sc on human WTC11 dataset. d. Benchmark of
HiCFoundation-sc on GAGE-seq datasets from K562 human cell line. e. Benchmark of HiCFoundation-sc under di!erent reads per cell
from the GAGE-seq dataset. The panel includes evaluation metrics that are not included in Fig. 6e. f. Benchmark of HiCFoundation-
sc under di!erent number of cells from the GAGE-seq dataset. The panel includes evaluation metrics that are not included in Fig. 6f.

44


