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Summary
Local planning is an optimization process within a mobile robot navigation stack that

searches for the best velocity vector, given the robot and environment state. Depending on
how the optimization criteria and constraints are defined, some planners may be better than
others in specific situations. We consider two conceptually different planners. The first planner
explores the velocity space in real-time and has superior path-tracking and motion smoothness
performance. The second planner was trained using reinforcement learning methods to produce
the best velocity based on its training “experience”. It is better at avoiding dynamic obstacles,
but at the expense of motion smoothness. We propose a simple, yet effective, meta-reasoning
approach that takes advantage of both approaches by switching between planners based on the
surroundings. We demonstrate the superiority of our hybrid planner, both qualitatively and
quantitatively, over individual planners on a live robot in different scenarios, achieving an im-
provement of 26% in the navigation time.

Contribution(s)
1. This paper present a hybrid local planner for ground robots that uses a classical planner

when the immediate environment is simple, and an RL-based planner for more complex
local environments
Context: There have been many recent efforts that apply RL to ground robot local planners.
To the best of our knowledge, these use RL all the time, which we believe is excessive for
simple environments where classical planners work well.

2. A key contribution is a simple criterion that decides whether the classical planner or the
RL-based planner should be used
Context: We believe that the simplicity of our decision criterion is a benefit of our scheme
compared to the existing works which require training another network to make this decision

3. We integrate our hybrid local planner into a full ROS stack and implement on physical
robots
Context: Direct deployment of RL-based planners to real-world may not result in efficient
operation and may even require fine-tuning in real-world

4. We demonstrate via extensive simulations that our hybrid local planner achieves the “best of
both worlds”, in that it balances between travel time for simple environments and collision
avoidance for more complex dynamic environments
Context: Prior works using the hybrid planning approaches focus mainly on collision
avoidance for “social navigation”
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Abstract
Local planning is an optimization process within a mobile robot navigation stack that1
searches for the best velocity vector, given the robot and environment state. Depending2
on how the optimization criteria and constraints are defined, some planners may be bet-3
ter than others in specific situations. We consider two conceptually different planners.4
The first planner explores the velocity space in real-time and has superior path-tracking5
and motion smoothness performance. The second planner was trained using reinforce-6
ment learning methods to produce the best velocity based on its training “experience”.7
It is better at avoiding dynamic obstacles, but at the expense of motion smoothness. We8
propose a simple, yet effective, meta-reasoning approach that takes advantage of both9
approaches by switching between planners based on the surroundings. We demonstrate10
the superiority of our hybrid planner, both qualitatively and quantitatively, over individ-11
ual planners on a live robot in different scenarios, achieving an improvement of 26% in12
the navigation time.13

1 Introduction14

A mobile robot navigation stack is broadly responsible for safely (and desirably optimally) getting15
the robot from its present position to the goal while respecting externally or internally imposed16
constraints. Components of a path and motion planning and control subsystem can be broadly cate-17
gorized into global planners, local planners/controllers, and motion controllers, which are typically18
deployed in concert. Global planner finds the path toward the goal location, often expressed as a set19
of waypoints that the robot must visit. The local planners are responsbile for generating the velocity20
vectors to lead the robot towards the next waypoint.21

In a known map, global planners are optimal as they utilize the global costmap, but are brittle in22
the presence of unknown (and discovered after the fact) dynamic obstacles, such as humans, clutter,23
unmapped fixtures, and other vehicles. Local planners, on the other hand, can react well in such24
situations. Additionally, local planners take less time to compute and thus process the data at a25
higher frequency.26

Local planning in velocity space can be characterized as an optimization process (which may in27
practice produce suboptimal, but acceptable solutions), whose optimization criteria include distance28
to the next waypoint (or the goal), clearance around the obstacle, smoothness of motion, energy29
efficiency, and the like. For this discussion, we broadly classify the implementations into classical30
and learning-based approaches. Classical planners explore the velocity space and evaluate each pro-31
posed velocity against the constraints and the optimization criteria in real-time. To find an optimal32
solution a classical planner must often search the entire space of admissible velocities, which, de-33
pending on the size of the planning window, the number of degrees of freedom, and the complexity34
of constraints, can be a challenging process.35

Learning-based planners are exposed to various situations offline and trained to map the robot state36
to the deemed best velocity, typically using a neural network. The complexity of searching and37
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evaluating the solution is moved to an offline training process. The real-time computation becomes38
the model inference and does not involve explicit search. The performance of these planners strongly39
depends on how the training environment was set up, the variety of situations the robot has been40
exposed to, and how well the dynamics of the robot were captured during the training. Typically,41
reinforcement learning (RL) techniques are used here. As with all learning-based algorithms, false42
results are possible and it is impossible to guarantee that the RL-planner will always produce optimal43
or even correct solutions. Nevertheless, RL-planners have been shown to produce useful results that44
generalize well (Güldenring et al. (2020); Van Dinh et al. (2017); Liu et al.; Kästner et al. (2021);45
Patel et al. (2021); Nakhleh et al. (2023)). Nakhleh et al. (2023) designed an RL-planner with46
superior obstacle-avoidance performance compared to a widely used Dynamic Window Approach47
(DWA) planner (Fox et al. (1997)), but the price of this improvement is an uneven and jerky motion,48
even when no dynamic obstacles were present in the robot path.49

This lack of smoothness limits the attractiveness of RL-based local planners as a general solution.50
If the robot is moving through a large open space, or if it is moving in a maze-like structure with51
known, fixed walls, it can stay close to the global plan. Classical local planners typically excel at52
generating smooth motion toward the goal. In this case, instantaneous decisions of an RL-based53
planner are overkill and can lead to rapid changes in velocity that do not provide any benefit. Al-54
though reworking the training process to penalize uneven motion may lead to improved behavior,55
it is unclear how the two opposing criteria would reflect on general performance. In addition, con-56
ceiving a new training process and designing an improved reward function is an arduous effort that57
is often subject to trial and error.58

Alternatively, one can simply recognize that an RL-based planner performs better when confronted59
with an unexpected or dynamic obstacle, whereas a classical planner performs better when the robot60
simply needs to track the global plan. In this context, a pragmatic solution is to conceive a decision61
tree that recognizes the current situation and switches to using the planner known to produce a62
better solution. The existing works (Dey et al. (2023); Raj et al. (2024)) have proposed learning the63
switching criteria with a neural network, which requires further training and may suffer from the64
typical shortcomings of the learning-based approaches, such as generelizability.65

In this paper, we propose a simple hybrid planner that detects if the global plan is obstructed by an66
unexpected obstacle and picks the solution provided by a (more responsive) RL-planner. Otherwise,67
it takes the solution provided by a classical planner. We demonstrate via experiments that this hybrid68
approach responds well in the obstructed case while maintaining smooth performance in the non-69
obstructed case.70

2 Related Work71

Local planners play an important role in obstacle avoidance and have been a topic of interest for a72
long time (Sanchez-Ibanez et al. (2021)). Classical planning approaches, which do not employ learn-73
ing, are widely used across robotics applications. Reactive replanning (Fox et al. (1997); Rösmann74
et al. (2017)), artificial potential field (Bin-Qiang et al. (2011)), and fuzzy logic-based approaches75
(Yan & Li (2016)) are examples. One such widely used method, proposed by Fox et al. (1997) and76
called Dynamic Window Approach (DWA) planner, uses reactive replanning and has been frequently77
used as the baseline planner by the Robot Operating System (ROS) navigation stack (navigationros).78
Because of its widespread use and availability in open-source community, ROS implementation of79
DWA has often been used as the baseline, despite the algorithm being relatively old. For this reason,80
we baseline our results to DWA.81

An alternate way to design a local planner is to learn the system model using data and fine-tune the82
learning model in a new environment. Such learning-based approaches have been introduced in the83
past few years and have been growing rapidly in number. A deep reinforcement learning (DRL)84
framework is often used for training in such approaches as it allows the robot to interact with the85
environment without needing data collection and annotation (Van Dinh et al. (2017); Güldenring86
(2019); Güldenring et al. (2020); Liu et al.; Kästner et al. (2021); Patel et al. (2021); Nakhleh et al.87
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(2023)). The framework proposed by Güldenring (2019), which uses 2D local map and waypoints88
from the global plan for state representation, was used as the base for the development of many89
subsequent works. Nakhleh et al. (2023) studied and compared classical planners and different RL90
network architectures and proposed a method that used a polar representation of the costmap in91
state representations. This network, named SACPlanner, was trained in a simulation environment92
and tested on live robots. SACPlanner outperformed other approaches, including DWA, in safely93
avoiding collisions with static and dynamic obstacles. The practical result was a more responsive94
planner, but slower and jerky motion caused by the robot trying to move cautiously even when the95
path ahead was clear. Arguably, this behavior can be improved with training in a higher-fidelity96
simulation environment, but at the risk of breaking other desirable properties achieved during the97
original training.98

One way to get the benefits of different types of planners is to use an ensemble of methods with user-99
defined control. The use of such hybrid planning strategies to harness both classical and learning-100
based approaches is a fairly recent development (von Rueden et al. (2020)). Existing work in the101
literature has explored both hybrid robotic planners consisting of classical approaches (Orozco-102
Rosas et al. (2019)) and planners using learning-based approaches (Lu et al. (2020)). Existing103
hybrid planners combining classical and learning-based approaches lie in the middle of this spectrum104
and aim to combine the model-based classical approaches and data-based learning approaches by105
switching between them.106

Almadhoun et al. (2021) use heuristics-based criteria to switch between a classical and a learning-107
based approach to generate viewpoints for 3D reconstruction. Linh et al. (2022) and Dey et al. (2023)108
study ground robot navigation but they rely on neural networks for learning and focus on high-level109
planning. Raj et al. (2024) also proposed a neural network-based switch, but they focused on social110
navigation only. In contrast, our work contributes towards the development of a local planner that111
uses a hybrid approach that combines classical and learning-based methods. We design a heuristics-112
based logic for switching between a DWA planner and SACPlanner, enjoying the benefits of both.113
This hybrid planner exhibits a superior performance with a simple design which forgoes the need to114
train another neural network for switching.115

3 Preliminaries116

The local planner/controller is responsible for generating the velocity vector that makes progress117
toward the goal or the next waypoint. Some implementations explore the velocity space and score118
candidate velocities based on forward simulation in the configuration space (which, strictly speak-119
ing, makes them planners), whereas others solve a constrained optimization problem that maps the120
state to an action (which, strictly speaking, makes them controllers). These planners/controllers121
can either generate motion in the velocity space and leave it to a lower-level motion controller to122
generate the actuation, or directly solve for actuation. A motion controller (if present separately123
from the local planner/controller) generates the actuation that delivers the desired velocity vector.124
In this paper, we focus on local planning/control in velocity space, and for simplicity, we use the125
term “local planner” to mean any subsystem that generates the desired velocity vector based on the126
present robot configuration (specifically, the robot pose) and the state of the surrounding environ-127
ment (specifically, the next waypoint pose, goal pose, and perception of obstacles). In the following128
subsections, we describe the classical and learning-based local planners used in our work: DWA and129
SACPlanner, respectively.130

3.1 Dynamic Window Approach (DWA)131

The DWA planner generates a set of admissible velocities, which are the velocities that can be132
reached given the present velocity and the robot’s dynamic constraints (e.g., acceleration limits). For133
each admissible velocity, DWA performs a forward simulation to calculate the resulting trajectory134
should the robot use this velocity. Finally, each simulated trajectory is scored, and the one with the135
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lowest cost is selected. The objective function reflects progress towards the goal, clearance from136
obstacles, adherence to the global plan (distance to the waypoint), and twirling.137

DWA considers the robot’s dynamics, and the overall motion is a series of arcs determined by the138
angular and linear velocity, where each planning step produces one such arc. If there are no obstacles139
on the path, the planner will pick the arc that best advances the robot toward the next waypoint, as140
the distance from the global plan is part of the cost function. In an obstacle-free environment, the141
selection of the best velocity will be a balance between sticking to the global plan (advancing to142
the nearest waypoint) and advancing toward the goal (cutting corners in the global plan to reach143
the goal sooner). Parameters allow the user to tune the planner to balance between these behaviors.144
While this single-arc planning works well in general situations, scenarios requiring complex velocity145
profiles, as described below, may make DWA ineffective.146

If there is an obstacle in the path, the obstacle-distance component of the cost function will start to147
dominate, and the arcs that point away from the global path will have a lower cost, consequently148
making the robot deviate from the global plan or the goal. As the robot steers away, the plan-distance149
and goal-distance components of the cost function will equalize, and the robot will gravitate back150
to the plan. Three possible scenarios may follow: 1) The robot may have made sufficient forward151
progress that the next waypoint is behind the obstacle, in which case the local planner will return152
the robot to the path determined by the global plan; 2) The robot may turn back toward the obstacle153
and need to steer away again, this time in a more difficult situation due to obstacle proximity; 3) The154
global planner may trigger and generate a new set of waypoints that will guide the robot around the155
obstacle.156

Ideal local planners should always result in the first case, which would enable them to deal with157
obstacles independently. The second case can often lead to a live-lock, which manifests as a robot158
approaching an obstacle and indecisively oscillating without making progress. In some cases, colli-159
sions may occur due to sensor limitations. For example, in our experiments, we observed collisions160
because the LiDAR sensor we used has a minimum-range distance. Once the robot gets too close to161
an obstacle, the reflections are not registered, and the robot charges into the obstacle. Augmenting162
the robot with a second, short-distance sensor to prevent these collisions resulted in the previously163
described live-locks.164

We argue that these shortcomings are direct consequences of the single-arc motion planning that165
DWA uses. Successful obstacle avoidance requires three consecutive arcs, as shown in green in166
Fig. 1. The first arc pushes the robot away from the obstacle, the second sends it back on track once167
the obstacle has been successfully navigated, and the third realigns the direction with the plan. The168
DWA planner simply does not explore the space beyond one velocity vector, and longer simulation169
time merely extends the arc into space that is not relevant for evaluating the motion. We confirmed170
this through a series of experiments, tuning one parameter at a time while tracing the DWA code to171
find the root cause. All tests pointed to the lack of visibility into the subsequent arcs that may follow172
the one being scored.173

O
bs
t

Figure 1: Confronting an obstacle in a series of arc-motions.

Extending the planner to explore a series of velocity vectors scales exponentially with the number of174
composite arcs to be explored. The sequence of arcs shown in green in Fig. 1 successfully navigates175
around the obstacle; however, to select it, all three arcs in the sequence must be scored. At each176
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step, there are multiple candidate arcs (shown in black) that must also be scored to find the optimal177
path around the obstacle.178

The third case is commonly used in practice to counter the previously described problem. Replan-179
ning at the global level is achieved either by running the global planner periodically at a low rate180
(e.g., once every few seconds) or by having “patience” timers built into the navigation stack that181
trigger the global planner when deemed necessary. Careful tuning of cost-function weights, timer182
values, and other constraints can result in satisfactory and safe performance of the navigation stack;183
however, this process is arduous, and practitioners often resort to trial and error.184

The more cases the local planner can handle independently, the more robust the navigation stack185
will be when assistance from the global planner is enabled. In our evaluation, we disallow global186
replanning because we are interested in the performance of the local planner alone, rather than the187
entire navigation stack. This results in collision-avoidance performance that some practitioners may188
find surprisingly poor; however, this is due to confusing the performance of the complete navigation189
stack with the performance of the local planner in isolation.190

3.2 SACPlanner191

SACPlanner, developed by Nakhleh et al. (2023), is a RL-based planner that outperforms DWA in192
challenging situations and successfully solves the problem described in Section 3.1. An intuitive193
explanation is that the arc motion it selects is statistically the most likely to be the correct first step194
in the chain of velocity vectors that will avoid the obstacle and put the robot back on the planned195
path. There is no velocity-space exploration, and although a single compute step is more complex,196
it eliminates the problem of exponential scaling.197

SACPlanner uses a polar representation of the local costmap as the input to the neural network198
(see Fig. 3) and outputs an angular and linear velocity pair as the action for the robot. It uses the199
Soft Actor-Critic (Haarnoja et al. (2018a)) method for training with a mixture of dense and sparse200
rewards that quantify the robot’s progress towards the goal and collision-avoidance, similar to DWA’s201
objective function. Even though it is trained in a simulation environment, it generalizes well and202
using polar representation of the local costmap as the state helps in sim-to-real transfer without fine-203
tuning. It demonstrated that a real robot can successfully execute PointGoal navigation in complex204
mazes and with unexpected obstacles, whereas DWA typically ends up in a state from which it does205
not make meaningful progress toward the goal or in some cases collides. We have experimentally206
determined that when the collision occurs, it is typically due to the sensor limitation. Namely, the207
LiDAR has the minimum range below which it becomes “blind”. Whenever the collision occurred, it208
would be because the DWA planner pushed the robot too close to the obstacle to provoke the sensing209
problem. We believe that if the sensing were augmented to resolve this problem the problem would210
simply morph into stalling the robot in front of the obstacle. SACPlanner, on the other hand, never211
brought the robot into such a situation and successfully avoided the obstacles despite the sensing212
limitation.213

A learning-based planner effectively retains the mapping between the input and the output as net-214
work weights. This results in SACPlanner potentially learning how to behave in a conservative215
fashion to safely avoid obstacles. Whereas, DWA is limited to executing motion on circular arcs,216
SACPlanner can traverse complex trajectories. However, as SACPlanner looks at the costmap in an217
instant only, the robot’s motion is jerky and it moves at a slower speed, making it inefficient even218
when there is no obstacle ahead.219

These two planners represent two seemingly contrasting planning approaches. Choosing one planner220
from these is essentially a tradeoff between smoothness and responsiveness. While DWA is more221
suitable for moving on a static map, SACPlanner is better equipped for successful navigation in222
complex and dynamic environment. We use this idea to propose a hybrid approach that uses both223
planners for safer and more efficient planning. This also enables a judicious application of a RL-224
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Figure 2: ROS framework and the architecture of our hybrid local planner.

based planner, SACPlanner in this context, to the real-world scenarios, without the need to fine-tune225
the network for Sim2Real transfer.226

4 Hybrid Local Planner227

We propose a hybrid local planning approach that combines the benefits of a classical planner and a228
learning-based planner. Specifically, we run DWA and SACPlanner in parallel and switch between229
them based on the clearance ahead of the robots. Fig. 2 shows the architecture of our implementation.230
The box labeled move_base comes from standard ROS navigation stack and we modified the local231
planner plugin to include the DWA code verbatim from the ROS navigation stack, the SACPlanner232
implementation, along with the code that implements the switching policy. This is illustrated by the233
box on the right labeled Hybrid Local Planner.234

4.1 Waypoint Generation235

First, we use the method proposed by Güldenring (2019) to find waypoints on the local map. We236
use the waypoints both to decide which local planner to use and also to create the goal in case the237
SACPlanner is selected. To generate the waypoints, the global plan leading to the goal, generated238
with Dijkstra’s algorithm, is downsampled and a fixed number of waypoints, 8 in our case, are239
selected on the local costmap, as shown in Fig. 3(a). This set of waypoints helps the robot align with240
the global plan and thus also avoids local minima. The first waypoint not on the obstacles is fed to241
SACPlanner as the goal in the polar image as Fig. 3(b).

(a) Local Costmap (b) Polar Representation

Figure 3: Waypoint generation.

242
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4.2 Clearance Detection243

To switch between the planners, the robot needs to determine the clearance ahead. In order to244
enable an early response, we find if the path without any dynamic obstacle can be traversed without245
collision. We use the waypoints generated on the local costmap for clearance detection. We check if246
this path is obstructed anywhere on the local map. If the whole path is unobstructed, we consider the247
path to be clear. Otherwise, this path is considered as blocked. Fig. 4(a) demonstrates this approach.248
The clearance detector can be defined as weighted boxes around the waypoints as in Fig. 4(b). But249
the size of the box should be tuned since a smaller box can miss obstacles residing in between gaps,250
whereas a bigger box cannot get through a narrow pathway smoothly. To avoid this, we create a251
piecewise linear trajectory to approximate the path the robot would have followed if there were no252
dynamic obstacles in the environment. The path shown in the example Fig. 4(c) is detected as not253
clear since the initial part of the trajectory is blocked by an obstacle (shown as a red blob).254

(a) Path Clearance

te
x

te
x

te
xtex

Obstacle

C

C

C

B
C

B

: Clear

: Blocked

(b) Weighted Boxes (c) Piecewise Linear

Figure 4: Clearance detection.

4.3 Filtering255

Noise in the sensor data could result in the clearance detector rapidly flip-flopping between the two256
planners if only the latest clearance is used for planner selection. For stabilization, the switch should257
take place only when we are confident about the presence of an obstacle on the path. The typical way258
to tackle noise in such a situation is to check the likelihood L(b|Ot−n:t) of the path being blocked259
(b) based on the past n observations (O) till the current time t. If the likelihood of obstacles is higher260
than a user-defined threshold τ , we consider the path to be blocked.261

We implement this strategy as a filter that keeps track of the last n = 3 path clearance statuses from262
the detector. If all the statues indicate a blocked path, we use the SACPlanner, effectively using263
τ = 1. Otherwise, DWA is used. This scheme is visualized in the Filtering step (right bottom box)264
in Fig. 2. This design helps in using the SACPlanner when the sensors strongly indicate the presence265
of an obstacle on the path and results in efficient navigation as the comparatively smoother and faster266
approach, DWA, is used most of the time and the switching occurs only if necessary.267

We use Robot Operating System (ROS) to implement this pipeline in C++ and Python. Our approach268
runs DWA and SACPlanner in parallel and switches between them by using the velocity prescribed269
by the selected planner.270

5 Implementation Details271

5.1 SACPlanner272

We will now provide more details about how we implemented the SACPlanner in the Hybrid planner.273
We refer the reader to work by Nakhleh et al. (2023) for the full description. SACPlanner is a274
Reinforcement Learning (RL) based planner with a state space S, an action space A, and a reward275
function R(·, ·). The actions are simply the linear/angular velocity pairs (v, ω). For the state space,276
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it uses an image representation that allows the RL machinery that has been developed for video277
games. Specifically, the RL state is an image that combines a goal point and all the obstacles that278
are either derived from the static map or sensed by LiDAR.279

The goal point is one of the waypoints already discussed in Section 4. In particular, it selects the first280
waypoint that does not coincide with an obstacle. It combines this waypoint with the Occupancy281
Grid representation of the ROS costmap (that represents the nearby obstacles). It then creates a polar282
representation of the waypoint and obstacles, where the horizontal axis represents the distance from283
the robot and the vertical axis represents the angle. (See Fig. 3(b) for an example.)284

Figure 5: Dummy training environment (left) and the associated polar costmap (right).

To train SACPlanner it is convenient and faster to train it offline than in real time, and so we recreated285
and utilized a simulated “dummy environment”. For each training episode, we pick a synthetic286
obstacle map and place a robot starting point and a waypoint as in Fig. 5 (left). The episode is287
successful if the robot reaches the waypoint. The RL state during the training is the associated polar288
costmap, as described above and shown in Fig. 5 (right).289

SACPlanner is trained using a Soft Actor-Critic (SAC) approach (Haarnoja et al. (2018b;c)), where290
the actor is a policy function and the critic evaluates the actor-value function. SAC augments the291
standard RL objective with an additional entropy maximization term. Additionally, RAD (Laskin292
et al. (2020)) and DrQ (Kostrikov et al. (2020)) methods are used to apply a variety of image aug-293
mentations when training the actor/critic functions.294

The reward function R(s, a) for taking action a in state s is defined as follows. Let (dold, θold) be
the distance and bearing to the next waypoint in state s, let s′ be the new state after taking action a,
and let (dnew, θnew) be the distance and bearing in state s′.

R(s, a) = (dold − dnew) · (1 if dold − dnew ≥ 0, else 2)
+ (|θold| − |θnew|) · (1 if |θold| − |θnew| ≥ 0, else 2)
−Rmax · (1 if collision, else 0)
+Rmax · (1 if dnew = 0, else 0)
−G(s′),

where Rmax is the reward/penalty for reaching the waypoint or hitting an obstacle, and G(s′) is295
the product of a truncated Gaussian kernel centered at the robot location and the occupancy grid in296
state s′. (The kernel is represented by the green square in Fig. 5.) It incentivizes direct navigation297
by doubling the penalty for moving away from the waypoint vs. moving towards it. After 10000298
training episodes, SACPlanner achieves a 98% episode success rate.299

5.2 Running the planners in parallel300

To implement the hybrid planner we used the move_base ROS package (ros). We instantiate three301
planners using its base planner class: (1) DWA, (2) SACPlanner, and (3) Hybrid Planner. While the302
first two compute the appropriate velocity profile, only the latter can send the velocity commands to303
the motion controller. The hybrid planner calls both DWA and SACPlanner functions for its planning304
functions, effectively running them in parallel. In the output function, responsible for generating the305
velocity vector, the planner runs the decision logic described in Section 3.2 and publishes velocity306
computed by the selected planner only.307
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6 Experiment Setup308

(a) Unix maze testbed (b) Doorway (c) Cardboard (d) Approaching (e) Crossing

Figure 6: Real experimental environment and 4 test case scenarios (C1-4) from left to right.

Our experimental setup is similar to Nakhleh et al. (2023) for fair comparison. We run experiments309
using a ClearPath Robotics Jackal robot (cle) in an indoor facility with an open room and a maze310
with narrow pathways and tight corners, as shown in Fig. 6a. We refer to the maze as the UNIX311
maze room after the letters that constitute the walls inside the maze. In the discussion ahead, we312
also refer to these letters to indicate the location of the experiment. The robot uses a Velodyne313
LiDAR running at 10Hz for perception and the planner runs at 5Hz (half the sampling rate of the314
LiDAR). We study different challenging scenarios in a known map as follows:315

316

(C1) Obstacle-Free Intricate Trajectory: This task evaluates if the robot is able to traverse on317
a serpentine trajectory passing through a narrow doorway. Moving on this trajectory requires that318
the robot make a 180◦ turn. For this setup, we move the robot from Room I to Room N through319
a narrow doorway as shown in Fig. 6b. Successful traversal requires that the robot closely follows320
the global plan on the known map. The challenge for the local planners lies in adjusting their speed321
timely while accounting for the inertia to avoid collision with the walls.322

(C2) Unexpected Static Obstacle on Path: In this case, we test if the robot is able to react well to323
an unexpected object on the path that appears after the global planning is done and stays at a fixed324
location for the rest of the experiment. This experiment is realized by moving the robot between325
Room I and Room X, as shown in Fig. 6c. Here we use a life-sized cardboard cutout of a person as326
the static obstacle and place it on the robot’s global path after the robot starts moving. This setup is327
similar to Doorway setting in Raj et al. (2024). Successful execution requires that the robot moves328
past the obstacle from the side.329

(C3) Dynamic Obstacle on Path: Here we test the robot’s ability to dynamic obstacles on the330
robot’s global path. For this, we move the robot in a straight line in an open area and a pedestrian331
walks quickly toward the robot after the robot starts moving on the global path, in a straight line.332
An obstacle moving at a high speed makes it difficult for the local planner to react in time as the333
obstacle only shows up after it has entered the robot’s local map and keeps changing the location.334
This situation is shown in Fig. 6d and is similar to the Frontal setting in Raj et al. (2024). To achieve335
success in this case, the robot must react early and back up or move around the pedestrian, or else it336
will collide with the pedestrian.337

(C4) Dynamic Obstacle Crossing the Path: While C3 checks the situation when the dynamical338
obstacle moves directly towards the robot, here we test if the robot can react well when a pedestrian339
crosses the robot’s straight line path perpendicularly. Fig. 6e shows this test case. This is similar to340
the Intersection case in Raj et al. (2024). In this situation, even if the robot observes the pedestrian341
on its local map, it may not react in time as the obstacle is not yet on the global path. A successful342
execution requires the robot to back up to turn away from the pedestrian before moving ahead.343

We compare the hybrid planner with DWA and SACPlanner across all these situations for 10 runs344
for C1, C2, and C3, and for 3 runs for C4. In C1 and C2, we also switch the start and goal location345
for half of the runs. As we focus on task efficiency, we compare the average distance traversed,346
velocity, time taken to navigate, and the number of collisions (in percentage) for each planner.347
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7 Results348

Figure 7: Trajectory comparison between DWA, SACPlanner vs. Hybrid planner agent for each test
case.

Figure 8: Trajectory comparison between DWA, SAC and Hybrid planners based on logs from the
scenario (C3).

The robot trajectories for each of C1-C4 are shown in Fig. 7. We denote the start and goal along349
with the collision points. The color of the trajectory represents linear velocity and the circles with350
a thick black border represent where SACPlanner has been used for the hybrid planner. We also351
show the Occupancy Grid values in gray (taken from the map and the LiDAR). For C2-C4 the gray352
shading captures all the positions of the unexpected obstacle over time. The three local planners353
have qualitatively different behavior. DWA collides with the walls or obstacles in all cases except a354
few in C1. SACPlanner allows the robot to circumnavigate the obstacles but it results in the robot355
moving slowly, even with negative velocity in some cases, and usually results in a long detour. In356
each case, the hybrid planner helps the robot avoid obstacles successfully, while moving on a smooth357
trajectory with high speed, making it more suitable than either individual planner.358

Table 1 summarizes the quantitative comparison averaged over 10 runs for C1-C3. (For brevity359
we refer to SACPlanner as SACs in the table.) The hybrid planner is faster than both DWA and360
SACPlanner, as shown by the higher average speed. Collisions when DWA is used, result in the361
robot covering a shorter distance without success. SACPlanner has the same success rate as the362
hybrid planner, but the hybrid planner results in a relative improvement of 26% in the navigation363
time with 18% shorter path length. Notably, our planner exhibits safe and efficient navigation in364
situations similar to prior works (Raj et al. (2024)), without the need to learn when to switch with a365
neural network.366

Table 1: Summary statistics of trajectories from test cases.

(C1) (C2) (C3)
DWA SAC Hybrid DWA SAC Hybrid DWA SAC Hybrid

Time 21.80 37.20 21.10 30.70 28.50 23.60 27.50 33.10 27.10
Distance 7.13 10.70 7.67 5.47 8.57 7.41 8.77 10.80 9.40
Speed 0.33 0.29 0.39 0.18 0.30 0.31 0.32 0.33 0.36
Collision 50% 0% 0% 100% 0% 0% 100% 0% 0%

To understand more deeply why the hybrid planner performs better, we show in Fig. 8 the behavior367
of each planner in a single run from the test case (C3). The beginning and ending behavior of the368
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hybrid planner is closer to a straight line, since DWA is selected using full-speed (dark red) linear369
velocities as in Fig. 8a, 8b. The shaded area in Fig. 8c-8d represents the duration of time when370
LiDAR first captures the pedestrian in its view in the polar costmap until he stops walking at the371
location x = 54m, y = 108m. From the overall travel time, the hybrid planner gets the robot to372
the goal faster than SACPlanner without any collisions. The reaction time (in seconds) to begin373
turning starting from when the robot first enters the shaded area, 4.05s for hybrid planner, 5s for374
SACPlanner and 5.99s for DWA planner. In addition, the hybrid planner gets around the pedestrian375
about 3.5 seconds faster than SACPlanner (8.36s < 11.8s). The transition in rotational velocities is376
much smoother in the hybrid case since it reverts to DWA after passing around the pedestrian as in377
Fig. 8c. Moreover, when the robot is far from the pedestrian the angular velocity is zero (green).378
This explains how the hybrid planner almost eliminates the jerky motion caused by SACPlanner.379
Fig. 8d shows the distance to the nearest ‘front obstacle’ (within ±π

4 rad range from the current380
yaw). The hybrid planner manages both safe and efficient distance during the whole travel time.381

The results highlight that the hybrid planner makes appropriate use of both planners for navigation382
in various scenarios. It moves smoothly and quickly through clear areas and is responsive in face383
of obstacles discovered along the path. This behavior is also safer, both for the robot and for the384
humans acting as dynamic obstacles.385

8 Discussion and Future Work386

We present a hybrid local planner that combines DWA, a classical planning method, and SAC-387
Planner, a learning-based planning approach. Experiments on a ClearPath Jackal robot in various388
situations show that the proposed approach is safer and more efficient than the two constituent plan-389
ners, showing a significant improvement in navigation time without any collision. The design of our390
switch forgoes the need to collect data and train another neural network, making it more suitable391
than learning-based switching from real-world deployment.392

We focus on a heuristics-based approach to define the criteria for switching between the planners.393
Future work will explore more sophisticated approaches. A drawback of the hybrid approach is that394
the shortcomings of the constituent planners appear when the hybrid planner uses them. An example395
of this would be some jerky motion of the robot, owing to the SACPlanner, while the robot tried to396
avoid the obstacle. In the future, we intend to work on improving the constituent planners to further397
improve the overall performance of the hybrid planner.398
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