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Abstract

Prediction-Powered Inference (PPI) is a powerful
framework for enhancing statistical estimates by
combining limited gold-standard data with ma-
chine learning (ML) predictions. While prior
work has demonstrated PPI’s benefits for individ-
ual statistical problems, modern applications re-
quire answering numerous parallel statistical ques-
tions. We introduce Prediction-Powered Adaptive
Shrinkage (PAS), a method that bridges PPI with
empirical Bayes shrinkage to improve estimation
of multiple means. PAS debiases noisy ML pre-
dictions within each problem and then borrows
strength across problems by using those same pre-
dictions as a reference point for shrinkage. The
amount of shrinkage is determined by minimiz-
ing an unbiased estimate of risk, and we prove
that this tuning strategy is asymptotically optimal.
Experiments on both synthetic and real-world
datasets show that PAS adapts to the reliability of
the ML predictions and outperforms traditional
and modern baselines in large-scale applications.

1. Introduction
A major obstacle in answering modern scientific questions
is the scarcity of gold-standard data (Miao et al., 2024b).
While advancements in data collection, such as large-scale
astronomical surveys (York et al., 2000) and web crawl-
ing (Penedo et al., 2024), have led to an abundance of
covariates (or features), scientific conclusions often rely
on outcomes (or labels), which are often expensive and
labor-intensive to obtain. The rapid development of ma-
chine learning (ML) algorithms has offered a path forward,
with ML predictions increasingly used to supplement gold-
standard outcomes and increase the statistical efficiency of
subsequent analyses (Liang et al., 2007; Wang et al., 2020).
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Prediction-Powered Inference (PPI) (Angelopoulos et al.,
2023) addresses the scarcity issue by providing a frame-
work for valid statistical analysis using predictions from
black-box ML models. By combining ML-predicted and
gold-standard outcomes, PPI and its variants (Angelopoulos
et al., 2024; Zrnic & Candès, 2024; Zrnic, 2025) use the
abundance of predictions to reduce variance while relying
on the accuracy of labeled1 data to control bias.

In this work, we adapt PPI to the estimation of multiple
outcome means in compound estimation settings. Many
applications of PPI naturally involve parallel statistical prob-
lems that can be solved simultaneously. For instance, several
PPI methods (Angelopoulos et al., 2024; Fisch et al., 2024)
have shown improvements in estimating the fraction of spi-
ral galaxies using predictions on images from the Galaxy
Zoo 2 dataset (Willett et al., 2013). While these methods
focus on estimating a single overall fraction, a richer analy-
sis emerges from partitioning galaxies based on metadata
(such as celestial coordinates or pre-defined bins) and esti-
mating the fraction of galaxies within each partition. This
compound estimation approach enables more granular sci-
entific inquiries that account for heterogeneity across galaxy
clusters and spatial locations (Nair & Abraham, 2010).

We demonstrate, both theoretically and empirically, the ben-
efits of solving multiple mean estimation problems simulta-
neously. Our approach builds on the empirical Bayes (EB)
principle of sharing information across problems (Robbins,
1956; Efron, 2010) as exemplified by James-Stein shrink-
age (James & Stein, 1961; Xie et al., 2012). The connection
between modern and classical statistical ideas allows us to
perform within problem PPI estimation in the first place, fol-
lowed by a shrinkage step reusing the ML predictions in an
adaptive way, which becomes possible through borrowing
information across problems. Our contributions are:

1. We propose Prediction-Powered Adaptive Shrinkage
(PAS) for compound mean estimation. PAS inherits the
flexibility of PPI in working with any black-box predic-
tive model and makes minimal distributional assumptions
about the data. Its two-stage estimation process makes
efficient use of the ML predictions as both a variance-
reduction device and a shrinkage target.

1Throughout the paper, we use the terms “labeled” and “gold-
standard” interchangeably.
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2. We develop a Correlation-Aware Unbiased Risk Estimate
(CURE) for tuning the PAS estimator, establish asymp-
totic optimality of this tuning strategy, and derive an in-
terpretation in terms of a Bayes oracle risk upper bound.

3. We conduct extensive experiments on both synthetic and
real-world datasets. Our experiments demonstrate PAS’s
applicability to large-scale problems with deep learning
models, showing improved estimation accuracy com-
pared to other classical and modern baselines.

2. Preliminaries and Notation
2.1. Prediction-Powered Inference (PPI)

The PPI framework considers a setting where we have ac-
cess to a small number of labeled data points (Xi, Yi)

n
i=1 ∈

(X × Y)n and a large number of unlabeled covariates
(X̃i)

N
i=1 ∈ (X )N , where X and Y represent the covariate

and outcome space, respectively. The data points are drawn
iid from a joint distribution PXY .2 We are also given a
black-box predictive model f : X → Y that is independent
of the datasets (e.g., pre-trained on similar but unseen data).
For mean estimation with Y ⊂ R, the goal is to leverage
the predicted outcomes f(Xi) to improve the estimation of
θ := E[Yi]. Some simple estimators take the form of the
following aggregated (summary) statistics

Ȳ :=
1

n

n∑
i=1

Yi, Ỹ :=
1

N

N∑
i=1

Ỹi,

Z̄f :=
1

n

n∑
i=1

f(Xi), Z̃f :=
1

N

N∑
i=1

f(X̃i).

(1)

Above, Ȳ is the classical estimator,3 Z̄f , Z̃f are the predic-
tion means on the labeled and unlabeled data, and Ỹ (grayed
out) is unobserved. The vanilla PPI estimator is defined as,

θ̂PPI := Ȳ︸︷︷︸
Baseline

+ (Z̃f − Z̄f )︸ ︷︷ ︸
Variance Reduction

= Z̃f︸︷︷︸
Baseline

+ (Ȳ − Z̄f )︸ ︷︷ ︸
Debiasing

. (2)

Both definitions represent θ̂PPI in the form of a
baseline estimator plus a correction term . In the first rep-

resentation, the baseline estimator is the unbiased classical
estimator Ȳ , while the correction term has expectation 0
and attempts to reduce the variance of Ȳ . In the second
representation, the baseline estimator is the prediction mean
on unlabeled data Z̃f (which in general may be biased for
θ), while the correction term removes the bias of Z̃f by es-
timating the bias of the ML model f on the labeled dataset.

2To be concrete: (Xi, Yi)
iid∼PXY and (X̃i, Ỹi)

iid∼PXY inde-
pendently, but Ỹi is unobserved.

3From now on, we will use the term “classical estimator” to
refer to the sample average of the labeled outcomes.

Writing θ̂PPI = 1
N

∑N
i=1 f(X̃i)+

1
n

∑n
i=1(Yi−f(Xi)), we

find that E[θ̂PPI] = E[Yi] = θ and

Var[θ̂PPI] =
1

N
Var[f(X̃i)] +

1

n
Var[Yi − f(Xi)], (3)

that is, θ̂PPI is unbiased for θ and its variance becomes
smaller when the model predicts the true outcomes well.
The mean squared error (MSE) of θ̂PPI is equal to Var[θ̂PPI].
Although we motivated θ̂PPI in (2) as implementing a cor-
rection step on two possible baseline estimators (Ȳ and Z̃f ),
θ̂PPI may have MSE for estimating θ that is arbitrarily worse
than either of these baselines.

Comparison to classical estimator Ȳ . The classical esti-
mator Ȳ which only uses labeled data is unbiased for θ and
has variance (and MSE) equal to 1

nVar[Yi].

Power-Tuned PPI (PPI++). To overcome the above limi-
tation, Angelopoulos et al. (2024) introduce a power-tuning
parameter λ and define

θ̂PPI
λ := Ȳ + λ

(
Z̃f − Z̄f

)
, (4)

which recovers the classical estimator when λ = 0 and the
vanilla PPI estimator when λ = 1. For all values of λ, θ̂PPI

λ

is unbiased, so if we select the λ that minimizes Var[θ̂PPI
λ ],

we can improve our estimator over both the classical esti-
mator and vanilla PPI. Such an estimator is defined as the
Power-Tuned (PT) PPI4 estimator θ̂PT := θ̂PPI

λ∗ , where we
pick λ∗ that minimizes the variance (and thus the MSE) of
θ̂PPI
λ . We will revisit PT as one of the building blocks of our

proposed PAS estimator in Section 4.

Comparison to Z̃f . Consider the ideal scenario for PPI
with N =∞ (that is, the unlabeled dataset is much larger
than the labeled dataset) so that Z̃f ≡ E[f(X̃i)]. Even
then, the MSE of θ̂PPI in (3) is always lower bounded5 by
1
nE[Var[Yi | Xi]] and the lower bound is attained by the
perfect ML predictor f(·) ≡ E[Yi | Xi = ·]. In words, if
Yi is not perfectly predictable from Xi, then PPI applied to
a labeled dataset of fixed size n must have non-negligible
MSE. By contrast, for N = ∞, the prediction mean of
unlabeled data Z̃f has zero variance and MSE equal to
the squared bias (E[f(Xi)] − θi)2. Thus if the predictor
satisfies a calibration-type property that E[f(Xi)] ≈ E[Yi]
(which is implied by, but much weaker than the requirement
f(Xi) ≈ Yi), then the MSE of Z̃f could be nearly 0. By
contrast, PPI (and PPI++) can only partially capitalize on
such a predictor f(·).

While PPI and PPI++ are constrained by their reliance on
unbiased estimators, we show that the compound estima-

4We use the term “PPI++” for the broader framework, while
“PT” refers to the specific estimator.

5The same lower bound also applies to power-tuned PPI θ̂PT.
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tion setting (Section 2.2) enables a different approach. By
carefully navigating the bias-variance tradeoff through in-
formation sharing across parallel estimation problems, we
can provably match the performance of both Ȳ and Z̃f .

2.2. The Compound Mean Estimation Setting

In this section, we introduce the problem setting that PAS is
designed to address—estimating the mean ofm > 1 parallel
problems with a single black-box predictive model f .6 For
the j-th problem, where j ∈ [m] := {1, . . . ,m}, we ob-
serve a labeled dataset (Xij , Yij)

nj

i=1 with nj ∈ N samples
and an unlabeled dataset (X̃ij)

Nj

i=1 with Nj ∈ N samples.
We start with modeling heterogeneity across problems.

Assumption 2.1 (Prior). There exist problem-specific un-
observed latent variables ηj with

ηj
iid∼Pη, j ∈ [m], and η := (η1, ..., ηm)⊺, (5)

where Pη is an unknown probability measure. The latent
variable ηj fully specifies the distribution of the j-th labeled
and unlabeled dataset. We use the notation Eηj [·] (resp.
Eη[·]) to denote the expectation conditional on ηj (resp. η),
while EPη

[·] denotes an expectation also integrating out Pη .

We do not place any restriction over the unknown prior
Pη . Assumption 2.1 posits exchangeability across problems,
which enables information sharing, without restricting het-
erogeneity (Ignatiadis et al., 2023). In our setting, we are
specifically interested in the means

θj := Eηj [Yij ] , j ∈ [m], and θ := (θ1, . . . , θm)⊺. (6)

Our next assumption specifies that we only model the first
two moments of the joint distribution between the outcomes
and the predictions. The upshots of such modeling are that
the exact form of the observation distribution is neither as-
sumed nor required in our arguments, and that our approach
will be directly applicable to settings where the covariate
space X is high-dimensional or structured.

Assumption 2.2 (Sampling). For each problem j ∈ [m],
we assume that the joint distribution of (f(Xij), Yij) has
finite second moments conditional on ηj and for i ∈ [nj ][

f(Xij)
Yij

] ∣∣ ηj iid∼ Fj
([
µj
θj

]
,

[
τ2j ρjτjσj

ρjτjσj σ2
j

])
, (7)

where Fj , µj , θj , ρj , σ2
j , τ

2
j are functions of ηj . Conditional

on ηj , the unlabeled predictions f(X̃i′j), i′ ∈ [Nj ], are also

6Our proposal also accommodates using separate predictors
{fj}mj=1 for each problem. To streamline exposition, we focus on
the practical scenario where a single (large) model (e.g., a large
language or vision model) can handle multiple tasks simultane-
ously (Radford et al., 2019; He et al., 2022).
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Figure 1. We instantiate the model described in Example 2.3 with
m = 10 problems, each has nj = 10 labeled and Nj = 20
unlabeled data (we use different colors for all 10 problems). (Top)
Labeled data (Xij , Yij)

nj

j=1 with the classical estimator Ȳj shown
for each problem. (Bottom) We apply a flawed predictor f(x) =
|x| to the unlabeled covariates and visualize (Xij , f(Xij))

Nj

j=1 as
well as the prediction mean Z̃f

j .

iid, independent of the labeled dataset and identically dis-
tributed with f(Xij). In the notation of (7), Fj represents an
unspecified distribution satisfying the moment constraints
in (6) and

Eηj [f(Xij)] = µj , Varηj [f(Xij)] = τ2j ,

Corrηj [f(Xij), Yij ] = ρj , Varηj [Yij ] = σ2
j .

We further denote γj := Covηj [f(Xij), Yij ] = ρjτjσj .

Similar to Eq. (1), we define the aggregated statistics
Ȳj , Z̄

f
j , Z̃

f
j for each j ∈ [m]. To facilitate exposition, fol-

lowing prior work,7 we treat the second moments τ2j , σ2
j , γj

as known until the end of Section 5. In Section 6, we extend
our methods to allow for unknown τ2j , σ2

j , and γj .

We next introduce a synthetic model that will serve both as
a running example and as part of our numerical study.

Example 2.3 (Synthetic model). For each problem j, let
ηj ∼ U [−1, 1]. We think of ηj as both indexing the
problems and generating heterogeneity across problems.
The j-th dataset is generated via (with constants set to
c = 0.05, ψ = 0.1),

Xij
iid∼N (ηj , ψ

2), Yij |Xij
ind∼N (2ηjXij − η2j , c). (8)

In Figure 1, we visualize realizations from this model with
m = 10 problems, nj = 10 labeled observations, and
Nj = 20 unlabeled observations for each problem. We
apply a flawed predictor f(x) = |x|. The classical esti-
mator Ȳj and the prediction mean Z̃fj deviate from each

7For EB, examples include Xie et al. (2012); Soloff et al.
(2024); for PPI, see recent works like Fisch et al. (2024).
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other. Nevertheless, Z̃fj contains information that can help
us improve upon Ȳj as an estimator of θj by learning from
within problem (PPI, PPI++, this work) and across problem
(this work) structure. We emphasize that, as specified in (7),
our approach only requires modeling the first and second
moments of the joint distribution of (f(Xij), Yij). For in-
stance, in this synthetic model, θj = η2j and σ2

j = 4η2jψ
2+c,

while µj , τ2j and γj also admit closed-form expressions in
terms of ηj when the predictor takes the form f(x) = |x| or
f(x) = x2 (see Appendix E.1).

To conclude this section, we define the compound risk (Rob-
bins, 1951; Jiang & Zhang, 2009) for any estimator θ̂ =
(θ̂1, . . . , θ̂m)⊺ as the expected squared error loss averaged
over problems,

Rm(θ̂,θ) := Eη

[
ℓm(θ̂,θ)

]
, (9)

with ℓm(θ̂,θ) :=
1

m

m∑
j=1

(θ̂j − θj)2. (10)

The Bayes risk, which we also refer to simply as mean
squared error (MSE), further integrates over randomness in
the unknown prior Pη in (5),

BPη
m (θ̂) := EPη

[
Rm(θ̂,θ)

]
. (11)

3. Statistical Guiding Principles & Prior Work
In this section, we illustrate both the statistical guiding
principles of our approach and some connections to prior
work8 through the following stylized Gaussian model:

Sampling: θ̂cl = θ + (ξ + ε), ξ ∼ N (0, σ2
ξ ), ε ∼ N (0, σ2

ε).

Prior: θ ∼ N (0, σ2
θ), ϕ ∼ N (0, σ2

ϕ), Corr[θ, ϕ] = ρ.

In our stylized model, we assume that (θ, ϕ, ε, ξ) are jointly
normal and that all their pairwise correlations are zero
with the exception of Corr[θ, ϕ] = ρ ̸= 0. We write
σ2
θ|ϕ := Var[θ | ϕ] = (1− ρ2)σ2

θ < σ2
θ .

We think of θ̂cl as the baseline classical statistical es-
timator of a quantity θ that we seek to estimate with
small MSE. In our stylized Gaussian model, θ̂cl is un-
biased for θ and has noise contribution ξ + ε, so that
E[(θ̂cl − θ)2] = Varθ[θ̂

cl] = σ2
ξ + σ2

ε . We describe three
high-level strategies used to improve the MSE of θ̂cl. These
strategies are not tied in any way to the stylized model;
nevertheless, the stylized model enables us to give precise
expressions for the risk reductions possible, see Table 1.

Variance reduction (VR). An important statistical idea
is to improve θ̂cl via obtaining further information to inter-
cept some of its noise, say ξ, and replacing θ̂cl by θ̂cl − ξ

8We provide further connections in Appendix A.1.

Table 1. Estimator comparison in the stylized model of Section 3.

Estimator MSE VR P CP

θ̂cl σ2
ξ + σ2

ε ✗ ✗ ✗

θ̂cl − ξ σ2
ε ✓ ✗ ✗

E[θ | θ̂cl]
(σ2

ξ+σ
2
ε)σ

2
θ

(σ2
ξ+σ

2
ε)+σ

2
θ

✗ ✓ ✗

E[θ | θ̂cl, ϕ]
(σ2

ξ+σ
2
ε)σ

2
θ|ϕ

(σ2
ξ+σ

2
ε)+σ

2
θ|ϕ

✗ ✓ ✓

E[θ | θ̂cl − ξ] σ2
εσ

2
θ

σ2
ε+σ

2
θ

✓ ✓ ✗

E[θ | θ̂cl − ξ, ϕ] σ2
εσ

2
θ|ϕ

σ2
ε+σ

2
θ|ϕ

✓ ✓ ✓

VR: Variance Reduction, P: Prior Information, CP: Contextual Prior Information.

which has MSE σ2
ε and remains unbiased for θ. This idea

lies at the heart of approaches such as control variates in
simulation (Lavenberg & Welch, 1981; Hickernell et al.,
2005), variance reduction in randomized controlled experi-
ments via covariate adjustment (Lin, 2013) and by utilizing
pre-experiment data (Deng et al., 2013, CUPED), as well
as model-assisted estimation in survey sampling (Cochran,
1977; Breidt & Opsomer, 2017). It is also the idea powering
PPI and related methods: the unlabeled dataset and the pre-
dictive model are used to intercept some of the noise in the
classical statistical estimator θ̂cl ≜ Ȳ ; compare to Eq. (2)
with ξ ≜ Z̄f − Z̃f . We refer to Ji et al. (2025) and Grons-
bell et al. (2025) for informative discussions of how PPI
relates to traditional ideas in semi-parametric inference as
in e.g., Robins et al. (1994).

Prior information (P) via empirical Bayes (EB). In the
Bayesian approach we seek to improve upon θ̂cl by using the
prior information that θ ∼ N (0, σ2

θ). The Bayes estimator,

E
[
θ | θ̂cl] = σ2

θ

σ2
ξ + σ2

ε + σ2
θ

θ̂cl,

reduces variance by shrinking θ̂cl toward 0 (at the cost of
introducing some bias). When σ2

θ is small, the MSE of
E[θ | θ̂cl] can be substantially smaller than that of θ̂cl.

Now suppose that the variance of the prior, σ2
θ , is unknown

but we observe data from multiple related problems gen-
erated from the same model and indexed by j ∈ [m], say,
θj

iid∼N (0, σ2
θ) and θ̂cl

j
ind∼N (θj , σ

2
ξ + σ2

ε). Then an EB anal-
ysis can mimic the MSE of the oracle Bayesian that has full
knowledge of the prior. To wit, we can estimate σ2

θ as

σ̂2
θ =

{
1

m− 2

m∑
j=1

(θ̂cl
j )

2

}
− (σ2

ξ + σ2
ε),

and then consider a plug-in approximation of the Bayes rule,
θ̂JS
j = Ê[θj | θ̂cl

j ] := {σ̂2
θ/(σ

2
ξ + σ2

ε + σ̂2
θ)}θ̂cl. The result-

ing estimator is the celebrated James-Stein estimator (James

4



Prediction-Powered Adaptive Shrinkage Estimation

& Stein, 1961; Efron & Morris, 1973), whose risk is very
close to the Bayes risk under the hierarchical model for
large m (Efron, 2010, equation (1.25)). The James-Stein es-
timator also always dominates the classical estimator under
a frequentist evaluation of compound risk in (9) under the
assumption that θ̂cl

j
ind∼N (θj , σ

2
ξ + σ2

ε) and m ≥ 3:

Rm(θ̂JS,θ) < Rm(θ̂cl,θ) for all θ ∈ Rm.

Contextual prior information (CP) via EB. Instead of
using the same prior for each problem, we may try to
sharpen the prior and increase its relevance (Efron, 2011) by
using further contextual information ϕ. In the stylized ex-
ample, as seen in Table 1, such an approach reduces the vari-
ance of the prior from σ2

θ to σ2
θ|ϕ < σ2

θ with corresponding
MSE reduction of the Bayes estimator E[θ | θ̂cl, ϕ]. With
multiple related problems, such a strategy can be instan-
tiated via EB shrinkage toward an informative but biased
predictor (Fay III & Herriot, 1979; Green & Strawderman,
1991; Mukhopadhyay & Maiti, 2004; Kou & Yang, 2017;
Rosenman et al., 2023). The strategy of this form that is
closest to our proposal is the covariate-powered EB ap-
proach of Ignatiadis & Wager (2019), recently applied to
large language model evaluation by Fogliato et al. (2024).
Therein (following the notation of Section 2.2), the analyst
has access to classical estimators Ȳj , j ∈ [m], and problem-
specific covariates Wj and seeks to shrink Ȳj toward ML
models that predict Ȳj from Wj . By contrast, in our setting
we have observation-level covariates Xij and the ML model
operates on these covariates. In principle one could simulta-
neously use both types of covariates: problem-specific and
observation-specific.

Combine variance reduction (VR) and prior information
(P). One can shrink the variance reduced estimator θ̂cl− ξ
toward 0 via E[θ | θ̂cl − ξ] = {σ2

θ/(σ
2
ε + σ2

θ)}(θ̂cl − ξ). In
the context of PPI, variance reduction and prior information
(with a more heavy-tailed prior) are used by Cortinovis
& Caron (2025) within the Frequentist-Assisted by Bayes
(FAB) framework of Yu & Hoff (2018). Cortinovis & Caron
(2025) only consider a single problem and do not pursue an
empirical Bayes approach.

Combine P, CP, and VR together. Finally, in our stylized
example, we can get the smallest MSE (last row of Table 1)
by using both variance reduction, shrinkage, and a contex-
tual prior. In that case, the Bayes estimator E[θ | θ̂cl − ξ, ϕ]
takes the form,

σ2
θ|ϕ

σ2
ε + σ2

θ|ϕ
(θ̂cl − ξ) + σ2

ε

σ2
ε + σ2

θ|ϕ
E[θ | ϕ] . (12)

EB ideas can be used to mimic the estimator above and
provide the starting point for the proposal we describe next.

4. Prediction-Powered Adaptive Shrinkage
On a high level, PAS aims to provide a lightweight approach
that outperforms both baselines in (2) and PPI/PPI++ in
terms of MSE when estimating multiple means. PAS also
aims at minimal modeling requirements and assumptions.

The stylized example from Section 3 serves as a guiding
analogy. We seek to benefit from ML predictions in two
ways: first by variance reduction (acting akin to ξ in the
stylized example), and second by increasing prior relevance
(acting as a proxy for ϕ). We implement both steps to adapt
to the unknown data-generating process in an assumption-
lean way using within-problem information for the first step
(Section 4.1) and across-problem information for the second
step (Section 4.2), drawing on ideas from the EB literature.

4.1. The Within Problem Power-Tuning Stage

Extending the notation from (4) to each problem
j provides us with a class of unbiased estimators
θ̂PPI
j,λ := Ȳj + λ(Z̃fj − Z̄

f
j ), λ ∈ R. Calculating the vari-

ance gives

Varηj

[
θ̂PPI
j,λ

]
=
σ2
j

nj
+

=: δj(λ)︷ ︸︸ ︷
nj +Nj
njNj

λ2τ2j −
2

nj
λγj .

Note that the classical estimator has risk σ2
j /nj and gets out-

performed whenever δj(λ) < 0. We can further analytically
solve for the optimal λ, which yields

λ∗j := argmin
λ

δj(λ) =

(
Nj

nj +Nj

)
γj
τ2j
, (13)

and the Power-Tuned (PT) estimator θ̂PT
j := θ̂PPI

j,λ∗
j

with

σ̃2
j := Varηj

[
θ̂PT
j

]
=
σ2
j

nj
− Nj
nj(nj +Nj)

γ2j
τ2j
. (14)

The formulation of the above PT estimators is well under-
stood in the single problem setting (Angelopoulos et al.,
2024; Miao et al., 2024a). In PAS, we execute this stage
separately for each problem, as the optimal power-tuning
parameter is problem-dependent and varies case by case.

4.2. The Across Problem Adaptive Shrinkage Stage

The PT estimator derived in Section 4.1 already possesses
many appealing properties: it is unbiased and has lower
variance than both the classical estimator and vanilla PPI.
However, as our setting involves working with many par-
allel problems together, there is the opportunity of fur-
ther MSE reduction by introducing bias in a targeted
way.9 Concretely, based on the PT estimator obtained in

9See Appendix A.2.1 for some explanations about why we can
improve MSE by borrowing information across problems.

5



Prediction-Powered Adaptive Shrinkage Estimation

Section 4.1, we consider a class of shrinkage estimators
θ̂
PAS

ω := (θ̂PAS
1,ω , . . . , θ̂PAS

m,ω )
⊺, where for any ω ≥ 0,

θ̂PAS
j,ω := ωj θ̂

PT
j + (1− ωj)Z̃fj ,

with ωj ≡ ωj(ω) :=
ω

ω + σ̃2
j

.
(15)

The motivation is to formally match the form of the Bayes
estimator with variance reduction and contextual prior infor-
mation in (12) with the following (approximate) analogies:10

θ̂cl − ξ ←→ θ̂PT
j , E[θ | ϕ]←→ Z̃fj ,

σ2
ε ←→ σ̃2

j , σ2
θ|ϕ ←→ ω .

(16)

The highlighted ω is a global shrinkage parameter that acts
as follows:

(i) Fixing ω, any problem whose PT estimator has higher
variance possesses smaller ωj and shrinks more toward
Z̃fj ; a smaller variance increases ωj and makes the
final estimator closer to θ̂PT

j .

(ii) Fixing all the problems, increasing ω has an overall
effect of recovering θ̂PT

j for all j (full recovery when
ω →∞), and setting ω = 0 recovers Z̃fj .

Points (i) and (ii) establish the conceptual importance of ω.
If we could choose ω in an optimal way, that is,

ω∗ ∈ argmin
ω≥0

{
Rm

(
θ̂
PAS

ω ,θ
)}

,

then the resulting estimator θ̂
PAS

ω∗ would satisfy all our
desiderata. While this construction is not feasible since
the compound risk function in (9) depends on the unknown
η,θ, we can make progress by pursuing a classical statistical
idea: we can develop an unbiased estimate of the compound
risk (Mallows, 1973; Stein, 1981; Efron, 2004) and then use
it as a surrogate for tuning ω.

To this end, we define the Correlation-aware Unbiased Risk
Estimate (CURE),

CURE
(
θ̂
PAS

ω

)
:=

1

m

m∑
j=1

[
(2ωj − 1)σ̃2

j + 2(1− ωj)γ̃j

+ (1− ωj)2
(
θ̂PT
j,ωj
− Z̃fj

)2]
.

Both the formula and our nomenclature (“correlation-
aware”) highlight the fact that we must account for the
potentially non-zero covariance between shrinkage source
θ̂PT
j and target Z̃fj , which can be explicitly written down as

γ̃j := Covηj [θ̂
PT
j , Z̃

f
j ] = λ∗jVarηj [Z̃

f
j ] =

γj
nj +Nj

. (17)

10We comment more on these analogies in Appendix A.2.2.

Figure 2. A flowchart illustration of the PAS method. See Algo-
rithm 1 for a pseudo-code implementation.

Algorithm 1 Prediction-Powered Adaptive Shrinkage

Require: (Xij , Yij)
nj

i=1, (X̃ij)
Nj

i=1, γj , τj , σj for j ∈ [m], pre-
dictive model f

1: for j = 1 to m do
2: ▷ Step 1: Apply predictor (Eq. (1))
3: Ȳj , Z̄

f
j , Z̃

f
j = get means((Xij , Yij)

nj

i=1, (X̃ij)
Nj

i=1, f)
4: ▷ Step 2: Power tuning (Eq. (13))
5: λ∗

j = get pt param(γj , τj , nj , Nj)

6: θ̂PT
j = Ȳj + λ∗

j (Z̃
f
j − Z̄

f
j )

7: σ̃2
j = get pt var(θ̂PT

j ) ▷ (Eq. (14))
8: end for
9: ▷ Step 3: Adaptive shrinkage (Eq. (18))

10: ω̂ = get shrink param((θ̂PT
j )mj=1, (Z̃

f
j )

m
j=1, (σ̃

2
j )

m
j=1)

11: for j = 1 to m do
12: ω̂j = ω̂/(ω̂ + σ̃2

j )

13: θ̂PAS
j = ω̂j θ̂

PT
j + (1− ω̂j)Z̃

f
j

14: end for
15: return {θ̂PAS

j }mj=1

Theorem 4.1. Under Assumption 2.2, CURE is an unbi-
ased estimator of the compound risk defined in (9), that is,
for all ω ≥ 0 and all η,

Eη

[
CURE

(
θ̂
PAS

ω

)]
= Rm

(
θ̂
PAS

ω ,θ
)
.

See Appendices B and F.1 for the proof and motivation.
With Theorem 4.1 in hand, we now have a systematic
strategy of picking ω by minimizing CURE, following the
paradigm of tuning parameter selection via minimization of
an unbiased risk estimate (as advocated by, e.g. Li (1985);
Donoho & Johnstone (1995); Xie et al. (2012); Candès et al.
(2013); Ignatiadis & Wager (2019); Ghosh et al. (2025)):11

ω̂ ∈ argmin
ω≥0

CURE
(
θ̂
PAS

ω

)
. (18)

Even though ω̂ does not admit a closed-form expression, the
one-dimensional minimization can be efficiently carried out
numerically (e.g., grid search). The final PAS estimator is:

11The connection to EB is the following. Xie et al. (2012)
and Tibshirani & Rosset (2019) explain that James-Stein-type
estimators may be derived by tuning σ2

θ (in Section 3) via mini-
mization of Stein’s (1981) unbiased risk estimate (SURE).
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θ̂PAS
j := θ̂PAS

j,ω̂ =
ω̂

ω̂ + σ̃2
j

θ̂PT
j +

σ̃2
j

ω̂ + σ̃2
j

Z̃fj .

Figure 2 visualizes the full method for constructing the PAS
estimator—from applying the predictor and obtaining aggre-
gated statistics to going through the two stages described in
Section 4.1 and this section. A pseudo-code implementation
is also presented in Algorithm 1.

To illustrate the flexibility and adaptivity of PAS, we briefly
revisit the synthetic model in Example 2.3, whose special
structure allows us to visualize how the power-tuned and
adaptive shrinkage parameters vary across problems and
different predictors. In Figure 3, we consider m = 200
problems and two predictors: a good predictor f1(x) =
x2 and a flawed predictor f2(x) = |x|. The model setup
in (8) is such that the magnitude of Covηj [Xj , Yj ] relative
to Varηj [Yj ] is much larger for problems with ηj closer to
the origin. Therefore, for both predictors, we see a dip in λ∗j
near the middle (top panel), which shows that PAS adapts
to the level of difficulty of each problem when deciding how
much power-tuning to apply. On the other hand (bottom
panel), the overall shrinkage effect is much stronger (smaller
ω̂j for all j) with f1 than with f2, which demonstrates PAS’s
ability to adapt to the predictor’s quality across problems—
while still allowing each problem to have its own shrinkage
level. Numerical results are postponed to Section 7.

5. Asymptotic Optimality
In (18), we proposed selecting ω̂ by optimizing an unbiased
surrogate of true risk. In this section, we justify this proce-
dure theoretically. Our first result establishes that CURE
approximates the true loss (whose expectation is the com-
pound risk in (9)) uniformly in ω as we consider more and
more problems.

Proposition 5.1. Suppose the datasets are generated ac-
cording to Assumptions 2.1 and 2.2 and further assume that
EPη

[Y 4
ij ] <∞, EPη

[f(Xij)
4] <∞. Then,

EPη

[
sup
ω≥0

∣∣∣CURE
(
θ̂
PAS

ω

)
− ℓm

(
θ̂
PAS

ω ,θ
)∣∣∣] = o(1),

where o(1) denotes a term that converges to 0 as m→∞.

A principal consequence of Proposition 5.1 is that PAS
with the data-driven choice of ω̂ in (18) has asymptotically
smaller Bayes MSE (defined in (11)) than any of the esti-
mators in (15), i.e., it has smaller MSE than both baselines
in (2) as well as the PPI and PT estimators.

Theorem 5.2. Under the assumptions of Proposition 5.1,

BPη
m

(
θ̂
PAS

ω̂

)
≤ inf
ω≥0

{
BPη
m

(
θ̂
PAS

ω

)}
+ o(1) as m→∞,
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Figure 3. The power-tuned and adaptive shrinkage parameters, λ∗
j

and ω̂j across m = 200 problems in Example 2.3. On the x-axis,
we identify the problem by its ηj so the trend is more visible.

so BPη
m

(
θ̂
PAS

ω̂

)
≤ min

{
BPη
m

(
Z̃
f)
, BPη

m

(
θ̂
PT)}

+ o(1).

Our next proposition connects Theorem 5.2 with the lowest
possible MSE in the stylized Gaussian example of Section 3
(last row of Table 1).

Proposition 5.3. In addition to the assumptions of Proposi-
tion 5.1, further assume that Nj =∞ and that there exist
n ∈ N, σ̃2 > 0 such that nj = n and σ̃2

j = σ̃2 for all j
almost surely. Let β2 := EPη

[(Z̃fj − θj)2] (which does not
depend on j as we are integrating over Pη). Then,

BPη
m

(
θ̂
PAS

ω̂

)
≤ σ̃2β2

σ̃2 + β2
+ o(1) as m→∞.

To interpret the result, it is instructive to compare the asymp-
totic upper bound on the MSE of PAS with the MSE in the
last line of Table 1, i.e., with (σ2

εσ
2
θ|ϕ)/(σ

2
ε + σ2

θ|ϕ). Ob-
serve that σ̃2 plays the role of σ2

ε (as already anticipated
in (16)) which is smaller than the variance of the classical
estimator (due to power tuning). Meanwhile, β2 plays the
role of σ2

θ|ϕ. If the baseline Z̃fj (that is, the mean of the
ML predictions on the unlabeled datasets) is doing a good
job of predicting θj , then β2 will be small, and so PAS
may have MSE substantially smaller than that of PT. On
the other hand, even if β2 is large (that is, even if the ML
model is very biased), PAS asymptotically still has MSE
less than or equal to σ̃2, the MSE of PT. We emphasize
that the role of Proposition 5.3 is to provide intuition at
the expense of strong assumptions.12 By contrast, the state-
ment of Theorem 5.2 does not restrict heterogeneity (e.g.,
heteroscedasticity) across problems and allows for varying,
finite unlabeled and labeled sample sizes.

12We further elaborate on this proposition in Appendix A.2.3.
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6. PAS with Unknown Second Moments
So far we have assumed that the second moments σ2

j , τ
2
j , γj

in (7) are known. In practice, e.g., in our numerical ex-
periments with real-world datasets, we use sample-based
estimates σ̂2

j , τ̂
2
j and γ̂j instead (Appendix C.1). This ap-

proach works well empirically, even for small nj , but is not
covered by the theory above. To address this shortcoming,
we develop variants UniPT (Appendix C.2) and UniPAS
(Appendix C.3) that provide asymptotic guarantees (as
m→∞) without requiring known or consistently estimable
second moments (nj , Nj remain bounded). Briefly, UniPT
targets an optimal single power-tuning parameter λ across
all problems, and does so consistently asm→∞. UniPAS
then builds upon UniPT, applying adaptive shrinkage simi-
lar to PAS, but with mechanisms to handle the unknown mo-
ments. These extensions are justified by theoretical results
akin to those for PAS (cf. Theorem 5.2). In our experiments
below, UniPAS is competitive with PAS.

7. Experiments
We apply the proposed PAS estimator and conduct exten-
sive experiments in both the synthetic model proposed in
Example 2.3 and two real-world datasets.

All Estimators. We compare the PAS estimator against
both classical and modern baseline estimators:

(i.) the classical estimator;

(ii.) the prediction mean on unlabeled data;

(iii.) the vanilla PPI estimator (Angelopoulos et al., 2023);

(iv.) the PT estimator (Angelopoulos et al., 2024, PPI++);

(v.) the “shrink-classical” estimator that directly shrinks
the classical estimator toward the prediction mean;

(vi.) the “shrink-average” estimator that shrinks θ̂PT
j toward

the PT group mean across all problems, i.e., toward
θ̄PT := 1

m

∑m
j=1 θ̂

PT
j .

(vii.) the UniPT and UniPAS estimators introduced in Sec-
tion 6 and detailed in Appendix C.

We include the estimators in (vii.) only for the real-world
experiments, as they are specifically designed for settings
where the second moments are unknown. See Appendix D
for detailed formulations and implementations for (v.) &
(vi.) (the latter of which is inspired by the SURE-grand
mean estimator of Xie et al. (2012)). The comparisons with
(iv.) and (v.) also directly serve as ablation studies of the
two stages in constructing the PAS estimator.

Metrics. We report the mean squared error (MSE)
(± 1 standard error) of each estimator θ̂ by averaging

Estimator MSE f1 (×10−3) MSE f2 (×10−3)

Classical 3.142 ± 0.033 3.142 ± 0.033
Prediction Avg 0.273 ± 0.004 34.335 ± 0.147
PPI 2.689 ± 0.027 2.756 ± 0.027
PT 2.642 ± 0.027 2.659 ± 0.026
Shrink Classical 0.273 ± 0.003 3.817 ± 0.042
Shrink Avg 2.486 ± 0.026 2.575 ± 0.026
PAS (ours) 0.272 ± 0.003 2.496 ± 0.025

Table 2. MSE (± standard error) of different estimators under the
synthetic model with predictors f1(x) = x2 and f2(x) = |x|.
1
m

∑m
j=1(θ̂j − θj)2 across K = 200 Monte Carlo repli-

cates. In the synthetic model, we sample ηj (and thus θj)
from the known prior Pη . For the real-world datasets, since
Pη is unknown, we follow the standard evaluation strategy
in the PPI literature: we start with a large labeled dataset and
use it to compute a pseudo-ground truth for each mean θj .
Then in each Monte Carlo replicate, we randomly split the
data points of each problem into labeled/unlabeled partitions
(where we choose a 20/80 split ratio).13

For real-world datasets, we introduce a second metric to
assess whether improvements in MSE are driven by a few
difficult problems rather than consistent performance gains:
the percentage of problems improved relative to the classical
estimator (abbreviated as “Improved% ↑”). This metric
is defined as 1

m

∑m
j=1 1[(θ̂j − θj)2 < (θ̂Classical

j − θj)2]×
(100%). Larger values of this metric are preferable.

7.1. Synthetic Model

This is the synthetic model from Example 2.3, where we
choosem = 200, nj = 20, andNj = 80 for all j. Since we
have already visualized the model and the parameters of the
PAS estimator in previous sections, we simply report the
numerical results (for the good predictor f1 and the flawed
predictor f2) in Section 7.1.

For both predictors, we see that PAS outperforms all the
baselines. With a good predictor f1, both the prediction
mean and the shrinkage estimator closely track PAS; in con-
trast, the PPI and PT estimators fail to fully leverage the
accurate predictions, as their design enforces unbiasedness.
The situation reverses for the less reliable predictor f2: the
prediction mean and the shrinkage estimator have high MSE,
while estimators with built-in debiasing mechanisms demon-
strate greater resilience. PAS adapts effectively across these
extremes, making it a handy choice for a wide range of
problems and predictors.

7.2. Real-World Datasets

We next evaluate PAS on two large-scale real-world datasets,
highlighting its ability to leverage state-of-the-art deep learn-

13In Appendix E, we vary this ratio from 1% to 40%, and pro-
vide more details on the benchmarking procedure for MSE.
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Table 3. Results aggregated over K = 200 replicates on three real-world datasets: Amazon review ratings with BERT-base and
BERT-tuned predictors, and spiral galaxy fractions with ResNet50 predictor. The bottom two rows are the UniPT and UniPAS
estimators detailed in Appendix C as variants of PT and PAS. Metrics are reported with ± 1 standard error.

Amazon (base f ) Amazon (tuned f ) Galaxy

Estimator MSE (×10−3) % Improved ↑ MSE (×10−3) % Improved ↑ MSE (×10−3) % Improved ↑
Classical 24.305 ± 0.189 baseline 24.305 ± 0.189 baseline 2.073 ± 0.028 baseline
Prediction Avg 41.332 ± 0.050 30.7 ± 0.2 3.945 ± 0.011 75.4 ± 0.2 7.195 ± 0.008 17.0 ± 0.2
PPI 11.063 ± 0.085 62.4 ± 0.2 7.565 ± 0.066 70.4 ± 0.2 1.149 ± 0.017 59.4 ± 0.3
PT 10.633 ± 0.089 70.3 ± 0.2 6.289 ± 0.050 76.0 ± 0.2 1.026 ± 0.015 67.7 ± 0.3
Shrink Classical 15.995 ± 0.121 56.4 ± 0.3 3.828 ± 0.039 78.9 ± 0.2 1.522 ± 0.016 48.8 ± 0.4
Shrink Avg 9.276 ± 0.078 70.4 ± 0.2 6.280 ± 0.058 77.1 ± 0.2 0.976 ± 0.014 68.9 ± 0.3
PAS (ours) 8.517 ± 0.071 71.4 ± 0.2 3.287 ± 0.024 80.8 ± 0.2 0.893 ± 0.011 67.3 ± 0.4

UniPT (ours) 10.272 ± 0.084 70.0 ± 0.2 6.489 ± 0.053 76.2 ± 0.2 1.017 ± 0.015 67.7 ± 0.3
UniPAS (ours) 8.879 ± 0.073 69.5 ± 0.2 3.356 ± 0.031 77.6 ± 0.2 0.909 ± 0.011 66.7 ± 0.3

ing models in different settings.14

Amazon Review Ratings (SNAP, 2014). Many commer-
cial and scientific studies involve collecting a large corpus
of text and estimating an average score (rating, polarity, etc.)
from it. A practitioner would often combine limited expert
annotations with massive automatic evaluations from ML
models (Baly et al., 2020; Egami et al., 2023; Fan et al.,
2024; Mozer & Miratrix, 2025). To emulate this setup, we
consider mean rating estimation problems using the Ama-
zon Fine Food Review dataset from Kaggle, where we arti-
ficially hide the labels in a random subset of the full data to
serve as the unlabeled partition. Concretely, we estimate the
average rating for the top m = 200 products with the most
reviews (from ∼200 to ∼900). For the i-th review of the
j-th product, the covariate Xij consists of the review’s title
and text concatenated, while the outcome Yij is the star rat-
ing in {1, . . . , 5}. We employ two black-box predictors: (1)
BERT-base, a language model without fine-tuning (De-
vlin et al., 2019) and (2) BERT-tuned which is the same
model but fine-tuned on a held-out set of reviews from other
products. Neither of them are trained on the reviews of the
200 products we evaluate.

Spiral Galaxy Fractions (Willett et al., 2013). The
Galaxy Zoo 2 project contains the classification results of
galaxy images from the the Sloan Digital Sky Survey (York
et al., 2000, SDSS). We are interested in estimating the frac-
tion of galaxies that are classified as “spiral,” i.e., have at
least one spiral arm. The covariates Xij in this applications
are images (we provide some examples in Figure 5 of the
appendix). Existing PPI papers have focused on estimat-
ing the overall fraction; we demonstrate how this dataset’s
metadata structure enables compound estimation of spiral
fractions across distinct galaxy subgroups. We first use a
pre-defined partition of the galaxies into 100 subgroups that

14We include only the essential setup below and defer additional
data and model details (e.g., hyper-parameters, preprocessing) to
Appendix E.

is based on the metadata attribute WVT BIN. Second, we
estimate the fraction of spiral galaxies in all of the galaxy
subgroups simultaneously. The predictor is a ResNet50
network trained on a held-out set with around 50k images.

For both datasets, we randomly split the data for each prob-
lem (a food product or galaxy subgroup) into a labeled and
unlabeled partition with a 20/80 ratio. We repeat the random
splitting K = 200 times and report metrics averaged over
all splits. Here we summarize the results in Table 3:

Amazon Review: similar to the trend in the synthetic model,
the more accurate BERT-tuned model enables stronger
shrinkage for PAS while the biased BERT-base predic-
tions necessitate less shrinkage. Our PAS estimator adapts
to both predictors and outperforms other baselines. PAS has
the lowest MSE and highest % Improved ↑.

Galaxy Zoo 2: the predictions from ResNet50 are subop-
timal, so the variance-reduction from power tuning domi-
nates any benefit from shrinkage. PAS achieves the lowest
MSE among all estimators, and improves individual esti-
mates at a level on par with the shrink-average estimator.

8. Conclusion
This paper introduces PAS, a novel method for compound
mean estimation that effectively combines PPI and EB prin-
ciples. We motivate the problem through the lens of variance
reduction and contextual prior information—then demon-
strate how PAS achieves both goals, in theory and in prac-
tice. Our paper differs from many other PPI-related works
in its focus on estimation, so a natural next step is to de-
velop average coverage controlling intervals for the means
centered around PAS. To this end, it may be fruitful to build
on the robust empirical Bayes confidence intervals of Arm-
strong et al. (2022). Modern scientific inquiries increasingly
demand the simultaneous analysis of multiple related prob-
lems. The framework developed in this paper represents a
promising direction for such settings.
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A. Further Connections and Intuitions Behind PAS
A.1. Further Connections to Related Works

In this part, we elaborate on two important connections to existing work.

Stratified PPI (StratPPI; Fisch et al. (2024)). Fisch et al. (2024) also consider a setting with stratification of observations
into subproblems. However, their overall aim is still to estimate a single parameter, rather than multiple parameters, as we
do. Thus, in solving individual problems, for instance, they still adhere to the requirement of unbiasedness. As an example,
let us revisit the Galaxy Zoo 2 application. Therein, we mentioned the following distinction between our work and previous
methods in the PPI literature:

• Estimate the fraction θ of spiral galaxies across the whole universe (Angelopoulos et al., 2023).

• (Our work) Estimate the fraction θj of spiral galaxies within the j-th cluster of galaxies for j ∈ [m].

Now suppose that galaxies in the whole universe can be partitioned into the m clusters above. Then the goal of StratPPI is:

Estimate the fraction θ of spiral galaxies across the whole universe by proceeding with an intermediate step that
involves estimating θ1, . . . , θm.

We continue to make this connection explicit in our mean estimation setting. Suppose (dropping subscripts for convenience)
that we start with covariate-outcome pairs (X,Y ) ∈ X × Y distributed as

(X,Y )
iid∼P.

Moreover suppose that there exist pairwise disjoint strata A1, . . . ,Am whose union is the full covariate space X , that is,
X =

⋃̇m
j=1Aj . Then define,

wj := P[X ∈ Aj ], θj := P[Y | X ∈ Aj ], j ∈ [m],

and observe the key equality for θ := E[Y ],

θ =

m∑
j=1

wjθj .

StratPPI assumes that the probabilities wj are known exactly and then samples nj labeled as well as Nj unlabeled
observations from the conditional distribution P[· | X ∈ Aj ].15 These samples are then used alongside PPI++ to estimate θj

15Part of the contribution of StratPPI includes a strategy for allocating resources and choosing nj and Nj for different problems with a
view toward minimizing the variance of the final estimator of θ.
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by θ̂PT
j , almost verbatim to the approach we described in Section 4.1. Finally, StratPPI estimates θ via:

θ̂SPPI :=

m∑
j=1

wj θ̂
PT
j .

To summarize, the settings of StratPPI and our paper are similar, but the goals and methods differ. StratPPI seeks an unbiased
estimate of a single parameter θ, while we seek to estimate a parameter vector (θ1, . . . , θm) as well as possible in mean
squared error, while allowing for the possibility of bias. Moreover, the asymptotic regimes in these two papers are different:
StratPPI keeps m fixed and takes nj , Nj → ∞, while we assume that the number of problems grows (m → ∞) while
nj , Nj are allowed to remain bounded.

PPI++ (Angelopoulos et al., 2024) with multivariate mean estimand. Angelopoulos et al. (2024) (and other papers in
the PPI literature) consider statistical problems going beyond the estimation of a univariate mean. For instance, the results
of Angelopoulos et al. (2024) also accommodate multivariate mean estimands. Here we explain how one can frame our
compound mean estimation setting into the estimation of a single but multivariate mean estimand, which then fits in the
more generalized formulation for power tuning considered in PPI++.

If we assume nj = n and Nj = N for all j, we can collate the responses and predictions from all problems into
(f(Xi.), Yi.)

n
i=1 and (f(X̃i.))

N
i=1, where

Yi. = (Yi1, ..., Yim)⊺, f(Xi.) = (f(Xi1), ..., f(Xim))⊺, f(X̃i.) = (f(X̃i1), ..., f(X̃im))⊺.

By independence across problems, we have the covariance structures Var[f(X̃i.)] = diag((τ2j )
m
j=1) and Cov[f(Xi.), Yi.] =

diag((γj)mj=1) where diag(·) constructs a diagonal matrix with its arguments on the diagonal. Angelopoulos et al. (2024)
then consider a class of estimators indexed by a single weighting parameter λ that is applied to the entire vector:

θ̂PPI
λ :=

1

n

n∑
i=1

Yi. + λ

(
1

N

N∑
i=1

f(X̃i.)−
1

n

n∑
i=1

f(Xi.)

)
.

The optimal λ∗ is chosen by minimizing the trace of an asymptotic covariance Σλ. For the mean estimation problem, Σλ

simplifies to the covariance of θ̂PPI
λ and can be exactly calculated in finite-sample setting (without relying on n,N →∞).

Minimizing Σλ over λ thus admits a simple closed-from solution:

λ∗ :=
n−1Tr(Cov[f(Xi.), Yi.])
n+N
nN Tr(Var[f(X̃i.)])

=
n−1

∑m
j=1 γj

n+N
nN

∑m
j=1 τ

2
j

(19)

Going back to our original formulation with multiple problems, what we are doing here is to perform power tuning across
problems to minimize the sum of MSEs—which equals the trace of the covariance matrix Tr(Var[f(X̃i.)]) in the PPI++
formulation—over a single (univariate) λ. Finally, if nj and Nj vary across j, the above PPI++ formulation fails to hold, but
the idea to power tune all problems together carries over to our multiple problem setting. The univariate optimal tuning
parameter takes the same form as Equation (19):

λ∗ :=

∑m
j=1 n

−1
j γj∑m

j=1
nj+Nj

njNj
τ2j
.

In fact, this choice of λ∗ leads to a new estimator, denoted as UniPT, that will be further explored in Appendix C.

A.2. Further Intuitions Behind the Design of PAS

A.2.1. WHY DOES SHARING INFORMATION ACROSS PROBLEMS HELP?

Here we provide an explanation of the fundamental statistical difference between estimating a single mean versus estimating
a lot of means (m → ∞) with an eye toward providing intuition of how we can share information across problems. We
emphasize that this is only meant for intuition; the empirical Bayes literature, starting with James & Stein (1961), provides a
more nuanced picture.
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Imagine a simplified setting with only a single problem (m = 1, as in the standard PPI setting). We further assume
that Nj = ∞, so that Z̃f1 ≡ Eη1 [f(X̃1)] and we also assume that σ̃2

1 is known. Moreover, suppose we want to choose
between the PT estimator θ̂PT

1 and the prediction mean Z̃f1 by comparing their MSEs in a data-driven way. We know that
the PT estimator is unbiased and its MSE is σ̃2

1 , but we cannot estimate E[(θ1 − Z̃f1 )2] accurately since we only have
a single θ1 (a single problem). At best, we can use (θ̂PT

1 − Z̃f1 )
2 − σ̃2

1 as an unbiased estimate of this quantity since
Eη1 [(θ̂PT

1 − Z̃
f
1 )

2]− σ̃2
1 = Eη1 [(θ1 − Z̃

f
1 )

2].

Now suppose we have multiple problems, then we can more precisely learn how good the prediction mean Z̃fj is for
estimating θj by repeating the above estimation procedure for each problem and averaging the results. This average turns
out to be not only unbiased but also consistent. To wit, as m→∞, by the law of large numbers,

1

m

m∑
j=1

(
(θ̂PT
j − Z̃

f
j )

2 − σ̃2
j

)
P→ EPη

[(θj − Z̃fj )
2], (20)

where we emphasize that the mean squared on the right-hand side also integrates with respect to the meta-distribution Pη
that determines the distribution of the θj (cf. Assumption 2.1). This illustrates a mechanism for sharing information across
problems: in a first step, we can consistently estimate the average squared difference between the true parameters θj and
the prediction means Z̃fj (i.e., how good the ML predictor is on average) by aggregating information from many parallel

problems. Then, based on the first step, we can choose whether to use Z̃
f

or θ̂
PT

according to their MSE.

Our actual implementation is more involved but embodies the same fundamental principle: we construct a consistent
estimate for the MSE of a family of shrinkage estimators. While other factors such as heterogeneity in sample sizes (nj , Nj)
introduce further complexities, the core idea of sharing information here carries over to the overall design and justification
of PAS.

A.2.2. ANALOGY BETWEEN Zfj AND E[θ | ψ]

In Equation (16), we informally draw an analogy between the prediction mean Zfj in the compound PPI problem and
the posterior mean E[θ | ψ] in the stylized Gaussian model. Our goal here is to provide a heuristic motivation for the
one-dimensional parameterized family of weights ωj in Equation (15). We emphasize that the ultimate success of this
parameterization choice is judged by the empirical results.

Our heuristic motivation building on the stylized example of Section 3 is as follows. We seek to estimate θ by taking a
convex combination θ̂cl − ξ and a shrinkage target s,

w(θ̂cl − ξ) + (1− w)s,

for w ∈ [0, 1]. Our main point is that for several choices of shrinkage target s, the best weight w can be written in the form

w =
ω

ω + σ2
ε

, (21)

for some ω ≥ 0.16

• The Bayes estimator with contextual prior in Equation (12) uses s = E[θ | ϕ] and weight w as in (21) with

ω = E[(θ − E[θ | ϕ])2] = E[Var[θ | ϕ]] = σ2
θ|ϕ.

• The Bayes estimator without contextual prior uses s = E[θ] = 0 and weight w as in (21) with

ω = E[(θ − E[θ])2] = Var(θ) = σ2
θ .

16At this stage, there is 1-1 mapping between ω ≥ 0 and w ∈ [0, 1]. However, for PAS, σ2
ε corresponds to the variance of the j-th

power tuning estimator and will be different from problem to problem. Then it will be convenient to parameterize all the problems by the
same parameter ω ≥ 0.
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• Suppose now that we ask for the best convex combination (not necessarily a Bayes predictor) between θ̂cl − ξ and
s = h(ϕ) where h(·) is some fixed function. Then, the weight w minimizing MSE can be shown to take the form
in (21) with

ω = E[(θ − h(ϕ))2] = E[Var[θ | ϕ]] + E[(h(ϕ)− E[θ | ϕ])2].

The above expression is interesting as it forces us to inflate “ω”, i.e., to shrink less toward h(ϕ) in a way that depends
on how close h(ϕ) is to E[θ | ϕ]. See Ignatiadis & Wager (2019, last paragraph of Section 3) and Appendix A.2.3
below for further discussion of this point.

The takeaway is that for lots of possible predictors, the optimal weights have the same parameterized form up to the single
parameter ω that varies according to the quality of the predictor. This motivates our one-dimensional family of weights.
Once this family has been motivated, we learn ω in Equation (15) in a way that does not depend on the above analogy at all
by minimizing CURE.

A.2.3. ELABORATION ON PROPOSITION 5.3

Suppose (as in Proposition 5.3) that nj is the same across all problems, Nj =∞, and that second moments ρj , τj , σj are
identical across all problems. Then we could ask: what is the best convex combination between θ̂PT

j and Z̃fj in the following
sense:

ω∗
j ∈ argmin

ωj≥0
EPη

[
{θj − (ωj θ̂

PT
j + (1− ωj)Z̃fj )}

2
]
.

By direct calculation (note that the right-hand side is a convex quadratic in ωj) we find that:

ω∗
j =

EPη [(θj − Z̃
f
j )

2]

EPη
[(θj − Z̃fj )2] + σ̃2

.

This implies the following intuitive result: the larger the MSE EPη
[(θj − Z̃fj )2], the less weight we should assign to Z̃fj . If

we evaluate the MSE at this optimal ω∗
j , we recover precisely the upper bound of Proposition 5.3.

B. The Correlation-Aware Unbiased Risk Estimate
Theorem B.1. Let X,Y be two random variables satisfying Eθ[X] = θ, Varθ[X] = σ2, Covθ[X,Y ] = γ, and the second
moment of Y exists.17 Consider estimating θ with the shrinkage estimator θ̂c = cX + (1− c)Y with c ∈ [0, 1]. Assuming
that σ2 and γ are known, the following estimator

CURE(θ̂c) := (2c− 1)σ2 + 2(1− c)γ + {(1− c)(X − Y )}2, (22)

defined as the Correlation-aware Unbiased Risk Estimate, is an unbiased estimator for the risk of θ̂c under quadratic loss.
That is, letting R(θ̂c, θ) := Eθ[(θ̂c − θ)2], it holds that:

Eθ
[
CURE(θ̂c)

]
= R(θ̂c, θ).

Proof. First, expand the risk:

R(θ̂c, θ) = Eθ[(θ̂c − θ)2] = Eθ[(cX + (1− c)Y − θ)2]

= Varθ[cX + (1− c)Y ] + (Eθ[cX + (1− c)Y ]− θ)2

= c2σ2 + (1− c)2Varθ[Y ] + 2c(1− c)γ + [(1− c)(Eθ[Y ]− θ)]2.
17We redefine certain variables for generality of this result beyond the setting in Assumption 2.2. In this theorem, θ plays the role of η

in the main text, i.e. all the other parameters are deterministic given θ.
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Then, taking the expectation of CURE(θ̂c):

Eθ
[
CURE(θ̂c)

]
= (2c− 1)σ2 + 2(1− c)γ︸ ︷︷ ︸

I

+Eθ
[
{(1− c)(X − Y )}2

]
, (23)

where the last term is

Eθ
[
{(1− c)(X − Y )}2

]
= (1− c)2

[
(Eθ[X − Y ])2 +Varθ[X − Y ]

]
= (1− c)2

[
(Eθ[Y ]− θ)2 + σ2 +Varθ[Y ]− 2γ

]
= [(1− c)(Eθ[Y ]− θ)]2 + (1− c)2(σ2 +Varθ[Y ]− 2γ)︸ ︷︷ ︸

II

.

With a little algebra, we observe

I+ II = (2c− 1)σ2 + 2(1− c)γ + (1− c)2(σ2 +Varθ[Y ]− 2γ)

= c2σ2 + (1− c)2Varθ[Y ] + 2c(1− c)γ.

Thus, a term-by-term matching confirms Eθ[CURE(θ̂c)] = R(θ̂c, θ).

Remark B.2 (Connection to SURE). Stein’s Unbiased Risk Estimate (SURE) was proposed in Charles Stein’s seminal
work (1981) to study the quadratic risk in Gaussian sequence models. As a simple special case of SURE, let Z ∼ N (θ, σ2)
and let h : R→ R be an absolutely continuous function and Eθ[|h′(Z)|] <∞, then SURE is defined as

SURE(h) := (h(Z)− Z)2 + 2σ2h′(Z)− σ2,

with the property that Eθ[SURE(h)] = R(h(Z), θ) = Eθ[(h(Z)− θ)2]. A proof of this argument relies on Stein’s lemma,
an identity specific to Gaussian random variables (Stein, 1981). Now consider the specific linear shrinkage estimator
hc(Z) := cZ + (1− c)Y , with c ∈ [0, 1] and Y ∈ R being fixed (that is, Y is a constant, or Y is independent of Z and we
condition on Y ). Then SURE takes the following form:

SURE(hc) = (hc(Z)− Z)2 + 2σ2h′c(Z)− σ2

= (cZ + (1− c)Y − Z)2 + 2cσ2 − σ2

= [(1− c)(Y − Z)]2 + (2c− 1)σ2

(⋆)
= CURE(hc(Z)),

where in (⋆) we used the fact that in this case (with Y fixed or Y independent of Z), it holds that γ = 0 so that the definition
of CURE in (22) simplifies. This explains how CURE defined in B.1 is connected to SURE.

We make one last remark: The derivation of SURE itself requires Gaussianity. However, for linear shrinkage rules as hc(Z),
SURE only depends on the first two moments of the distribution of Z and thus is an unbiased estimator of quadratic risk
under substantial generality as long as Eθ[Z] = θ and Varθ[Z] = σ2. This remark has been made by previous authors,
e.g., Kou & Yang (2017); Ignatiadis & Wager (2019) and is important for the assumption-lean validity of PAS.

C. Details on PAS with Unknown Second Moments
In this appendix we explain how to apply PAS when second moments are unknown. In Appendix C.1 we describe sample-
based estimators of the second moments. We also develop UniPT (Appendix C.2) and UniPAS (Appendix C.3), two
new estimators that extend our framework to scenarios where second moments are unknown and must be estimated from
data. We derive these methods and their theoretical guarantees within the PAS asymptotic regime, where the number
of problems m → ∞ while individual sample sizes nj , Nj remain bounded. Specifically, UniPT introduces a global
power-tuning strategy, and UniPAS builds upon it to perform adaptive shrinkage, both without requiring knowledge of true
second-moment parameters.

Notations. Throughout this section and the proof details in Appendix F, we use P−→ for convergence in probability and
Lp

−−→ for Lp convergence of random variables. We use the “Little-o” notation o(1) for any term that vanishes to zero as
m→∞. Similarly, for a sequence of random variables Xm, we use Xm = oP (1) if Xm converges to zero in probability,
and Xm = OP (1) if Xm is bounded in probability. All stochastic order relations are understood to hold as m→∞.
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C.1. Sample-based Estimators for σ2
j , τ

2
j , γj

We first write down the expressions of the unbiased sample-based estimators for σ2
j , τ

2
j and γj , assuming that nj ≥ 2.

σ̂2
j :=

1

nj − 1

nj∑
i=1

(Yij − Ȳj)2, τ̂2j :=
1

nj +Nj − 1

( nj∑
i=1

(f(Xij)− Z̄N+n
j )2 +

Nj∑
i=1

(f(X̃ij)− Z̄N+n
j )2

)
,

γ̂j :=
1

nj − 1

nj∑
i=1

(Yij − Ȳj)(f(Xij)− Z̄N+n
j ), where Z̄N+n

j :=
1

nj +Nj

( nj∑
i=1

f(Xij) +

Nj∑
i=1

f(X̃ij)

)
.

These sample-based estimators serve a dual role. Firstly, they are utilized in the practical implementation of the PT and PAS
estimators for our numerical experiments on real-world datasets, where true second moments are unavailable. Secondly,
they form the basis for defining the UniPT and UniPAS estimators, which we introduce subsequently.

C.2. UniPT: Power-tuning Across Problems with Estimated Second Moments

Under this new setup, the first step is to derive a new variant of the PT estimator without the known second moments. It
turns out that performing power-tuning across problems using the same λ for all problems (which we show in Appendix A.1
to be closely related to the multivariate estimation problem in PPI++) leads to a promising alternative.

Definition C.1 (Univariate Power Tuning (UniPT)). We consider a family of estimators for each problem j ∈ [m]:

θ̂j,λ = Ȳj + λ(Z̄fj − Z̃
f
j ),

where all problems are controlled by a single, global power-tuning parameter λ ∈ R. Our goal is to find the λ that minimizes
the sum of variances across all problems,

∑m
j=1 Varηj [θ̂j,λ]. The variance for each problem j is:

Varηj [θ̂j,λ] =
σ2
j

nj
+ λ2

(
1

nj
+

1

Nj

)
τ2j −

2λ

nj
γj ,

where σ2
j = Varηj [Yij ], τ

2
j = Varηj [f(Xij)], and γj = Covηj [Yij , f(Xij)]. Minimizing

∑m
j=1 Varηj [θ̂j,λ] with respect to

λ yields the theoretically optimal global parameter for the given set of m problems:

λ∗m :=

∑m
j=1 n

−1
j γj∑m

j=1

(
1
nj

+ 1
Nj

)
τ2j

=

∑m
j=1 n

−1
j γj∑m

j=1
nj+Nj

njNj
τ2j
.

In practice, since γj and τ2j are now assumed unknown, we replace them with their sample-based unbiased estimators γ̂j
and τ̂2j (computed in Appendix C.1) to obtain the estimated global power-tuning parameter:

λ̂ :=

∑m
j=1 n

−1
j γ̂j∑m

j=1
nj+Nj

njNj
τ̂2j
.

We clip λ̂ to the interval [0, 1]. Let this be λ̂clip = clip(λ̂, [0, 1]). Similarly, we denote the clipped version of λ∗m as
λ∗clip,m := clip(λ∗m, [0, 1]). The UniPT estimator for problem j is then:

θ̂UPT
j = Ȳj + λ̂clip(Z̄

f
j − Z̃

f
j ).

The UniPT estimator, by using a single data-driven λ̂, offers a practical way to perform power tuning when per-problem
moments are unknown. This approach is justified by the following theoretical results, which hold as m→∞.

Proposition C.2 (Asymptotic Consistency of Clipped Global Tuning Parameter). Assume that:

1. Sample sizes nj , Nj are bounded (2 ≤ nmin ≤ nj ≤ nmax <∞, 1 ≤ Nmin ≤ Nj ≤ Nmax <∞).

2. EPη [Varηj [γ̂j ]] <∞ and EPη [Varηj [τ̂
2
j ]] <∞.
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3. EPη
[γ2j ] <∞, EPη

[(τ2j )
2] <∞, EPη

[(σ2
j )

2] <∞.18

4. (Denominator bounded away from 0) there exists some ε > 0 such that

lim
m→∞

P
[∣∣∣∣ 1m

m∑
j=1

nj +Nj
njNj

τ2j

∣∣∣∣ > ε

]
= 1

Then, the clipped estimated global tuning parameter λ̂clip converges in L2 to the clipped theoretical optimal global tuning
parameter λ∗clip,m:

λ̂clip − λ∗clip,m
L2

−−→ 0 as m→∞.

The proof is deferred to Appendix F.5.

This consistency ensures that λ̂clip effectively targets the best single power-tuning parameter for the collection ofm problems.
Building on this, we can state a result regarding the asymptotic variance of the UniPT estimator.

Theorem C.3 (Asymptotic Variance Optimality of UniPT). Under the assumptions of Proposition C.2, the sum of variances
of the UniPT estimators,

∑m
j=1 Varηj [θ̂

UPT
j ], asymptotically achieves the minimum possible sum of variances within the

class of estimators C = {(θ̂j,λ)mj=1 | θ̂j,λ = Ȳj + λ(Z̄fj − Z̄
′f
j ), λ ∈ [0, 1]}, in the sense that:

1

m

m∑
j=1

Varηj [θ̂
UPT
j ]− min

λ′∈[0,1]

1

m

m∑
j=1

Varηj [θ̂j,λ′ ]
P−→ 0 as m→∞,

where the left-hand side is still a random variable with randomness from drawing ηj
iid∼ Pη .

The proof is deferred to Appendix F.6.

C.3. UniPAS: CURE and Adaptive Shrinkage with Estimated Second Moments

Once we obtain the UniPT estimator, which is asymptotically optimal within a class of unbiased estimators, our next goal
is to imitate the steps in Section 4.2 to apply shrinkage across problems. To do so, we must first revisit the formulation of
CURE and see how it depends on the now unknown second-moment parameters. By definition:

CURE
(
θ̂
PAS

ω

)
:=

1

m

m∑
j=1

[
(2 ωj − 1) σ̃2

j + 2(1− ωj ) γ̃j + (1− ωj )
2
(
θ̂PT
j,ωj

− Z̃fj
)2]

, ωj =
ω

ω+σ̃2
j
. (24)

So there are three places where CURE makes use of σ̃2
j , γ̃j , which then depend on second moments of the data generating

process: (1) in the definition of PT estimator, (2) in the definition of CURE itself and (3) in determining the localized
shrinkage level ωj . We thus make the following modifications to CURE using the sample-based estimators.

1. We first replace the PT estimator (shrinkage source) to the UniPT estimator. Additionally, σ̃2
j is now the variance of

θ̂j,λ∗
clip,m

(as defined in Definition C.1) and τ̃j is its covariance with Z̃fj . We can explicitly write them down as

σ̃2
j :=

σ2
j

nj
+
Nj + nj
Njnj

(λ∗clip,m)2τ2j −
2

nj
λ∗clip,mγj , γ̃j := λ∗clip,m

τ2j
Nj

.

2. For σ̃2
j and γ̃j in the definition of CURE , we replace them directly with the sample-based estimators

σ̇2
j :=

σ̂2
j

nj
+
Nj + nj
Njnj

λ̂2clipτ̂
2
j −

2

nj
λ̂clipγ̂j , γ̇j := λ̂clip

τ̂2j
Nj

where σ̂2
j , τ̂

2
j , γ̂j are defined in Appendix C.1.

18Note that this condition is implied by the finite fourth-moment assumption in Proposition 5.1.
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3. For σ̃2
j in the definition of ωj , we replace it with the following averaging estimators:

σ̌2
j :=

σ̄2

nj
+
Nj + nj
Njnj

λ̂2clipτ̄
2 − 2

nj
λ̂clipγ̄, where (25)

σ̄2 :=
1

m

m∑
j=1

σ̂2
j , τ̄

2 :=
1

m

m∑
j=1

τ̂2j , γ̄ :=
1

m

m∑
j=1

γ̂j

are the average sample co-(variances) across all m problems.19

With these modifications, we define a new class of shrinkage estimators based on θ̂UPT
j . For any global shrinkage parameter

ω ≥ 0, the problem-specific shrinkage weight is now defined as:

ω̂j := ω̂j(ω) =
ω

ω + σ̌2
j

.

The corresponding family of shrinkage estimators for problem j is:

θ̂UPAS
j,ω := ω̂j θ̂

UPT
j + (1− ω̂j)Z̃fj .

We then define the modified CURE, denoted ĈURE, by taking into account all the changes above.20

ĈURE
(
θ̂
UPAS

ω

)
:=

1

m

m∑
j=1

[
(2ω̂j − 1)σ̇2

j + 2(1− ω̂j)γ̇j + (1− ω̂j)2
(
θ̂UPT
j − Z̃fj

)2]
. (26)

Finally, the UniPAS estimator is obtained by selecting the ω that minimizes this ĈURE:

Definition C.4 (Univariate Prediction-Powered Adaptive Shrinkage (UniPAS)). The UniPAS estimator for problem j is
θ̂UPAS
j := θ̂UPAS

j,ω̂ , where

ω̂ := argmin
ω≥0

ĈURE
(
θ̂
UPAS

ω

)
.

This UniPAS estimator is fully data-driven and does not rely on knowledge of the true second-moment parameters. The
pseudo-code for the full UniPAS algorithm is given below.

The fully data-driven construction of UniPAS is supported by the following theoretical guarantee:

Proposition C.5 (Asymptotic Consistency of ĈURE for UniPAS). On top of the assumptions in Proposition C.2 and As-
sumption 2.2, if we further require that infj∈[m],m∈N σ̊

2
j,m ≥ δ > 0 for some fixed δ, where

σ̊2
j ≡ σ̊2

j,m :=
µσ2

nj
+
Nj + nj
Njnj

(λ∗clip,m)2µτ2 − 2

nj
λ∗clip,mµγ (27)

with µσ2 := EPη
[σ2
j ], µτ2 := EPη

[τ2j ], µγ := EPη
[γj ]. Then, ĈURE

(
θ̂
UPAS

ω

)
is an asymptotically consistent estimator

for the true loss ℓm(θ̂
UPAS

ω ,θ) of the UniPAS estimator (which uses weights ω̂j = ω/(ω + σ̌2
j )), in the sense that:

EPη

[
sup
ω≥0
|ĈURE

(
θ̂
UPAS

ω

)
− ℓm(θ̂

UPAS

ω ,θ)|
]
m→∞−−−−→ 0.

We defer the proof to Appendix F.7.

This consistency result ensures that minimizing ĈURE is asymptotically equivalent to minimizing the true MSE of the
UniPAS estimator. This leads to the following optimality guarantee:

19The rationale is as follows: In defining ωj we pretend that σ2
j , τ

2
j and γj are the same across all problems and so can be estimated

consistently. We emphasize that our theoretical results do not require that these second moments be identical (i.e., it is only a working
modeling assumption).

20We use the hat notation for ĈURE to make it explicit that ĈURE is not an unbiased estimator of risk in finite samples. However, we
will show that it is a consistent estimator of risk asymptotically as m→∞.
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Algorithm 2 UniPAS

Require: (Xij , Yij)
nj

i=1, (X̃ij)
Nj

i=1 for j ∈ [m], predictive model f
1: for j = 1 to m do
2: ▷ Step 1: Apply predictor (Eq. (1)) to get aggregated statistics and sample-based estimators for second moments
3: Ȳj , Z̄

f
j , Z̃

f
j = get means((Xij , Yij)

nj

i=1, (X̃ij)
Nj

i=1, f)

4: σ̂2
j , γ̂j , τ̂

2
j = get sample variances((Xij , Yij)

nj

i=1, (X̃ij)
Nj

i=1, f)
5: ▷ Step 2: Univariate power tuning (Appendix C.2)

6: λ̂clip = clip

( ∑m
j=1 n

−1
j γ̂j∑m

j=1

Nj+nj
Njnj

τ̂2
j

, [0, 1]

)
7: θ̂UPT

j = Ȳj + λ̂clip(Z̃
f
j − Z̄

f
j )

8: ▷ Step 3: Construct sample-based estimators of Var[θ̂UPT
j ] and Cov[θ̂UPT

j , Z̃fj ]

9: σ̇2
j =

σ̂2
j

nj
+

Nj+nj

Njnj
λ̂2clipτ̂

2
j − 2

nj
λ̂clipγ̂j

10: γ̇j = λ̂
τ̂2
j

Nj

11: end for
12: ▷ Step 4: Adaptive shrinkage
13: σ̄2 = 1

m

∑m
j=1 σ̂

2
j , τ̄

2 = 1
m

∑m
j=1 τ̂

2
j , γ̄ = 1

m

∑m
j=1 γ̂j

14: for j = 1 to m do
15: ▷ Calculate the averaging variance estimator in Equation (25)
16: σ̌2

j := σ̄2

nj
+

Nj+nj

Njnj
λ̂2clipτ̄

2 − 2
nj
λ̂clipγ̄

17: end for
18: ▷ Now for each choice of ω ≥ 0, the shrinkage coefficient is determined by ω

ω+σ̌2

19: ▷ The CURE calculation in Equation (26), which still depends on the sample-based estimators σ̇2
j , γ̇j

20: ω̂ = get shrink param((θ̂UPT
j )mj=1, (Z̃

f
j )
m
j=1, (σ̌

2
j )
m
j=1, (σ̇

2
j )
m
j=1, (γ̇j)

m
j=1)

21: for j = 1 to m do
22: θ̂UPAS

j = ω̂θ̂UPT
j + (1− ω̂)Z̃fj

23: end for
24: return {θ̂UPAS

j }mj=1

Theorem C.6 (Asymptotic Bayes Risk Optimality of UniPAS). Under the assumptions of Theorem C.5, the UniPAS

estimator θ̂
UPAS

= θ̂
UPAS

ω̂ satisfies:

BPη
m

(
θ̂
UPAS

)
≤ inf
ω≥0

{
BPη
m

(
θ̂
UPAS

ω

)}
+ o(1) as m→∞,

and so
BPη
m

(
θ̂
UPAS

)
≤ min

{
BPη
m

(
Z̃f
)
,BPη

m

(
θ̂
UPT

)}
+ o(1) as m→∞.

The proof of Theorem C.6, which follows directly from Proposition C.5, mirrors the argument in in Appendix F.3 used to
derive Theorem 5.2 from Proposition 5.1.

We note that the conclusion here is slightly weaker than that of Theorem 5.2 for PAS. Theorem 5.2 guarantees that PAS
asymptotically has risk less or equal to that of PT with optimal per-problem choice of the power tuning parameter. By
contrast, Theorem C.6 along with Theorem C.3 shows that UniPAS always has risk less or equal to that of power tuning
that uses the same power tuning parameter for all problems. The main upshot of Theorem C.6 is that UniPAS does not
require knowledge of second moments.

D. Other Baseline Shrinkage Estimators
D.1. “Shrink-classical” (Shrinkage) Baseline

The “shrink-classical” estimator applies shrinkage directly to the classical estimator Ȳj , using the prediction mean Z̃fj as a
shrinkage target without first applying power-tuned PPI. We include this baseline to isolate the benefits of power tuning
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from the PAS estimator as an ablation study.

Formulation. The “shrink-classical” estimator for problem j takes the form:

θ̂Shrink
j,ω := ωj Ȳj + (1− ωj)Z̃fj ,

where ωj := ω/(ω + σ̃2
j ), σ̃2

j := Varηj [Ȳj ] = σ2
j /nj .

Here ω ≥ 0 is a global shrinkage parameter analogous to Section 4.2. The key difference from PAS is that we shrink the
classical estimator Ȳj (which is independent of Z̃fj ) rather than the power-tuned estimator θ̂PT

j (which is correlated with
Z̃fj ).

Optimizing ω via CURE. Since Ȳj and Z̃fj are independent, Theorem 4.1 simplifies. Let γ̃j = Cov[Ȳj , Z̃
f
j ] = 0 and

σ̃2
j = σ2

j /nj . CURE simplifies as:

CURE(θ̂Shrink
j,ω ) = (2ωj − 1)σ̃2

j +
[
(1− ωj)(Ȳj − Z̃fj )

]2
.

This follows from Theorem 4.1 by setting γ̃j = 0. The global shrinkage parameter ω is selected by minimizing CURE
across all m problems.

θ̂Shrink
j := ω̂j Ȳj + (1− ω̂j)Z̃fj , ω̂j = ω̂/(ω̂ + σ̃2

j ),

where ω̂ ∈ argmin
ω≥0

1

m

m∑
j=1

CURE(θ̂Shrink
j,ω ). (28)

The optimal ω̂ does not admit a closed-form expression, but we can compute it numerically by grid search. Below we
provide the pseudo-code for implementing the “shrink-classical” estimator.

Algorithm 3 “Shrink-classical” Estimator

Require: {(Xij , Yij)
nj

i=1}, {X̃ij}
Nj

i=1 for j ∈ [m], variance parameters {σ2
j }mj=1, predictive model f

1: for j = 1 to m do
2: Ȳj , Z̃

f
j = get means((Xij , Yij)

nj

i=1, (X̃ij)
Nj

i=1, f)

3: σ̃2
j ← σ2

j /nj ▷ variance of Ȳj

4: end for
5: ω̂ = get shrink param((Ȳj)

m
j=1, (Z̃

f
j )

m
j=1, (σ̃

2
j )

m
j=1) ▷ use Eq. (28)

6: for j = 1 to m do
7: ω̂j = ω̂/

(
ω̂ + σ̃2

j

)
8: θ̂Shrink

j = ω̂j Ȳj + (1− ω̂j) Z̃
f
j

9: end for
10: return {θ̂Shrink

j }mj=1

D.2. “Shrink-average” Baseline
The “shrink-average” estimator represents an alternative, perhaps more classical, shrinkage approach that attempts to further
improve upon the unbiased PT estimators. While PAS reuses the prediction means on unlabeled data as shrinkage targets,
here we consider shrinking the PT estimators across all problems to a shared location, namely their group mean

θ̄PT :=
1

m

m∑
j=1

θ̂PT
j .

Formulation. The “shrink-average” estimator for problem j takes the form:

θ̂Avg
j,ω := ωj θ̂

PT
j + (1− ωj)θ̄PT,

where ωj := ω/(ω + σ̃2
j ), σ̃2

j := Varηj [θ̂
PT
j ].
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Algorithm 4 “Shrink-average” Estimator

Require: (Xij , Yij)
nj

i=1, (X̃ij)
Nj

i=1, γj , τj , σj for j ∈ [m], predictive model f
1: for j = 1 to m do
2: ▷ Step 1: Apply predictor (Eq. (1))
3: Ȳj , Z̄

f
j , Z̃

f
j = get means((Xij , Yij)

nj

i=1, (X̃ij)
Nj

i=1, f)
4: ▷ Step 2: Power tuning (Eq. (13))
5: λ∗

j = get pt param(γj , τj , nj , Nj)

6: θ̂PT
j = Ȳj + λ∗

j (Z̃
f
j − Z̄

f
j )

7: σ̃2
j = get pt var(θ̂PT

j ) ▷ (Eq. (14))
8: end for
9: θ̄PT = m−1 ∑m

j=1 θ̂
PT
j

10: ▷ Step 3: Adaptive shrinkage toward group mean (Eq. (29))
11: ω̂ = get shrink param((θ̂PT

j )mj=1, θ̄
PT, (σ̃2

j )
m
j=1)

12: for j = 1 to m do
13: ω̂j = ω̂/(ω̂ + σ̃2

j )

14: θ̂Avg
j = ω̂j θ̂

PT
j + (1− ω̂j)θ̄

PT

15: end for
16: return {θ̂Avg

j }
m
j=1

Optimizing ω via SURE. Xie et al. (2012) proposed the following unbiased risk estimate to optimize ω for this estimator.
Note that even though the group mean is also correlated with each PT estimator, we still denote the following SURE instead
of CURE following the nomenclature in Xie et al. (2012).

ω̂ ∈ argmin
ω≥0

1

m

m∑
j=1

SURE(θ̂Shrink
j,ω ) (29)

SURE(θ̂Shrink
j,ω ) :=

[
(1− ωj)(θ̂PT

j − θ̄PT)
]2

+ (1− ωj)(ω + (2/m− 1)σ̃2
j ).

We refer to Algorithm 4 for a full pseudo-code implementation of “shrink-average” estimator.

E. Experiment Details
E.1. Synthetic Model

Motivation. In Example 2.3, we described the following data generation process (copied from Eq. (8))

ηj ∼ U [−1, 1], j = 1, . . . ,m,

Xij ∼ N (ηj , ψ
2), Yij |Xij ∼ N (2ηjXij − η2j , c), i = 1, . . . , nj ,

and the same for (X̃ij , Ỹij). ψ and c are two hyperparameters that we chose to be 0.1 and 0.05, respectively. The (marginal)
mean and variance of Yij are

θj := Eηj [Yij ] = η2j , σ2
j := Varηj [Yij ] = 4η2jψ

2 + c.

To understand the motivation behind this setup, we can further inspect the covariance between Xij and Yij , which can
be verified to be Covηj [Xij , Yij ] = 2ηjψ

2. Therefore, if we consider the ratio between the absolute covariance and the
variance (of Yij) as a characterization of the “inherent predictability” of a problem, we see that

|Covηj [Xij , Yij ] |
Varηj [Yij ]

=
2|ηj |ψ2

4η2jψ
2 + c

which has its minimum when ηj = 0 and increases monotonically in |ηj | for |ηj | ∈ [0, 1] given our specific choices of ψ
and c (see Figure 4). In other words, problems with ηj close to the origin have a lower “predictability;” whereas when ηj
moves away from zero, the problems become easier to solve. This quantitatively reflects the pattern we see in Figure 3,
where we display the power-tuning parameters as a function of ηj .
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Figure 4. The ratio between |Covηj [Xij , Yij ] | and Varηj [Yij ] as a function of ηj . The constants are set to ψ = 0.1 and c = 0.05.

Expressions for θj , µj , σ2
j , τ

2
j , γj when f(x) = |x|. When we work with the synthetic model using the flawed predictor

f(x) = |x|, we can match the form of our dataset with the general setting in Assumption 2.2 by identifying closed-form
expressions for the model parameters θj , µj , σ2

j , τ
2
j , γj .

θj = η2j , σ2
j = 4η2jψ

2 + c,

γj = 2ηjψ
2

√
2

π
e−η

2
j/(2ψ

2), µj =

√
2

π
ψ exp

(
− ηj
2ψ2

)
+ ηj

[
Φ

(
ηj
ψ

)
− 1

2

]
,

τ2j = η2j + ψ2 −

[√
2ψ2

π
exp

(
−

η2j
2ψ2

)
+ ηj

(
2Φ
(
ηj
ψ

)
− 1
)]2

,

where Φ(·) denotes the standard normal distribution function.

Expressions for θj , µj , σ2
j , τ

2
j , γj when f(x) = x2. Similar closed-form expressions can be derived when we use the

other predictor f(x) = x2. Note that θj and σ2
j remain the same.

θj = η2j , σ2
j = 4η2jψ

2 + c,

γj = 4η2jψ
2, µj = η2j + ψ2, τ2j = 2ψ4 + 4η2jψ

2.

In experiments involving the synthetic model with both predictors, we are able to leverage these closed-form expressions
and supplement the ground-truth parameters to our datasets.

Interpretation of MSE. In the synthetic experiments, since we have access to the true prior for ηj (therefore for θj) and
resample them for each problem across K trials, the MSE we obtained in Section 7.1 is an unbiased estimate of the Bayes
Risk defined in Eq. (11).

E.2. Amazon Review Ratings Dataset

Dataset & Preprocessing. The Amazon Fine Food Reviews dataset, provided by the Stanford Network Analysis Project
(SNAP; SNAP (2014)) on Kaggle,21 comes in a clean format. We group reviews by their ProductID. For each review,
we concatenate the title and body text to form the covariate, while the response is the reviewer’s score/rating (1 to 5 stars).
Here’s a sample review:

Score: 4 Product: BBQ Pop Chips
Title: Delicious!
Text: BBQ Pop Chips are a delicious tasting healthier chip than many on the market. They are light and full of flavor. The 3
oz bags are a great size to have. I would recommend them to anyone.

21https://www.kaggle.com/datasets/snap/amazon-fine-food-reviews
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We focus on the top m = 200 products with the most reviews for the compound mean estimation of average ratings.
This approach mitigates extreme heteroscedasticity across estimators for different problems, which could unduly favor
shrinkage-based methods when considering unweighted compound risk. There are a total of 74,913 reviews for all 200
products.

Fine-tuning BERT. The Bidirectional Encoder Representations from Transformers (BERT) model is a widely
adopted language model for many NLP tasks including text classification (Devlin et al., 2019). However, pre-
training BERT from scratch is time-consuming and requires large amounts of data. We therefore use the
bert-base-multilingual-uncased-sentiment model22 from Town (2023) as the base model, denoted as
BERT-base. BERT-base is pre-trained on general product reviews (not exclusive to Amazon) in six languages. It
achieves 67.5% prediction accuracy on a validation set of 100 products (∼46k reviews).

Then, we further fine-tune it on the held-out review data, that is, reviews outside the top 200 products, for 2 full epochs.
The fine-tuning is done using Hugging Face’s transformers library (Wolf, 2019). After fine-tuning, the BERT-tuned
model achieves 78.8% accuracy on the same validation set.

E.3. Spiral Galaxy Fractions (Galaxy Zoo 2)

Dataset & Preprocessing. The Galaxy Zoo 2 (GZ2) project23 contains a large collection of human-annotated classification
results for galaxy images from SDSS. However, instead of having a single dataframe, GZ2 has many different tables—each
for subsets of the SDSS raw data. We begin with a particular subset of 239,696 images with metadata drawn from Hart et al.
(2016). Our data cleaning pipeline is inspired by Lin et al. (2021), which removes missing data and relabels the class name
of each galaxy image to a more readable format:

Class Names: Round Elliptical, In-between Elliptical, Cigar-shaped Elliptical, Edge-on Spiral, Barred Spiral, Unbarred
Spiral, Irregular, Merger

In the downstream estimation problems, we consider a galaxy “spiral” if it is classified as one of the three classes ending
with “Spiral”, otherwise “non-spiral”. Below we display a few examples of galaxy images. Each image has dimensions
of 424× 424× 3, where the third dimension represents the three filter channels: g (green), r (red), and i (infrared). The
cleaned dataset has 155,951 images in total.

Sample Images from Galaxy Zoo 2

Sp
ira

l
No

n-
sp

ira
l

Figure 5. Example of spiral & non-spiral galaxy images from Galaxy Zoo 2.
22https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment
23https://data.galaxyzoo.org/
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The additional SDSS metadata for GZ224 contains valuable information that directly partitions the galaxies based on certain
attributes, e.g., REDSHIFT SIMPLE BIN based on galaxy redshift measurements, and WVT BIN calculated by weighted
Voronoi tessellation. These partitions naturally motivate fine-grained compound mean estimation on this dataset.

After partitioning the images based on WVT BIN,25 we consider only the top m = 100 partitions based on the cutoff that
each problem should have ≥ 150 images (many partitions have very few galaxy images in them), for the same reason as in
the Amazon Review dataset. Finally, we have a total of ∼100k images as covariates (either Xij or X̃ij) for our problem.

Training the Predictor. We employ the ResNet50 architecture (He et al., 2016), utilizing the pre-trained model from
torchvision initially trained on ImageNet (Deng et al., 2009). To tailor the model to our task, we fine-tune it on ∼50k
images excluded from the top m problems. The model is trained to classify galaxies into eight categories, later condensed
into a binary spiral/non-spiral classification for prediction. We use a batch size of 256 and Adam optimizer (Kingma &
Ba, 2015) with a learning rate of 1e-3. After 20 epochs, the model achieves 87% training accuracy and 83% test accuracy.
Despite these promising results, Table 3 indicates that the predictions still require debiasing for accurate estimation.

E.4. Benchmarking in real-world datasets

In this appendix we describe the steps to obtain the MSEs and their standard errors for real-world datasets shown in Table 3.

Let K be the number of experiment trials, Tj be the total number of data points for problem j, i.e. {Ẋij , Ẏij}
Tj

i=1 represents
the “raw data” we have, and nj , Nj be the desired number of labeled/unlabeled data to simulate, usually calculated through
a hyper-parameter splitting ratio (e.g. Nj = ⌊r · Tj⌋, nj = Tj −Nj for r = 0.8 in our case).

1. Following evaluation methodology in existing PPI literature, e.g., (Angelopoulos et al., 2023), we first calculate the
mean of all responses for each problem and treat it as the pseudo ground-truth, i.e., θ̇j := 1

Tj

∑
i Ẏij .

2. For each trial k ∈ [K], we create a random permutation for the raw data, with indices permuted by κ : N→ N, and
obtain the labeled and unlabeled datasets for problem j as

{Xij , Yij}
nj

i=1 = {Ẋκ(i)j , Ẏκ(i)j}
nj

i=1, {X̃ij}
Nj

i=1 = {Ẋκ(i)j}
Tj

i=nj+1

3. We proceed with using these datasets to obtain the baseline and PAS estimators. Let θ̂kj be an estimator for the j-th
problem at trial k, then our final reported MSE and standard error is calculated as

M̂SEK(θ̂) :=
1

K

K∑
k=1

 1

m

m∑
j=1

(θ̂kj − θ̇j)2
 , SEK(θ̂) :=

1√
K

√√√√√ 1

K − 1

K∑
k=1

 1

m

m∑
j=1

(θ̂kj − θ̇j)2 − M̂SEK(θ̂)

.
Note that the standard error only accounts for uncertainty due to the random splits into labeled and unlabeled datasets.

E.5. Additional Experiment with Varying Labeled/Total Data Ratio

In Table 3, we report our experiment results on different tasks and predictors, but fixing the ratio between labeled and total
amounts of data nj/(nj +Nj) = 0.2 for all problems. To verify the broader applicability of our method, we repeat our
experiments across a much wider range of ratios—from 1% to 40%—and report the results in Figure 6. For each ratio, we
follow exactly the same data-splitting and benchmarking procedures specified in Appendix E.4.

E.6. Computational Resources

All the experiments were conducted on a compute cluster with Intel Xeon Silver 4514Y (16 cores) CPU, Nvidia A100
(80GB) GPU, and 64GB of memory. Fine-tuning the BERT-tuned model took 2 hours, and training the ResNet50

24The column names and their meanings are available at https://data.galaxyzoo.org/data/gz2/gz2sample.txt.
25In the Galaxy Zoo 2 dataset, WVT BIN denotes Voronoi bins constructed based on each galaxy’s intrinsic size and absolute magnitude.

The motivation and implementation of this binning strategy are detailed in Hart et al. (2016), who justify such partitioning—aligned with
our compound mean estimation setup—by noting that spiral arm morphology exhibits systematic dependencies on stellar mass and related
intrinsic properties.
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Figure 6. Average MSEs for the three real-world datasets when the labeled/unlabeled split ratio varies from 1% to 40%. UniPT and
UniPAS are the two newly added variants of PT and PAS estimators, respectively.

model took 1 hour. All the inferences (predictions) can be done within 10 minutes. The nature of our research problem
requires running the prediction only once per dataset, making it fast to benchmark all estimators for K = 200 trials using
existing predictions.

E.7. Code Availability

The code for reproducing the experiments is available at https://github.com/listar2000/prediction-
powered-adaptive-shrinkage.

F. Proofs of Theoretical Results
F.1. Proof of Theorem. 4.1

For each problem j ∈ [m], we are shrinking the PT estimator θ̂PT
j obtained from the first stage toward Z̃fj , the prediction

mean on the unlabeled data. Conditioning on ηj , we denote

σ̃2
j := Varηj

[
θ̂PT
j

]
= Varηj

[
θ̂PPI
j,λ∗

j

]
,

γ̃j := Covηj

[
θ̂PT
j , Z̃fj

]
= λ∗jVarηj

[
Z̃fj

]
,

where all the first and second moments of θ̂PT
j and Z̃fj exist under the conditions of Assumption 2.2. For each global ω ≥ 0,

the shrinkage parameter for the j-th problem is defined as ωj := ω/(ω + σ̃2
j ). Then, following the result in Theorem B.1,

CURE for θ̂PAS
j,ωj

:= ωj θ̂
PT
j + (1− ωj)Z̃fj ,

CURE
(
θ̂PAS
j,ω

)
= (2ωj − 1)σ̃2

j + 2(1− ωj)γ̃j +
[
(1− ωj)(θ̂PT

j − Z̃fj )
]2
,
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is an unbiased estimator of the risk, i.e.,

Eηj
[
CURE

(
θ̂PAS
j,ω

)]
= R(θ̂PAS

j,ωj
, θj).

Finally, the CURE for the collection of estimators is θ̂
PAS

ω := (θ̂PAS
1,ω , . . . , θ̂PAS

m,ω )
⊺

CURE
(
θ̂
PAS

ω

)
:=

1

m

m∑
j=1

CURE
(
θ̂PAS
j,ω

)
,

which is an unbiased estimator of the compound riskRm(θ̂
PAS

ω ,θ) by linearity of the expectation.

F.2. Formal conditions and proof of Proposition 5.1

We aim to prove that CURE converges uniformly to the true squared-error loss ℓm(θ̂
PAS

ω ,θ) as m→∞. Specifically, our
goal is to establish

sup
ω≥0

∣∣∣CURE(θ̂
PAS

ω )− ℓm(θ̂
PAS

ω ,θ)
∣∣∣ L1

−−−−→
m→∞

0.

For this proposition, all the expectation and variance terms without subscript are conditioning on η. We keep using the
notations θj = E[θ̂PT

j ], µj = E[Z̃fj ], σ̃2
j = Var[θ̂PT

j ] and γ̃j = Cov[θ̂PT
j , Z̃fj ]. For this proposition, additional assumptions

are placed on the data generating process (integrated over Pη). We first show how they translate to moment conditions on
the estimators θ̂PT

j and Z̃fj .

Lemma F.1. Under the assumptions of Proposition 5.1, and specifically EPη

[
f(Xij)

4
]
<∞ and EPη

[
Y 4
ij

]
<∞, it holds

that:

sup
j≥1

EPη

[(
θ̂PT
j

)4]
<∞, sup

j≥1
EPη

[(
Z̃fj
)4]

<∞,

EPη

[
θ4j
]
<∞, EPη

[
µ4
j

]
<∞.

Proof. By Minkowski’s inequality, we have

EPη

[(
θ̂PT
j

)4]
= EPη

[(
Ȳj + λ∗j (Z̃

f
j − Z̄

f
j )
)4]

≤
(
EPη

[
Ȳ 4
j

]1/4
+ λ∗jEPη

[(
Z̃fj
)4]1/4

+ λ∗jEPη

[(
Z̄fj
)4]1/4)4

,

so it suffices to bound the fourth moments of Ȳj , Z̃j , Z̄j . We proceed with Ȳj first. Again, by Minkowski’s inequality

EPη

[
Ȳ 4
j

]1/4
= EPη

( nj∑
i=1

n−1
j Yij

)4
1/4

≤
nj∑
i=1

EPη

[(
n−1
j Yij

)4]1/4
=

nj∑
i=1

n−1
j EPη

[
Y 4
ij

]1/4
= EPη

[
Y 4
ij

]1/4
<∞.

The given assumption on the data generating process is used in the last line. Although the left-hand side of the inequality
may depend on j (via the deterministic nj), the right-hand side does not depend on j (since we are integrating over Pη)
and so we may take a supremum over all j on the left-hand side. The arguments for Z̃j and Z̄j based on the finiteness of

28



Prediction-Powered Adaptive Shrinkage Estimation

EPη
[f(Xij)

4] are analogous. Next, by Jensen’s inequality we have

θ4j = Eηj
[
θ̂PT
j

]4
≤ Eηj

[(
θ̂PT
j

)4]
=⇒ EPη

[
θ4j
]
≤ EPη

[(
θ̂PT
j

)4]
<∞,

and similarly we can also obtain EPη
[µ4
j ] <∞.

With Lemma F.1, we will prove Proposition 5.1 via the following steps.

Step 1: Decompose the difference. We first decompose both CURE and the loss separately as

CURE(θ̂
PAS

ω ) =
1

m

m∑
j=1

(
(2ωj − 1)σ̃2

j +
[
(1− ωj)(θ̂PT

j − Z̃
f
j )
]2

+ 2(1− ωj)γ̃j
)

=
1

m

m∑
j=1

(
(2ωj − 1)σ̃2

j + (1− ωj)2(θ̂PT
j − µj)2

)
︸ ︷︷ ︸

I(ω)

+
1

m

m∑
j=1

(
2(1− ωj)γ̃j + 2(1− ωj)2(µj − Z̃fj )(θ̂

PT
j − µj) + (1− ωj)2(µj − Z̃fj )

2
)

︸ ︷︷ ︸
II(ω)

ℓm(θ̂
PAS

ω ,θ) =
1

m

m∑
j=1

(ωj θ̂
PT
j + (1− ωj)Z̃fj − θj)

2

=
1

m

m∑
j=1

(ωj θ̂
PT
j + (1− ωj)µj − θj)2︸ ︷︷ ︸

I∗(ω)

+
1

m

m∑
j=1

(
2(1− ωj)(Z̃fj − µj)(θ̂

PT
j − θj) + 2(1− ωj)2(µj − Z̃fj )(θ̂

PT
j − µj) + (1− ωj)2(µj − Z̃fj )

2
)

︸ ︷︷ ︸
II∗(ω)

,

and we are interested in bounding

sup
ω≥0

∣∣∣CURE(θ̂
PAS

ω )− ℓm(θ̂
PAS

ω ,θ)
∣∣∣ ≤ sup

ω≥0
|I(ω)− I∗(ω)|+ sup

ω≥0
|II(ω)− II∗(ω)| . (30)

Step 2: Bounding the first difference ∆1(ω) := I(ω)− I∗(ω). The proof in this step is directly adapted from Theorem
5.1 in Xie et al. (2012) and generalizes to non-Gaussian data. With some algebraic manipulation, we can further decompose

∆1(ω) =
1

m

m∑
j=1

(
(2ωj − 1)σ̃2

j + (1− ωj)2(θ̂PT
j − µj)2

)
− 1

m

m∑
j=1

(ωj θ̂
PT
j + (1− ωj)µj − θj)2

= CURE(θ̂
0

ω)− ℓm(θ̂
0

ω,θ)−
2

m

m∑
j=1

µj(1− ωj)(θ̂PT
j − θj)

where CURE(θ̂
0

ω) =
1

m

m∑
j=1

(
(2ωj − 1)σ̃2

j + (1− ωj)2
(
θ̂PT
j

)2)
, ℓm(θ̂

0

ω,θ) =
1

m

m∑
j=1

(ωj θ̂
PT
j − θj)2,
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corresponds to CURE and the loss of the “shrink-toward-zero” estimator θ̂0j,ω := ωj θ̂
PT
j . We thus have

sup
ω≥0
|∆1(ω)| ≤ sup

ω≥0

∣∣∣CURE(θ̂
0

ω)− ℓm(θ̂
0

ω,θ)
∣∣∣+ 2

m
sup
ω≥0

∣∣∣ m∑
j=1

µj(1− ωj)(θ̂PT
j − θj)

∣∣∣. (31)

Now, rearrangements of terms gives that

sup
ω≥0

∣∣∣CURE(θ̂
0

ω)− ℓm(θ̂
0

ω,θ)
∣∣∣ = sup

ω≥0

∣∣∣∣ 1m
m∑
j=1

((
θ̂PT
j

)2 − σ̃2
j − θ2j − 2ωj

((
θ̂PT
j

)2 − θ̂PT
j θj − σ̃2

j

)) ∣∣∣∣
≤
∣∣∣∣ 1m

m∑
j=1

(
θ̂PT
j

)2 − σ̃2
j − θ2j

∣∣∣∣︸ ︷︷ ︸
(∗)

+ sup
ω≥0

∣∣∣∣ 1m
m∑
j=1

2ωj

((
θ̂PT
j

)2 − θ̂PT
j θj − σ̃2

j

)∣∣∣∣︸ ︷︷ ︸
(∗∗)

.

For the first term (∗),

EPη

Eη

( 1

m

m∑
j=1

(
θ̂PT
j

)2 − σ̃2
j − θ2j

)2
 =

1

m2

m∑
j=1

EPη

[
Varηj

[(
θ̂PT
j

)2]] ≤ 1

m
sup
j

VarPη

[(
θ̂PT
j

)2]
.

Thus by Jensen’s inequality and iterated expectation:

EPη

∣∣∣∣ 1m
m∑
j=1

(
θ̂PT
j

)2 − σ̃2
j − θ2j

∣∣∣∣
 ≤ ( 1

m
sup
j

VarPη

[(
θ̂PT
j

)2])1/2

. (32)

For the second term (∗∗), we start by arguing conditionally on η, which implies in particular that we may treat all the σ̃2
j as

fixed. It is thus without loss of generality to assume that σ̃2
1 ≤ ... ≤ σ̃2

m (by first sorting problems according to the value of
σ̃2
j ). Then, since ωj is monotonic function of σ̃2

j for any fixed ω ≥ 0, we have 1 ≥ ω1 ≥ ... ≥ ωm ≥ 0. The following
inequality follows:

sup
ω≥0

∣∣∣∣ 1m
m∑
j=1

2ωj

((
θ̂PT
j

)2 − θ̂PT
j θj − σ̃2

j

)∣∣∣∣ ≤ max
1≥c1≥...≥cm≥0

∣∣∣∣ 2m
m∑
j=1

cj

((
θ̂PT
j

)2 − θ̂PT
j θj − σ̃2

j

)∣∣∣∣. (33)

The following lemma would help us for handling the RHS of (33) (the same structural form of it will appear repeatedly in
subsequent parts of the proof).

Lemma F.2. Let A1, . . . , An be real numbers. Then

max
1≥c1≥···≥cn≥0

∣∣∣∣∣
n∑
i=1

ciAi

∣∣∣∣∣ = max
1≤k≤n

∣∣∣∣∣
k∑
i=1

Ai

∣∣∣∣∣ .
Proof. Define Sk =

∑k
i=1Ai for k = 1, . . . , n, and let c1, . . . , cn be real numbers satisfying 1 ≥ c1 ≥ · · · ≥ cn ≥ 0. Set

cn+1 = 0. Then we can rewrite

n∑
i=1

ciAi =

n∑
k=1

(ck − ck+1)
( k∑
i=1

Ai

)
=

n∑
k=1

(ck − ck+1)Sk.

Since ck ≥ ck+1, each αk := ck − ck+1 is nonnegative, and

n∑
k=1

αk = c1 − cn+1 ≤ 1.

Hence, ∣∣∣∣∣
n∑
i=1

ciAi

∣∣∣∣∣ =
∣∣∣ n∑
k=1

αk Sk

∣∣∣ ≤ n∑
k=1

αk |Sk| ≤
(
max

1≤k≤n
|Sk|

)( n∑
k=1

αk

)
≤ max

1≤k≤n
|Sk|.

30



Prediction-Powered Adaptive Shrinkage Estimation

This shows

max
1≥c1≥···≥cn≥0

∣∣∣∣∣
n∑
i=1

ciAi

∣∣∣∣∣ ≤ max
1≤k≤n

∣∣∣∣∣
k∑
i=1

Ai

∣∣∣∣∣ .
To see that this upper bound can be attained, consider for each k the choice

c1 = c2 = · · · = ck = 1, ck+1 = ck+2 = · · · = cn = 0.

Since 1 ≥ c1 ≥ · · · ≥ cn ≥ 0, we have that ∣∣∣∣∣
n∑
i=1

ciAi

∣∣∣∣∣ =
∣∣∣∣∣
k∑
i=1

Ai

∣∣∣∣∣ = |Sk|.
Taking the maximum over all such k ∈ {1, . . . , n} matches max1≤k≤n |Sk|. Thus,

max
1≥c1≥···≥cn≥0

∣∣∣∣∣
n∑
i=1

ciAi

∣∣∣∣∣ = max
1≤k≤n

∣∣∣∣∣
k∑
i=1

Ai

∣∣∣∣∣ ,
as claimed.

With Lemma F.2 in hand, we have

max
1≥c1≥...≥cm≥0

∣∣∣∣ 2m
m∑
j=1

cj

((
θ̂PT
j

)2 − θ̂PT
j θj − σ̃2

j

)∣∣∣∣ = max
1≤k≤m

∣∣∣∣ 2m
k∑
j=1

((
θ̂PT
j

)2 − θ̂PT
j θj − σ̃2

j

)∣∣∣∣.
Let Mk :=

∑k
j=1(

(
θ̂PT
j

)2 − θ̂PT
j θj − σ̃2

j ), it is easy to see that {Mk}mk=1 forms a martingale conditional on η. Therefore, by
a standard L2 maximal inequality (ref. Theorem 4.4.6 in Durrett (2019)), we have

Eη

[
max

1≤k≤m
M2
k

]
≤ 4Eη

[
M2
m

]
= 4

m∑
j=1

Varηj

[(
θ̂PT
j

)2 − θ̂PT
j θj

]
, (34)

which then implies

EPη

( sup
ω≥0

∣∣∣∣ 1m
m∑
j=1

2ωj

((
θ̂PT
j

)2 − θ̂PT
j θj − σ̃2

j

)∣∣∣∣)2
 ≤ 4

m2
EPη

[
max

1≤k≤m
M2
k

]

=
16

m2

m∑
j=1

EPη

[
Varηj

[(
θ̂PT
j

)2 − θ̂PT
j θj

]]
≤ 16

m
sup
j

VarPη

[(
θ̂PT
j

)2 − θ̂PT
j θj

]
=⇒ EPη

sup
ω≥0

∣∣∣∣ 1m
m∑
j=1

2ωj

((
θ̂PT
j

)2 − θ̂PT
j θj − σ̃2

j

)∣∣∣∣
 ≤ (16

m
sup
j

VarPη

[(
θ̂PT
j

)2 − θ̂PT
j θj

])1/2

. (35)

Next, we bound the last expression in (31): 2
m supω≥0

∣∣∣∑m
j=1(1− ωj)µj(θ̂PT

j − θj)
∣∣∣. Note that (1− ωj) is also monotonic

in σ̃2
j , and if we define M ′

k :=
∑k
j=1 µj(θ̂

PT
j − θj), then {M ′

k}mk=1 forms another martingale conditioning on η. Therefore,
following the same argument as (33)–(34) gives

4

m2
EPη

sup
ω≥0

∣∣∣ m∑
j=1

(1− ωj)µj(θ̂PT
j − θj)

∣∣∣2
 ≤ 4

m2
EPη

[
max

1≤k≤m
M ′
k
2
]

≤ 16

m2
EPη

[
M ′
m

2
]
=

16

m
sup
j

EPη

[
Varηj

[
θ̂PT
j

]
µ2
j

]
=⇒ EPη

 2

m
sup
ω≥0

∣∣∣∣∣∣
m∑
j=1

(1− ωj)µj(θ̂PT
j − θj)

∣∣∣∣∣∣
 ≤ (16

m
sup
j

EPη

[
Varηj

[
θ̂PT
j

]
µ2
j

])1/2

. (36)
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The upper bounds derived in (32), (35) and (36) establish control on

EPη

[
sup
ω≥0
|∆1(ω)|

]
≤ 4√

m

(
sup
j

VarPη

[(
θ̂PT
j

)2]1/2
+ sup

j
VarPη

[(
θ̂PT
j

)2 − θ̂PT
j θj

]
+ sup

j
EPη

[
Varηj

[
θ̂PT
j

]
µ2
j

])
,

since each term on the right-hand side can be controlled by the fourth-moment conditions established in Lemma F.1, we
know that ∆1(ω) converges uniformly to zero.

Step 3: Bounding the second difference ∆2(ω) := II(ω)− II∗(ω). We next cancel out identical terms in the second
difference in (30) and get

∆2(ω) =
2

m

m∑
j=1

(1− ωj)
[
γ̃j − (Z̃fj − µj)(θ̂

PT
j − θj)

]
. (37)

By the same proof logic that has been applied twice above, we now have a function (1 − ωj) monotonic in σ̃2
j , and a

martingale Qk :=
∑k
j=1

[
γ̃j − (Z̃fj − µj)(θ̂PT

j − θj)
]

for k = 1, . . . ,m (recall that γ̃j = Covηj [θ̂
PT
j , Z̃

f
j ]). The steps from

(33)–(34) follows, and we have

4

m2
EPη

( sup
ω≥0

∣∣∣∣ m∑
j=1

(1− ωj)
[
γ̃j − (Z̃fj − µj)(θ̂

PT
j − θj)

]∣∣∣∣)2
 ≤ 16

m
sup
j

EPη

[
Varηj

[
(Z̃fj − µj)(θ̂

PT
j − θj)

]]
,

and so,

EPη

 2

m
sup
ω≥0

∣∣∣∣ m∑
j=1

(1− ωj)
[
γ̃j − (Z̃fj − µj)(θ̂

PT
j − θj)

]∣∣∣∣
 ≤ (16

m
sup
j

EPη

[
Varηj

[
(Z̃fj − µj)(θ̂

PT
j − θj)

]])1/2

.

Again, the (fourth-)moment conditions from Lemma F.1 suffice to ensure that

sup
j

EPη

[
Varηj

[
(Z̃fj − µj)(θ̂

PT
j − θj)

]]
<∞,

and to establish control of

EPη

[
sup
ω≥0
|∆2(ω)|

]
.

Step 4: Concluding the argument. Finally, based on Steps 1–3, we have that

EPη

[
sup
ω≥0

∣∣∣CURE(θ̂
PAS

ω )− ℓm(θ̂
PAS

ω ,θ)
∣∣∣] ≤ EPη

[
sup
ω≥0
|∆1(ω)|

]
+ EPη

[
sup
ω≥0
|∆2(ω)|

]
,

and both terms on the right hand side converge to zero by our preceding bounds and the moment assumptions in the statement
of the theorem.

F.3. Proof of Theorem 5.2

We apply a standard argument used to prove consistency of M-estimators.

Let ω∗ be the oracle choice of ω ≥ 0 that minimizes the Bayes risk BPη
m (θ̂

PAS

ω ).26 Notice that by definition of ω̂ as the
minimizer of CURE,

CURE(θ̂
PAS

ω̂ ) ≤ CURE(θ̂
PAS

ω∗
).

Then:
ℓm(θ̂

PAS

ω̂ ,θ)− ℓm(θ̂
PAS

ω∗
,θ) ≤ 2 sup

ω≥0

∣∣∣CURE(θ̂
PAS

ω )− ℓm(θ̂
PAS

ω ,θ)
∣∣∣ .

26To streamline the proof, we assume that the infimum is attained by a value ω∗. If the infimum is not attained, the proof still goes
through using approximate minimizers.
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Taking expectations,

BPη
m (θ̂

PAS

ω̂ )− BPη
m (θ̂

PAS

ω∗
) ≤ 2 EPη

[
sup
ω≥0

∣∣∣CURE(θ̂
PAS

ω )− ℓm(θ̂
PAS

ω ,θ)
∣∣∣] .

Noting that the right hand side converges to 0 as m→∞, and recalling the definition of ω∗, we prove the desired result

BPη
m (θ̂

PAS

ω̂ ) ≤ inf
ω≥0
BPη
m (θ̂

PAS

ω ) + o(1).

F.4. Proof of Proposition 5.3

We start with the result in Theorem 5.2

BPη
m (θ̂

PAS

ω̂ ,θ) ≤ inf
ω≥0
BPη
m (θ̂

PAS

ω ,θ) + o(1).

Now, since we are integrating over η ∼ Pη for all problems

BPη
m (θ̂

PAS

ω ,θ) =
1

m

m∑
j=1

EPη

[(
θ̂PAS
j, ω − θj

)2]
= EPη

[(
θ̂PAS
j, ω − θj

)2]
,

by definition θ̂PAS
j, ω = ωj θ̂

PT
j + (1− ωj)Z̃fj , where ωj = ω/(ω + σ̃2). Therefore

EPη

[(
θ̂PAS
j, ω − θj

)2]
= EPη

[(
ωj
(
θ̂PT
j − θj

)
+ (1− ωj)

(
Z̃fj − θj

))2]
=

ω2

(ω + σ̃2)2
EPη

[(
θ̂PT
j − θj

)2]
+

σ̃4

(ω + σ̃2)2
EPη

[(
Z̃fj − θj

)2]
+ 2

σ̃2ω

(ω + σ̃2)2
EPη

[(
θ̂PT
j − θj

)(
Z̃fj − θj

)]
.

By our assumption, second moment terms like σ̃2 and γ̃ are now fixed, so we have (by iterated expectation)

EPη

[(
θ̂PT
j − θj

)2]
= σ̃2.

Noting that γ̃j = 0 since Nj =∞, we have

EPη

[(
θ̂PAS
j, ω − θj

)2]
=

ω2σ̃2

(ω + σ̃2)2
+

σ̃4

(ω + σ̃2)2
EPη

[(
Z̃fj − θj

)2]
.

Plugging in ω = EPη

[(
Z̃fj − θj

)2]
gives

ω2σ̃2

(ω + σ̃2)2
+

σ̃4

(ω + σ̃2)2
EPη

[(
Z̃fj − θj

)2]
=

σ̃2EPη

[
(Z̃fj − θj)2

]
σ̃2 + EPη

[
(Z̃fj − θj)2

] .
We finally have

BPη
m (θ̂

PAS
) ≤

σ̃2EPη

[
(Z̃fj − θj)2

]
σ̃2 + EPη

[
(Z̃fj − θj)2

] + o(1).
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F.5. Proof of Lemma C.2

We aim to prove that EPη

[
(λ̂clip − λ∗clip,m)2

]
→ 0 as m → ∞. Let λ∗m be the unclipped theoretical optimal global

parameter for m problems, and λ̂ be its unclipped sample-based estimator:

λ∗m =

∑m
j=1 n

−1
j γj∑m

j=1
nj+Nj

njNj
τ2j

and λ̂ =

∑m
j=1 n

−1
j γ̂j∑m

j=1
nj+Nj

njNj
τ̂2j
.

The clipped versions are λ∗clip,m = clip(λ∗m, [0, 1]) and λ̂clip = clip(λ̂, [0, 1]).

Step 1: Convergence in probability of the numerator and the denominator. Let:

N∗
m =

1

m

m∑
j=1

n−1
j γj , D∗

m =
1

m

m∑
j=1

nj +Nj
njNj

τ2j , (38)

N̂m =
1

m

m∑
j=1

n−1
j γ̂j , D̂m =

1

m

m∑
j=1

nj +Nj
njNj

τ̂2j . (39)

So λ∗m = N∗
m/D

∗
m and λ̂ = N̂m/D̂m. We denote ∆Nm = N̂m −N∗

, = m−1
∑m
j=1 Uj where Uj = n−1

j (γ̂j − γj). Note
that EPη

[Uj ] = 0, and by assumption 2 and 3 we know that VarPη
[Uj ] = EPη

[n−2
j Varηj [γ̂j ]] is bounded (say < VU <∞),

we then have
EPη [∆Nm] = 0, VarPη [∆Nm]→ 0 as m→∞.

So ∆Nm
L2

−−→ 0, which implies ∆Nm
P−→ 0. Thus, N̂m −N∗

m
P−→ 0. An identical proof will also give us D̂m −D∗

m
P−→ 0

for the denominator terms.

Step 2: Convergence in probability of unclipped ratio. By assumption 5, we have D∗
m (and D̂m as well since

D̂m = D∗
m + oP (1)) bounded away from zero in probability. Thus, by standard argument using the Continuous Mapping

Theorem, we have

λ̂− λ∗m =
N∗
m + oP (1)

D∗
m + oP (1)

− N∗
m

D∗
m

P−→ 0.

for the unclipped ratio.

Step 2: L2 convergence for the clipped ratio. The clipping function g(x) = clip(x, [0, 1]) is again continuous. Re-applying
the Continuous Mapping Theorem gives

λ̂clip − λ∗clip,m = clip(λ̂, [0, 1])− clip(λ∗m, [0, 1])
P−→ 0.

Finally, the clipping also makes sure that |λ̂clip − λ∗clip,m| ≤ 1. This then leads to the stronger convergence result

λ̂clip − λ∗clip,m
L2

−−→ 0 and completes the proof.

F.6. Proof of Theorem C.3

Denote Vj(λ) = Varηj [θ̂j,λ] =
σ2
j

nj
− 2λ

nj
γj + λ2

nj+Nj

njNj
τ2j . Let Sm(λ) =

∑m
j=1 Vj(λ). The average sum of variances is

Vm(λ) = 1
mSm(λ). We can express Vm(λ) as a quadratic function of λ: Vm(λ) = Cm − 2Bmλ+Amλ

2, where

Am =
1

m

m∑
j=1

nj +Nj
njNj

τ2j (= D∗
m from Equation (38))

Bm =
1

m

m∑
j=1

γj
nj

(= N∗
m from Equation (38))

Cm =
1

m

m∑
j=1

σ2
j

nj
.
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The minimizer of Vm(λ) over λ ∈ R is λu = Bm/Am (assuming Am > 0, which holds if not all τ2j = 0). Since Vm(λ) is
a quadratic function in λ with a positive leading coefficient Am (i.e., an upward-opening parabola), its minimum over the
closed interval [0, 1] is achieved at λ∗clip,m = clip(λu, [0, 1]) = clip(Bm/Am, [0, 1]).

We want to show that Vm(λ̂clip)− Vm(λ∗clip,m)
P−→ 0. The derivative of Vm(λ) is V ′

m(λ) = 2Amλ− 2Bm. By the Mean
Value Theorem, for some ξm between λ̂clip and λ∗clip,m:

Vm(λ̂clip)− Vm(λ∗clip,m) = V ′
m(ξm)(λ̂clip − λ∗clip,m)

= (2Amξm − 2Bm)(λ̂clip − λ∗clip,m)

Since λ̂clip and λ∗clip,m are both in [0, 1], ξm is also in [0, 1]. The terms Am = D∗
m and Bm = N∗

m are averages of m
independent terms with uniformly bounded variances (under Assumption 4 of Lemma C.2). Thus, by Chebyshev’s inequality,
Am = OP (1) and Bm = OP (1) (i.e., they are bounded in probability). Since ξm ∈ [0, 1], the term (2Amξm − 2Bm) is
also OP (1). Let ∆λm = λ̂clip − λ∗clip,m. From Lemma C.2, we have ∆λm

P−→ 0. Therefore,

Vm(λ̂clip)− Vm(λ∗clip,m) = (2Amξm − 2Bm)∆λm
P−→ 0.

The L1 convergence then follows from the fact that This establishes the asymptotic variance optimality of the UniPT
estimator.

F.7. Proof of Proposition C.5

Organization of the proof. We provide a high-level sketch of the proof in Figure 7. Our main goal is to establish that

ĈURE− ℓm
L1

−−→ 0 uniformly in ω as m →∞. To achieve this, we introduce two intermediate estimators—CURE′ and
CURE′′—that serve as bridges between ĈURE and ℓm. The proof proceeds by showing that each consecutive pair of
estimators is asymptotically close, which allows us to conclude the overall result via repeated applications of the triangle
inequality.

ĈURE
Eq. (26)

CURE′

Eq. (40)
CURE′′

Eq. (41)
ℓm

Eq. (9)
Lemma F.7 Lemma F.5 Theorem F.4

Figure 7. A visual sketch of the proof. Each node represents a variant of the original CURE (i.e. a risk estimator conditioned on ω); each
arrow then represents an asymptotic (m→∞) closeness result between the estimators.

We first define two intermediate forms of CURE, denoted as CURE′ and CURE′′ respectively, between the original CURE
(Eq. 24) that requires full knowledge about second moments and the sample estimate-based ĈURE defined in Equation (26):

CURE′(θ̂
UPAS
ω ) =

1

m

m∑
j=1

[
(2ω◦

j − 1)σ̇2
j + 2(1− ω◦

j )γ̇j + (1− ω◦
j )

2
(
θ̂UPT
j − Z̄fj

)2]
, ω◦

j :=
ω

ω + σ̊2
j

, (40)

with σ̊2
j being the variance target defined in Equation (27).27 In other words, we can treat σ̊2

j as a fixed (but unknown) plug-in
value so ω◦

j is non-random for all ω > 0. Next we define CURE′′ by replacing the σ̇2
j and γ̇j terms in CURE′—which in

turn depend on the estimated UniPT parameter λ̂clip—with variants that depend on λ∗clip,m instead:

CURE′′(θ̂
UPAS
ω ) =

1

m

m∑
j=1

[
(2ω◦

j − 1)σ̈2
j + 2(1− ω◦

j )γ̈j + (1− ω◦
j )

2
(
θ̂UPT
j − Z̄fj

)2]
, (41)

where σ̈2
j =

σ̂2
j

nj
+
Nj + nj
Njnj

(λ∗clip,m)2τ̂2j −
2

nj
λ∗clip,mγ̂j , γ̈j = λ∗clip,m

τ̂2j
Nj

.

CURE′′ possesses the following desirable properties:

27We omit the dependency on m by using the shorthand σ̊2
j ≡ σ̊2

j,m introduced in (27).
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Lemma F.3. CURE′′(θ̂
UPAS
ω ) is an unbiased estimator ofRm(θ̂

UPAS
ω ) conditioning on ηj .

Proof. This is a direct result of Theorem B.1 and σ̈2
j , γ̈j being unbiased estimators by construction.

Theorem F.4 (Asymptotic Consistency of CURE′′). Under the assumption of Proposition C.5,

EPη

[
sup
ω≥0
|CURE′′(θ̂

UPAS
ω )− lm(θ̂

UPAS
ω ,θ)|

]
m→∞−−−−→ 0.

Proof. For simplicity, hereafter we drop the notations’ dependencies on θ̂
UPAS
ω . By triangle inequality,

EPη

[
sup
ω≥0
|CURE′′ − lm|

]
≤ EPη

[
sup
ω≥0
|CURE− lm|

]
+ EPη

[
sup
ω≥0
|CURE′′ − CURE|

]
, (42)

and we remark here that the CURE referred in Equation (42) differs slightly from the CURE for PAS in Theorem 4.1 as
we replace σ̃2

j with σ̊2
j in the definition of its ωj (same as ω◦

j ).28 But since σ̊2
j is a fixed plug-in value, we can still use

Theorem 4.1 to bound the first term on the RHS of (42), so the only task here is to bound the second term as well.

Let Aj = σ̈2
j − σ̃2

j and Bj = γ̈j − γ̃j . By assumption, we have Eηj [Aj ] = 0, Eηj [Bj ] = 0, Eηj [A2
j ] ≤ Vσ < ∞ and

Eηj [B2
j ] ≤ Vγ <∞. Let cj(ω) = 2ωj − 1 and dj(ω) = 2(1− ωj), we have

CURE′′ − CURE =
1

m

m∑
j=1

(CURE′′
j − CUREj) =

1

m

m∑
j=1

(cj(ω)Aj + dj(ω)Bj).

Now we can apply triangle inequality again. Since both cj(ω) and dj(ω) are monotone functions of ω (and supported
on [0, 1]), we can use the same strategies (constructing martingale and applying maximal inequality) as in the proof
of Proposition 5.1 Let M ′

k =
∑k
j=1Aj , we have∣∣∣∣∣∣
m∑
j=1

cj(ω)Aj

∣∣∣∣∣∣ =
∣∣∣∣∣
m−1∑
k=1

(ck(ω)− ck+1(ω))M
′
k + cm(ω)M ′

m

∣∣∣∣∣
≤ (1 + |cm(ω)|) max

1≤k≤m
|M ′

k| ≤ 2 max
1≤k≤m

|M ′
k| (43)

Now taking expectation over Pη and use the maximal inequality gives

EPη

[(
max

1≤k≤m
|M ′

k|
)2
]
≤ 4

m∑
j=1

EPη
[A2
j ] ≤ 4mVσ

Finally, by Jensen’s inequality, we have

EPη

sup
ω≥0

∣∣∣∣∣∣ 1m
m∑
j=1

cj(ω)Aj

∣∣∣∣∣∣
 ≤ EPη

 1

m
sup
ω≥0

∣∣∣∣∣∣
m∑
j=1

cj(ω)Aj

∣∣∣∣∣∣


≤ EPη

[
2

m
max

1≤k≤m
|M ′

k|
]
=

2

m
EPη

[
max

1≤k≤m
|M ′

k|
]
≤ 2

m
2
√
mVσ =

4
√
Vσ√
m
→ 0

Similar to Equation (43), we can show that ∣∣∣∣∣∣
m∑
j=1

dj(ω)Bj

∣∣∣∣∣∣ ≤ 2 max
1≤k≤m

|N ′
k|

28In other parts of this CURE, however, we keep using σ̃2
j := Var

[
θ̂UPT
λ∗
clip,m

]
and γ̃j := Cov

[
θ̂UPT
j,λ∗

clip,m
, Z̃f

j

]
, which are also the limits

of σ̈2
j and γ̈j as m→∞.
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where N ′
k =

∑k
j=1Bj . Again by applying maximal inequality,

EPη

[(
max

1≤k≤m
|N ′

k|
)2
]
≤ 4mVγ .

Finally

EPη

sup
ω≥0

∣∣∣∣∣∣ 1m
m∑
j=1

dj(ω)Bj

∣∣∣∣∣∣
 ≤ EPη

[
2

m
max

1≤k≤m
|N ′

k|
]
=

2

m
2
√
mVγ =

4
√
Vγ√
m
→ 0

as m→∞. Combining everything together gives

EPη

[
sup
ω≥0
|CURE′′ − CURE|

]
≤ EPη

[
sup
ω≥0

∣∣∣∣ 1m∑
cjAj

∣∣∣∣]+ EPη

[
sup
ω≥0

∣∣∣∣ 1m∑
djBj

∣∣∣∣]
≤ O(1/

√
m) +O(1/

√
m)→ 0

CURE′′ retains the nice asymptotic properties of CURE, but it consists of σ̈2
j and γ̈j that we cannot evaluate from data

(due to the unknown λ∗clip,m). Our next lemma derives the asymptotic closeness between CURE′′ and CURE′, where the

definition of the latter quantity is one step closer to the fully data-driven ĈURE.

Lemma F.5 (Closeness between CURE′ and CURE′′). Under the assumption of Proposition C.5, we have

EPη

[
sup
ω≥0
|CURE′(θ̂

UPAS
ω )− CURE′′(θ̂

UPAS
ω )|

]
m→∞−−−−→ 0

Proof. By construction, CURE′ and CURE′′ only differ in their use of σ̇2
j versus σ̈2

j (similarly for γ̇j v.s.γ̈j). We can thus
decompose their difference as

sup
ω>0

∣∣CURE′ − CURE′′∣∣ = sup
ω>0

∣∣∣∣∣∣ 1m
m∑
j=1

[
(2ω◦

j − 1)(σ̇2
j − σ̈2

j ) + 2(1− ω◦
j )(γ̇j − γ̈j)

]∣∣∣∣∣∣ .
≤ 1

m

m∑
j=1

sup
ω>0

∣∣(2ω◦
j − 1)(σ̇2

j − σ̈2
j )
∣∣+ 1

m

m∑
j=1

sup
ω>0

∣∣2(1− ω◦
j )(γ̇j − γ̈j)

∣∣
≤ 1

m

m∑
j=1

∣∣σ̇2
j − σ̈2

j

∣∣+ 2

m

m∑
j=1

|γ̇j − γ̈j | (44)

since supω |2ω◦
j − 1| ≤ 1 and supω |2(1− ω◦

j )| ≤ 2. Since we have λ̂clip → λ∗clip,m (and λ̂2clip → (λ∗clip,m)2)29 in L2, and
by our fourth-moment assumptions we have EPη [σ̂

2
j ], EPη [τ̂

2
j ], and EPη [γ̂j ] all finite, by construction we also have

sup
j

EPη

[
(σ̇2
j − σ̈2

j )
2
] m→∞−−−−→ 0 and sup

j
EPη

[
(γ̇j − γ̈j)2

] m→∞−−−−→ 0.

These uniform L2 convergence conditions are sufficient to make sure the expectation of Equation (44) converges to 0, and
we thus prove our lemma.

At this point, we note that the only intractable piece in CURE′ is the unknown variance target σ̊2
j , which is used for

constructing the weights ω◦
j . ĈURE then operationalize CURE′ by replacing σ̊2

j with the sample-based σ̌2
j . Our next lemma

shows that σ̌2
j → σ̊2

j uniformly in L2 as m→∞, which then leads to our final closeness result between ĈURE and CURE′.

29We defer the proof of this convergence result to Lemma F.6.

37



Prediction-Powered Adaptive Shrinkage Estimation

Lemma F.6 (Uniform L2 convergence of σ̌2
j ). Under the assumption of Proposition C.5, we have

sup
j

EPη

[
(σ̌2
j − σ̊2

j )
2
] m→∞−−−−→ 0

Proof. We can decompose the difference as

σ̌2
j − σ̊2

j =
1

nj
(σ̄2 − µσ2) +

Nj + nj
Njnj

λ̂2clip(τ̄
2 − µτ2)− 2

nj
λ̂clip(γ̄ − µγ)︸ ︷︷ ︸

(∗)

+
Nj + nj
Njnj

µτ2(λ̂2clip − (λ∗clip,m)2)− 2

nj
µγ(λ̂clip − λ∗clip,m)︸ ︷︷ ︸

(∗∗)

.

Bounding (∗): Using the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2),

EPη [(∗)2] ≤ 3
(
c21EPη [(σ̄

2 − µσ2)2] + c22EPη [(τ̄
2 − µτ2)2] + c23EPη [(γ̄ − µγ)2]

)
(45)

where c1, c2, c3 are some bounded terms involving nj , Nj , λ̂clip (note that λ̂clip is clipped and bounded). Now, by our
assumptions (esp. the finiteness of fourth-moments) and the Weak Law of Large Numbers, as m→∞ we have

σ̄2 P−→ EPη
[σ2
j ] =: µσ2 , τ̄2

P−→ EPη
[τ2j ] =: µτ2 , γ̄

P−→ EPη
[γj ] =: µγ ,

then by our assumption (again by finite fourth moments in data generating process),

EPη
[(σ̄2 − µσ2)2] = VarPη

[σ̄2] =
1

m
VarPη

[σ̂2
j ] = O(1/m),

similarly, we know that the other two terms in the RHS of Equation (45) are also O(1/m). Moreover, since all the problems
are iid, these rates remain valid even if we take the supremum over j ∈ [m]. We thus have

sup
j

EPη
[(∗)2] = O(1/m) = o(1).

Bounding (∗∗): Similarly, we use the inequality (a+ b)2 ≤ 2a2 + 2b2 to get

EPη
[(∗∗)2] ≤ 2

(
k21EPη

[(
(λ̂2clip − (λ∗clip,m)2

)2]
+ k22EPη

[
(λ̂clip − λ∗clip,m)2

])
(46)

where k1, k2 are some bounded terms involving nj , Nj , µτ2 , µγ . By Proposition C.2, we already know that λ̂clip → λ∗clip,m
in L2. Further, since both λ̂clip and λ∗clip,m are bounded within [0, 1], thus(

(λ̂2clip − (λ∗clip,m)2
)2

= (λ̂clip − λ∗clip,m)2(λ̂clip + λ∗clip,m)2

≤ 2(λ̂clip − λ∗clip,m)2

so we know that λ̂2clip → (λ∗clip,m)2 in L2 as well. We thus have supj EPη
[(∗∗)2] = o(1).

Putting (∗) and (∗∗) together. Since (σ̌2
j − σ̊2

j )
2 ≤ 2(∗)2 + 2(∗∗)2, the above results show us that

sup
j

EPη

[
(σ̌2
j − σ̊2

j )
2
]
≤ 2 sup

j
EPη

[(∗)2] + 2 sup
j

EPη
[(∗∗)2] = o(1)

and we obtain the uniform convergence in L2.

With Lemma F.6, we can derive an asymptotic closeness result between CURE′ and the new ĈURE that we can actually
calculate from data.
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Lemma F.7 (Closeness between ĈURE and CURE′). Under the assumption of Proposition C.5, we have

EPη

[
sup
ω≥0
|ĈURE(θ̂

UPAS
ω )− CURE′(θ̂

UPAS
ω )|

]
m→∞−−−−→ 0

Proof. Denote Dj(ω) = ĈUREj − CURE′
j as the difference on the j-th problem. We can further decompose

Dj(ω) = 2∆ωj σ̇
2
j︸ ︷︷ ︸

Qj(ω)

−2∆ωj γ̇j︸ ︷︷ ︸
Rj(ω)

−∆ωj(2− ω̂j − ω◦
j )(θ̂j − Z̄

f
j )

2︸ ︷︷ ︸
Sj(ω)

,

with ∆ωj := ω̂j − ω◦
j =

ω(̊σ2
j − σ̌2

j )

(ω + σ̌2
j )(ω + σ̊2

j )
.

Going term by term, for Qj(ω), we have that for all ω > 0

|Qj(ω)| =

∣∣∣∣∣2 ω(̊σ2
j − σ̌2

j )

(ω + σ̌2
j )(ω + σ̊2

j )
σ̇2
j

∣∣∣∣∣ ≤ 2

δ
|̊σ2
j − σ̌2

j ||σ̇2
j |,

since ω
ω+σ̌2

j
≤ 1 and ω + σ̊2

j ≥ δ ≥ 0 (by our assumption in Proposition C.5). Therefore,

EPη

sup
ω≥0

∣∣∣∣∣∣ 1m
m∑
j=1

Qj(ω)

∣∣∣∣∣∣
 ≤ EPη

 1

m

m∑
j=1

sup
ω≥0
|Qj(ω)|


≤ EPη

 1

m

m∑
j=1

2

δ
|̊σ2
j − σ̌2

j ||σ̇2
j |

 ≤ 2

mδ

m∑
j=1

√
EPη

[
(̊σ2
j − σ̌2

j )
2
]
EPη

[(σ̇2
j )

2], (47)

where the last inequality follows from Cauchy-Schwarz. Handling Rj(ω) similarly, we have

EPη

sup
ω≥0

∣∣∣∣∣∣ 1m
m∑
j=1

Rj(ω)

∣∣∣∣∣∣
 ≤ 2

mδ

m∑
j=1

√
EPη

[
(̊σ2
j − σ̌2

j )
2
]
EPη [γ̇

2
j ]. (48)

Finally, we have

|Sj(ω)| =
ω|̊σ2

j − σ̌2
j |

(ω + σ̌2
j )(ω + σ̊2

j )
|2− ω̂j − ω◦

j |(θ̂j − Z̄
f
j )

2.

Using ω
ω+σ̌2

j
≤ 1, 1

ω+σ̊2
j
≤ 1

δ , and |2− ω̂j − ω◦
j | ≤ 2,

sup
ω
|Sj(ω)| ≤

2

δ
|̊σ2
j − σ̌2

j |(θ̂j − Z̄
f
j )

2,

which gives

EPη

sup
ω≥0

∣∣∣∣∣∣ 1m
m∑
j=1

Sj(ω)

∣∣∣∣∣∣
 ≤ 2

mδ

m∑
j=1

√
EPη

[
(̊σ2
j − σ̌2

j )
2
]
EPη

[
(θ̂j − Z̄fj )4

]
. (49)

Now, by the uniform L2 convergence of σ̊2
j given by Lemma F.6, as well as the fourth-moment assumptions that guarantee

EPη [(σ̇
2
j )

2] < ∞, EPη [γ̇
2
j ] < ∞ and EPη

[
(θ̂j − Z̄fj )4

]
< ∞, we immediately see that (47, 48, 49) are all o(1) terms.

Finally

EPη

[
sup
ω≥0
|ĈURE(θ̂

UPAS
ω )− CURE′(θ̂

UPAS
ω )|

]
≤ EPη

sup
ω≥0

∣∣∣∣∣∣ 1m
m∑
j=1

Qj(ω)

∣∣∣∣∣∣
+ EPη

sup
ω≥0

∣∣∣∣∣∣ 1m
m∑
j=1

Rj(ω)

∣∣∣∣∣∣


+ EPη

sup
ω≥0

∣∣∣∣∣∣ 1m
m∑
j=1

Sj(ω)

∣∣∣∣∣∣
 m→∞−−−−→ 0.
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Finally, combining the results from Theorem F.4, Lemma F.5 and Lemma F.7 via triangle inequality, we obtain the final
result through

EPη

[
sup
ω≥0
|ĈURE(θ̂

UPAS
ω )− lm(θ̂

UPAS
ω ,θ)|

]
≤ EPη

[
sup
ω≥0
|CURE′′(θ̂

UPAS
ω )− lm(θ̂

UPAS
ω ,θ)|

]
+ EPη

[
sup
ω≥0
|CURE′(θ̂

UPAS
ω )− CURE′′(θ̂

UPAS
ω )|

]
+ EPη

[
sup
ω≥0
|ĈURE(θ̂

UPAS
ω )− CURE′(θ̂

UPAS
ω )|

]
m→∞−−−−→ 0.
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