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Abstract

The primary aim of Knowledge Graph Embed-001
dings (KGE) is to learn low-dimensional rep-002
resentations of entities and relations for pre-003
dicting missing facts. Although rotation-based004
methods like RotatE (Sun et al., 2019) and005
QuatE (Zhang et al., 2019) perform well in006
KGE, they face two challenges: limited model007
flexibility requiring proportional increases in008
relation size with entity dimension, and diffi-009
culties in generalizing the model for higher-010
dimensional rotations. To address these is-011
sues, we introduce OrthogonalE, a novel KGE012
model employing matrices for entities and013
block-diagonal orthogonal matrices with Rie-014
mannian optimization for relations. This ap-015
proach not only enhances the generality and016
flexibility of KGE models but also captures sev-017
eral relation patterns that rotation-based meth-018
ods can identify. Experimental results indi-019
cate that our new KGE model, OrthogonalE,020
offers generality and flexibility, captures sev-021
eral relation patterns, and significantly outper-022
forms state-of-the-art KGE models while sub-023
stantially reducing the number of relation pa-024
rameters.025

1 Introduction026

The fundamental elements of knowledge graphs027

(KGs) are factual triples, each represented as028

(h, r, t), indicating a relationship r between head029

entity h and tail entity t. Notable examples include030

Freebase (Bollacker et al., 2008), Yago (Suchanek031

et al., 2007), and WordNet (Miller, 1995). KGs032

have practical applications in various fields such033

as question-answering (Hao et al., 2017), informa-034

tion retrieval (Xiong et al., 2017), recommender035

systems (Zhang et al., 2016), and natural language036

processing (Yang and Mitchell, 2019), garnering037

considerable interest in academic and commercial038

research.039

Addressing the inherent incompleteness of KGs,040

link prediction has become a pivotal area of fo-041

...

...

Figure 1: Fundamental operations (e1R · e1h ≈ e1t )
and inherent challenges of rotation-based KGE models.
Rotation-based methods require increasing relation pa-
rameters for adequate entity representation and struggle
with researching higher-dimensional rotation embed-
dings (d > 3) due to their complexity. OrthogonalE,
depicted in Fig. 2, efficiently resolves these challenges.

cus. Recent research (Bordes et al., 2013; Trouillon 042

et al., 2016) has extensively leveraged Knowledge 043

Graph Embedding (KGE) techniques, aiming to 044

learn compact, low-dimensional representations of 045

entities and relations. These approaches, marked by 046

scalability and efficiency, have shown proficiency 047

in modeling and deducing KG entities and relations 048

from existing facts. 049

Recently, rotation-based KGE methods have 050

achieved notable success in the field. For instance, 051

RotatE (Sun et al., 2019) conceptualizes relations 052

as 2D rotations while QuatE (Zhang et al., 2019) 053

employs 3D rotations to obtain a more expressive 054

model than RotatE. Essentially, as illustrated in 055

Fig. 1 , both operate by multiplying the relation ma- 056

trix e1R ∈ Rn×n composed of the block-diagonal 057

Rotation matrix Bi ∈ Rd×d (RotatE: R2×2, QuatE: 058

R3×3) with the head entity vector e1h ∈ Rn. 059

However, these approaches face two primary is- 060

sues, as illustrated in Fig. 1. First, the model’s lack 061
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Figure 2: Diagram of the OrthogonalE approach. We
employ matrices for entities and block-diagonal orthog-
onal matrices with Riemannian optimization for rela-
tions, thereby retaining the advantages of rotation-based
method relation patterns while addressing its two main
issues.

of flexibility necessitates increasing the overall rela-062

tion matrix (e1R ∈ Rn×n → e2R ∈ R(n+l)×(n+l)) to063

meet entity dimension requirements (e1h ∈ Rn →064

e2h ∈ Rn+l) for better represent entities. For065

example, when the entity vector changes (e1h ∈066

R100 → e2h ∈ R1000) for better representation, the067

parameter increase is 900, but the corresponding068

change in the relation matrix (e1R ∈ R100×100 →069

e2R ∈ R1000×1000) results in a parameter increase070

of 990,000. This substantial increase leads to re-071

dundancy and inefficiency in representing relations.072

Second, exploring high-dimensional rotational073

KGE models is challenging due to the significant074

computational demands and complexity of rota-075

tions in higher dimensions (Bi : R2×2,R3×3 →076

Rd×d, d > 3), such as SO(4), SO(5), and SO(10).077

This restricts the development of more generalized078

and higher-dimensional rotation KGE approaches.079

To overcome these two issues, we propose a080

highly general and flexible KGE model named081

OrthogonalE as shown in Fig. 2, and detailed no-082

tation details are shown in Table. 1. Firstly, by083

transforming entity vectors ev ∈ Rn into matri-084

ces eV ∈ Rn×m for better represent entities, we085

control the entity dimension through variable m,086

avoiding unnecessary expansion of the relation size.087

Corresponding to the above example, we can main-088

tain relation size (eR ∈ R100×100) and only mod-089

ify entity matrix size (e1V ∈ R100×1 → e2V ∈090

R100×10,m : 1 → 10) to meet the requirements091

of entity representation. Secondly, leveraging the092

concept that rotation matrices are orthogonal, we093

replace rotation matrices Bi with orthogonal matri-094

Notation Explanation
(h, r, t) ∈ E Fact triples
V Entity sets
R Relation sets
ev ∈ Rn Entity vector rep
eV ∈ Rn×m Entity matrix rep in OrthogonalE
eR ∈ Rn×n Relation matrix rep
Bi ∈ Rd×d Block-diagonal rotation matrix
Xi ∈ Rd×d Block-diagonal orthogonal matrix
n ∈ R1 Row size of relation matrix rep
m ∈ R1 Column size of entity matrix rep
d ∈ R1 size of Block-diagonal matrix
dE (., .) Euclidean distance
bv ∈ R1 Entity bias
· Matrix multiplication
s(h, r, t) Scoring function

Table 1: Notation summary. Within the table, ev in-
cludes the head eh and tail et entity vectors as used in
traditional KGE methods, whereas eV consists of the
head eH and tail eT entity matrix representations in our
OrthogonalE approach. Furthermore, ’rep’ in the table
denotes representation.

ces Xi ∈ Rd×d of adaptable dimensions d, facili- 095

tating the exploration of higher-dimensional block- 096

diagonal orthogonal matrix models. Lastly, for 097

effective optimization, we employ Riemannian op- 098

timization for the relation matrix eR ∈ Rn×n and 099

Stochastic Gradient Descent (SGD) for the entity 100

matrix eV ∈ Rn×m. 101

We evaluate the new model on two KGE 102

datasets including WN18RR (Dettmers et al., 103

2018), FB15K-237 (Toutanova and Chen, 2015). 104

Experimental results indicate that our new KGE 105

model, OrthogonalE, offers generality and flexibil- 106

ity, captures several relation patterns, and signif- 107

icantly outperforms state-of-the-art KGE models 108

while substantially reducing the number of relation 109

parameters. 110

2 Related Work 111

Knowledge Graph Embedding Translation- 112

based approaches are prominent in KGE, notably 113

TransE (Bordes et al., 2013), which interprets rela- 114

tions as vector translations. TransH (Wang et al., 115

2014), TransR (Lin et al., 2015), and TransD (Ji 116

et al., 2015) represent extensions of the translation- 117

based method, building upon the foundational ap- 118

proach of TransE. ComplEx(Trouillon et al., 2016) 119

advances this by embedding KGs in a complex 120
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space and using the Hermitian product for model-121

ing antisymmetric patterns. Inspired by ComplEx,122

RotatE (Sun et al., 2019) then innovated by treat-123

ing relations as rotations in a complex vector space,124

capable of capturing varied relation patterns like125

Symmetry, Antisymmetry, Inversion, and Commu-126

tative Composition. Following this, QuatE (Zhang127

et al., 2019) employed quaternion operations (3D128

rotations) for even better expressiveness than Ro-129

tatE. DensE (Lu et al., 2022) employed various130

techniques for 3D rotation implementation and pro-131

posed that 3D rotation could handle the relation132

pattern of non-commutative composition. HopfE133

(Bastos et al., 2021) seeks to employ SO(4) rather134

than SO(3) for KG representation, which is directly135

connected to the generality issue discussed in our136

research. We are also keen on investigating ro-137

tations in higher dimensions. Nonetheless, pro-138

gressing to SO(5) or even SO(10) poses substantial139

difficulties.140

In conclusion, considering the two major disad-141

vantages of rotation-based methods mentioned in142

the Introduction 1, we need to refine our model to143

make it more general and flexible.144

Optimization on the orthogonal manifold In145

optimization on the orthogonal manifold, transi-146

tioning from Xt to Xt+1 while remaining on the147

manifold necessitates a method known as retraction148

(Absil and Malick, 2012). Prior research has effec-149

tively adapted several standard Euclidean function150

minimization algorithms to Riemannian manifolds.151

Notable examples include gradient descent ((Absil152

et al., 2008); (Zhang and Sra, 2016)), second-order153

quasi-Newton methods ((Absil et al., 2007); (Qi154

et al., 2010)), and stochastic approaches (Bonnabel,155

2013), crucial in deep neural network training.156

Meanwhile, we often use Riemannian optimiza-157

tion for the orthogonal manifold, which has also158

progressed in deep learning, especially in CNNs159

and RNNs. (Cho and Lee, 2017) innovatively sub-160

stituted CNN’s Batch Normalization layers with161

Riemannian optimization on the Grassmann man-162

ifold for parameter normalization. Additionally,163

significant strides in stabilizing RNN training have164

been made by (Vorontsov et al., 2017), (Wis-165

dom et al., 2016), (Lezcano-Casado and Martınez-166

Rubio, 2019), and (Helfrich et al., 2018), through167

the application of Riemannian optimization to uni-168

tary matrices.169

As this paper primarily focuses on KGE, we170

do not delve deeply into Riemannian optimization.171

Figure 3: Abstract representation of Riemannian gradi-
ent descent iteration on orthogonal manifold

Instead, we utilize the retraction with exponen- 172

tial map for iterative optimization, sourced from 173

Geoopt (Kochurov et al., 2020). 174

3 Problem Formulation and Background 175

We present the KGE problem and describe Opti- 176

mization on the orthogonal manifold before our 177

approach part. 178

3.1 Knowledge Graph Embedding 179

In a KG consisting of fact triples (h, r, t) ∈ E ⊆ 180

V × R × V , with V and R denoting entity and 181

relation sets, the objective of KGE is to map enti- 182

ties v ∈ V to kV -dimensional embeddings ev, and 183

relations r ∈ R to kR-dimensional embeddings 184

er. 185

A scoring function s : V × R × V → R evalu- 186

ates the difference between transformed and target 187

entities, quantified as a Euclidean distance: 188

dE (x,y) = ∥x− y∥ 189

3.2 Optimization on the orthogonal manifold 190

In optimization on the orthogonal manifold, the 191

core problem is formulated as: 192

min
X∈Od

f(X), (1) 193

Here, f is a differentiable function mapping ele- 194

ments of Rd×d to R, and the orthogonal manifold 195

Od is defined as Od ≜
{
X ∈ Rd×d | XX⊤ = Id

}
. 196

Moreover, the tangent space at X , denoted by TX , 197

is the set TX =
{
ξ ∈ Rd×d | ξX⊤ +Xξ⊤ = 0

}
. 198

To address the problem 1 more efficiently, re- 199

cent studies suggest optimization of the orthogonal 200

manifold with retractions as an effective approach 201

(Ablin and Peyré, 2022). In this work, we primar- 202

ily employ the retraction with exponential map for 203
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iterative optimization, as illustrated in Fig. 3. The204

key iteration formula for this method is:205

Xt+1 = ExpXt(−ηGradf(Xt)), (2)206

Where t indexes the iteration steps, ExpXt(ξ) de-207

notes the exponential map, and η represents the208

learning rate. Gradf(·) is the Riemannian gradient.209

Subsequent sections will delve into the computa-210

tion of ExpXt(ξ) and Gradf(·).211

The exponential map allows movement in a spec-212

ified direction on the manifold. Starting from X213

with initial velocity ξ, the exponential map for214

the orthogonal matrices manifold is represented215

by (Massart and Abrol, 2022):216

ExpX(ξ) = Xexpm(X⊤ξ), ∀ξ ∈ TX ,217

where expm(·) denotes the matrix exponential.218

On the orthogonal manifold, the Riemannian gra-219

dient Gradf(·) is calculated as (Absil et al., 2008):220

Gradf(X) = PTX (▽f(X)),221

Where ▽f(X) is Euclidean gradient of f(X), and222

the calculation formula for PTX (·) is:223

PTX (Y ) = X(
X⊤Y − Y ⊤X

2
), Y ∈ Rd×d224

4 Approach225

Our approach is developed to acquire both a flex-226

ible and general KGE model and ensure that this227

model can concurrently represent several relation228

patterns. This is achieved by employing matrices229

for entities and block-diagonal orthogonal matrices230

with Riemannian optimization for relations. Fig-231

ure 2 illustrates the OrthogonalE approach, and232

Table 1 provides the details of the notations used.233

4.1 Orthogonal Matrices for Relations234

To address the challenge of exploring high-235

dimensional rotational KGE models mentioned236

in the introduction, we exploit the orthogonality237

of rotation matrices, substituting rotation matri-238

ces (Bi ∈ Rd×d) with orthogonal matrices (Xi ∈239

Rd×d) of corresponding dimensions d. Conse-240

quently, our relation embedding (eR ∈ Rn×n) are241

composed of n/d block-diagonal orthogonal matri-242

ces Xi as illustrated in Fig. 2:243

eR = diag(X1,X2, ...,Xn/d) (3)244

e Model
Number of Parameters

Normal
m = 1
5.2.2

Fixed eV
5.2.4

eR

RotatE n
2

n
2 (n2 ) ∗m

QuatE n n n ∗m
OrthogonalE(d) (d−1)n

2
(d−1)n

2
(d−1)n

2

eV

RotatE n n n ∗m
QuatE n n n ∗m

OrthogonalE(d) n ∗m n n ∗m

Table 2: The parameter calculations for the KGE mod-
els. For all models, the relation matrix size is n. The
block-diagonal matrix size is 2 for RotatE, 3 for QuatE,
and d for OrthogonalE(d× d), with an entity matrix col-
umn size of m for OrthogonalE. In the table, "Normal"
represents the standard parameter calculation, "m = 1"
constrains the column size of the entity matrix to 1 to
explore the impact of block-diagonal orthogonal matri-
ces on the model, as analyzed in section 5.2.2. "Fixed
eV " ensures that the entity dimensions are consistent
across all models to demonstrate the parameter savings
in the relation matrix when using the entity matrix in
OrthogonalE, as discussed in section 5.2.4.

Where the number of relation parameters is d(d−1)
2 ∗ 245

n
d = (d−1)n

2 , which shown in Table. 2. And this as- 246

pect allows OrthogonalE to gain generality, adapt- 247

ing to datasets with diverse complexities by mod- 248

ifying the block-diagonal matrices’ dimension d. 249

Additionally, the employed relation structure facil- 250

itates the model’s capability to concurrently cap- 251

ture Symmetry, Antisymmetry, Inversion, and Non- 252

commutative Composition relation patterns, as sub- 253

stantiated in Appendix A.3, and detailed introduc- 254

tion of relation patterns refer to Appendix A.5. 255

4.2 Matrices Representation for Entities 256

Inspired by (Miyato et al., 2022), transforms vector 257

embeddings into matrix embeddings to improve 258

embedding effectiveness. In our work, to enhance 259

OrthogonalE’s flexibility, we aim to regulate en- 260

tity dimension using variable m and transform en- 261

tity vectors ev ∈ Rn into matrices eV ∈ Rn×m 262

as shown in Fig. 2, thus preventing unnecessary 263

expansion of the relation size. This part allows Or- 264

thogonalE to acquire flexibility, adapting to diverse 265

datasets with varying relation and entity param- 266

eters, rather than indiscriminately increase both. 267

And the number of entity parameters is n ∗m. 268

4.3 Scoring function and Loss 269

We utilize the Euclidean distance between the trans- 270

formed head entity eR · eH and the tail entity eT 271
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as the scoring function:272

s(h, r, t) = −dE (eR · eH , eT ) +bh+bt (4)273

Here, bv(v ∈ V) denotes the entity bias, incorpo-274

rated as a margin in the scoring function, following275

methodologies from (Tifrea et al., 2018; Balazevic276

et al., 2019). Furthermore, we opt for uniform277

selection of negative samples for a given triple278

(h, r, t) by altering the tail entity, rather than em-279

ploying alternative negative sampling techniques.280

The loss function defined as follows:281

L =
∑
t′

log
(
1 + exp

(
yt′ · s

(
h, r, t′

)))
(5)282

yt′ =

{
−1, if t′ = t
1, otherwise

283

4.4 Optimization284

Traditional KGE models train and optimize rela-285

tions and entities jointly. In contrast, our study286

aims to achieve more effective optimization of the287

block-diagonal orthogonal matrices of relation em-288

beddings Xi ∈ Rd×d by separately optimizing re-289

lations and entities, utilizing Riemannian optimiza-290

tion for the relation matrix eR ∈ Rn×n and SGD291

for the entity matrix eV ∈ Rn×m.292

Initially, when optimizing relations, all entity pa-293

rameters are fixed, rendering the entity embeddings294

analogous to the function f(·) in the problem 1.295

Notably, each block-diagonal orthogonal matrix296

Xi within the relation embedding eR optimized297

by individual Riemannian optimization using Rie-298

mannianAdam (Kochurov et al., 2020), which is299

a Riemannian version (equation 2) of the popular300

Adam optimizer (Kingma and Ba, 2014). These are301

then concatenated in a block-diagonal way accord-302

ing to equation 3 to complete the process. After303

optimizing the relation parameters eR ∈ Rn×n,304

they are held constant while the entity parameters305

eV ∈ Rn×m are optimized using Stochastic Gra-306

dient Descent (SGD), specifically employing the307

Adagrad optimizer (Duchi et al., 2011).308

5 Experiment309

We expect that our proposed OrthogonalE model,310

employing matrices for entities and block-diagonal311

orthogonal matrices with Riemannian optimiza-312

tion for relations, will outperform baseline models.313

Also, we anticipate that OrthogonalE is a general314

and flexible KGE model and can represent several315

relation patterns simultaneously. Our goal is to316

validate these through empirical testing.317

5.1 Experiment Setup 318

Dataset. We evaluate our proposed method on 319

two KG datasets, including WN18RR (Dettmers 320

et al., 2018) (license: Apache 2.0), FB15K-237 321

(Toutanova and Chen, 2015) (license: CC-BY-4.0). 322

The details of these datasets are shown in Table 4. 323

More detail is given in A.1. 324

Evaluation metrics. To predict the tail entity 325

from a given head entity and relation, we rank 326

the correct tail entity among all possible enti- 327

ties using two established ranking metrics. The 328

first is the mean reciprocal rank (MRR), the av- 329

erage inverse ranking of the correct entities, cal- 330

culated as 1
n

∑n
i=1

1
Rank i

. Second is Hits@K for 331

K ∈ {1, 3, 10}, the frequency of correct entities 332

ranking within the top K positions. 333

Baselines. We compare our new model with sev- 334

eral classic methods, including TransE (Bordes 335

et al., 2013), DistMult (Yang et al., 2014), Com- 336

plEx (Trouillon et al., 2016), and ConvE (Dettmers 337

et al., 2018). Additionally, we include rotation- 338

based KGE methods such as RotatE (Sun et al., 339

2019), QuatE (Zhang et al., 2019), HopfE (Bas- 340

tos et al., 2021), and DensE (Lu et al., 2022) as 341

baselines. In addition to these methods and our 342

OrthogonalE(d × d), we introduce comparative 343

models Gram-Schmidt(d× d) utilizing the Gram- 344

Schmidt process for generating orthogonal matrices 345

and SGD for joint relation-entity training. Orthogo- 346

nalE further differentiates by employing orthogonal 347

matrices of varying sizes to discuss performance 348

nuances. 349

Implementation The key hyperparameters of our 350

implementation include the learning rate for Rie- 351

mannianAdam (Kochurov et al., 2020) and Ada- 352

grad (Duchi et al., 2011), negative sample size, 353

and batch size. To determine the optimal hyper- 354

parameters, we performed a grid search using the 355

validation data. More detail refers to A.1. 356

5.2 Results 357

We first analyzed the overall accuracy for all base- 358

line models and OrthogonalE, then separately ex- 359

amined the impacts of block-diagonal Orthogonal 360

matrices, Riemannian Optimization for relations, 361

and entity matrices on the model from various ex- 362

perimental results. Finally, we utilize several re- 363

lation histograms to verify our model can capture 364

these relation patterns. 365
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WN18RR FB15K-237
Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
TransE ♢ .226 - - .501 .294 - - .465
DistMult ♢ .430 .390 .440 .490 .241 .155 .263 .419
ComplEx ♢ .440 .410 .460 .510 .247 .158 .275 .428
ConvE ♢ .430 .400 .440 .520 .325 .237 .356 .501
RotatE ♢ .470 .422 .488 .565 .297 .205 .328 .480
QuatE ♢ .481 .436 .500 .564 .311 .221 .342 .495
HopfE (Bastos et al., 2021) .472 .413 .500 .586 .343 .247 .379 .534
DensE (Lu et al., 2022) .486 - - .572 .306 - - .481
Gram-Schmidt(2×2) .475 .434 .489 .556 .317 .226 .344 .502
Gram-Schmidt(3×3) .487 .445 .500 .568 .322 .232 .350 .504
OrthogonalE(2×2) .490 .445 .503 .573 .330 .239 .368 .516
OrthogonalE(3×3) .493 .450 .508 .580 .331 .240 .359 .513
OrthogonalE(4×4) .493 .446 .506 .578 .332 .240 .363 .517
OrthogonalE(10×10) .494 .446 .508 .573 .334 .242 .367 .518

Table 3: Link prediction accuracy results of two datasets, Bold indicates the best score, and underline represents the
second-best score. For a fair comparison, we standardized m at 1 for Gram-Schmidt and all OrthogonalE sizes.
The entity dimension for WN18RR was set at approximately 500 (for example, 501 for 3×3 blocks to ensure
experimental feasibility) and around 1000 for FB15K-237. [♢]: The results are sourced from (Zhang et al., 2019).
For a fair comparison, the results of RotatE, QuatE, HopfE, and DensE are reported without self-adversarial negative
sampling, type constraints, semantics, or reciprocals. More baseline results are shown in Appendix A.6.

Figure 4: MRR accuracy comparison of OrthogonalE models with different block-diagonal orthogonal matrices
across varying entity dimensions (n ∗ 1, we set m = 1) on WN18RR and FB15K-237.

Dataset Entities Relations Train Validation Test
WN18RR 40,943 11 86,835 3,034 3,134
FB15K-237 14,541 237 272,115 17,535 20,466

Table 4: Details of the two datasets.

5.2.1 Overall Accuracy366

Table 3 presents link prediction accuracies for the367

WN18RR and FB15K-237 datasets. The Orthogo-368

nalE model demonstrates superior performance in369

the WN18RR dataset and achieves results on the370

FB15K-237 dataset that are only marginally lower371

than those of HopfE (Bastos et al., 2021), outper-372

forming all other compared models, highlighting373

its superior representational ability by employing374

matrices for entities and block-diagonal orthog-375

onal matrices with Riemannian optimization for376

relations. Moreover, the OrthogonalE model with377

2×2 and 3×3 configurations yields significantly 378

better performance than the corresponding sizes of 379

the Gram-Schmidt method, and notably exceeds 380

RotatE and QuatE, respectively, showcasing the en- 381

hanced efficacy of the KGE model. Finally, since 382

the WN18RR and FB15K-237 datasets are rela- 383

tively small, the performance differences among 384

OrthogonalE models with (2× 2), (3× 3), (4× 4), 385

and (10 × 10) are not significant when using suf- 386

ficient dimensions (WN18RR: 500, FB15K-237: 387

1000). We will discuss the performance at different 388

dimensions in detail in section 5.2.2. 389

5.2.2 Block-diagonal Orthogonal matrices 390

Fig. 4 shows MRR accuracy comparison of Orthog- 391

onalE models with different block-diagonal orthog- 392

onal matrices in varying entity dimensions (n ∗ 1, 393
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Figure 5: MRR accuracy comparison of
OrthogonalE(2×2) and Gram-Schmidt(2×2) models
across varying entity dimensions (m) with fixed relation
matrix (40×40) on WN18RR.

Figure 6: MRR accuracy comparison of RotatE and
OrthogonalE(2×2) models across varying entity dimen-
sions (n ∗m) on WN18RR.

we set m = 1) on WN18RR and FB15K-237.394

An initial dataset analysis reveals WN18RR has395

40,943 entities with just 11 relations (about 3,722396

entities per relation), while FB15K-237 includes397

14,541 entities and 237 relations (around 61 entities398

per relation). This implies that WN18RR requires399

a more sophisticated representation capability com-400

pared to FB15K-237.401

Our results (Fig. 4) confirm our dataset analy-402

sis. For WN18RR, the performance is similar for403

block sizes from 3×3 to 10×10, all outperform-404

ing 2×2 blocks, showcasing 2×2 blocks are not405

enough for its relation representation. However, for406

FB15K-237, performance is stable across all block407

sizes, indicating 2×2 blocks are enough for its rela-408

tions representation. These results show WN18RR409

requires more complex blocks for adequate repre-410

sentation, and illustrate that the OrthogonalE model411

is general, which can adapt to datasets of various412

complexities by adjusting the dimension d of the413

block-diagonal matrices.414

5.2.3 Riemannian Optimization for relations415

Fig. 5 compares MRR accuracies of Orthogo-416

nalE (2×2) and Gram-Schmidt (2×2) across en-417

tity dimensions (m) with a constant relation matrix418

Figure 7: MRR accuracy comparison of RotatE and
OrthogonalE(2×2) models across varying entity dimen-
sions (n ∗m) on FB15K-237.

(40×40) on WN18RR, assessing the efficacy of 419

orthogonal optimization beyond the Gram-Schmidt 420

method for block-diagonal orthogonal matrices. 421

The result demonstrates that OrthogonalE’s Rie- 422

mannian optimization significantly exceeds Gram- 423

Schmidt, underscoring its necessity. 424

5.2.4 Entity matrix 425

In OrthogonalE, we maintained a constant entity 426

dimension (n ∗m) while varying m to assess the 427

impact of entity shape. Fig. 6 compares the MRR 428

accuracies of RotatE with OrthogonalE (2×2) over 429

different fixed entity dimensions n∗m in WN18RR. 430

OrthogonalE models with m = 1, 2, or 3 perform 431

similarly and better than m = 10, and all signifi- 432

cantly outperform RotatE across dimensions. No- 433

tably, their relation parameter is 1/m of RotatE’s, 434

which is shown in Table. 2. These results demon- 435

strate OrthogonalE’s efficacy in saving relation pa- 436

rameters while outperforming RotatE, highlighting 437

our model’s flexibility in controlling entity dimen- 438

sion through variable m without unnecessarily in- 439

creasing relation size. 440

Besides the comparison of RotatE and 441

OrthogonalE(2×2), Fig. 7 shows comparison of 442

RotatE and OrthogonalE (2×2) in FB15K-237. 443

The experimental results, consistent with those 444

discussed in the previous paragraph. More details 445

refer to Appendix A.2. 446

5.2.5 Relation Pattern 447

Following the proof of relation patterns in Ap- 448

pendix A.3, Fig. 8 shows histograms of relation em- 449

beddings for different relation patterns. We provide 450

several relation patterns examples and discussion 451

of non-commutative composition in Appendix A.4 452

Symmetry and Antisymmetry In OrthogonalE, 453

the symmetry relation pattern is encoded when the 454

eR embedding satisfies eR · eR = I, in accordance 455

7
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Figure 8: Histograms of relation embeddings for different relation patterns, where
e1R represents _similar_to, e2R represents _member_of_domain_region, e3R represents
/film/film/genre, e4R represents /media_common/netflix_genre/titles, e5R represents
/location/administrative_division/country, e6R represents /location/hud_county_place/place,
and e7R represents /base/aareas/schema/administrative_area/capital. From the WN18RR dataset, we
select e1R and e2R to represent Symmetry and Antisymmetry, respectively, and obtain their relation embeddings using
the OrthogonalE(3×3) model with n=500 and m=1. Similarly, from the FB15K-237 dataset, we select e3R, e4R, and
e5R, e6R, e7R as representations for Inversion and Composition, respectively, and acquire their relation embeddings
under the OrthogonalE(2×2) model with n=1000 and m=1.

with Equation 6. Figs. 8(a) and (b) illustrate the456

embeddings of e1R and e1R · e1R − I, respectively.457

From Fig. 8(b), we observe that nearly all values458

are concentrated around 0, thereby indicating that459

OrthogonalE’s relations exhibit symmetry proper-460

ties. Correspondingly, the multitude of nonzero461

values in Fig. 8(d) indicates that OrthogonalE’s re-462

lations also can represent antisymmetry properties.463

Inversion The inversion relation pattern is en-464

coded when the e3R and e4R satisfies e3R ·e4R = I, ac-465

cording to Equation 8. Even though e3R and e4R are466

responsible for additional relation patterns, which467

results in a cluster of values around −2 in Fig 8468

(g), the majority of values still converge towards or469

equal 0. This suggests that OrthogonalE’s relations470

have the inversion property.471

Composition The composition relation pattern is 472

encoded when the e5R, e6R, and e7R embedding sat- 473

isfy e6R · e5R = e7R, in accordance with Equation 9. 474

The majority of data in Fig. 8 (k) converge towards 475

or are equal to 0, indicating that OrthogonalE’s 476

relations can represent the composition relation pat- 477

tern. 478

6 Conclusion 479

In this study, we propose the OrthogonalE model 480

to acquire a flexible and general KGE model with 481

employing matrices for entities and block-diagonal 482

orthogonal matrices with Riemannian optimization 483

for relations. Experimental results indicate that our 484

new KGE model offers generality and flexibility, 485

captures several relation patterns, and outperforms 486

SoTA rotation-based KGE models while substan- 487

tially reducing the number of relation parameters. 488
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Limitations489

Even though the block-diagonal orthogonal relation490

with Riemannian optimization makes KGE mod-491

els more general and improves their performance,492

the computation of exponential retraction in the493

orthogonal manifold for Riemannian optimization494

is costly. In practical model training, with the same495

entity dimension, our OrthogonalE (2×2) training496

time is 4 times longer than that of RotatE. In future497

research directions, we will continue to explore498

this limitation, such as by employing the landing499

algorithm (Ablin and Peyré, 2022) for retraction500

on orthogonal manifolds to reduce computational501

complexity.502

Ethics Statement503

This study complies with the ACL Ethics Policy.504
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Dataset model lr-entity lr-relation optimizer negative samples

WN18RR(dim=500)

TransE 0.001 - Adam 300
RotatE 0.1 - Adagrad 300
QuatE 0.2 - Adagrad 300

OrthogonalE(2×2) 0.2 0.02 - 300
OrthogonalE(3×3) 0.2 0.02 - 300

FB15k-237(dim=1000)

TransE 0.05 - Adam 300
RotatE 0.1 - Adagrad 300
QuatE 0.2 - Adagrad 300

OrthogonalE(2×2) 0.5 0.06 - 300
OrthogonalE(3×3) 0.5 0.06 - 300

Table 5: Best hyperparameters of our approach and several composite models. In the table, the lr-entity values
corresponding to TransE, RotatE, and QuatE refer to the learning rate for the entire model. For the OrthogonalE
model, we employ RiemannianAdam for relation optimization and Adagrad for entity optimization, as detailed in
the Approach section.

Figure 9: MRR accuracy comparison of QuatE and
OrthogonalE(3×3) models across varying entity dimen-
sions (n ∗m) on WN18RR.

A Appendix694

A.1 More information about Experiment695

setup696

Dataset WN18RR is a subset of WN18697

(Dettmers et al., 2018) which is contained in Word-698

Net (Miller, 1995). FB15K-237 is a subset of699

FB15K, whichh is a subset of Freebase (Bollacker700

et al., 2008), a comprehensive KG including data701

about common knowledge. All three datasets were702

designed for KGE, and we employ them for KGE703

tasks, and all three datasets have no individual peo-704

ple or offensive content.705

Implementation The training of models was car-706

ried out on two A6000 GPUs, which boasts 48GB707

of memory. Specifically, for the OrthogonalE708

model and its related flexible versions, the training709

durations were roughly 5 hour for the WN18RR710

dataset, 30 hours for FB15K-237. Our experiments711

were facilitated by leveraging PyTorch and Numpy712

as essential tools. Furthermore, We use ChatGPT713

in our paper writing. Finally, we obtain results by714

selecting the maximum values from three random 715

seeds for Table 3 and using a single run for other 716

results. 717

A.2 More results about Entity Matrix 718

Fig. 9 compare MRR accuracies of QuatE and Or- 719

thogonalE (3×3) over different fixed entity dimen- 720

sions n∗m on WN18RR. The experimental results, 721

consistent with those discussed in the section 5.2.4, 722

demonstrate our model’s flexibility in controlling 723

entity dimension through variable m without un- 724

necessarily increasing relation size. 725

Furthermore, for OrthogonalE(2×2) on 726

WN18RR dataset, Fig. 5 result (with m = 7 727

yielding MRR=0.483) suggests that a relation 728

matrix of 40×40 (20 parameters), compared to 729

a dimension of 500×500 (250 parameters) in 730

Table 3, can achieve comparably high performance, 731

thus demonstrating that entity matrix method 732

significantly reduces the need for excessive relation 733

parameters. 734

A.3 Proof of Relation Patterns 735

OrthogonalE is capable of representing the four 736

kinds of relational patterns: Symmetry, Antisymme- 737

try, Inversion, and Non-commutative Composition. 738

We present the following propositions to formalize 739

this capability: 740

Proposition 1. OrthogonalE can represent Sym- 741

metry relation pattern. 742

Proof. If (eH , eR, eT ) ∈ E and (eT , eR, eH) ∈ 743
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Figure 10: Toy examples for symmetry, antisymmetry, inversion, and non-commutative composition relation patterns.

E , we have744

eR · eH = eT ∧ eR · eT = eH

⇒ eR · eR = I

⇒ Xi ·Xi = I
(6)745

Proposition 2. OrthogonalE can represent Anti-746

symmetry relation pattern.747

Proof. If (eH , eR, eT ) ∈ E and (eT , eR, eH) /∈748

E , we have749

eR · eH = eT ∧ eR · eT ̸= eH

⇒ eR · eR ̸= I

⇒ Xi ·Xi ̸= I

(7)750

Proposition 3. OrthogonalE can represent Inver-751

sion relation pattern.752

Proof. If (eH , e1R, eT ) ∈ E and (eT , e
2
R, eH) ∈753

E , we have754

e1R · eH = eT ∧ e2R · eT = eH

⇒ e1R · e2R = I

⇒ X1
i ·X2

i = I
(8)755

Proposition 4. OrthogonalE can represent Non-756

commutative Composition relation pattern.757

Proof. If (eH , e1R, eT ) ∈ E and (eT , e
2
R, eP ) ∈ 758

E and (eH , e3R, eP ) ∈ E , we have 759

e1R ·eH = eT ∧ e2R ·eT = eP ∧ e3R ·eH= eP

⇒ e2R · e1R = e3R

⇒ X2
i ·X1

i = X3
i

(9) 760

761

Xi ∈ Rd×d

{
is Commutative, if d = 2
is Non-commutative, if d > 2

(10)

762

The property of non-commutative composition 763

dictates that the sequence of X1
i and X2

i cannot 764

be exchanged. Given that Xi ∈ Rd×d represents 765

an orthogonal matrix, we consider two situations. 766

In the first scenario, when d = 2, Xi is a special 767

case corresponding to a 2-dimensional rotation ma- 768

trix, analogous to the RotatE (Sun et al., 2019), 769

and is therefore commutative, not exhibiting non- 770

commutative composition. However, for d > 2, 771

Xi is non-commutative, thus can represent non- 772

commutative composition relation pattern. 773

To gain a clearer understanding of the proof pro- 774

cess, we use symmetry as an illustrative example to 775

introduce the proof section, specifically referring 776

to equation 6 in the paper. Initially, we assume 777

that if a relation eR in the OrthogonalE model ex- 778

hibits the property of symmetry, then we can iden- 779

tify two related KG triples: (eH , eR, eT ) ∈ E and 780
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(eT , eR, eH) ∈ E . For instance, eH (eR: is sim-781

ilar to) eT and eT (eR: is similar to) eH . Since782

both triples are trained by the OrthogonalE model,783

they adhere to the OrthogonalE equation (as de-784

picted in Fig. 2). Consequently, we can derive that785

eR ·eH = eT and eR ·eT = eH . By combining and786

simplifying these two equations, we can conclude787

that eR · eR = I (Identity matrix). This means788

that if we can identify such an eR that satisfies789

eR · eR = I, it demonstrates that the OrthogonalE790

model can capture the symmetry relation pattern.791

For eR·eR = I, we understand that eR is composed792

of several block-diagonal orthogonal matrices Xi,793

as shown in Fig. 2). Ultimately, this reduces to794

finding Xi · Xi = I to satisfy eR · eR = I. We795

can identify corresponding orthogonal matrices Xi796

that satisfy Xi ·Xi = I, which demonstrates that797

OrthogonalE can fulfill the property of symmetry.798

A.4 More experiments on relation pattern799

Symmetry and Antisymmetry Fig. 11 shows800

histograms of additional examples of relation em-801

beddings for symmetry and antisymmetry relation802

patterns. Furthermore, it displays examples of two803

symmetry and two antisymmetry relations from804

both the WN18RR and FB15K-237 datasets.805

Composition Firstly, we add e1R, e2R, and e3R806

from OrthogonalE(3×3) for comparison with807

the three composition relations in Fig. 8 from808

OrthogonalE(2×2). From Fig. 12(a, b, c, d), we809

observe that OrthogonalE(2×2) performs better in810

composition than OrthogonalE(3×3).811

Secondly, we aim to explore more about the non-812

commutative composition relation pattern, so we813

select e4R, e5R, and e6R, three non-commutative com-814

position relations, for our study. Notably, e7R, e8R,815

and e9R share the same relational meanings as e4R,816

e5R, and e6R, respectively, with the distinction that817

the former are relations within OrthogonalE(3×3),818

while the latter are within OrthogonalE(2×2).819

Figs. 12(h, l), using e5R ·e4R−e6R and e4R ·e5R−e6R820

respectively, show nearly indistinguishable his-821

tograms, indicating that swapping the sequence822

of the two relations in OrthogonalE(2×2) does823

not affect the outcome of the composition, sug-824

gesting it is commutative. Conversely, Figs. 12(m,825

n), using e8R · e7R − e9R and e7R · e8R − e9R, show826

that the former results in a trend closer to or equal827

to 0 more distinctly than the latter, implying that828

changing the sequence of relations affects the out-829

come, thereby demonstrating the non-commutative830

nature of relations in OrthogonalE(3×3). In con- 831

clusion, even though OrthogonalE(2×2) gener- 832

ally outperforms OrthogonalE(3×3) in composi- 833

tion relation patterns, the comparative analysis re- 834

veals that OrthogonalE(3×3) indeed possesses non- 835

commutative composition properties, following the 836

equation 9 and 10. 837

A.5 Introduction of Relation Patterns 838

We can observe several relation patterns in 839

KGs, including symmetry, antisymmetry, inver- 840

sion, and composition (both commutative and non- 841

commutative). Detailed examples have been shown 842

in Fig. 10. 843

Symmetry and Antisymmetry Certain rela- 844

tions demonstrate symmetry, indicating that the 845

validity of a relation between entities x and 846

y ((r1(x, y) ⇒ r1(y, x))) (for instance, is mar- 847

ried to) is equally valid in the opposite di- 848

rection (namely, from y to x). Conversely, 849

other relations are characterized by antisymmetry 850

((r1(x, y) ⇒ ¬r1(y, x))), signifying that if a rela- 851

tion is applicable between x and y (such as is father 852

of ), it is inapplicable in the reverse direction (from 853

y to x). 854

Inversion Relations can also exhibit inversion 855

((r1(x, y) ⇔ r2(y, x))), where reversing the direc- 856

tion of a relation effectively transforms it into an- 857

other relation (for example, is child of and is parent 858

of ). 859

Composition The composition of relations 860

((r1(x, y) ∩ r2(y, z) ⇒ r3(x, z))) signifies a cru- 861

cial pattern wherein merging two or more rela- 862

tions facilitates the deduction of a novel relation. 863

Such compositions might be commutative, where 864

the sequence of relations is irrelevant, or non- 865

commutative, where the sequence significantly in- 866

fluences the outcome. In scenarios where the order 867

of relations is pivotal, as illustrated by the relation- 868

ship where B is the mother of A’s father and E is 869

the father of A’s mother, non-commutative compo- 870

sition ((r1(x, y) ∩ r2(y, z) ̸=( r2(x, y) ∩ r1(y, z)) 871

becomes essential. While commutative composi- 872

tions would consider B and E as identical, non- 873

commutative compositions recognize them as dis- 874

tinct. 875

A.6 Other baseline KGE model 876

In recent times, several significant performance 877

methods have been developed, as detailed for 878
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KGE Model Description MRR Accuracy
MoCoSA(He et al., 2023) Language Models .696
SimKGC(Wang et al., 2022a) Language Models .671
LERP(Han et al., 2023) Additional Contextual Information (Logic Rules) .622
C-LMKE(Wang et al., 2022b) Language Models .598
KNN-KGE(Zhang et al., 2022) Language Models .579
HittER(Chen et al., 2020) Language Models .503
OrthogonalE(10× 10) - .494

Table 6: Other baseline models in WN18RR dataset.

WN18RR in Table 6. Among these, MoCoSA(He879

et al., 2023), SimKGC(Wang et al., 2022a), C-880

LMKE(Wang et al., 2022b), KNN-KGE(Zhang881

et al., 2022), and HittER(Chen et al., 2020) mainly882

utilize Language Models (LMs) to enrich dataset883

semantic information, thereby achieving superior884

outcomes. Conversely, LERP(Han et al., 2023)885

does not employ LMs but leverages additional con-886

textual information (logic rules) beyond the dataset887

to fill information gaps in entities and relations. On888

the other hand, methods such as TransE(Bordes889

et al., 2013), RotatE(Sun et al., 2019), and the Or-890

thogonalE method introduced in this paper depend891

solely on the inherent data and information of the892

KGE dataset itself. These methods, based on spe-893

cific mathematical rules and algorithms, do not in-894

corporate any external information and thus do not895

operate as black-box approaches like LLMs. Con-896

sequently, these dataset-dependent methods remain897

highly valuable for KGE research.898

A.7 hyperparameter899

All the hyperparameter settings have been shown900

in Table 5901
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(a) 𝐞!" (b) 𝐞!" " 𝐞!" −I (c) 𝐞!# (d) 𝐞!# " 𝐞!#−I

(e) 𝐞!$ (f) 𝐞!$ " 𝐞!$−I (g) 𝐞!% (h) 𝐞!% " 𝐞!%−I

(i) 𝐞!& (j) 𝐞!& " 𝐞!&−I (k) 𝐞!' (l) 𝐞!' " 𝐞!'−I

(m) 𝐞!( (n) 𝐞!( " 𝐞!(−I (o) 𝐞!) (p) 𝐞!) " 𝐞!)−I

Figure 11: Histograms of relation embeddings for symmetry and antisymmetry relation patterns, where e1R represents
_derivationally_related_form, e2R represents _instance_hypernym, e3R represents _also_see, e4R represents
_verb_group, e5R represents /media_common/netflix_genre/titles, e6R represents /film/film/genre, e7R
represents /award/award_category/category_of , and e8R represents /people/person/gender. From the
WN18RR dataset, we select e1R, e2R e3R, e4Rand to represent Symmetry and Antisymmetry, respectively, and obtain
their relation embeddings using the OrthogonalE(3×3) model with n=501 and m=1. Similarly, from the FB15K-237
dataset, we select e5R, e6R, and e7R, e8R as representations for symmetry and antisymmetr, respectively, and acquire
their relation embeddings under the OrthogonalE(3×3) model with n=999 and m=1.
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(a) 𝐞!" (b) 𝐞!# (c) 𝐞!$ (d) 𝐞!# " 𝐞!" − 𝐞!$

(e) 𝐞!% (f) 𝐞!& (g) 𝐞!' (h) 𝐞!& " 𝐞!%− 𝐞!'

(l) 𝐞!% " 𝐞!&− 𝐞!'(i) 𝐞!( (j) 𝐞!) (k) 𝐞!*

(n) 𝐞!( " 𝐞!)− 𝐞!*(m) 𝐞!) " 𝐞!(− 𝐞!*

Figure 12: Histograms of relation embeddings for composition relation patterns, where e1R represents
/location/administrative_division/country, e2R represents /location/hud_county_place/place,
e3R represents /base/aareas/schema/administrative_area/capital, e4R represents
/award/award_nominee/award_nominations./award/award_nomination/nominated_for, e5R rep-
resents /award/award_category/winners./award/award_honor/award_winner, and e6R represents
/award/award_category/nominees./award/award_nomination/nominated_for. e7R, e8R, and e9R have
the same relational meanings as e4R, e5R, and e6R, respectively, the difference lies in that the former are relations
within the OrthogonalE(3×3) model, while the latter are from the OrthogonalE(2×2) model. All these relations
are selected from the FB15K-237 dataset. e1R, e2R, e3R, e7R, e8R, and e9R are relation embeddings under the
OrthogonalE(3×3) model with n=999 and m=1, while e4R, e5R, and e6R are relation embeddings under the
OrthogonalE(2×2) model with n=1000 and m=1
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