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Abstract

Edge deployment of large Vision-Language Models (VLMs) increasingly relies
on flash-based weight offloading, where activation sparsification is used to reduce
I/O overhead. However, conventional sparsification remains model-centric, select-
ing neurons solely by activation magnitude and neglecting how access patterns
influence flash performance. We present NEURON CHUNKING, an I/O-efficient
sparsification strategy that operates on chunks—groups of contiguous neurons in
memory—and couples neuron importance with storage access cost. The method
models I/O latency through a lightweight abstraction of access contiguity and
selects chunks with high utility, defined as neuron importance normalized by es-
timated latency. By aligning sparsification decisions with the underlying storage
behavior, Neuron Chunking improves I/O efficiency by up to 4.65× and 5.76× on
Jetson Orin Nano and Jetson AGX Orin, respectively.

1 Introduction

Recent vision–language models (VLMs) demonstrate strong multimodal reasoning and real-time
language interaction with visual scenes. Deploying these models on edge devices is becoming
essential for applications such as augmented reality (AR) and autonomous robotics that require
on-device inference for robustness to limited connectivity and privacy [5, 53]. These systems must
process video frames continuously without frame drops while maintaining interactive latency.

The scalability of on-device inference is fundamentally constrained by memory capacity. Edge
platforms provide far less memory than what modern VLMs require. Jetson Orin Nano, for example,
offers only 8 GB of memory, while LLaVA-OneVision-7B [18] requires 16 GB (fp16) for weights
alone. Recent systems [2, 3, 10, 36, 49] and inference engines [1, 9] address this mismatch through
weight offloading, which stores model parameters in external flash memory and loads them on
demand during inference. This method allows large models to execute on small devices but introduces
substantial I/O latency, which often dominates total inference time.

Activation sparsification has been widely explored to mitigate this latency [2, 44, 49]. The approach
loads only the weights corresponding to neurons with high importance (e.g., magnitude of activation
value), reducing total data transfer and improving input adaptivity. Despite its effectiveness, existing
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Figure 1: Illustration of conventional sparsification vs. our approach. Existing methods select
neurons solely based on activation importance, which often leads to scattered, irregular access patterns
with poor I/O efficiency. In contrast, our method explicitly accounts for actual I/O latency, favoring
contiguous chunks that achieve better importance–latency trade-offs.

sparsification remains model-centric. It selects channels solely based on activation importance while
assuming that I/O latency scales linearly with data size. Flash storage does not follow this assumption;
its latency depends strongly on access contiguity, and scattered reads severely degrade throughput.
Earlier methods were less affected because they targeted highly sparse LLMs or GPU memory
transfers, where locality plays a smaller role. Modern VLMs exhibit smoother activation distributions
and lower sparsity (Figure 2), leading to fragmented reads and high I/O overhead (Figure 4b).

We propose NEURON CHUNKING, a sparsification framework that improves the I/O efficiency of
flash-offloaded inference by coupling activation sparsity with storage access behavior. The key idea is
to jointly optimize neuron importance and flash I/O latency by selecting contiguous channel groups
that provide a better trade-off between accuracy and latency. Contiguous reads provide higher flash
throughput, allowing moderately important neighboring channels to be loaded more efficiently than
distant but highly important ones (Figure 1). This design forms compact chunks that enhance access
locality, leading to significant performance gains during VLM inference.

Efficient realization of this strategy requires capturing hardware I/O behavior in a form that the runtime
can readily exploit. NEURON CHUNKING achieves this by reducing complex access patterns into a
compact structural representation, termed the contiguity distribution. It summarizes how memory
accesses cluster into contiguous groups (i.e., chunks) while omitting their exact spatial layout. This
abstraction underlies two key components of our system. A chunk-based latency model profiles load
latency for each chunk size and efficiently estimates the I/O latency of arbitrary access patterns
from their contiguity distributions. A utility-guided chunk selection algorithm formulates neuron
selection as a constrained optimization problem and iteratively selects chunks that maximize the
importance–latency utility. Evaluation on Jetson Orin AGX and Nano using open-source VLMs and
standard benchmarks shows consistent improvement in the accuracy–latency trade-off. At comparable
accuracy, NEURON CHUNKING reduces I/O latency by an average of 2.19× on Nano and 2.89× on
AGX, with maximum gains of 4.65× and 5.76×, respectively.

Our contributions are summarized as follows.

• We identify and characterize the hardware inefficiencies that arise when conventional activation
sparsification techniques are applied to flash-offloaded VLM inference, revealing their mismatch
with underlying storage access patterns.

• We propose NEURON CHUNKING, a sparsification framework that enhances flash I/O efficiency by
coupling activation sparsity with storage access patterns. It jointly optimizes neuron importance
and flash latency by selecting contiguous channel groups that balance accuracy and latency.

• We introduce the contiguity distribution as a compact representation of flash access behavior.
Building on this abstraction, we develop a chunk-based latency model and a utility-guided chunk
selection algorithm that together enable latency-aware sparsification by balancing model quality
and I/O efficiency.

• We evaluate NEURON CHUNKING on Jetson Orin AGX and Nano with open-source VLMs and
standard benchmarks. Results show consistent improvement in the accuracy–latency trade-off,
reducing I/O latency by up to 5.76× on AGX and 4.65× on Nano while maintaining comparable
accuracy.

2



0 25 50 75 100 125 150 175 200
Activation index

0.0

0.1

0.2

0.3

M
ag

ni
tu

de

OPT-6.7B Decode Phase
LLaVA-OneVision-7B Frame Appending Phase

Figure 2: Activation-magnitude plot for two
workloads: (teal) a ReLU-based LLM in the
decode phase and (magenta) a gated-activation-
based VLM in the frame appending phase. VLM
exhibits a smoother distribution, with much less
variation between high and low activation values.

25 50 100 150 200 250 300 400
Number of Requests

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (G

B
/s

)

4

8

16

32

64

128

256

B
lo

ck
 S

iz
e 

(K
B

)

Figure 3: Read throughput as a function of block
size and number of requests, profiled on Jet-
son AGX Orin with a Samsung 990 Pro SSD.
Throughput quickly saturates and remains stable
once the request count exceeds minimal thresh-
olds.

2 Background and Motivation

2.1 Overview of LLM/VLM Inference Pipeline

An LLM inference pipeline consists of two stages: (i) the prefill stage, where the input prompt,
consisting of multiple tokens, is processed to generate key-value (KV) cache, and (ii) the decoding
stage, where the model generates tokens one at a time autoregressively using KV cache.

When processing an online video stream with VLMs, an additional frame-appending stage is intro-
duced between the prefill and decoding stages. In this stage, incoming video frames are processed
sequentially as they arrive. VLMs integrate a vision encoder alongside the backbone LLM. Each
frame is divided into patches and passed through the vision encoder, which converts them into a
sequence of visual tokens. These tokens are then fed into the language model, augmenting the existing
KV cache generated from the language prompt (see Appendix B.1 for details).

2.2 Model-side Observation: Smooth Activation Profiles in VLMs

Modern VLMs exhibit smooth activation distributions as shown in Figure 2. This smoothness is
a general property of the architecture rather than a model-specific artifact. It arises from two key
factors: (i) gated activation functions such as SwiGLU [35] and GeLU [12] produce continuous
rather than sparse activation values, and (ii) averaging these values over multiple visual tokens, as in
LLaVA-OneVision with 14× 14 tokens per frame, further reduces the variation in importance scores.
As shown in Appendix C, this phenomenon consistently appears across diverse models.

This observation suggests that when activation values are less distinct, selection policies can balance
model quality with system performance rather than focusing solely on the largest activations. Further-
more, the lack of sharply separated activations makes it difficult to depend on only a few dominant
neurons, making moderate sparsity a more favorable operating point.

2.3 System-side Observation: Flash I/O Sensitivity to Access Contiguity

Flash read performance depends on memory access patterns, and access contiguity is the dominant
factor. As shown in Figure 4a, larger contiguous reads improve throughput until reaching the band-
width limit, marking a shift from overhead-bound to bandwidth-bound operation. This behavior
reveals a counterintuitive aspect of sparsification: while higher sparsity reduces data transfer, it
fragments memory accesses and can increase latency (Figure 4b).

Notably, throughput stabilizes once the request count exceeds a minimal threshold (Figure 3). This
stability enables latency estimation from access contiguity using a one-time throughput profile across
block sizes, making latency-aware sparsification practical during inference.
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Figure 4: Flash read performance under varying access patterns. Left: Throughput vs. block size
when reading 128 MB (MLP weight sizes in Qwen2-7B [50]). Right: Latency vs. sparsity across two
access modes—scattered (random) and contiguous (sufficiently block-aligned to saturate throughput:
328 KB on AGX, 236 KB on Nano). Error bars show±1 std; dashed lines indicate saturate throughput
and full-load latency. Experiments use Linux direct I/O [23] with 6-thread thread-pool in C++.

3 NEURON CHUNKING

Motivated by the aforementioned considerations, we introduce NEURON CHUNKING, an I/O efficiency-
aware activation sparsification method. Unlike traditional sparsification methods, NEURON CHUNK-
ING jointly considers neuron importance and the memory access costs associated with retrieving
selected neurons from flash memory.

To enable such a joint optimization, two key requirements must be satisfied: (i) latency estimation for
a given memory access pattern, and (ii) neuron selection that balances costs and benefits. Both tasks
must be executed frequently at runtime, once per weight matrix (e.g., approximately 200 times per
frame for LLaVA-OneVision-Qwen2-7B [18]). Each must therefore complete within a very short
time frame (i.e., about a few milliseconds). Previous approaches avoided this complexity by assuming
that latency scales monotonically with the number of selected neurons—an assumption that does not
hold in our target workloads.

Our key idea is to abstract a memory access pattern into a concise representation called the contiguity
distribution, defined as the frequency distribution of the contiguity of the selected neurons. Concretely,
we group consecutively selected neurons into chunks, each representing a maximal contiguous range
of neuron indices within the selected set. For example, selecting neurons with indices {1, 2, 4, 6, 7}
yields three chunks: {1, 2}, {4}, and {6, 7}. We then model the total read latency as a function of
this contiguity distribution—e.g., in the above case, one chunk of size 1 and two of size 2—while
discarding global structural cues such as the exact spatial arrangement of chunks. This abstraction
both simplifies hardware modeling and substantially reduces the search space of the neuron selection.

• In Section 4.1, we present a chunk-based latency model. It builds a lookup table of per-chunk-size
latencies via offline profiling and estimates total latency directly from the contiguity distribution.

• In Section 4.2, we introduce a utility-guided chunk selection algorithm. Given a list of activation
importance, this algorithm generates candidate neuron chunks of varying sizes and greedily selects
the chunks with high utility (i.e., importance-per-latency ratio).

• In Section 4.3, we apply a lightweight offline reordering step that groups neurons based on activation
statistics to improve I/O contiguity, and find that this simple approach suffices without relying on
co-activation information.

3.1 Chunk-based Latency Model

We first build a lightweight latency estimation model that predicts the I/O latency of arbitrary neuron-
access patterns on flash storage. Even after abstracting an access pattern into a contiguity distribution,
the space of possible distributions remains combinatorially large (the number of combinations grows
exponentially with the number of channels), making exhaustive profiling infeasible. Meanwhile,
prior SSD modeling frameworks [13, 43] provide device-level fidelity but require low-level hardware
configurations or full-system simulations, which are impractical during inference.
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To address this, we propose a simple and scalable latency model tailored for inference-time sparsifi-
cation. We approximate the total read latency of the access pattern as the sum of the latencies of its
constituent chunks. Let the selected chunks be Ci (i = 1, . . . , n), each of size si. The total latency is
estimated as Ltotal =

∑n
i=1 T [si] where T [s] denotes the profiled read latency for a chunk of size s.

Profiling T [s]. We build a lookup table for T [s] via offline microbenchmarks: for each chunk size s,
we place a throughput-saturating number of chunks of size s at fixed strides and measure steady-state
read latency (See Appendix D for details). Fixed overheads such as command setup or metadata
access during flash read initiation are amortized and become negligible in T [s]. This procedure yields
stable per-size latencies with low measurement variance.

Empirical Validation. We evaluate the effectiveness of our latency model across different devices
and models, as shown in Figure 5. Each plot shows actual and estimated latency values of loading
selected chunks from our selection algorithm (Section 3.2).

We observe a near-linear relation between estimated and measured latency, indicating a consistent
proportional bias.3 This bias arises from our contiguity-distribution abstraction and profile setup.
The lookup table is built under idealized conditions, where each chunk size is measured in isolation
with uniform strides. In contrast, real access patterns interleave diverse chunk sizes and strides,
invoking pattern-dependent controller and queue behaviors. These effects accumulate and average
out to a proportional lift in actual latency. The near-linear correlation weakens for smaller models
or lower-end devices, where I/O concurrency is lower and controller dynamics amplify tail latency,
reducing the averaging effect. Importantly, the error remains near-linear, leaving the greedy chunk
selection algorithm unaffected (see Section 3.2).
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Figure 5: Comparison between real and estimated flash access latency across models and devices.

3.2 Utility-Guided Chunk Selection

Given the latency model, our goal is to jointly consider latency and neuron importance when
selecting neurons. The selection problem is intractable, as the number of possible neuron combi-
nations grows exponentially with the model size. To make the problem tractable, we leverage the
contiguity-distribution abstraction together with the additive latency assumption, where total latency
is approximated as the sum of per-chunk latencies. Under this scheme, latency becomes decomposable
across chunks, which naturally motivates a greedy, chunk-level selection strategy.

3.2.1 Problem Formulation

Given activation magnitudes V ∈ RN (where N is the number of neurons) and a selection budget
R (the number of channels to load), we aim to output a binary selection mask M ∈ {0, 1}N that
maximizes importance per latency:

max
M∈{0,1}N

∑N−1
i=0 Vi ·Mi

Latency(M)
s.t.

N−1∑
i=0

Mi ≤ R,

where Latency(M) is the estimated cost of loading the selected channels, modeled via the contiguity
distribution of M .

3The latency gap between two points that differ by one additional chunk remains roughly proportional across
the entire plot.
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3.2.2 Algorithmic Procedure

Our algorithm consists of three main stages:

1. Candidate chunk generation. We construct candidate chunks by sliding windows of multiple sizes
over the linear space of neuron indices, and each window position yields one candidate chunk. The
maximum chunk size is set to the hardware-specific point where throughput saturates (Section 2.3).
The minimum chunk size and the stride between windows are tunable hyperparameters that control
the trade-off between search granularity and computational overhead of the algorithm.

2. Chunk evaluation. Each chunk is assigned a utility score, defined as the sum of its neuron
importance values divided by its estimated latency. Latency is obtained efficiently from a pre-profiled
lookup table based on our latency model.

3. Greedy selection. Chunks are sorted by utility, and the algorithm iteratively selects the highest-
ranked ones while excluding those that overlap with previously selected chunks, continuing until the
selection budget is met.

Because the latency model error is approximately linear, it merely scales all utility scores by a
constant factor without changing their relative order. Therefore, the output of the greedy selection
remains unaffected.

One limitation of this approach is that it does not account for potential synergies among adjacent
low-scoring chunks, which could collectively form a more latency-efficient region. Even so, we
observe that the algorithm performs robustly in practice and effectively identifies high-importance
subsets within its runtime constraints (see Section 4.2).

A complete implementation, including mask updates, stride scheduling, and latency lookup logic, is
provided in Appendix E.

3.3 Additional Optimization: Hot-cold Reordering

Previous works [2, 44] have observed neuron co-activation patterns and improved I/O efficiency in
ReLU-based LLMs through offline reordering based on these statistics. Motivated by these findings,
we explore a simpler reordering scheme that leverages hot–cold activation patterns observed in prior
studies [38, 49]. Specifically, we reorder neurons according to their activation frequency, which
yields comparable I/O efficiency improvements to co-activation-based methods without the need for
complex optimization (See Appendix F, G for details). Thus, we adopt this hot–cold reordering as a
preprocessing step during the offline profiling stage.

The procedure is as follows. We first count how frequently each neuron is activated (designating
the top 50% by importance as active) using a calibration dataset. Then we sort the neurons in
decreasing order of activation frequency. Based on this ordering, we permute the corresponding rows
of the weight matrix so that frequently activated neurons are placed together. At runtime, the same
permutation is applied to the activation vector, aligning it with the reordered weights. The runtime
permutation operation incurs negligible overhead. For example, profiling the down-projection layer
of LLaVA-OneVision-7B on Jetson Orin Nano over 100 trials showed a mean overhead of 1.5 ms
with a 95% confidence bound of 1.8 ms, representing less than 0.02% of total inference latency.

4 Evaluation

4.1 Experimental Setup

Hardware. All experiments were performed on two different embedded device setups, representing
low-end and high-end hardware environments:

• Jetson Orin Nano (8 GB memory) with SK Hynix Gold P31 SSD (peak sequential read: 3500 MB/s)

• Jetson Orin AGX (32 GB memory) with Samsung 990 Pro SSD (peak equential read: 7450 MB/s)

We cache the vision encoder and KV cache in memory. All weights of the backbone LLM are loaded
from flash on demand. Unless specified, we use Jetson Orin Nano as our default device, reflecting the
memory-constrained setting.
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Figure 6: End-to-end performance on Jetson Orin Nano. Latency reported with error bar ±1 std.

Models and Datasets. We use VLM models that operate frame-by-frame, as models that process
entire videos at once do not fit our real-time streaming scenario. We evaluate five models with vari-
ous sizes: LLaVA-OneVision-Qwen2-7B, LLaVA-OneVision-Qwen2-0.5B [18], Llama-3-VILA1.5-
8B [22], NVILA-Lite-2B [27], and LongVA-7B [54]. For datasets, we use two multiple-choice
video QA benchmarks—TempCompass [25] and NExT-QA [47] (randomly sampled 3000 exam-
ples)—and a video description dataset, VideoDetailCaption [29]. Unless otherwise specified, we use
LLaVA-OneVision-Qwen2-7B and the TempCompass dataset by default.

Comparison Setup. As a baseline, we implement top-k activation sparsification that selects the
most important channels based on activation magnitude, following prior works [2, 16, 24]. We apply
TEAL’s [24] profiling-based method to determine layer-wise sparsity levels for both the baseline and
our method, using 25 out of 410 videos from the TempCompass dataset (excluded from the main
evaluation). See Appendix H for hyperparameter details.

Metric. We report accuracy and I/O latency. Accuracy is defined as the ratio of correct answers
on multiple-choice QA datasets, and as a 0–5 score from ChatGPT-based evaluation on video
description dataset, following prior works.4 Due to the large dataset size, accuracy is measured using
a Supermicro A+ Server 4124GS-TNR with 8 RTX A6000 GPUs. We measure accuracy under a
sparsity level from 0% to 70% in 10% increments. Each latency experiment was repeated 30 times
under identical conditions. We report the median latency together with 95% confidence intervals
computed by a 10000-sample non-parametric bootstrap (bias-corrected and accelerated, BCa). We
enable jetson_clocks and disable swap to ensure stable measurement.

4.2 Experimental Results

Accuracy-Latency Trade-off. Figure 6 shows the accuracy–latency curves for the baseline and our
method across all models and datasets. Our method consistently achieves a better accuracy–latency
trade-off, with an average I/O speedup of 2.19× and up to 4.65× at comparable accuracy levels based
on linear interpolation. The baseline often suffers from poor latency, especially at low to medium
sparsity levels, occasionally increasing total latency—consistent with our observations in Figure 4.
This issue is pronounced in smaller models, where channels are smaller, leading to more fragmented
I/O. In contrast, our method decisively addresses these inefficiencies by tailoring selection to storage
behavior, enabling consistently faster inference. Note that the slight accuracy gain at higher sparsity
can appear when weak or noisy activations are removed. Similar regularization effects have been
reported in pruning-based model compression work [11, 15].

Cross-Device Evaluation. Figure 7 presents results on Jetson Orin AGX (the full results provided
in Appendix I show consistent trends). Our method delivers similar relative improvements, achieving

4For VideoDetailCaption, we queried the OpenAI endpoint gpt-4o-mini-2024-07-18, a more recent and
stronger version than used in earlier work; thus, results are not directly comparable.
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Figure 7: End-to-end performance on AGX.
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an average 2.89× speedup and up to 5.76× I/O latency reduction, computed over the full set of models
and datasets. The larger speedup on AGX reflects its wider throughput gap between contiguous and
scattered access.

Latency Breakdown. Figure 8 shows the latency breakdown at a 5% accuracy drop. The end-to-
end speedup is smaller than the I/O-only gain because compute time remains nearly constant, so
its relative share increases as I/O time decreases. This gap could narrow with optimized kernels or
I/O–compute overlap [6, 10], which we do not apply in our evaluation. Our method substantially
reduces I/O latency while incurring a slight compute increase, as maintaining the same accuracy
requires loading marginally more channels. Nevertheless, the overall latency still decreases because
data is fetched contiguously rather than through scattered accesses. The chunk selection overhead is
modest—about 2 ms per weight matrix, totaling roughly 400 ms for the full model—which is small
relative to total inference time.

Ablation Study. Figure 9 shows the accuracy–latency trade-off as each component is incrementally
added: baseline, with hot–cold reordering, and with both reordering and chunk selection. For the
LLaVA-7B model, hot–cold reordering yields up to a 1.23× speedup, which increases to up to 2.55×
when chunk selection is additionally applied. Notably, online chunk selection plays a critical role, as
the optimal subset of neurons is input-dependent and cannot be determined offline.

Visualization of Utility-Guided Chunk Selection Figure 10 visualizes selected channels for
three variants—baseline, baseline with reordering, and baseline with both reordering and chunk
selection—along with the contiguity distributions at matched accuracy. Reordering yields only
modest gains by loosely clustering frequently activated channels. In contrast, chunk-based selection
drives the dominant improvement: it targets high-utility contiguous regions, raising the average chunk
size from roughly 1–2 to nearly 50. See Appendix J for results across a broader range of settings.

5 Discussion and Future Work

Generalization to other models and workloads. The proposed framework extends beyond vision-
language models to a broader class of architectures and inference settings. The same principle of
hardware-aware structured sparsification applies naturally to multi-token LLM inference scenarios
such as speculative decoding, parallel sampling, and batched interactive serving, where activations
aggregated across tokens yield smoother neuron-importance distributions. This property enables
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latency-aware sparsification to maintain responsiveness in real-time, user-facing applications includ-
ing chat assistants and copilots that operate under tight latency constraints.

The approach also generalizes to plain LLMs and ViT-based models that exhibit smooth activation
magnitudes and operate under I/O-bound conditions. Recent LLMs increasingly employ non-ReLU
activations such as SwiGLU or GeLU, making them amenable to our chunking formulation. Similarly,
ViT-based models on edge devices benefit from reduced access fragmentation across smaller channel
dimensions. Overall, these characteristics indicate that the proposed framework provides a general
foundation for coupling structured sparsity with hardware-aware optimization across diverse model
families. Additional details and preliminary results on LLMs and ViTs are presented in Appendix N.

Impact of Emerging I/O Mechanisms. Emerging I/O frameworks such as io_uring [4] offer
improved support for asynchronous and scattered reads, which may reduce the performance gap
between random and contiguous access. However, advances in storage hardware (e.g., internal
prefetching, read coalescing) will likely continue to favor contiguity, suggesting that structured access
optimization will remain beneficial.

Leveraging Additional Memory Budget for Caching. While our method assumes minimal
memory availability, additional latency reduction is possible when the device has sufficient memory
to cache frequently accessed weights. Caching strategies (e.g., hot-neuron caching) proposed in prior
works [2, 38, 49] can be applied in a complementary manner by simply assigning zero importance
to cached neurons. Once hot weights are cached, the remaining uncached accesses become more
scattered (even after reordering), making our chunk-based selection more critical for sustaining I/O
efficiency. However, if the device has sufficient memory to cache a large portion of the model weights,
the overall flash I/O volume becomes negligible, reducing the benefit of our method.

6 Related Work

6.1 Activation Sparsification

Activation sparsification, which selectively loads weight channels corresponding to large activations,
has been widely studied (See Appendix B.2 for details). Deja Vu [28] observed that MLP layers in
LLMs exhibit significant dynamic sparsity, while CATS [16] extended this insight to modern LLMs,
which utilize gated MLPs with non-ReLU activations. TEAL [24] further explored sparsification by
applying it to attention layers. However, these methods are model-centric—they sparsify solely based
on activation magnitude without considering hardware-level access patterns. This design choice was
reasonable in their settings, where all weights reside in GPU VRAM and the bandwidth between
device and shared memory saturates quickly even with limited access contiguity. In contrast, in flash-
offloaded settings, such model-centric sparsification leads to significant performance degradation.
Other approaches [31, 37, 39] seek to apply ReLU-ification to non-ReLU-based LLMs, fine-tuning
them to enhance sparsity. Although effective, this method demands extensive retraining on a minimum
of 50 billion tokens.

6.2 LLM Weight Offloading

LLM weights often exceed GPU VRAM capacity, prompting various offloading strategies. Some
approaches [3, 36, 38] offload weights to CPU memory. This is impractical on edge SoCs with unified
memory, where the CPU and GPU draw from the same DRAM pool and no additional capacity is
gained [32].

Several recent works [2, 44, 49] adopt flash-based offloading and propose techniques to reduce I/O
latency. LLM in a Flash [2] and PowerInfer-2 [49] improve I/O efficiency by bundling channels across
projection layers, but the resulting gains in access contiguity are limited and rely on large memory
budgets for caching (see Appendix L). Ripple [44] enhances access locality through offline neuron
reordering, yet its reliance on ReLU-based sparsity and lack of hardware-aware runtime mechanisms
limit its effectiveness to modern VLMs (see Section 4.2). These approaches were sufficiently effective
for ReLU-based LLMs with high activation sparsity, where the total I/O volume was low enough to
offset efficiency degradation. In contrast, VLMs exhibit smoother activation distributions and higher
I/O demand, where such techniques fail to sustain efficiency under realistic I/O constraints.
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6.3 LLM Compression

Various LLM compression techniques, including quantization [7, 21, 46], weight pruning [14, 26,
30, 48], and distillation [33, 40, 41], have been proposed to reduce computational and memory
overhead. In contrast to these static compression approaches, activation sparsification is inherently
input-adaptive, providing a distinct advantage in exploiting runtime activation dynamics. These
methods are orthogonal to activation sparsification and can be combined to effectively mitigate I/O
latency from storage devices [24].

7 Conclusion

We presented NEURON CHUNKING, a latency-aware activation sparsification approach tailored
for flash-offloaded VLM inference. Unlike prior methods that treat I/O latency as a function of
volume alone, our method models the performance implications of access contiguity and aligns
neuron selection with storage behavior. We show that our contiguity-based latency model and utility-
guided chunk selection algorithm consistently improve the accuracy–latency trade-off. These results
underscore the importance of co-designing sparsification with hardware characteristics for efficient
edge inference.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: The paper provides hardware details for all experiments, including device
models (Jetson AGX Orin, Jetson Orin Nano), SSD types, and use of Linux direct I/O with
multi-threaded C++ implementations. While exact memory usage and execution time are
not reported for each experiment, the provided information is sufficient to approximate the
computational setup required for reproduction.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: N/A — the paper focuses on algorithmic and system-level contributions and
does not discuss societal impacts.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
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negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
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strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: N/A — the paper does not release new pretrained models or datasets that pose
a high risk of misuse.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: Yes, the paper properly credits the creators of all models and datasets used, such
as Qwen2-7B and LLaVA-OneVision, and uses them in accordance with their respective
licenses and terms of use.
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• The answer NA means that the paper does not use existing assets.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service
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• If assets are released, the license, copyright information, and terms of use in the package
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licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new algorithm and latency modeling framework. While
these are clearly described in the main text and appendix, the associated code and assets are
not yet released. We are planning to open-source the implementation, which is expected to
include accompanying documentation.
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• The answer NA means that the paper does not release new assets.
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etc.
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is used.
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create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: N/A — the paper does not involve crowdsourcing or research with human
subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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Answer: [NA]
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only for writing, editing, or formatting purposes and does not impact the core methodology,
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A Appendix Overview

This appendix provides additional details supporting the main paper.

Default Setup. Unless otherwise specified, we adopt the same default configuration as used in the
main paper’s evaluation: Llava-OneVision-Qwen2-7B [18] as the model and the TempCompass [25]
dataset as the input source. For end-to-end evaluation on Jetson Orin AGX (Appendix I), we use
the full set of evaluation datasets following the setup in the main paper. For analysis-oriented
experiments—including visualization, reordering, and activation statistics—we use a subset of 25
videos from TempCompass that were excluded from the main evaluation (as described in Section 5.1).
In the reordering experiment, 20 videos are used for calibration and 5 for validation (i.e., result
visualization). When analyzing attention and MLP modules, we focus on the q, o, gate, and down
projections, and omit k, v, and up since they share input activations with q and gate, respectively.
Additionally, we include three representative layers—early (0), middle (13), and late (27)—to capture
variation across layer depths (LLaVA-OneVision-Qwen2-7B has 28 layers). We restate this setup
where relevant throughout the appendix.

B Extended Background on VLM Sparsification

B.1 Vision–Language Model Inference Process

A vision–language model consists of a vision encoder fvision, a projector fproj , and a backbone
LLM fllm.

Given a language prompt p = {t1, t2, . . . , tm} of m tokens, the model first performs a prefill step
that processes all tokens at once to generate key–value (KV) caches for each transformer layer:

tm+1, KV<m+1 = fllm(p)

In the frame appending stage, each video frame Fi (i = 1, . . . , N ) is processed upon arrival. Each
frame is encoded into n visual tokens via the vision encoder and projector:

v(i) = {v(i)1 , v
(i)
2 , . . . , v(i)n } = fproj(fvision(Fi))

These tokens are then fed into the LLM to produce additional KV pairs, which are appended to the
existing cache:

tm+ni+1, KV<m+ni+1 = fllm(v(i),KV<m+n(i−1)+1)

During the prefill and frame appending stage, the token output of fllm is ignored; only the KV cache
is used in subsequent decoding.

In the decoding stage, a new token is generated one at a time autoregressively. At decoding step j,
the model takes the previous token tm+nN+j and the current KV cache to generate the next token:

tm+nN+j+1, KV<m+nN+j+1 = fllm(tm+nN+j ,KV<m+nN+j)

The decoding stage may begin in one of two ways: either via an explicit query provided by the user
(e.g., a natural language instruction, which is appended in a similar way to visual tokens), or by
designing the model to emit a special control token at important frames, signaling that decoding
should commence. In the former case, decoding starts after appending the query tokens; in the latter,
the final generated token from the last frame is preserved and used as the first input of the decoding
stage.

B.2 Activation Sparsification

Notation. Let the activation vector (also referred to as hidden states) for a single layer be a ∈ Rm

and the corresponding weight matrix be W ∈ Rm×n, where m is the number of neurons (also
referred to as channels) and n is the output dimension. Each row Wi ∈ Rn of W corresponds to a
single neuron, contributing to the output through the dot product aiWi. Thus, the output y ∈ Rn is
computed as:

y = a⊤W =

m∑
i=1

aiWi,
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which can be interpreted as a weighted sum over neurons, where the activation values ai act as
per-sample dynamic weights.

Saliency via Magnitude. In modern LLMs where non-ReLU activation functions (e.g., SwiGLU,
GeGLU) are standard, activation values are not exactly zero—as opposed to ReLU-based acti-
vation functions, which produce exact zeros for inactive neurons. As a result, identifying salient
neurons—those most critical to output quality—is nontrivial. Prior works such as TEAL [24] and
CATS [16] propose using the magnitude of activations as a proxy for saliency. This approach assumes
that neurons with higher |ai| contribute more significantly to the output.

Magnitude-Based Sparsification. Given a sparsity target s ∈ [0, 1), the goal is to retain only the
top-(1− s)m neurons per input based on their importance. The process is as follows:

1. Compute importance scores vi = |ai| for i = 1, . . . ,m.

2. Select a binary mask M ∈ {0, 1}m such that Mi = 1 if |ai| is among the top-(1 − s)m
entries of v, and Mi = 0 otherwise.

3. Construct the sparsified output:

ỹ =

m∑
i=1

MiaiWi.

This technique is input-dependent and requires re-evaluation of M at each inference step. While
simple and effective, it does not consider the memory access cost of retrieving weight rows from flash
storage, which becomes critical in flash-offloaded inference settings. An alternative to top-(1− s)m
selection is to use a fixed activation threshold to filter out low-importance neurons.

In vision-language models (VLMs), where a single input (e.g., image) corresponds to multiple tokens,
we extend this method by computing the importance of each neuron as the average absolute activation
magnitude across tokens. This yields a single importance vector per input, allowing sparsification to
proceed as in the single-token case.

C Additional Evidence of Activation Smoothness Across VLMs

To further validate that the smoothing effect is a general architectural property of VLMs rather than a
model-specific behavior, we measured the coefficient of variation (CV) of neuron importance before
the down-projection layer—where conventional sparsification is typically applied in ReLU-based
LLMs—across multiple VLM architectures and a ReLU-based baseline (OPT-6.7B).

Table 1: Coefficient of variation (CV) of neuron importance before the down-projection layer across
multiple models.

Layer LLaVA-7B LLaVA-0.5B VILA-8B NVILA-2B LongVA OPT-6.7B
First 1.44 1.31 1.25 1.07 1.20 11.65
Mid 1.25 1.33 1.38 1.32 1.34 8.63
Last 3.30 3.58 2.48 4.55 3.01 9.19

Across all VLM models, the CV values (1.07–4.55) are dramatically lower than those of the ReLU-
based baseline (8.63–11.65), demonstrating that smooth activation distributions are a consistent
property of modern VLM architectures. This smoothing effect makes contiguity-aware selection
particularly beneficial for VLMs: when importance differences between neurons are small, I/O
efficiency becomes the decisive factor for overall performance.

D Benchmark Details

We profiled read throughput as a function of chunk size on two devices: Jetson AGX Orin (Samsung
990 Pro SSD) and Jetson Orin Nano (SK Hynix Gold P31 SSD). Each device reaches 99% of its peak
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throughput at approximately 236 KB (AGX) and 348 KB (Nano). Measurements were taken in 1 KB
increments up to the saturation point, with all runs completing within 20 minutes per device.

Profiling Setup.

• Prepare a large dummy file (e.g. 128MB) on flash-backed storage.

• Issue sequential reads of size s ∈ {1KB, 2KB, . . . , Smax}, where Smax is the smallest size
reaching 99% of peak throughput.

• Record average throughput over multiple trials.

Throughput variance was negligible (standard deviation <1% of the mean) across all sizes.

E Algorithm Implementation Details

Algorithm 1 provides a pseudocode of our multi-scale chunk selection method. Below, we describe
the corresponding implementation in detail, which is designed for runtime efficiency and integrates
both CPU and GPU components.

Inputs. The inputs to Algorithm 1 are:

• V ∈ RN : Activation magnitudes.

• R: Total number of rows to select.

• row_size_KB: Size of each row in kilobytes, used to convert kilobyte-based parameters to row
units.

• [smin, smax] and ∆s (in KB): Define the chunk size range and the granularity of sizes considered.

• jump_cap (in KB): Limits the maximum stride between starting indices of candidate chunks for
efficiency.

– By default, stride equals the chunk size (i.e., non-overlapping).
– If the chunk size exceeds jump_cap, stride is clipped to the cap, allowing overlapping candidates.

• L(·): Device-specific latency lookup function mapping chunk size (in rows) to access cost.

• In the actual implementation, a device flag selects the appropriate lookup table (AGX or Nano). In
the pseudocode, this is simplified by directly passing L(·).

Prefix Sum. To enable constant-time computation of the sum of importance for any contiguous
chunk, a CPU-side prefix sum of the activation magnitudes is first computed.

Chunk Candidate Generation. For each chunk size s (converted to row count), the algorithm
slides a window across the activation vector in steps of min(s, jump_cap). Each candidate chunk is
scored using the ratio of summed importance to estimated latency, with latency values retrieved from
a pre-profiled lookup table L(s) based on hardware throughput (see Appendix D).

GPU Sorting. The importance-to-cost scores of all candidate chunks are transferred to GPU
memory and sorted in descending order using PyTorch’s GPU-accelerated sort. This step enables
scalable candidate prioritization with minimal overhead.

Greedy Selection. Candidates are selected greedily based on the sorted scores. Each selected chunk
is added to the output mask if it does not overlap with already selected rows and does not exceed the
remaining budget R. Overlaps are checked with early termination, and the mask is updated in-place.

The algorithm design reflects the trade-off between optimality and runtime feasibility: by limiting the
chunk search space and leveraging GPU sorting, it enables input-dependent sparsification at inference
time within few milliseconds latency.

23



Algorithm 1 Multi-scale Chunk Selection

Require: Activation magnitudes V ∈ RN , number of rows to select R, row size in KB, chunk size
range [smin, smax] in KB, step size ∆s in KB, jump cap in KB, latency lookup function L(·)

Ensure: Binary mask indicating selected rows
1: Convert chunk-related parameters to row units:

rmin ← max(1, ⌊smin/row_size_KB⌋)
rmax ← max(1, ⌊smax/row_size_KB⌋)
∆r ← max(1, ⌊∆s/row_size_KB⌋)
jump_cap_rows← max(1, ⌊jump_cap/row_size_KB⌋)

2: Compute prefix sum array: cumsum[0 : N ]← prefix_sum(V )
3: Initialize empty candidate list C
4: for r from rmin to rmax with step ∆r do
5: stride← min(r, jump_cap_rows)
6: for i = 0 to N − r with step stride do
7: benefit← cumsum[i+ r]− cumsum[i]
8: cost← L(r)
9: Append candidate (benefit/cost, i, r) to C

10: end for
11: end for
12: Sort C by score descendingly (GPU-accelerated)
13: Initialize mask [0 : N ]← 0, selected← 0
14: for candidate (_, i, r) in sorted C do
15: if chunk overlaps selected rows or r > R− selected then
16: continue
17: end if
18: Set mask[i : i+ r]← 1
19: selected← selected + r
20: if selected ≥ R then
21: break
22: end if
23: end for
24: return mask

F Neuron Activation Frequency Analysis

Figure 11 illustrates the distribution of neuron activation frequency across different layers when the
effective sparsity is 40%. The plot is structured as a 3 × 4 grid, where each row corresponds to a
layer and each column to an activation type. Many neurons are neither always-on nor always-off,
confirming the presence of input-dependent sparsity in VLMs, consistent with prior findings in
LLMs [20, 28]. This suggests that input-aware sparsification remains effective in our setting, although
such dynamic sparsity inevitably leads to fragmented access patterns.

Additionally, TEAL profiling introduces sparsity variation across layers, resulting in some layers
with very high or low sparsity (e.g., q projection of layer 0 has 94% sparsity). These layers exhibit
a high proportion of hot or cold neurons, suggesting that simple offline hot–cold reordering can be
effective for improving contiguity in these cases.

G Impact of Offline Reordering Schemes

Although offline reordering is not our primary focus—we target online policies—Figure 12 compares
the contiguity of selected neurons before and after applying offline reordering, using either hot–cold
reordering or Ripple’s [44] coactivation-based method. Both methods yield modest improvements
over the original ordering, with comparable gains across most layers. While Ripple performs better
in one case (the o projection of layer 0), the overall difference is minor, suggesting that hot–cold
reordering offers a lightweight and effective alternative.
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Figure 11: Activation frequency of neurons across layers, with effective sparsity set to 40% (layer-
wise sparsity determined by TEAL [24] profiling). The text in the center of each plot indicates the
proportion of hot neurons (activated >99% of the time) and cold neurons (<1%).
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Figure 12: CDF of contiguity of selected neurons before and after reordering, with sparsity=0.4.
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Figure 13: Runtime overhead of chunk selection across hyperparameter configurations on Jetson
Orin AGX (top) and Jetson Orin Nano (bottom). Each point represents a configuration defined by
starting chunk size (chunk_sz_start_in_kb, x-axis) and jump cap (jump_cap_in_kb, y-axis).
Step size is set equal to the start size; the chunk size end is fixed from I/O profiling (236 KB for AGX,
348 KB for Nano). Circle size is inversely proportional to runtime, and color indicates whether the
2 ms latency threshold is exceeded.
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The hyperparameters of our chunk selection algorithm are chosen with two objectives in mind: (i)
the runtime overhead must remain within a practical latency threshold (under 2 ms), and (ii) the
compromise in selection quality for computational efficiency should be minimal.

We adopt a two-stage selection strategy. First, we filter out configurations that exceed 2 ms of runtime
overhead. Since the overhead depends on the shape of the weight matrix, we benchmark each
configuration across representative matrix shapes drawn from the models used in our evaluation.
Measurements are conducted at sparsity 0.1 to conservatively capture the worst-case overhead.

Among the remaining feasible configurations, we heuristically select those near the lower-left region
of the search space—where chunk sizes grow in a fine-grained manner and the chunk stride is small.
These settings allow for broader search coverage while maintaining overhead within budget.

Figure 13 shows the measured overhead for Jetson Orin AGX (top) and Jetson Orin Nano (bottom).
For each device, we sweep over the starting chunk size (chunk_sz_start_in_kb, x-axis) and the
jump cap (jump_cap_in_kb, y-axis), where the hyperparameter space spans from 0 to 64 KB in
4 KB increments. For simplicity, the step size is set equal to the start size, and the end size is fixed
from I/O profiling—236 KB for AGX and 348 KB for Nano. Each configuration is evaluated 30 times
using randomly generated activation magnitudes. This provides a reliable estimate, as over 80% of the
total runtime is dominated by GPU sorting via a data-independent radix sort [34], allowing random
inputs to be used for measuring overhead.

We observe two clear trends: (i) configurations involving large weight matrices (e.g., 18944×3584)
tend to incur higher overhead, making some configurations infeasible; (ii) AGX supports more
configurations due to its higher compute capacity compared to Nano.

Final hyperparameters are selected near the boundary between feasible (green) and infeasible (red)
regions, with a small margin for safety. The selected settings are summarized in Table 2.

While we have not conducted a full sensitivity analysis, our empirical findings suggest that the method
performs consistently well across a range of hyperparameter settings. A more thorough investigation
into the effects of different configurations remains an interesting direction for future work.

Table 2: Selected hyperparameters per weight matrix shape on Jetson Orin AGX and Nano

Shape (Rows × Cols) AGX Nano
chunk_sz jump_cap chunk_sz jump_cap

(3584, 3584) 20 20 24 36
(8960, 1536) 16 16 20 20
(896, 4864) 8 8 8 8

(4096, 1024) 12 12 16 16
(3584, 18944) 8 8 8 8
(4096, 4096) 20 20 24 24
(18944, 3584) 32 32 36 36
(1536, 1536) 16 12 16 12
(1536, 256) 8 8 8 8
(896, 128) 8 8 8 8

(14336, 4096) 32 32 40 36
(4864, 896) 12 16 20 16
(3584, 512) 8 12 8 12
(896, 896) 8 8 8 8

(4096, 14336) 8 8 8 8
(1536, 8960) 8 8 8 8

I Full Evaluation Results on Jetson Orin AGX

Figure 14 presents full results on Jetson Orin AGX. Due to its powerful SSD and compute capability,
overall latency is lower compared to Jetson Orin Nano.
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Figure 14: End-to-end performance on Jetson Orin AGX.
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Figure 15: Mask patterns and corresponding contiguity distributions before and after applying
our method, shown across different layers (0, 13, 27) and activation types (q, o, gate, down) at
sparsity=0.4.

Figure 10 presented a case study on the effect of our method on mask patterns and contiguity
distributions for layer 0, activation type q, under effective sparsity 0.3 and profiled sparsity 0.9.

Here, we provide an extended visualization across a broader range of settings in Figure 15. The
visualization is structured as a 3× 4 grid, where each row corresponds to a layer and each column
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to an activation type. Each cell contains two subfigures: the left shows the binary mask patterns
for three configurations—baseline, baseline with reordering, and baseline with reordering plus
chunking—stacked vertically. The x-axis represents neuron index and the y-axis represents different
input samples. The right subfigure presents the corresponding contiguity distribution, with the x-axis
(log-scaled) denoting chunk size and the y-axis showing density. We annotate both the average and
the mode (i.e., the most frequent chunk size) for each distribution.

These visualizations highlight that our method consistently promotes contiguity across layers and
activation types. Qualitatively, the mask patterns become visibly less fragmented, particularly in
high-sparsity regimes such as q and down. Quantitatively, both the average and mode of the contiguity
distribution shift toward larger chunk sizes. While offline reordering provides marginal improvements,
the majority of the contiguity gain arises from our online chunk selection policy, which adapts to
input-dependent activation patterns (see Appendix F).

K Effect of Visual Token Density
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Figure 16: End-to-end performance on Jetson Orin Nano under different token counts per frame.

A large number of tokens per frame limits how many frames can fit within the model’s context window.
To address this, various token reduction techniques have been proposed, ranging from simple spatial
pooling [55] to more advanced clustering [45]. We evaluate the impact of per-frame token count
in Figure 16, using spatial pooling to control the number of tokens. As the token count decreases,
we observe a modest drop in accuracy across all methods. Nonetheless, our method consistently
outperforms the baseline, indicating that the I/O benefits of our approach are robust to changes in
visual token density.

L Extended Comparison with Related Methods

We provide extended comparisons with three major classes of related methods: (i) LLM in a Flash [2],
which also addresses flash-offloaded inference; (ii) TEAL [24], upon which our baseline implemen-
tation is built; and (iii) regularization-based pruning methods (e.g., L1 and group-Lasso), which
promote sparsity through training-time penalties.

LLM in a Flash. VLMs’ smooth activation distributions require fundamentally different approaches.
Our work identifies critical inefficiencies in flash-offloaded VLM inference unaddressed by LLM in a
Flash (hereafter LLMFlash). LLMFlash targets ReLU-based LLMs with >90% sparsity; we target non-
ReLU VLMs with smoother activation distributions requiring 40-60% sparsity. This difference creates
a counterintuitive phenomenon: in VLMs, higher sparsity can increase latency due to fragmentation-
induced throughput degradation outweighing data savings. This workload difference motivates our
methodological divergence. While LLMFlash simply reduces total I/O volume using sparsification,
we explicitly model I/O latency through contiguity-aware cost modeling and jointly consider neuron
importance and I/O efficiency during sparsification. Given these workload differences, we now
analyze why LLMFlash’s core techniques cannot effectively address our contiguity challenges.

Neuron bundling proves insufficient without explicit contiguity optimization. LLMFlash employs
row–column bundling, grouping weights corresponding to the same activation (up-projection columns
with down-projection rows). However, bundling alone is insufficient in our setting due to both
hardware and methodological differences. Hardware-wise, LLMFlash was evaluated on MacBooks,
where throughput saturates at chunk sizes <100 KB, whereas our Jetson devices require 236–348 KB
for peak throughput (Figure 4a). This discrepancy likely arises from Jetson boards routing NVMe
interrupts to a single CPU core, causing IOPS saturation, in contrast to MacBooks’ multi-core
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interrupt distribution [8, 42]. Methodologically, LLMFlash’s up/down-projection bundling conflicts
with our predictor-free approach, where each matrix is sparsified based on its own activations. Even
when adapted to bundle matrices sharing input activations (e.g., Q/K/V or up/gate), the largest
bundled weights (∼74 KB) achieve only half the optimal bandwidth on our hardware. Thus, bundling
alone cannot achieve peak I/O performance—explicitly targeting contiguity as a design objective is
essential.

Furthermore, when techniques such as TEAL’s sparsification are combined with bundling, they
introduce preprocessing and postprocessing overheads and can yield paradoxical I/O behavior. For
instance, bundling Q/K/V matrices based on overlapping neurons improves locality for bundled
weights but scatters remaining unbundled neurons across matrices, leading to fragmented reads. The
net performance depends on whether contiguity gains outweigh fragmentation penalties, making
bundling’s effectiveness highly pattern-dependent.

Table 3: Comparison between our method and bundling-based implementations across models
and datasets. Each cell shows two average speedup ratios: (1) ours vs. baseline and (2) ours vs.
baseline+bundling.

Dataset / Model LLaVA-7B LLaVA-0.5B VILA-8B NVILA-2B LongVA
TempCompass 2.06/2.41 2.05/1.94 1.60/1.83 3.24/3.76 2.15/2.50
Video DC499 2.11/2.45 2.06/2.02 1.60/1.78 3.22/3.70 2.25/2.59
NextQA 1.76/1.98 2.12/1.99 1.50/1.70 3.44/3.96 2.04/2.34

Table 3 reports the experimental results comparing our method with bundling-based implementations.
Our method achieves consistent speedups of 1.5–3.4× over the baseline and 1.7–4.0× over bundling-
based implementations across all models and datasets. Bundling degrades performance in most cases
except LLaVA-0.5B, confirming that its benefits are unpredictable and pattern-dependent, whereas
our contiguity-aware approach consistently improves efficiency.

Sliding window caching vs. offline reordering trades memory for adaptability. LLMFlash’s sliding-
window caching maintains recently activated neurons’ weights in memory, trading memory for
reduced latency—an infeasible approach in our memory-constrained edge deployments. Both their
caching and PowerInfer [38]’s hot neuron caching leverage additional memory to reduce flash accesses
by exploiting statistical access patterns. Instead, we employ offline reordering for comparable benefits:
both methods make frequently accessed weights cheaper to load, but caching is runtime-adaptive
while consuming memory, whereas reordering imposes zero memory overhead while being less
adaptive. In practice, we keep only essential weights—vision encoder, LM head, and KV cache—in
device memory, representing the truly “hottest” components. Our chunk selection algorithm naturally
accommodates any caching strategy by assigning zero importance to cached neurons, making it
flexible and complementary to memory optimization approaches.

TEAL. Our method builds upon TEAL’s fine-grained sparsity allocation across matrices rather than
applying uniform sparsity. However, our focus differs fundamentally: TEAL determines how much to
sparsify each layer under uniform access cost assumptions, whereas we determine which neurons to
load at runtime by jointly considering activation importance and I/O efficiency in flash-based systems.
This introduces latency-aware chunk selection that restructures selected neurons into contiguous
memory layouts, aligning model-level sparsification with system-level latency behavior.

Regularization-based pruning. L1 regularization typically operates at the individual-weight level
and rarely eliminates entire rows or columns of weights. As a result, it does not reduce the number of
rows that must be loaded from flash, limiting its effect on activation sparsity and overall latency.

To meaningfully impact latency, sparsity must be structured (e.g., at the row or column level). This
can be achieved by replacing L1 with group-Lasso regularization that applies L2-norm penalties to
entire rows or columns. Column-wise regularization (e.g., applied to gate or up-projection matrices)
encourages certain output activation channels to become zero, effectively deactivating the correspond-
ing rows in the down-projection matrix and increasing activation sparsity. Row-wise regularization
can also promote sparsity when the neuron-importance metric incorporates both activation magnitude
and weight norm, lowering the importance of neurons associated with low-norm rows.
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These regularization-based approaches are inherently input-agnostic: they prune the same weight
regardless of the input context. This limits their achievable sparsity before severe accuracy degradation
occurs—as shown in TEAL [30], where even 20% pruning causes noticeable performance drops.

M On Tradeoffs Between Accuracy and Latency

Our method is designed not to preserve accuracy at all costs, but to enable a more favorable tradeoff
between accuracy and latency. In latency-sensitive deployments, it is often preferable to accept
a modest accuracy degradation in exchange for significantly faster responses. The objective is
not merely to match the performance of dense inference, but to shift the accuracy–latency Pareto
frontier—achieving lower latency for comparable accuracy, or improved accuracy within a fixed
latency budget. This tradeoff is particularly valuable in practical vision-language applications where
the input is a video and the output is a natural language response. In many such scenarios, the user
can quickly validate or refine the system’s output, making responsiveness more critical than marginal
gains in precision. Examples include:

• Object or person retrieval. When the user asks, e.g., “Where is the person in a red shirt?” or
“Is the car still visible in this scene?”, delivering fast candidate answers enables immediate visual
verification and iteration.

• Temporal localization. In tasks like “When does the object fall?” or “At what time does the person
enter the room?”, coarse-grained temporal answers that arrive quickly are often more useful than
delayed fine-grained ones.

In these streaming input scenarios, delayed responses can themselves degrade performance. This
phenomenon—often referred to as streaming accuracy—has been observed in streaming perception
literature, where the timeliness of model outputs directly influences their correctness [17, 19, 51, 52].

In such use cases, VLMs are part of interactive systems where user experience benefits more from
fast responses than from exact answers. Our method supports this objective by enabling structured
sparsification that reduces latency while maintaining actionable utility in response quality.

N Generalization to Other Use Cases

Extension to multi-token LLM inference. Although our method is evaluated in the context of vision-
language models, the core idea—hardware-aware structured sparsification—extends beyond this
domain. In particular, it is well-suited for multi-token LLM inference scenarios such as speculative
decoding, parallel sampling for reasoning, and batched inference in interactive applications. In such
settings, activations from multiple tokens are aggregated, leading to smoother neuron-importance
distributions similar to those observed in VLMs. 5

These multi-token inference workloads also underpin latency-critical user-facing systems such as
chat assistants, copilots, and dialogue agents, which must maintain responsiveness under real-time
constraints while often serving multiple concurrent requests. Minimizing end-to-end latency in these
deployments is therefore essential, and extending our framework to such applications may offer
broader benefits in practical LLM serving environments.

Extension to plain LLM / ViT inference. Our method can also be directly applied to plain LLMs
and ViT-based models. The system relies on two key conditions: (i) the model exhibits smooth
activation magnitude distributions (e.g., due to non-ReLU activations or multi-token inputs), and (ii)
the hardware–model pair operates below I/O saturation when loading a single weight row. Recent
LLMs increasingly employ smooth activation functions such as SwiGLU or GeLU, yielding moderate
sparsity levels. While their activations are typically less smooth than those of multi-token scenarios,
our method remains applicable, albeit with slightly smaller gains.

For ViT models, the transformer backbone remains largely compatible with our framework. As
long as activation sparsity exists to a measurable degree, our approach can be applied without
modification. Although ViTs are generally smaller (hundreds of millions of parameters), they still

5The sparsity mask generated from aggregated activations is shared across tokens, ensuring uniform inference
latency across them (e.g., all samples in a batch finish simultaneously).
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face I/O bottlenecks on resource-limited devices. In such cases, our chunking method becomes
particularly valuable, as smaller weight channels make access fragmentation proportionally more
severe.

To assess applicability to plain LLMs, we conducted a preliminary experiment on LLaMA3-8B and
Qwen2-7B using the GSM8k dataset. We used the sum of selected neuron importance as a proxy
for accuracy rather than full-dataset evaluation. We measured the importance–latency tradeoff in the
first, middle, and last layers, observing average speedups of 1.22× and 2.09× for LLaMA3-8B and
Qwen2-7B, respectively. These initial results suggest that our method generalizes to LLMs, though
further work is needed to validate accuracy–latency tradeoffs at scale.
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