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ABSTRACT

Large-scale Vision-Language Models, such as CLIP, demonstrate impressive capa-
bilities and have multiple applications, from text-to-image generation to zero-shot
classification. Recent work has suggested that visual prompts, such as a red circle,
can steer the vision encoder to the circled region. While such vision prompts have
now been used in various applications, they might be model-specific and depend
on the model learning these behaviours from its training data. Discovering and
evaluating various prompts might not be feasible given different models, tasks, and
datasets. In this paper, we propose Highlight, a method to learn a visual prompt
that highlights a region in an image or refines a manually engineered visual prompt.
Using our framework, we can learn to highlight in a supervised way using a dataset
of text-image region pairs or in an unsupervised way using synthetic captions
or images only. Highlight outperforms other visual prompts, prompt learning
approaches, and compute-intensive methods that use ensembles of multiple models
and visual prompts.

HighlightRedCircle
“The horse on the left”

“The dog in front of the bike”
. . .

optional

Automatically learn a 
highlight (visual prompt)

 for image regions for VLMs

Highlight

Highlight

Figure 1: Highlight automatically learns to visually prompt images. Left: Given an image
collection and, optionally, descriptions for image regions, Highlight learns a visual marker that is
salient for VLMs. Right: A red circle vs the visual marker learnt by Highlight. Highlight outperforms
a red circle by 15% on the RefCOCO, RefCOCO+ and RefCOCOg datasets, on average.

1 INTRODUCTION

Vision Language Models (VLMs) have shown outstanding performance across a range of tasks: For
instance, CLIP (Radford et al., 2021) can perform zero-shot classification in a number of domains,
and Flamingo (Alayrac et al., 2022) can count objects within an image, even though these tasks
were not explicitly part of their training. Instead, it is hypothesised that these abilities emerge from
the diverse large-scale training data. However, since the alt texts in pretraining image-text datasets
summarise global image descriptions, these models have limited capabilities for localising objects.
This limited spatial awareness hinders the usage of VLMs in various potential applications, such as
autonomous driving (Wen et al., 2023), robotics (Brohan et al., 2023; Driess et al., 2023; Gao et al.,
2023), and assistive technologies (Yang et al., 2022).

A promising new approach, visual prompting (Wu et al., 2024), has emerged to address these
limitations. By introducing visual markers, such as red circles, to highlight target objects, pretrained
foundation models can reason about localised image regions. Visual prompting for VLMs has found
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multiple applications, such as medical image analysis (Denner et al., 2024), trajectory selection (Song
et al., 2024), and audio descriptions generation Xie et al. (2024b). However, despite the different
domains of application of visual prompting and the different visual encoders used, these methods rely
on simple markers, such as a red circle, which have only been found to perform well empirically.

It has been suggested that VLMs learn to pay attention to such visual markers from their training
data, e.g. Shtedritski et al. (2023) discover images annotated with red circles in YFCC100M (Thomee
et al., 2016), which is part of CLIP’s pretraining data. However, whether a red circle is the prompt
that best elicits these emergent behaviours in VLMs is unclear. Furthermore, there might not be one
optimal prompt per model—different domains in the training data might be annotated differently
because of arbitrary conventions in fields like medicine or science. Thus, it becomes unfeasible to
manually guess and evaluate visual prompts for every new VLM and domain to which it is applied.

In this paper, we introduce Highlight, a method to automatically learn a visual prompt that highlights
regions for a VLM. Highlight visually prompts an image in a differentiable way by predicting both
the shape and the colour of the visual marker. To supervise Highlight, first, we consider the case
when annotated text-image region pairs are available. We show that in that case, we can use CLIP’s
multimodal contrastive objective to match prompted images with text, learning a state-of-the-art
visual marker. However, this requires manual annotations. We thus introduce an unsupervised version
of Highlight that is trained with images only and does not require manual supervision. Our key
insight is that we can replace the textual description of a region in the image-text contrastive objective
either with a synthetically generated caption for the image patch or with a visual description of the
region, e.g. a crop. For example, we can learn to match highlighted images with a crop of the image.
We find that the visual marker we learn in that way outperforms manually engineered visual markers.

2 RELATED WORK

Visual prompt enginering, as introduced by Shtedritski et al. (2023), uses visual markers in the
input image to change the output of a VLM. For example, Shtedritski et al. (2023) draw red circles
around objects of interest in order to make the VLM focus on these specific areas, whereas Yang et al.
(2024) propose pixel-wise outlines of objects in the image. (Xie et al., 2024a) proposes to optimise
the position of a visual marker in order to discover objects within an image. Both Yang et al. (2024)
and Shtedritski et al. (2023) hypothesise that their proposed prompts are salient for the model because
similar visual markers are present in the training data. Instead, Rezaei et al. (2024) optimise the
colours within a fixed mask (e.g. a circle) to draw the attention of transformers towards the prompted
area. However, the method of Rezaei et al. (2024) only applies to transformers and requires access to
the internal features of the ViT. Instead, Highlight treats the vision model as a black box and is thus
architecture-agnostic. Furthermore, our framework can accommodate various forms of supervision,
such as using image-text pairs, which allows learning a supervised visual prompt.

Referring Expression Comprehension (REC) is the task of localising an object in an image
corresponding to a query textual description. Many REC methods start with object proposals, for
example, generated with Faster-RCNN (Ren et al., 2015), and then learn to score them (Hu et al.,
2016; Luo & Shakhnarovich, 2017; Liu et al., 2020; Yang et al., 2019; Wang et al., 2019). Past
research focuses on models specifically trained to solve the REC task. This includes combining
pretrained vision and language models (Mao et al., 2016; Yu et al., 2016; Nagaraja et al., 2016; Hu
et al., 2016; Luo & Shakhnarovich, 2017), learning a joint-embedding space (Wang et al., 2016; Liu
et al., 2017; Chen et al., 2017), graph-based models (Liu et al., 2020; Wang et al., 2019; Yang et al.,
2019), that yield better interpretability, and more recently transformer based architectures (Kamath
et al., 2021; Kim et al., 2021; Deng et al., 2021). However, most of these rely on large amounts of
training data, which include images, referring expressions, and the corresponding bounding boxes.

Unsupervised Referring Expression Comprehension has recently been enabled with the introduc-
tion of large pretrained models, such as CLIP (Radford et al., 2021), which allow solving REC in a
zero-shot manner (Shtedritski et al., 2023; Yao et al., 2024; Subramanian et al., 2022; Kirillov et al.,
2023b). ReCLIP (Subramanian et al., 2022) ranks object crops using CLIP before a post-processing
step that considers relations between objects. CPT (Yao et al., 2021) colours objects and uses a
pre-trained captioning model (Zhang et al., 2021) to predict which colour corresponds to the referring
expression. More recently, unsupervised methods overlay visual prompts on objects (Shtedritski
et al., 2023; Yang et al., 2024; Rezaei et al., 2024). However, most of these methods use ensembles
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of visual prompts and/or vision-language models to achieve competitive performance. Instead, our
method automatically discovers a visual prompt that outperforms such ensembles, making it several
times more compute-efficient.

Visual patches can be optimised to steer the output of a vision model. Papernot et al. (2016)
demonstrate that altering only a few pixel values can divert the model’s output towards an adversarial
output. Schlarmann & Hein (2023) recently transferred this work to VLMs, where the objective is to
move the embedding of an adversarial image towards some harmful textual embedding. Their work
differs from ours in requiring the adversarial changes to be invisible to humans. More closely related
to our work, adversarial patches (Brown et al., 2017) restrict the alteration to a region. Our method
can be seen as an extension of this research. However, unlike adversarial patches, we do not aim to
mislead the model’s output towards a harmful or incorrect outcome. Instead, we focus on optimising
visual prompts to improve task performance.

3 METHOD

We aim to learn a visual prompt for a VLM that focuses the visual representation on a particular
object in an image. To solve a prediction task, models such as CLIP jointly encode images and text
and learn to match them. An input to such a model is an image I ∈ R3×H×W and text T , and the
output measures similarity between both inputs.

3.1 VISUAL PROMPTING

A model such as CLIP can be used to find an object referred to by a query text prompt T by visually
prompting an image. First, a visual prompting function F(I, u) is used to highlight one object
proposal u in the image I , where u is the location of an object in the image, which can be, e.g.
bounding box coordinates u = (xc, yc, xw, yh). For a set of possible object locations U , the location
û in the image that is best described by the referring expression T is then given by

û = argmax
u∈U

s(F(I, u), T ), (1)

where s(I, T ) is the compatibility score between an image and text, e.g. as measured by a VLM. To
implement the visual prompting function F , prior work crop the image (Subramanian et al., 2022),
overlay red circles (Shtedritski et al., 2023), or generate pixel-wise outlines (Yang et al., 2024). In
this section, we show how we can learn such a prompt.

3.2 OVERLAYING A VISUAL PROMPT.

We decompose a visual prompt as F = Fα ⊗FRGB , where Fα ∈ RH×W is an alpha channel and
FRGB ∈ R3×H×W is a prompting image. To visually prompt an image I , we then have

F(I, u) =

{
Fα(v) ∗ FRGB(v) + (1−Fα(v)) ∗ I(v) if v ∈ u,

i(v) else,
(2)

performing alpha blending for all locations v ∈ R2 that are within the region u.

3.3 HIGHLIGHT: LEARNING A VISUAL PROMPT

Instead of using a manually engineered visual prompt, our method Highlight learns a visual prompting
function F to highlight an object. A schematic of Highlight is shown in Fig. 2

Learning a visual prompt. We notice that the region selection in Eq. (1) resembles classification,
where the most compatible region to the text query is selected. Given a dataset which consists of text
queries T , where for each T we have a positive and several negative regions (that are not described
by T ), u and Un in an image I , we can directly learn F such that we fulfill Eq. (1):

Ls(I, u, Un, T ) = LInfoNCE(T,F(I, u),F(I, un)un∈Un), (3)
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Figure 2: Overview of Highlight. Highlight generates a visual prompt, which is then alpha-blended
with object proposals in the image. To learn the visual prompt, we construct positive and negative
pairs for each object using: (i) supervised text and bounding box pairs (e.g. from RefCOCO), (ii)
unsupervised text and bounding box pairs obtained by captioning the bounding box, (iii) a visual
representation of the object, e.g. a crop of the bounding box as in the Figure, or the original image,
visually prompted with a red circle. Here, (ii) and (iii) are unsupervised in that they do not require
manual text-image region annotations. The CLIP image and text encoder are kept frozen.

where

LInfoNCE(x, x
+, X−) = − log

(
exp (sim(x, x+)/τ)

exp (sim(x, x+)/τ) +
∑

x−∈X− exp (sim(x, x−)/τ)

)
(4)

is the InfoNCE loss (Oord et al., 2018). Here, τ is a temperature parameter, and

sim(I, T ) =
⟨ΦI(I),ΦT (T )⟩
∥ΦI(I)∥∥ΦT (T )∥

(5)

is the cosine similarity between the embeddings of the image and text using the CLIP image and text
encoders, ΦI and ΦT . Intuitively, minimising Eq. (3) will give us a prompting function F that focuses
the global image embedding on the highlighted prompted object, making the image’s embedding
similar to the textual description of the prompted object while also making the embedding dissimilar
to other textual descriptions of other objects in the image.

Unsupervised visual prompts with synthetic text-image pairs. The loss Ls in Eq. (3) is super-
vised in that it requires manual annotations in the form of region-specific captions, which can be
limiting and expensive to acquire. Thus, we can augment this method by using synthetic captions T̃u

(as recently used to train CLIP (Nguyen et al., 2024; Hammoud et al., 2024)) generated by BLIP-2
(Li et al., 2023) for a given crop. With this, we can also generate captions for the negative locations,
giving us additional negative image-text pairs Tun

. The unsupervised loss becomes:

Lu(I, u, Un, T̃ ) = LInfoNCE(F(I, u), T̃u, T̃un,un∈Un
)+LInfoNCE(T̃u,F(I, u),F(I, un)un∈Un

) (6)

Unsupervised visual prompts with image-image pairs. The naive, unsupervised objective pro-
posed above suffers from two main drawbacks. First, obtaining the captions requires a captioning
VLM, which might not be available for some domains and introduces additional computational
overhead. Furthermore, the descriptions generated by the captioner might be ambiguous. To see why
that is the case, consider the example in Fig. 2. The supervised referring expressions in datasets such
as RefCOCO (Kazemzadeh et al., 2014) are explicitly designed such that the objects can be uniquely
identified from their descriptions. However, this can not enforced on the captioning VLM, which has
no global information about the scene. Instead of the captions {“A light brown horse” and “A dark
brown horse”} (as in Fig. 2), the captioner might output {“A horse” and “A horse”}, from which the
objects can not be disambiguated, leading to a sub-optimal learning signal.
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Instead of matching a visually prompted image to a textual description of it, we propose to match it
with the visual content in the prompt instead. To this end, we replace each description Tu of the region
u in Eq. (6), with a visual representation of the region u. We denote this with F∗, where F∗(I, u)
might be any visual prompting function, such as a crop of the region u or the image, prompted with a
red circle in u. This gives us the unsupervised objective:

Lu,i2i(I, u, Un) =LInfoNCE(F(I, u),F∗(I, u),F∗(I, un)un∈Un
)

+ LInfoNCE(F∗(I, u),F(I, u),F(I, un)un∈Un
).

(7)

Visibility loss. We empirically observe that learning the alpha channel is sometimes unstable and
the model converges to outputting a zero alpha channel, which results in poor performance. To tackle
this, we simply penalise low average values of Fα:

Lv = max(0, τ − 1

HW

∑
x,y

Fα(x, y)), (8)

where τ is a threshold which controls when the loss turns off.

Training formulation. We freeze the CLIP text and image encoders and only train the prompt
function F , which we parametrise with a neural network. Given a dataset D of images and object
proposals, our loss is

L =
1

|D|
∑

i,u,Un∈D
βLu(i, u, Un) + γLv,

where β and γ are hyperparameters. In practice, given a set of object proposals U , we can select any
u ∈ U and define the set of negative proposals as Un = U \ u. If region-text pairs are available, we
can swap Lu(i, u, Un) for the supervised loss Ls(i, u, Un, T ).

Pretraining We found that our unsupervised method, especially when trained with image-image
pairs, performs better when F has been initialised with a manually engineered visual marker, e.g. a
red circle. Given such a marker, we pretrain FRGB with mean squared error loss and Fα with binary
cross entropy loss.

4 EXPERIMENTS

In this section, we describe the datasets used for our experiments and the implementation details of
our method. After that, we evaluate Highlight against competing methods and ablate the different
components we propose.

4.1 DATASETS

We evaluate Highlight on Referring Expressions Comprehension. We use the RefCOCO (Yu et al.,
2016), RefCOCO+ (Yu et al., 2016), and RefCOCOg (Mao et al., 2016) datasets, all of which consist
of images from the MS-COCO dataset (Lin et al., 2014) together with expressions that refer to a
unique object in the image, which are also annotated with a bounding box. The unique expression-
image region correspondence satisfies our condition in Eq. (3), where locations outside the bounding
must not be described by the referring expression. RefCOCO+ only contains appearance-based
expressions, whereas RefCOCO and RefCOCOg contain relation-based expressions (e.g., containing
the words left/closer/bigger). The test sets of RefCOCO and RefCOCO+ are split into two parts,
where “TestA” and “TestB” contain only people and non-people, respectively. Following prior
work (Subramanian et al., 2022; Yao et al., 2021; Shtedritski et al., 2023), we use the bounding
box proposals of MAttNet (Yu et al., 2018). For our unsupervised losses, we remove proposals
with bounding box sizes of less than 50px. We train on all RefCOCO datasets combined, making
sure to exclude any images that appear in the test sets (e.g. we found that some training images of
RefCOCOg might appear as test images in RefCOCO+). Following prior work, for evaluation we
exclude test samples that have no correct proposals.
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Table 1: Performance on Referring Expressions Comprehension. Our supervised prompt outper-
forms prior works that use ensembles of several models and prompts, which require up to 6x more
forward passes. Our unsupervised prompt outperforms all other single-prompts methods by 6.2% on
average. † as reported in (Rezaei et al., 2024). ‡ as reported in (Shtedritski et al., 2023). contains
expressions referring to people, for objects. Sup indicates whether a method was supervised or not.
The best result is marked in bold.

Method Sup Ensemble RefCOCO RefCOCO+ RefCOCOg
Val ( , ) TestA ( ) TestB ( ) Val ( , ) TestA ( ) TestB ( ) Test ( , ) Val ( , )

Crop ✗ ✗ 31.6 30.9 36.8 36.8 36.0 41.0 53.8 55.4
Reverse Blur ✗ ✗ 36.5 40.5 36.7 41.4 45.2 38.6 49.6 49.9
Red Circle (Shtedritski et al., 2023) ✗ ✗ 45.1 50.1 41.6 50.1 54.8 47.5 56.8 56.6
Guided Attention† (Rezaei et al., 2024) ✗ ✗ 46.7 49.5 43.9 48.1 51.3 46.2 50.4 49.0

Highlight (Unsupervised, synth captions) ✗ ✗ 46.9 51.2 45.3 53.0 56.2 51.0 56.6 56.9
Highlight (Unsupervised, images only) ✗ ✗ 47.7 52.5 45.3 53.6 58.1 50.6 56.9 56.9

ReCLIP† (Subramanian et al., 2022) ✗ ✓ 45.8 46.1 47.1 47.9 50.1 45.1 59.3 59.0
RedCircle‡ (Shtedritski et al., 2023) ✗ ✓ 49.8 58.6 39.9 55.3 63.9 45.4 59.4 58.9

Highlight (Supervised) ✓ ✗ 53.9 59.7 49.4 59.4 64.3 53.3 64.7 63.3

Table 2: Evaluating the importance of optimising the prompt shape. We fix the prompt shape of
Highlight (unsupervised) to a circle and only learn its RGB values, which is fairly comparable to
Guided Attention (Rezaei et al., 2024). † as reported in Rezaei et al. (2024). The best result is marked
in bold, and the second best underlined.

Method Shape RefCOCO RefCOCO+ RefCOCOg Avg
Val ( , ) TestA ( ) TestB ( ) Val ( , ) TestA ( ) TestB ( ) Test ( , ) Val ( , )

Guided Attention† circle 46.7 49.5 43.9 48.1 51.3 46.2 50.4 49.0 48.1
Highlight (RGB only) circle 43.0 48.0 41.1 49.6 53.3 47.0 54.3 53.3 48.7

Highlight learnt 47.7 52.5 45.3 53.6 58.1 50.6 56.9 56.9 52.7

4.2 IMPLEMENTATION DETAILS

Architecture. While one can optimise a visual prompt directly in pixel space, the limited number
of learnable parameters in pixel space hinders the sharing of spatial patterns between pixels, leading
to less efficient optimisation (Krull et al., 2019). To generate the visual prompt, we, therefore, use a
Coordinate Network (Stanley, 2007), which, given the (x, y) coordinates of a pixel location in the
visual prompt, generates the RGB and α values for that location. Therefore, Coordinate Networks
can be thought of as 2D Nerfs (Mildenhall et al., 2021). The network generates a fixed-sized prompt,
which is afterwards scaled to fit the size of the object proposal that should be prompted. We use a
Coordinate Network with eight layers and a hidden dimension of 256. We add a sinusoidal positional
encoding to the input and apply a sigmoid function to the outputted α mask.

Additional details. We use a linear annealing schedule with a 10% warmup and cooldown for
all pretrained Highlights and pretrain them to output a red circle for 2,000 steps unless mentioned
otherwise. For the models that were not pretrained, we empirically observed exploding gradients
when utilising a scheduler. Therefore, we do not use a scheduler for these runs. Similarly to prior
work, we use a CLIP ViT-L/14 in most experiments unless stated otherwise. The hyperparameters we
used in different settings can be found in the Appendix.

4.3 RESULTS

Supervised Highlight. In Table 1, we compare Highlight to other visual prompting methods. Since
our framework is the first to allow supervised training of a visual prompt, we compare to ensemble
methods, which usually perform better than single prompt methods but have a significant inference
overhead. Our supervised visual prompt outperforms the ensemble methods of ReCLIP, which uses
post-processing with spatial relations and an ensemble of 2 models and 2 visual prompts for a total of
4 forward passes of the CLIP vision encoder, and RedCircle, which uses an ensemble of 2 models
and 3 visual prompts for a total of 6 forward passes of a CLIP vision encoder. In comparison, the
Highlight prompt achieves better performance, while only doing one pass of the CLIP vision encoder.
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Method RefCOCO RefCOCO+ RefCOCOg
Crop 33.1 37.9 54.6
Highlight + Crop 47.6 53.4 56.1

Blur 37.9 41.7 49.8
Highlight + Blur 48.5 54.1 56.9

RedCircle 45.6 50.8 56.7
Highlight + RedCircle 46.4 52.0 56.1

Table 3: Comparing different targets
F∗. We compare different baseline visual
prompts, with Highlight when trained with
that visual prompt for its target F∗. We see
the biggest gains when using Crop, but the
best performance when using Reverse Blur.

Method Pretraining RefCOCO RefCOCO+ RefCOCOg
Highlight (supervised) ✗ 54.3 59.0 64.0
Highlight (supervised) ✓ 51.5 56.3 59.7

Highlight (unsup, synth captions) ✗ 47.1 52.5 55.5
Highlight (unsup, synth captions) ✓ 47.8 53.4 56.8

Highlight (unsup, images only) ✗ 39.2 45.5 49.3
Highlight (unsup, images only) ✓ 48.5 54.1 56.9

Table 4: Pretraining Highlight improves perfor-
mance. We find that pretraining Highlight to output a
visual prompt (red circle) leads to better performance
in the unsupervised regime and the biggest gains are
seen for the images-only model.

Image-Image
Red Circle Pretraining

synth. Caption-Image
Red Circle Pretraining

Image-Image
No Pretraining

synth. Caption-Image
No Pretraining

Initialisation Final prompt

Red
circle

Yellow
circle

Green 
circle

Red
square

Pretraining 
shape

Learnt Highlight 
(unsup image-image)

Figure 3: Learnt visual markers. Left: we show how the learnt visual markers in different training
regimes change during training. We see that when no pretraining is used, Highlight converges to an
outline of the prompted region, which is similar to the manually engineered prompts. Right: we show
the final learnt prompts with several different pretraining visual markers.

Unsupervised Highlight. In Table 1, we also see the performance of the unsupervised version of
Highlight in two settings—using synthetic captions and images only. We outperform other visual
prompts on all REC datasets, including the concurrent work of Rezaei et al. (2024), which also
learns a visual prompt from data. We see the biggest gains on the splits that contain only objects
(non-humans), which we attribute to the fact that most regions in the dataset contain non-human
objects. Additionally, the Highlight prompt learnt with images-only outperforms the one learnt with
synthetic captions. Despite the modality gap (Liang et al., 2022) when training without text, our
images-only framework is not affected by ambiguous synthetic captions, as discussed in Section 3.3.

Prompt flexibility. To evaluate the importance of learning the shape of the visual prompt, we fix
the alpha channel Fα to be a circle. In Table 2, we see that optimising Fα significantly improves
the learnt prompt. The restricted version of Highlight that uses a fixed circle mask can now be fairly
compared to the concurrent work Guided Attention (GA) (Rezaei et al., 2024), who propose to learn
a visual prompt by using a fixed circle shape whose colour is optimised. Similarly to Highlight, GA
does that using images only but learns the RGB values of the prompt by focusing the attention of the
CLIP ViT encoder on the prompted region. In Table 2, we see that Highlight’s learning objective

7
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Table 5: Pretraining Highlight to output different shapes. Here we show results for our unsuper-
vised images-only model. We find that pretraining using a red circle leads to the best results. All
pretrainings outperform a Highlight that was not pretrained at all.

Pretrain Shape RefCOCO RefCOCO+ RefCOCOg
Val ( , ) TestA ( ) TestB ( ) Val ( , ) TestA ( ) TestB ( ) Test ( , ) Val ( , )

Red Circle 47.7 52.5 45.3 53.6 58.1 50.6 56.9 56.9
Red Square 47.0 50.6 46.0 52.3 55.7 48.4 55.3 54.8
Green Circle 47.2 52.1 45.3 53.0 57.6 50.2 55.7 56.0
Yellow Circle 45.1 49.4 43.2 50.7 54.9 48.0 55.1 54.2
No Pretrain 38.0 40.8 38.9 44.9 46.7 44.8 49.5 49.0

Table 6: Results for different CLIP models. We train Highlight in the three different modes, (i)
unsupervised im2im, using image-image pairs only, (ii) unsupervised t2im, using synthetic text-
image pairs, and (iii) supervised t2im, using ground truth text-image pairs. Overall, we see that
pretraining improves performance in the unsupervised image-image regime, and does not help or
hurts performance when either ground-truth or unsupervised captions are used.

Model Method Supervision Pretrain RefCOCO RefCOCO+ RefCOCOg
Val ( , ) TestA ( ) TestB ( ) Val ( , ) TestA ( ) TestB ( ) Test ( , ) Val ( , )

ViT-B/16

Crop — — 35.2 33.5 41.9 40.5 39.9 45.5 59.4 60.2
Blur — — 40.2 42.0 40.1 43.9 48.0 43.6 55.7 55.8
Red Circle — — 41.6 44.7 39.4 44.9 47.7 42.2 47.4 47.8
Highlightim2im ✗ ✓ 44.9 47.6 41.9 48.8 51.7 44.7 49.6 49.9
Highlightim2im ✗ ✗ 39.9 40.4 42.1 43.1 42.3 44.7 47.8 48.6
Highlightt2im ✗ ✓ 43.6 46.6 40.3 47.4 50.8 43.7 48.6 48.9
Highlightt2im ✗ ✗ 42.9 44.7 43.5 47.0 48.0 46.7 50.5 50.1
Highlightt2im ✓ ✓ 50.8 56.1 46.7 53.9 60.0 49.0 55.8 55.9
Highlightt2im ✓ ✗ 51.0 55.9 46.3 53.3 58.4 49.7 56.3 56.2

ViT-L/14

Crop — — 31.6 30.9 36.8 36.8 36.0 41.0 53.8 55.4
Blur — — 36.5 40.5 36.7 41.4 45.2 38.6 49.6 49.9
Red Circle — — 45.1 50.1 41.6 50.1 54.8 47.5 56.8 56.6
Highlightim2im ✗ ✓ 47.7 52.5 45.3 53.6 58.1 50.6 56.9 56.9
Highlightim2im ✗ ✗ 38.0 40.8 38.9 44.9 46.7 44.8 49.5 49.0
Highlightt2im ✗ ✓ 46.9 51.2 45.3 53.0 56.2 51.0 56.6 56.9
Highlightt2im ✗ ✗ 45.5 49.9 45.8 52.0 54.6 51.0 55.6 55.4
Highlightt2im ✓ ✓ 50.9 55.6 48.1 55.9 60.1 52.8 60.0 59.3
Highlightt2im ✓ ✗ 53.9 59.7 49.4 59.4 64.3 53.3 64.7 63.3

ViT-L/14@336

Crop — — 32.5 31.5 37.5 38.0 36.1 41.8 55.0 56.6
Blur — — 35.4 38.4 36.0 40.8 43.5 38.3 49.8 49.7
Red Circle — — 46.7 53.6 43.0 52.1 57.7 48.9 58.5 58.1
Highlightim2im ✗ ✓ 46.7 52.1 43.2 52.1 57.8 48.4 56.8 56.6
Highlightim2im ✗ ✗ 43.6 46.9 41.9 48.3 50.4 47.0 50.7 51.3
Highlightt2im ✗ ✓ 47.7 53.7 43.8 52.7 58.0 49.3 56.7 57.4
Highlightt2im ✗ ✗ 46.7 50.8 45.0 52.5 55.8 49.2 56.8 57.5
Highlightt2im ✓ ✓ 53.6 60.8 47.3 58.9 65.4 53.3 62.3 62.3
Highlightt2im ✓ ✗ 49.6 55.3 47.4 55.6 59.9 52.8 59.3 60.7

leads to a better visual prompt than the one learnt by GA. Furthermore, whereas GA (i) requires the
vision encoder to be a ViT and (ii) uses the inner representation of the vision encoder, Highlight (i) is
architecture agnostic, and (ii) treats the vision encoder as a black box and only uses its output.

Effect of the target prompting function F∗ We train Highlight with different target prompting
functions F∗ as part of the unsupervised image-image loss in Eq. (7). We see that learning Highlight
using Blur (blurring everything outside the bounding box) leads to superior performance compared to
training with a red circle prompt or with a crop. Also, using Crop as the target prompting function F∗

leads to the biggest absolute gains over F∗. We attribute this to the fact that we pretrain Highlight to
output a red circle, which can then capture a complimentary signal from the crop/blur target functions.
Still, we observe that the performance of the visual prompt learnt when the target F∗ is a red circle
outperforms using a plain red circle as the visual prompt.

The importance of pretraining Table 4 shows that pretraining Highlight to output a manually
engineered visual prompt (red circle in this case) improves results in the unsupervised regime. As we
decrease the level of supervision, the learning signal becomes weaker, and pretraining becomes more
crucial, i.e. pretraining significantly improves performance when training only with images but has
limited effects when training fully supervised. However, we notice that pretraining leads Highlight to
a local minima as seen on the right of Fig. 3, where the final prompt has changed little compared to the
initialisation. In Table 5, we show the performance of our image-only framework when pretraining

8
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“giraffe in the
middle which is

not eating
leaves”

Expression
Prediction
Red Circle

Prediction
Highlight

“white car”

“half of a
person”

Expression
Attention
Red Circle

Attention
Highlight

Ground
Truth

“a hot dog with
chili on top”

Figure 4: Qualitative examples. Left: We show examples of cases when supervised Highlight leads
to a correct prediction on RefCOCO, but using a plain red circle fails at localising the correct region.
Right: We show attention maps using the explainability method of Chefer et al. (2021). We see that
when prompting with Highlight, we can successfully draw the attention of the visual transformer to
the highlighted region.

with different visual prompts. We observe that Highlight, which is pretrained to output a red circle,
outperforms the other pretraining shapes and colours. Moreover, we notice that both shape and colour
of the pretraining prompt are important since changing the colour or changing the shape, i.e. from
circle to square, leads to worse performance. Furthermore, we also notice that networks pretrained to
produce better prompts tend to deliver better performance later on. For example, a red circle prompt
performs better than a green circle prompt, which outperforms a yellow circle prompt (Shtedritski
et al., 2023). This relationship remains consistent even after optimising each Highlight.

Other CLIP models. In Table 6, we show results when training Highlight on several CLIP models.
Overall, we see that Highlight consistently improves over the performance of other visual prompts
across models. For all models, the largest gains when pretraining are observed in the unsupervised
image-image regime.

Qualitative results. In Fig. 3, we show how the visual prompts change during training, with
different objectives and different pretraining. We see that the visual prompts that have been pretrained
change little, and the subsequent training with our framework just refines them. On the right, we
see this also holds when pretraining using other shapes and colours. The visual prompts learnt from
scratch, however, resemble a contour around the object boundaries, which is similar to the manually
engineered visual markers. This suggests that these emergent behaviours of VLMs, where they can
be prompted with visual markers, are indeed learnt from data. In Fig. 4, we show attention maps
generated using the method of Chefer et al. (2021). We see that Highlight can successfully steer the
attention of the ViT to the highlighted object. Fig. 4 also shows examples where the predictions using
a plain red circle fail, whereas Highlight correctly predicts the referred region.

5 CONCLUSION

Manually engineered visual prompts for VLMs have been extensively used for multiple tasks.
However, choosing visual prompts requires trial and error and guessing. The framework we present,
Highlight, automatically learns a visual prompt given a dataset of text and images, or images only.
The optimised prompt can refine a manually engineered prompt, or be learnt from scratch, in which
case we find they resemble manually engineered prompts. The visual prompts we automatically learn
outperform manually engineered visual prompts, as well as computationally ensembles of models
and prompts. We hope this inspires further work into automatically learning to highlight images, as
well as applying such methods beyond CLIP models and Referring Expression Comprehension.
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A APPENDIX

Table 7: Results for heuristically adding spatial relations. Adding spatial relations to the unsuper-
vised captions improves performance—mainly on TestA splits.

Method RefCOCO RefCOCO+ RefCOCOg
Val ( , ) TestA ( ) TestB ( ) Val ( , ) TestA ( ) TestB ( ) Test ( , ) Val ( , )

Highlight (unsup, synth. captions) 46.9 51.2 45.3 53.0 56.2 51.0 56.6 56.9
Highlight (unsup, synth. captions) + SR 46.9 51.8 45.3 53.0 57.0 50.7 56.7 58.0

A.1 ADDING HEURISTICAL SPATIAL RELATIONS

As detailed in Section 3, one potential caveat of training with synthetic captions is that captions might
be ambiguous, e.g. in Fig. 2 the caption model might output the same caption “a horse” for both
object proposals in the image. We experiment with alleviating this ambiguity by introducing spatial
relations using the heuristics introduced by Subramanian et al. (2022): For each object proposal, we
identify the closest other object proposal and then determine which spatial relations hold between
the two bounding boxes (e.g. left, right, above, below, smaller, bigger) and select one of these at
random. Next, we combine the captions from the two objects with a randomly chosen synonym
for the selected spatial relation. We take the list of synonyms from Subramanian et al. (2022). For
example, in Fig. 2, this process might change the captions from {“a horse”, “a horse”} to {“a horse
to the left of a horse”, “a horse bigger than a horse”}.

Table 7 shows the performance of training with synthetic captions both with and without heuristically
adding spatial relations. Overall, performance when training with heuristically added spatial relations
is slightly better than training without spatial relations. Interestingly, we observe that this improvement
mainly stems from TestA splits. This might indicate that the captions the caption model generates are
better suited to differentiate objects from one another than humans.

A.2 TRANSFER BETWEEN MODELS

In Fig. 5, we see the relative performance improvement of Highlight over a network pretrained
to output a red circle when trained on one CLIP model and evaluated on another. We see the
biggest improvements when evaluating with the CLIP ViT-B/16 model and observe that the prompt
optimised with CLIP ViT-L/14 is more transferable to other models than the other optimised prompts.
Overall, a visual prompt learnt on a larger model transfers well on a smaller model, e.g. learning on
ViT-L/14@336 and evaluating on ViT-B/16 work better than the opposite.

A.3 COMPARISON TO FGVP

In Table 8 we compare Highlight to FGVP (Yang et al., 2024). FGVP is supervised in that it uses
SAM (Kirillov et al., 2023a) to generate mask outlines for objects, which are used for visual prompts.
Additionally, FGVP utilises several post-processing techniques. In Table 8, we see that unsupervised
Highlight outperforms FGVP when it uses a single prompt. Supervised highlight outperforms FGVP
when it uses up to 6 forward passes of the visual encoder and either of the two ad-hoc post-processing
techniques. However, when FGVP uses 8 passes of the visual encoder and both post-processing
methods, it performs better than Highlight. Overall, Highlight is a much more lightweight and
efficient method, and performs favourably to FGVP.

A.4 IMPLEMENTATION DETAILS

Table 9 gives an overview of the different hyperparameters for all runs. Note that if we train
supervised, we iterate over referring expressions and corresponding bounding boxes instead of
images. Therefore, we train for fewer but larger epochs. Moreover, we empirically observe that
training in the supervised case leads to invisible prompts. Thus, we add a visibility loss as introduced
in Eq. (8) with a threshold τ of 10%. For the pretrained Highlightim2im for the ViT-B/16 model, we
use F∗ crop instead of blur. To adjust to the higher resolution, we filter for object proposals with a
minimum height and width of 75px for the ViT-L/14@336 model. Therefore, we consider the same
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Table 8: Comparison to FGVP. We compare to FGVP (Yang et al., 2024), which is a visual
prompting method, which is supervised in that it requires masks from SAM (Kirillov et al., 2023a).
SR is the use of a spatial relations post-processing, that takes into account words like “left”, “right”,
“bigger”, “smaller”, etc, which Subramanian et al. (2022) found to boost performance. SS is the use
of Score Subtraction, which Shtedritski et al. (2023) found to boost performance. Num Enc is the
number of forward passes of the visual encoder (number of prompts used times the number of visual
encoders ensembled) contains expressions referring to people, for objects. Sup indicates whether
a method was supervised or not. The best result is marked in bold, second best is underlined.

Method Sup Num. Enc. RefCOCO RefCOCO+ RefCOCOg Avg
Val ( , ) TestA ( ) TestB ( ) Val ( , ) TestA ( ) TestB ( ) Test ( , ) Val ( , )

Highlight (Unsupervised, synth captions) ✗ 1 46.9 51.2 45.3 53.0 56.2 51.0 56.6 56.9 52.1
Highlight (Unsupervised, images only) ✗ 1 47.7 52.5 45.3 53.6 58.1 50.6 56.9 56.9 52.7

FGVP ✓ 1 46.1 53.0 40.4 50.4 57.5 42.6 54.5 54.1 49.8
FGVPSR ✓ 4 52.0 55.9 48.8 53.3 60.4 46.7 62.1 61.9 55.1
FGVPSS ✓ 6 53.9 60.2 44.3 59.3 66.6 48.8 61.0 61.3 56.9
FGVPSR+SS ✓ 8 59.6 65.0 52.0 60.0 66.8 49.7 63.3 63.4 60.0
Highlight (Supervised) ✓ 1 53.9 59.7 49.4 59.4 64.3 53.3 64.7 63.3 58.5

ViT-B/16 ViT-L/14 ViT-L/14@336
Evaluated with

ViT-B/16

ViT-L/14

ViT-L/14@336

Tr
ai

ne
d 

on

+19.5% +8.7% +3.0%

+17.0% +11.6% +5.3%

+18.2% +10.2% +4.2%

Average improvement over red circle

Figure 5: Transferability of an optimised Highlight trained for one CLIP model to other models.
We use Highlights that were optimised with our image-image loss and pretrained to output a red circle
for evaluation on other CLIP models. We observe that even though the Highlights were not optimised
for that specific CLIP model, they still increase performance. We report the average performance
increases across all RefCOCO test and validation datasets.

Table 9: Hyperparameters for all optimised Highlights.

Model Method Sup Pretrain Learning Rate Contrastive Loss Scaling β Visibility Loss Scaling γ Scheduler Training Samples (Epochs) Batch Size Minibatch Size Temperature

ViT-B/16

Highlightim2im ✗ ✓ 0.001 0.0001 0 ✓ ∼100,000 (4) 20 10 20
Highlightim2im ✗ ✗ 0.001 0.0001 0 ✗ ∼200,000 (8) 56 15 20
Highlightt2im ✗ ✓ 0.001 0.0001 0 ✓ ∼100,000 (4) 20 10 20
Highlightt2im ✗ ✗ 0.001 0.0001 0 ✗ ∼200,000 (8) 20 10 20
Highlightt2im ✓ ✓ 0.001 0.5 1.5 ✓ ∼150,000 (1) 16 25 20
Highlightt2im ✓ ✗ 0.001 0.05 0.15 ✗ ∼300,000 (2) 16 25 20

ViT-L/14

Highlightim2im ✗ ✓ 0.001 0.0001 0 ✓ ∼100,000 (4) 20 10 20
Highlightim2im ✗ ✗ 0.001 0.0001 0 ✗ ∼200,000 (8) 20 10 20
Highlightt2im ✗ ✓ 0.001 0.001 0 ✓ ∼100,000 (4) 20 10 20
Highlightt2im ✗ ✗ 0.001 0.0001 0 ✗ ∼200,000 (8) 20 10 20
Highlightt2im ✓ ✓ 0.001 0.5 1.5 ✓ ∼150,000 (1) 16 14 20
Highlightt2im ✓ ✗ 0.001 0.05 0.15 ✗ ∼600,000 (4) 16 14 20

ViT-L/14@336

Highlightim2im ✗ ✓ 0.001 0.00001 0 ✓ ∼100,000 (4) 20 10 20
Highlightim2im ✗ ✗ 0.001 0.00001 0 ✗ ∼25,000 (1) 20 10 20
Highlightt2im ✗ ✓ 0.001 0.0001 0 ✓ ∼100,000 (4) 20 10 20
Highlightt2im ✗ ✗ 0.001 0.00001 0 ✗ ∼100,000 (4) 20 10 20
Highlightt2im ✓ ✓ 0.001 0.1 0.3 ✓ ∼150,000 (1) 16 19 20
Highlightt2im ✓ ✗ 0.001 0.05 0.15 ✗ ∼150,000 (1) 16 19 20

object proposals for both resolutions. We adjust batch size and minibatch size in order to fit on a
single GPU, depending on the CLIP model and supervision regime used. Minibatch size denotes
how many samples are considered at maximum for one iteration of the contrastive loss, e.g. if the
minibatch size is 10, but there are 15 valid object proposals, they are cut down to 10 object proposals
(at random), and for each positive pair in the contrastive loss, there are 9 negatives.
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ViT-L/14
No Pretrain

ViT-L/14
Red Circle Pretrain

ViT-L/14@336
No Pretrain

ViT-L/14@336
Red Circle Pretrain

(i) Supervised
Image-Caption 

(ii) Unsupervised
Image-Caption

(iii) Unsupervised
Image-Image

ViT-B/16
No Pretrain

ViT-B/16
Red Circle Pretrain

Figure 6: Learnt visual markers. We show the learnt visual marker for different CLIP models in the
different supervision regimes.
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Blur Crop Red Circle

Highlights optimized for different F∗.

Circle UNet

Fixed mask.

Figure 7: Learnt visual prompts for ViT-L/14 trained with unsup. image-image loss. Left: We
show the learnt markers when optimising a Highlight pretrained with a red circle using different
target functions. Right: We show the learnt prompt when training a Highlight with a restricted prompt
shape to a circle. Similarly to Rezaei et al. (2024), we parametrise the prompt network with a UNet
for this experiment.

A.5 ADDITIONAL QUALITATIVE RESULTS

In Fig. 6, we show visual prompts we learn with Highlight for different CLIP models in all the
supervision regimes we consider. We see that all models learn a contour in the unsupervised regime,
where for the large models, this contour is red—resembling a red circle. In Fig. 7, we show (i) visual
markers optimised for different target functions when using the unsupervised image-image objective
and red circle pretraining and (ii) the learn visual marker when we compare to Rezaei et al. (2024),
fixing the prompt shape to a circle.
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