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Abstract— Stereo-vision devices have rigorous requirements 
for extrinsic parameter calibration. In Stereo Visual Inertial 
Odometry (VIO), inaccuracy in or changes to camera extrinsic 
parameters may lead to serious degradation in estimation 
performance. In this manuscript, we propose an online cali-
bration method for stereo VIO extrinsic parameters correction. 
In particular, we focus on Multi-State Constraint Kalman 
Filter (MSCKF [1]) framework to implement our method. The 
key component is to formulate stereo extrinsic parameters as 
part of the state variables and model the Jacobian of feature 
reprojection error with respect to stereo extrinsic parameters 
as sub-block of update Jacobian. Therefore we can estimate 
stereo extrinsic parameters simultaneously with inertial 
measurement unit (IMU) states and camera poses. Experi-
ments on EuRoC dataset and real-world outdoor dataset 
demonstrate that the proposed algorithm produce higher posi-
tioning accuracy than the original S-MSCKF [2], and the noise 
of camera extrinsic parameters are self-corrected within the 
system. 

I. INTRODUCTION 
 In recent years, high-precision positioning technologies 

have progressed significantly, propelling the advancements 
in multiple application scenarios such as autonomous driv-
ing, robotics and unmanned aerial vehicles (UAVs), and 
augmented and virtual reality (AR and VR). In outdoor en-
vironments, GNSS such as GPS and RTK can be employed. 
In indoor and GPS-denied environments, Lidar and visual 
SLAM can be used. For applications that are limited by de-
vice size and weight requirements, the applicable positioning 
technology is rather limited in the absence of GPS. Since 
VIO only requires IMU and one or two camera modules to 
estimate ego-motion, it is naturally suitable for such scenar-
ios. It has been reported that stereo-vision VIO system can 
improve the overall estimation accuracy over single-vision 
VIO system (S-MSCKF [2], VINS-Fusion [3,4]). A good 
stereo calibration ensures the epipolar lines of stereo images 
being parallel, which is the foundation for most stereo 
matching algorithms. However, in stereo VIO systems, the 
estimation accuracy heavily depends on camera extrinsic 
parameters calibration. With a poor calibration or slight 
changes in camera parameters during operation, stereo VIO 
positioning accuracy will drop sharply. Even with rigid and 
bulky frames, most stereo cameras cannot ensure that extrin-
sic parameters are unchanged during long course of opera-
tions. Within this context, an accurate calibration algorithm  
that is robust to changes in camera extrinsic parameters is 
highly desired. 

In this paper, we propose a stereo VIO algorithm with 
online calibration to overcome the above issues. The core 
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method is to formulate stereo camera extrinsic parameters 
(rotation and translation) into the set of state variables and 
model the relevance between feature reprojection error and 
stereo extrinsic parameters in update Jacobian, so that the 
stereo extrinsic parameters can be calibrated online as part of 
the state estimation. To accelerate the self-calibration pro-
cess, the initial covariance of stereo extrinsic parameters is 
set to a large value. In addition, during the initial phase of 
the estimation, the threshold of the outlier rejection rule 
based on stereo extrinsic constraint on the algorithm 
frontend is relaxed to avoid too many inliers being mistak-
enly taken out. 

Using EuRoC dataset and real-world outdoor dataset, we 
compare the proposed scheme with other state-of-the-art 
stereo VIO algorithm, specifically S-MSCKF. The experi-
ments show that, without calibration errors, the proposed 
method performs similarly to S-MSCKF. Besides, when 
artificial noises are involved in the calibrated parameters, the 
proposed scheme can achieve rapid self-calibration and out-
performs S-MSCKF in position estimation.  

The rest of this paper is organized as follows: Section II 
introduces related works. Section III introduces system 
framework and derives analytical formulations. Section IV 
compares experimental results of the proposed scheme with 
those of VINS-Fusion [3,4] and S-MSCKF using EuRoC 
dataset and real-world outdoor datasets collected by UAVs 
as well as by a handheld device. Finally, the conclusions are 
summarized in section V. 

II. RELATED WORK 

The current scholarly works in VIO could be roughly di-
vided into loosely-coupled [5,6] and tightly-coupled [1- 4,7] 
methods. Tightly-coupled methods put IMU information 
into state variables and optimize with vision information 
simultaneously, which is a mainstream direction currently. 
Tightly-coupled methods can be divided further into fil-
ter-based and optimization-based. 

VIO methods based on non-linear optimization utilize all 
measurements, including IMU measurements and visual 
measurements, to find the optimal state variables to mini-
mize the measurement error. Stereo VIO based on non-linear 
optimization includes OKVIS [7], VINS-Fusion [3,4], etc. 
Both OKVIS and VINS-Fusion perform online estimation of 
extrinsic parameters between the IMU and each camera, 
separately. However, due to the large number of state varia-
bles, even the current mainstream sliding window based 
VIO methods using non-linear optimization have a consid-
erable demand for computational resource, and it is still dif-
ficult to run in real time on embedded platforms. 

Filter based VIO methods are mainly based on Extended 
Kalman Filter (EKF) [1]. Generally, IMU is used for predic-
tion, while visual information is used for update. They 
achieve almost the same level of accuracy as optimiza-
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tion-based methods using relatively low computational re-
sources. Thus they can run in real time on embedded plat-
forms. S-MSCKF [2] is one of filter-based stereo VIO 
frameworks, which only estimates the extrinsic parameters 
between IMU and left camera online. In order to achieve 
real-time performance, our method is also based on MSCKF 
framework. 

P Hansen et al. [8] and Yonggen Ling et al. [9] proposed 
approaches to estimate stereo extrinsic parameters online. 
They are all based on epipolar geometric constraints for 
online self-calibration of stereo extrinsic. However, because 
pure vision-based methods cannot self-calibrate the baseline 
fully, they can only achieve estimation of stereo extrinsic 
parameters with 5-DOF, while the length of the baseline 
cannot be estimated. Therefore, we use the IMU and the 
cameras jointly, to self-calibrate the 6-DOF stereo extrinsic 
parameters online. 

III. MSCKF ALGORITHM FRAMEWORK 

A. State definition 
Following the definition of MSCKF in [1], IMU state is 

defined below: 

   X" = $ p"&' 	 v"&' 	 q+'" ,	b.
,	b/

,0
1
                    (1) 

In this paper, different from [1, 2], both extrinsic param-
eters E3 and E4 of stereo VIO system shown in Fig. 1, are 
added into IMU states and calibrated online. The extended 
IMU states are defined:  

X" = 

					5 p"&' 	 v"&' 	 q+'" ,	b.
,	b/

,	 q+"6
7 ,	 p67&" 	 q+67

68 ,	 p68&67 9
1
    (2) 

In these expressions,	{G} and {I} are the global and in-
ertial frame respectively, {C3} and {C4} are frame of C3 
and C4 respectively. p"'  and v"'  are position and veloc-
ity of IMU expressed in {G}, respectively. 4 × 1	 q+'"  repre-
sents the rotation from {G} to {I} (in this paper, quaternion 
obeys JPL rules). The vectors b/ and b. are the biases of 
the measured angular velocity and linear acceleration from 
the IMU, separately. q+"6

7  represents the rotation from {I} 
to {C3}, and p67"  is the position of C3 based on frame 
{I} ( q+"6

7  and p67"  are the rotation and translation of ex-
trinsic parameter E3 respectively). Finally, q+67

68  represents 
the rotation from frame {C3} to frame {C4}, and p6867  is 
the position of C4 based on frame {C3} ( q+67

68  and p6867  
are the rotation and translation of stereo extrinsic parameter 
E4 respectively. We treat stereo extrinsic parameters as q+67

68  
and p6867  later). 

The EKF error-state of X" is defined accordingly: 

 
Figure 1.  Structure diagram of sensor, and definition of extrinsic 
parameters 

XB" = 5 pC"' ,	 vC"' ,	 θE'" ,	bE.
,	bE/

,	 θE"6
7 ,	 pC67" ,	 θE67

68 ,	 pC68&67 9
1
 

(3) 

Except for quaternions, other states can be used with 
standard additive error (e.g. x = xG + xC). the extended addi-
tive error of quaternion is defined in [10] (in this paper, qua-
ternion error is defined in frame {I} , see details in [11]) 

q+'" = δ q+'" ⨂ q+K'" ,  δ q+'" = 51	 4
L
θE'" 9
,
                    (4) 

similarly, the extended additive error of rotation matrix is 
defined: 

RN q+'" O = R'" , R'" = (1 − $ θE'" 0×) RS'
"                    (5) 

B. State Propagation 
Similar to EKF state propagation, MSCKF framework 

uses IMU data to propagate states. The difference is state 
augmentation at the moment of new image arrival. As can be 
seen from [1], The time evolution of IMU states are de-
scribed below: 

q+̇(t)'
" =

1
2ΩNω

(t)O q+'" (t) 

ḃ/(t) = nZ/(t) 

v̇"' (t) = a' (t) 

ḃ.(t) = nZ.	(t) 

	 ṗ"' (t) = v"' (t)                                (6) 

where a'  represents the body acceleration in frame {G}. 
ω = $ω\		ω]		ω^0

,
 represents angular velocity of IMU ex-

pressed in frame {I}. And: 

Ω(ω) = _−[ω]× ω
−ω, 0

c , [ω]× = e
0 −ω^ ω]
ω^ 0 −ω\
−ω] ω\ 0

f (7) 

ωg  and ag  are the gyroscope and accelerometer 
measurements separately. Ignored the effects of the planet’s 
rotation, they are given by [1]:  

ωg = ω+ b/ + n/ 

ag = RN q+'" ON a' − g' O + b. + n.                 (8) 

where g'  is gravitational acceleration, expressed in frame 
{G}. Applying Eq. (6) in Eq. (8), continuous dynamic model 
of IMU states can be obtained: 

q+K̇'" = 4
L
Ω(ωi) q+K'" , bK̇/ = 0j×4,  

	 vĠ"' = RN q+K'" O
,aG + g'   

bK̇.(t) = 0j×4,       pĠ" =' vG"'                        (9) 

moreover, aG = ag − bK., ωi = ωg − bK/ , continuous dy-
namic model of IMU error-state is defined by: 

XḂ" = FXB" + Gn"                                (10) 

1085

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 11:45:09 UTC from IEEE Xplore.  Restrictions apply. 



where n" = $		n/,		nl/, 		n.,		nl., 0,  is the system noise. It 
depends on the IMU noise characteristics. Finally, the ma-
trices F and G that appear in Eq. (10) are given by:  

F =

⎣
⎢
⎢
⎢
⎡ 0j×j
0j×j
0j×j
04p×j

	

Ij×j
0j×j
0j×j
04p×j

	

0j×j
−RN q+K'" O

,[aG]×
−[ωi]×
04p×j

	

0j×j
−RN q+K'" O

,

0j×j
04p×j

	

0j×j
0j×j
−Ij×j
04p×j

	

0j×q
0j×q
0j×q
04p×q⎦

⎥
⎥
⎥
⎤
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (11)	

G =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 0j×j
0j×j
−Ij×j
0j×j
0j×j
04L×j

		

0j×j
0j×j
0j×j
0j×j
Ij×j
04L×j

		

0j×j
−RN q+K'" O

,

0j×j
0j×j
0j×j
04L×j

		

Ij×j
0j×j
0j×j
0j×j
0j×j
04L×j⎦

⎥
⎥
⎥
⎥
⎥
⎤

		 	 	 	 	 	 	 	 (12)	

Following Euler integration [4] of Eq. (10), discrete-time 
system matrix is given by:  

Φ = I + Fδt	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (13)	
Moreover, the propagation of covariance is given by: 

	 	 P = ΦPΦ, + (ΦG)Q(ΦG),δt	
In this paper, covariance structure is defined as: 

Px|x = z
P""x|x P"6x|x
P"6x|x

, P66x|x
{	 	 	 	 	 	 	 	 	 	 	 	 	 (14)	

Since the current state of IMU propagation doesn’t 
change the pose of sliding window, we can formulate the 
covariance propagation method: 

Px|4|x = z
P""x|4|x ΦP"6x|x
P"6x|x

,Φ, P66x|x
{	 	 	 	 	 	 	 	 	 (15) 

where, P""x|4|x = ΦP""x|xΦ
, + (ΦG)Q(ΦG),δt , and P"" 

represents covariance of IMU states. P"6 represents covari-
ance of IMU states with respect to pose of cameras. P66 
represents covariance of pose of augmented cameras. 

When a new image arrives, current state of system 
should be augmented (in this paper, we augment the left 
camera state similarly to [2]). Including augmented states, 
the extended states are defined as: 

XSx = 5XS"
,		XS677

,		XS687
,		XS6}7

, 	 ··· 	XS6�7
,9
,
        (15) 

where XS6�7 = 5 q+K'6
7 ,	 pG6�7

' ,9
,
, j = (0,1, … , N)  represents 

the pose of augmented camera C3. It is derived from extrin-
sic parameter E3 and IMU states:  

q+K'6
7 = q+K"6

7 ⨂ q+K'"  
pG67' = pG"' + R( q+K'" ), ∙ pG67"          (16) 

Hence, in Error State Kalman Filter (ESKF [12]) framework, 
error-state of system (including augmented cameras) is de-
fined by: 

XBx = 5XB"
,		XB677

,		XB687
,		XB6}7

, 	 ··· 	XB6�7
,9
,
      (17) 

where, XB6�7 = _ θE'
6�
7

,	 pC6�7
' ,

c
,

, j = (0,… , N − 1)  represents 
the error of jth augmented camera C3. Moreover, augmented 
covariance is defined by:  

Px|x� = zPx|x PL4,

PL4 PLL
{             (18) 

Note that PL4 = JPx|x, PLL = JPx|xJ,are the augmented co-
variance with respect to jth augmented state, and J is the Ja-
cobian of XB6�7 with respect to the error-state vector. 

J = 

�		0j×jIj×j
		0j×j0j×j

		
RS'6
7

− RS'" ,$ pG67" 0×
		0j×�0j×�

		 Ij×j0j×j
		
0j×j
RS'" , 		

0j×(��|�)
0j×(��|�)

�          

(19) 

C. State Update 
Similar to [2], we can formulate the reprojection of fea-

tures from stereo. Different from [2], the extrinsic parame-
ters E4  employed in this paper is calibrated online. 
� q+'
6�
7
		 p6�7
' � and � q+'

6�
8
		 p6�8
' � are ith left and right camera 

pose at the same time instance respectively. Employing the 
stereo extrinsic, the pose of the right camera C4 can be eas-
ily derived in terms of the left camera augmented( e.g. 
q+'6
8 = q+67

68 ⨂ q+'6
7 , p68' = p67' + RN q+'6

7 O
,
∙ p6867 ). The 

reprojection of stereo measurement, zG�
� in ith pose is defined 

as:  

 zG�
� =

⎝

⎜⎜
⎛
uG�,3
�

vG�,3
�

uG�,4
�

vG�,4
�
⎠

⎟⎟
⎞
=

⎝

⎜
⎛

4

�S�
��
7 0L×L

0L×L
4

�S�
��
8

⎠

⎟
⎞

⎝

⎜
⎜
⎜
⎛

XS�
6�
7

YS�
6�
7

XS�
6�
8

YS�
6�
8

⎠

⎟
⎟
⎟
⎞

      (20) 

Note that _ XS�
6�
�
	 XS�
6�
�
	 XS�
6�
�
c is the coordinate of jth feature in 

frame {Cx} in ith camera pose of sliding window (k=0,1 rep-
resents left and right camera respectively). Measurement 
residual is defined as:  

r�
�,x = z�

�,x − zG�
�,x               (21) 

We can formulate least-squares system to optimize the coor-
dinates of features. See details in [13]. Then, the reprojection 
error of jth feature observation in ith camera pose in sliding 
window is derived as:   

r�
�,x = z�

�,x − zG�
�,x ≈ H��

�,xXB + H �
�,x pC'  � + n�

�,x    (22) 
H��
�,3 = $0L×(L¡|�¢)	𝐻4	0L×�(¤¥¢¥4)0 

H��
�,4 = $0L×L4	𝐻L	0L×�¢	𝐻j	0L×�(¤¥¢¥4)0 

where, H��
�,3  and H��

�,4  represents the Jacobian of r�
�,3  and 

r�
�,4 with respect to error-state. And 𝐻4, 𝐻L, 𝐻j are de-

rived respectively by: 

𝐻4 = 	 5𝐽¢
§,3 5 pG¨©

ª«
7

9
×
			− 𝐽¢

§,3 RS'
ª«
7
9 

𝐻L = 	 5𝐽¢
§,4 5 pG¨©

ª«
8

9
×
	−𝐽¢

§,4 RS67
68 9 
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𝐻j = 	 5	𝐽¢
§,4 RS67

68 5 pG¨©
ª«
7

9
×
	− 𝐽¢

§,4 RS'
ª«
8
9 

where 𝐽¢
§,3 and 𝐽¢

§,4 are defined as： 

𝐽¢
§,¬ =

1

­ ZK�
6�
�
¯
L e

ZK�
6�
�
					0		 − XS�

6�
�

		0					 ZK�
6�
�
	− YS�

6�
�
	
f , (k = 0,1) 

Similar to original S-MSCKF [2], H �
�  represents the 

Jacobian with respect to the error of feature coordinate. H��
�  

represents the Jacobian with respect to error-state. The core 
point in this paper is, different with S-MSCKF, in the Jaco-
bian of reprojection error in right camera with respect to 
error-state, the sub-Jacobian of the reprojection error in right 
camera with respect to the error-state of stereo extrinsic 𝐸4 
is a non-zero block. It just models the reprojection error with 
respect to 𝐸4. During state update, the 𝐸4 will be calibrated 
online iteratively. n�

� represents observation noise of jth fea-
ture in ith pose. We can stack Eq. (22) of all the observations 
with respect to the same feature:  

r� = z� − zG� ≈ H�
� XB + H 

� pC'  � + n
�        (23) 

As EKF state variables are formulated regardless of fea-
ture coordinates, we can project Eq. (23) into the left null 
space of H 

�, and marginalize the formula of feature error 
[14]: 

r²
� = V,r� = V,(z� − zG�) ≈ V,H�

� XB + n²
�      (24) 

where, V represents the left null space of H 
�, n²

� = V,n�. 
Hence, Eq. (24) becomes the same as standard EKF update, 
and QR decomposition can be employed to accelerate the 
standard EKF update [1]. 

   Similar to original S-MSCKF [2], the Observability 
Constrained EKF [15] is applied in our method for main-
taining the consistency of the filter. And the strategy of fea-
ture update also comes from S-MSCKF. 

D. Vision Frontend 
In our implementation, for efficiency, FAST [16] corners 

are extracted as landmarks. Similar to [2-4], the KLT optical 
flow algorithm [17] is employed in feature matching of front 
and rear frames, as well as left and right frames. In stereo 
matching, essential matrix constraint is used to eliminate 
outliers. Different from [2-4], since stereo extrinsic parame-
ters are calibrated online in this work, the stereo extrinsic 
parameters used in the frontend will also be time-varying. 
Since the initial extrinsic parameters may be inaccurate, the 
outlier rejection algorithm may incorrectly remove inliers 
during the initial phase of system start-up. Therefore, the 
constraint of outlier rejection using essential matrix relation 
should be weakened during the initial period of system 
startup to prevent serious errors. After the system runs for a 
period of time (i.e. 30 seconds in this paper), the essential 
matrix constraint could be set to the normal threshold. 

IV. EXPERIMENTS 

Two experiments are performed to evaluate the proposed 
algorithm. Firstly, we compare our method with 
state-of-the-art stereo VIO [2-4] on EuRoC dataset and a 
large scale dataset. Secondly, another experiment is per-

formed with the stereo extrinsic containing initial noise to 
show the robustness and the validity of the proposed algo-
rithm. All of the following algorithms run on Intel i9-9900k 
(3.6GHZ) desktop platform. 

A. Dataset 
EuRoC dataset is a visual-inertial dataset [18] produced 

by ASL team of ETH. Collected by UAV, the dataset in-
cludes stereo images of 20 FPS and IMU data of 200 Hz. It 
also provides ground truth trajectories from Leica MS50 
lidar and Vicon motion capture system. The dataset consists 
of three scenarios and 11 sequences. Five of them are ran-
domly selected for comparison. 

Our large scale dataset includes 30 Hz stereo images and 
500 Hz IMU collected by Mynteye S1030 camera shown in 
Fig. 2. The cameras is calibrated by Kalibr toolkit [19], and 
the ground truth is collected by 5Hz GPS of UBLOX 
NEO-M8N.  

Our real-world dataset contains two scenes. The first da-
taset is the outdoor flight scene of UAV at 10m, 25m and 
30m altitude. The horizontal trajectory distances are 1km, 
1.1km and 2.1km separately, and the trajectories look like 
rectangles. The second dataset is an outdoor hand-held scene 
with a total distance of 1.5km. Therefore, all sequences are 
from large scale scenes. Fig. 3 shows sample images of the 
self-collected dataset. 

B. RMSE comparison 
RMSE, root mean square error, is a popular measure-

ment to evaluate estimation accuracy. In the experiment, we 
compare proposed method with S-MSCKF and 
VINS-Fusion. The former is also based on MSCFK frame-
work which cannot estimate stereo extrinsic online. The 
latter is an optimization based stereo VIO, which can esti-
mate extrinsic between IMU and every camera. For fairness, 
we turn off the loop closure mode of VINS-Fusion. 

In some cases, as the proposed algorithm has a relatively 
large initial threshold in frontend, we only compare trajecto-
ries after 30s. 

 
Figure 2.  The device we used for our dataset. It contains oblique 
top-down global shutter stereo camera( AR0135, 30Hz) with 752×480 
resolution and it contains a build-in IMU ( ICM20602, 500Hz ). 
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1) In EuRoC dataset 
In Table 1, when the initial stereo extrinsic is normal, 

VINS-Fusion performs the best, and our method performs 
similarly to original S-MSCKF. Although VINS-Fusion has 
higher accuracy, it consumes more computational resource 
because of too many variables optimized at the same time 
(see the detail comparison in [2]), and the average CPU load 
on our machine is about 146%. On the contrary, the pro-
posed method is filter-based. Thus, it has the advantage of 
both high efficiency and lightweight. The average CPU load 
of our method is only about 57%, which is less than 1/2 of 
VINS-Fusion. Our method is similar with S-MSCKF in 
terms of CPU load. 

In Table 2, as expected, benefited from the online stereo 
extrinsic calibration, the estimation results with the initial 
noise in stereo extrinsic of our algorithm and VINS-Fusion 
are not degraded significantly compared with no noise situa-
tions. However, without stereo extrinsic estimation, 
S-MSCKF performs badly or even diverges.  

2) In large scale environment 
In large scale environment, the estimation accuracy of 

proposed method is similar with VINS-Fusion, both of 
which are superior to S-MSCKF. Especially in the handheld 
data (Fig. 4), because there is no stereo baseline estimation, 
the estimated scale of S-MSCKF has a large error. It indi-
cates that in the large scale environment, online stereo ex-
trinsic estimation is crucial for scale estimation. 

Similarly, with stereo extrinsic containing initial noise, 
the proposed algorithm and VINS-Fusion still work well in 
most cases, but S-MSCKF diverges. Hence, the robustness 
of our method is validated. 

C. Stereo extrinsic estimation result 
As can be seen from Table 3, with different perturbations 

to X and Y direction of the initial stereo extrinsic parameters, 
our method can converge to be approximately  the same as 
the off-line calibration results. Specifically, for errors in 
translation in X or Y axis, most of the final errors are limited 
to below 0.5 mm. For errors in any direction of rotation, the 
final error is controlled under 0.1 degree. It should be noted 
that in Z axis of translation, all final errors are around 5 mm, 
including the case with normal initial stereo extrinsic pa-
rameters. An intuitive explanation is that the Z axis of stereo 
camera device is aligned with UAV heading direction in 
EuRoC dataset. Almost all the time UAV moves towards the 
heading direction, which leads to a bigger error in the esti-
mated offset along the depth direction. 

Fig. 5 shows that, with different initial artificial perturba-
tions, the estimated translation in X axis and rotation in yaw 
direction between two cameras change with time. The figure 
shows that in about 30 seconds the estimated translation in X 
axis converges, and in 5 seconds the estimated rotation in 
yaw converges. These results indicate that the proposed al-
gorithm can effectively estimate the stereo extrinsic in a 
timely manner. 

  
(a)                      (b) 

  
(c)                     (d) 

Figure 3.  Sample images of large scale dataset. (a) and (b) are the images 
when the UAV is flying on 30 meters height. (c) and (d) are the images 
when the device is held by hand. 

TABLE I.  RMSE (m) comparison with normal initial stereo extrinsic. 
For EuRoC dataset, only trajectories after 30s were considered. 

Data sequences VINS-Fusion S-MSCKF Our Method 

MH_03 0.080 0.211 0.223 

MH_04 0.110 0.373 0.315 

V1_03 0.129 0.260 0.195 

V2_01 0.079 0.110 0.091 

V2_02 0.035 0.139 0.163 

UAV_10m 2.935 4.417 3.737 

UAV_25m 4.068 4.674 4.768 

UAV_30m 15.976 19.328 13.866 

Hand_Held 14.223 41.969 9.480 

TABLE II.  RMSE (m) comparison with bad initial stereo extrinsic 
(added 2 deg. error in Z axis for rotation and 5mm error in baseline for 
translation). Only trajectories after 30s were considered, as it took time to 
estimate appropriate stereo extrinsic for filter-based method. 

Data sequences VINS-Fusion S-MSCKF Our Method 

MH_03 0.087 - 0.302 

MH_04 0.102 1.659 0.337 

V1_03 0.195 0.585 0.235 

V2_01 0.154 0.724 0.127 

V2_02 0.067 0.454 0.165 

UAV_10m 2.950 - 4.930 

UAV_25m 4.076 - 11.213 

UAV_30m - -  - 

Hand_Held 18.610 - 24.861 
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Figure 4.  The estimated trajectories with good initial stereo extrinsic in 
hand held outdoor environment aligned to Google Map. VINS-Fusion (red), 
S-MSCKF (blue), our method (yellow) and GPS (green). 

V. CONCLUSION 

In this paper, we have presented an approach for online 
estimation of stereo extrinsic parameters based on 
S-MSCKF framework. The key component of our formula-
tion is that the stereo extrinsic parameter 𝐸4 is explicitly 
included in state variables, and the model between 𝐸4 error 
and feature reprojection error is formulated. The resulting 
stereo VIO system significantly reduces the dependency on 
accurate offline stereo calibration. At the same time, the 
robustness and accuracy of the system are improved. Based 
on the experiments using EuRoC and real-world datasets, 
our scheme significantly outperforms the original S-MSCKF 
when there are perturbations to camera parameters. Espe-
cially, given inaccurate extrinsic parameters, our method can 
converge to an accurate estimation of extrinsic parameters 
over a few dozens of seconds. Since our method is fil-
ter-based, the computational requirement is much lower than 
those of optimization-based methods (e.g. VINS-Fusion), 
without significantly degrading the accuracy and robustness 
of the algorithm.  

In future work, we will focus on real-time evaluation of 
the certainty of stereo extrinsic parameters. 

 
(a) 

 
(b) 

Figure 5.  With different initial artifical perturbations, estimated baseline 
(translation in X axis) and rotation in yaw between two cameras changing 
with time compared with offline calibration results using V2_02_medium 
data of EuRoC. (a) shows the translation and (b) shows the rotation. 

TABLE III.  Given different artificial initial perturbations, the final 
estimation errors of translation (mm) and rotation (Euler Angles in degree) 
between two cameras compared to the offine calibration ground truth. 
V2_02_medium data sequence of EuRoC is used in this experiment. 

Errors in 
translation -10 mm -7 mm 0 mm +7 mm +10 mm 

X 0.127 0.295 0.547 0.442 0.838 

Y 0.248 -0.026 -0.204 -0.020 -0.040 

Z 5.425 5.720 5.253 5.547 5.554 
Errors in 
rotation -3 deg -1.5 deg 0 deg +1.5 deg +3 deg 

Roll 0.096 0.097 0.093 0.096 0.087 

Pitch -0.078 -0.077 -0.080 -0.080 -0.086 

Yaw 0.027 0.026 0.027 0.025 0.026 
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