
Under review as a conference paper at ICLR 2023

AUTOMOE: NEURAL ARCHITECTURE SEARCH FOR
EFFICIENT SPARSELY ACTIVATED TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural architecture search (NAS) has demonstrated promising results on iden-
tifying efficient Transformer architectures which outperform manually designed
ones for natural language tasks like neural machine translation (NMT). Existing
NAS methods operate on a space of dense architectures, where all of the sub-
architecture weights are activated for every input. Motivated by the recent ad-
vances in sparsely activated models like the Mixture-of-Experts (MoE) model, we
introduce sparse architectures with conditional computation into the NAS search
space. Given this expressive search space which subsumes prior densely acti-
vated architectures, we develop a new framework AutoMoE to search for effi-
cient sparsely activated sub-Transformers. AutoMoE-generated sparse models
obtain (i) 4× FLOPs reduction over manually designed dense Transformers and
(ii) 23% FLOPs and 10% latency reduction over state-of-the-art NAS-generated
dense sub-Transformers with parity in BLEU score on benchmark datasets for
NMT. AutoMoE consists of three training phases: (a) Heterogeneous search space
design with dense and sparsely activated Transformer modules (e.g., how many ex-
perts? where to place them? what should be their sizes?); (b) SuperNet training
that jointly trains several subnetworks sampled from the large search space by
weight-sharing; (c) Evolutionary search for the architecture with optimal trade-off
between task performance and computational metrics like FLOPs and latency.

1 INTRODUCTION

Transformers have demonstrated state-of-the-art performance in several tasks, but the larger their
size, the more difficult it is to use them in resource constrained settings (Strubell et al., 2019).
Recent works in neural architecture search (NAS) (Wang et al., 2020; Xu et al., 2022a; 2021; So
et al., 2021; Xu et al., 2022b; Javaheripi et al., 2022) have focused on identifying computationally
efficient sub-Transformers that are easier to deploy on edge devices. However, existing works on
NAS only focus on the subspace of dense1 Transformer architectures, where all the network weights
are activated for every input.

In contrast to the above dense models, sparsely activated ones like the Mixture-of-Experts (Fedus
et al., 2022b) perform conditional computation in which only a subset of the weights of the network
are activated per input. Selective compute allows us to design neural networks with a large number
of model parameters, without significant increase in the computational cost. With increased capacity,
these sparse models have demonstrated state-of-the-art performance in natural language tasks such
as neural machine translation (NMT)(Kim et al., 2021; Kudugunta et al., 2021; Zuo et al., 2022).

The goal of this work is to explore the space of sparsely activated MoE architectures for NAS to
identify computationally efficient sparse sub-Transformers.

Incorporating MoE architectures in the search space requires one to make several design choices.
(a) Expert placement: Identifying the Transformer layers for introducing expert sub-networks. (b)
Number of experts: How many experts to introduce in different layers? (c) Expert FFN size: What
should be the feedforward network (FFN) size for each expert? Given the large search space of

1Terminologies: (1) Dense architectures refer to fully activated networks for every input. (2) Sparse ar-
chitectures refer to sparsely activated ones with conditional computation per input. (3) Optimal architectures
refer to Pareto-optimal ones with the best trade-off between task performance and computational metrics.

1

Under review as a conference paper at ICLR 2023

potential architectures and the exorbitant computational cost of training and evaluating them – ex-
isting approaches manually design MoE architectures with a highly-restricted homogeneous space.
For instance, they use the same number of experts of the same capacity in different layers and make
ad-hoc decisions like introducing experts in every other layer (Fedus et al., 2022b; Kim et al., 2021;
Zuo et al., 2022; Du et al., 2022; Artetxe et al., 2021) or every four layers (Zoph et al., 2022).

These design choices are not necessarily optimal. The decoder should be lighter than the encoder
for auto-regressive NMT tasks due to the cumulative latency of generating tokens one at a time (Liu
et al., 2020; Kasai et al., 2021). This impacts the design choice for the number of decoder layers and
the number of experts to use in each. For instance, the loss of capacity with decoder layer reduc-
tion can be compensated by adding experts on the remaining ones. On the encoder side, a vanilla
placement of the maximum allowable experts in each layer results in increased latency from expert
communication and activation, although theoretical FLOPs can remain unaffected. These suggest
that the optimal MoE’s could be heterogeneous when resources like latency or FLOPs are con-
strained. In a recent review on sparsely activated models, Fedus et al. (2022a) note that the optimal
hyperparameters depend on application and resource specifications – where a systematic simulation
of the compute, memory and communication cost can aid practitioners to quickly determine optimal
settings without costly trial-and-error launches. AutoMoE provides such a framework to identify
optimal hyper-parameter configurations for sparse models under computational constraints.

The above observations are depicted in Table 1, which shows demonstrative examples of manually
designed architectures vs. those found by our AutoMoE framework from the search space. We
compare these architectures against various computational metrics (e.g., latency, FLOPs, active MoE
parameters), architectural configurations and task performance.

Machine Translation #Experts in each layer Accuracy Computational Footprint

Design Approach Encoder Decoder BLEU Latency # Active Params FLOPs (G)

Manually designed (every layer) 4-4-4-4-4-4 4-4-4-4-4-4 27.87 586ms 56M 3.4
Manually designed (every other layer) 1-4-1-4-1-4 1-4-1-4-1-4 28.48 506ms 56M 3.4
AutoMoE (4 Experts) 2-4-1-1-3-1 1-1-1-1-1 28.22 239ms 49M 3.1
AutoMoE (4 Experts) 1-1-4-4-4-1 4-1-1-1 28.15 194ms 22M 2.9

Table 1: Manually designed vs. AutoMoE searched architecture for 6-layer encoder-decoder Trans-
former. We report various computational footprint metrics (measured on 1 V100 GPU) and BLEU
score of sparse expert models on WMT’14 En-De machine translation task. We show the number of
experts per layer separated by hyphen (-) for encoder and decoder.

Novelty: To the best of our knowledge, AutoMoE introduces the first end-to-end framework to
automatically design efficient MoE models under resource constraints. AutoMoE is also the first
MoE framework to support adaptive computation due to heterogeneous experts, where input tokens
are routed to experts of different sizes.

With this desiderata, we develop AutoMoE with the following components and contributions:

• We introduce a heterogeneous search space for Transformers consisting of variable number,
FFN size and placement of experts in both encoders and decoders; variable number of layers,
attention heads and intermediate FFN dimension of standard Transformer modules.

• We extend Supernet training to this new search space which combines all possible sparse ar-
chitectures into a single graph and jointly trains them via weight-sharing, yielding a reduced
amortized training cost.

• We use an evolutionary algorithm to search for optimal sparse architecture from Supernet with
the best possible performance on a downstream task (e.g., BLEU score for NMT tasks) satisfying
a user-specified computational constraint.

• Experiments on several NMT benchmarks demonstrate that AutoMoE-searched sparse models
obtain (i) 4× FLOPs reduction over manually designed dense Transformers and (ii) 23% FLOPs
and 10% latency reduction over state-of-the-art NAS-generated dense sub-Transformers with
comparable BLEU scores.

Changes made as part of the revision are highlighted in red.

2

Under review as a conference paper at ICLR 2023

2 BACKGROUND

Sparse expert models: Mixture-of-expert models have a rich literature in machine learning dat-
ing back to the early 90s (Yuksel et al., 2012). Sparsely activated expert models, where only a
small subset of experts are active at any given time, have received significant attention with works
such as Shazeer et al. (2017), Switch Transformers (Fedus et al., 2022b), GShard (Lepikhin et al.,
2020), BASE (Lewis et al., 2021), Hash (Roller et al., 2021), GLaM (Du et al., 2022), Stochas-
tic Experts (Zuo et al., 2022), Gating Dropout (Liu et al., 2022) and ST-MoE (Zoph et al., 2022).
Some crucial differences in these works include choice of expert routing function, expert placement
technique, stability/performance enhancement techniques and nature of the task (pre-training vs.
fine-tuning). Some challenges in building sparse expert models include: (i) lack of diversity in ex-
pert design (expert layer selection, number of experts, expert size, etc.), (ii) training instability and
(iii) expert load balancing issue, to name a few. A comprehensive review of recent sparse expert
models can be found at Fedus et al. (2022a).

Expert design: Prior work on designing sparsely activated expert models has largely relied on ad-
hoc manual choices in terms of expert layer selection, number of experts and their sizes. Existing
approaches mostly use manual design, where they add experts on (i) alternate layers (Fedus et al.,
2022b; Kim et al., 2021; Zuo et al., 2022; Du et al., 2022; Artetxe et al., 2021), (ii) every four
layers (Zoph et al., 2022), or (iii) final few layers Rajbhandari et al. (2022). The resulting sparse
models have homogeneous expert layers, i.e., same number of experts of the same size in all expert
layers. These choices are generally agnostic to the computational constraints (e.g., latency, memory)
of the hardware in which the sparse expert model has to be deployed.

Switch Transformers: The variant of sparse expert model used in this work is Switch Transform-
ers (Fedus et al., 2022b), mainly chosen due to its popularity and high performance. Switch Trans-
formers replace every Feed-Forward Network (FFN) layer with an expert layer consisting of a col-
lection of experts (independent FFN networks). Each expert layer is preceded by a parameterized
routing network that is trained to route each token to top-k experts in the expert layer. In this work,
we adapt Switch Transformers to an encoder-decoder model which is trained from scratch on the
machine translation task using top-1 routing.

Neural Architecture Search (NAS): Given a search space of architectures and efficiency con-
straints (e.g., model size, latency), NAS typically aims to identify the optimal architecture that
maximizes the task performance, while satisfying the efficiency constraints. The main challenges in
building a NAS framework include: (i) constructing a search space that covers diverse architectures
for the task, (ii) building a fast, accurate performance predictor and latency estimator for candidate
architecture evaluation, and (iii) designing a search algorithm to find Pareto-optimal architectures.
NAS has been recently used for natural language understanding tasks to build efficient BERT (De-
vlin et al., 2019) and GPT (Brown et al., 2020) based pre-trained language models (Xu et al., 2021;
Yin et al., 2021; Xu et al., 2022a;b; Gao et al., 2022; Dong et al., 2021; So et al., 2021; Javaheripi
et al., 2022) as well as for machine translation tasks (So et al., 2019; Wang et al., 2020). Hardware
aware transformers (HAT) (Wang et al., 2020) is a state-of-the-art NAS framework for machine
translation that uses hardware latency as feedback for optimization.

However, all of the above NAS works consider a search space with densely activated Transformer
models, and primarily search over typical Transformer architectural hyper-parameters like number
of layers, attention heads and hidden size. In contrast, we propose the first NAS framework that
considers sparsely activated Transformer models like the Mixture-of-Experts, which subsume all
prior densely activated Transformer models as a special case (i.e. one expert per layer). This allows
us to expand the search space and make it more diverse by considering heterogeneous architectures
and in the process address some longstanding design choices for MoE’s like how many experts?
which layers to place the experts? what should be the expert size? and so on.

3 NEURAL ARCHITECTURE SEARCH FOR MIXTURE-OF-EXPERTS

In this section, we present the components of the AutoMoE framework (as illustrated in Figure 1)
for designing efficient sparse networks under computational constraints.

3.1 HETEROGENEOUS SEARCH SPACE

3

Under review as a conference paper at ICLR 2023

Figure 1: AutoMoE Framework. (1) Heterogeneous search space with variable dimensions for
dense Transformer blocks and sparsely activated expert modules. (2) Supernet training by sampling
subnetworks from search space and training them by sharing common weights with Supernet. (3)
Evolutionary search to find efficient architectures by (a) sampling subnetworks from the search
space; (b) using latency measured in the target device; and (c) performance estimation from Supernet
as feedback for iterative optimization via crossover and mutation. (4) Efficient subnetwork(s) from
evolutionary search is trained on downstream task. Attributes Dimensions

Encoder-Embedding-Size {512, 640}
Decoder-Embedding-Size {512, 640}
#Encoder-Layers {6}
#Decoder-Layers {1, 2, 3, 4, 5, 6}
Encoder-QKV-Dim {512}
Decoder-QKV-Dim {512}
#Encoder-Self-Att-Heads (PL) {4, 8}
#Decoder-Self-Att-Heads (PL) {4, 8}
#Decoder-Cross-Att-Heads (PL) {4, 8}
#Decoder-Arbitrary-Att (PL) {-1, 1, 2}

Encoder-FFN-Intermediate-Size
(PL, PE)

{1024, 2048, 3072}

Decoder-FFN-Intermediate-Size
(PL, PE)

{1024, 2048, 3072}

#Encoder-Experts (PL) {1, 2, · · · M}
#Decoder-Experts (PL) {1, 2, · · · M}

Table 2: Search space of AutoMoE. ‘PL’
and ‘PE’ refer to per layer and per expert
search dimensions. Decoder arbitrary attn.
searches last k encoder layers to attend.
FFN size varies across layers and experts.
M denotes maximum experts per layer.

Existing MoE approaches greatly restrict their design
space by considering uniform distribution of capac-
ity/size and number of expert subnetworks placed in
different Transformer layers. For instance, the stan-
dard MoE design (Fedus et al., 2022b) for an L-layer
Transformer with M experts placed in alternate lay-
ers has only two possible configurations viz., {1-M -
1-· · · }, {M -1-M - · · · }. Our design space allows vari-
able number of experts in each layer resulting in ML

possible configurations. (b) Furthermore, our design
space also allows variable expert capacity, e.g., by
modulating the width of the feedforward (FFN) sub-
networks for different experts. Considering N possi-
ble FFN dimensions for each expert results in NML

possible configurations for designing the expert space.
(c) Finally, given the autoregressive nature of tasks like
neural machine translation, the inference cost is domi-
nated by the decoder (Kasai et al., 2021). For instance,
for token-based MoE, decoders take 200× the time per
step compared to encoders at peak throughput (Kudugunta et al., 2021). Therefore, we further con-
sider variable number of decoder layers along with the above choices for expert placement and
expert capacity. To the best of our knowledge, our work is the first to study such a flexible and
exhaustive design space for modeling sparse architectures.

In addition to the heterogeneous experts, we allow flexible design for the non-expert Transformer
modules like the number of attention heads, hidden size and intermediate feedforward dimensions.
This heterogeneous design of the non-expert, i.e., dense Transformer modules, has been explored
in prior works such as HAT (Wang et al., 2020) for generation tasks like NMT, and AutoDistil (Xu
et al., 2022a) for understanding tasks like those in the GLUE benchmark Wang et al. (2018).

A typical challenge in designing an expressive search space for NAS is the increased computational
cost to search over all viable configurations. Some recent works like AutoDistil (Xu et al., 2022a)
and few-shot NAS (Zhao et al., 2021) demonstrate that a curated search space can alleviate gradient
conflicts in weight-sharing of candidate subnetworks and improve Supernet training and stability.

4

Under review as a conference paper at ICLR 2023

Max. Embedding Size
(e.g., 640)

Sampled Embedding Size
(e.g., 512)

M
ax

. E
xp

er
ts

 (e
.g

.,
4)

Sa
m

pl
ed

 E
xp

er
ts

 (e
.g

.,
3)

Input

O
ut

pu
t

SubTransformer
Weight for

Router

(a) Router

Max. Embedding Size (e.g., 640)

M
ax

. E
xp

er
t F

FN

In
te

rm
ed

ia
te

 S
ize

 (e
.g

.,
30

72
)

Sampled Embedding Size
(e.g., 512)

Sa
m

pl
ed

 E
xp

er
t F

FN

In
te

rm
ed

ia
te

 S
ize

(e

.g
.,

20
48

)

SubTransformer
Weight for

Input FFN-1

Input

Ou
tp

ut

Max. Expert FFN
Intermediate Size (e.g., 3072)

M
ax

. E
m

be
dd

in
g

Si
ze

(e

.g
.,

64
0)

Expert FFN Intermediate Size
(e.g., 2048)

Sa
m

pl
ed

Em

be
dd

in
g

Si
ze

(e

.g
.,

51
2)

SubTransformer
Weight for

Output FFN-1

Input

Ou
tp

ut

Max. Embedding Size (e.g., 640)

M
ax

. E
xp

er
t F

FN

In
te

rm
ed

ia
te

 S
ize

 (e
.g

.,
30

72
)

Sampled Embedding Size
(e.g., 512)

Sa
m

pl
ed

 E
xp

er
t

FF
N

In
te

rm
ed

ia
te

Si

ze
 (e

.g
.,

10
24

)

SubTransformer
Weight for Input

FFN-2

Input

Ou
tp

ut

Max. Expert FFN
Intermediate Size (e.g., 3072)

M
ax

. E
m

be
dd

in
g

Si
ze

(e

.g
.,

64
0)

Expert FFN
Intermediate Size

(e.g., 1024)

Sa
m

pl
ed

Em

be
dd

in
g

Si
ze

(e

.g
.,

51
2)

SubTransformer
Weight for

Output FFN-2

Input

Ou
tp

ut

(b) Experts (e.g., 2 FFN experts)
Figure 2: Weight sharing in the Supernet for sparsely activated expert modules. Illustrations of
weight sharing for the standard dense Transformer modules can be found at Wang et al. (2020).

Such conflicts result from sharing weights between subnetworks of very different sizes that have
different convergence rates. To this end, we make the following design choices for our expert and
non-expert Transformer modules. (i) For the dense non-expert modules, we leverage existing search
space from prior work (Wang et al., 2020) which already demonstrated state-of-the-art performance
for tasks like machine translation and forms the strongest baseline for our work in the dense Trans-
former space. (ii) We further incorporate various features for the sparse expert modules in the search
space corresponding to the number of experts and their capacity in the form of their intermediate
FFN size. We make the above choice for both encoders and decoders where each expert FFN can
have a variable size and capacity. In both settings, each layer can have flexible choices for the stan-
dard Transformer hyper-parameters. (iii) Given the auto-regressive nature of machine translation
tasks, the inference latency in the decoding phase can be twice as much as that in the encoding
phase (Kasai et al., 2021) (demonstrated in Figure 3 (e)). Consequently, we also search over how
many decoder layers to use and subsequent expert distribution based on latency constraint. We keep
the number of encoder layers fixed for all our experiments and study this choice via ablation in
Table 5. Table 2 shows our search space.

3.2 SUPERNET TRAINING

A typical challenge in the NAS framework is to develop a performance estimator that can efficiently
compute the accuracy of a candidate architecture. The naive approach of training candidate architec-
tures from scratch to convergence and then evaluating on the validation set is prohibitively expensive
given the large search space for all possible candidate architectures (see Section 3.3). To address this
challenge, AutoMoE’s performance estimator is based on weight-sharing via a Supernet (Cai et al.,
2020; Wang et al., 2020), which is a commonly used technique in recent NAS works. The Supernet
for AutoMoE is the largest sparsely activated expert network in the search space. It consists of
the maximum number of experts (M) placed in every layer of the Transformer in both encoder and
decoder. Each expert FFN has the maximum intermediate hidden size in the search space. Similar
principles apply to the non-expert dense modules initialized with corresponding full dimension.

The Supernet is trained with the following steps: (i) sample a candidate architecture randomly from
the search space (Guo et al., 2020); (ii) train the sampled architecture by extracting the common
portion of weights from different layers in the Supernet (i.e., by weight sharing) for one training
step on the task; (iii) repeat steps (i) and (ii) until the training budget is exhausted. Once the Super-
net training is complete, we can obtain a quick accuracy estimate for a candidate architecture (i.e.
subnetwork) by extracting its shared weights from the Supernet and evaluating on the validation set.

The key challenge here is to build weight sharing techniques for expert-specific components, which
include: (i) router: a neural network that is trained to route each token (of ‘embedding size’) in an
incoming example to exactly one expert (out of M experts) for top-1 routing; (ii) FFN expert: a
standard Transformer FFN block that has unique weights and is learned independently. AutoMoE’s

5

Under review as a conference paper at ICLR 2023

expert layers follow the Switch Transformer (Fedus et al., 2022b) specification. For subnetwork
extraction from the Supernet, AutoMoE extracts front rows and front columns of the Supernet’s
router weight matrix, corresponding to the subnet design. For example, consider the Supernet’s
router to be designed for 4 experts and 640 embedding size with the shape of the router weight
matrix as 4× 640. Consider a sampled subnet during Supernet training, consisting of 3 < 4 experts
and 512 < 640 embedding size with the subnet’s router matrix as 3× 512. To populate this matrix,
we extract the first 3 rows and first 512 columns from the Supernet’s weight matrix (as illustrated
in Figure 2 (a)). Such a weight sharing technique allows us to design architectures with varying
number of experts in each Transformer layer.

AutoMoE also extracts front rows and front columns from the weight matrices of each FFN ex-
pert from the Supernet, corresponding to the subnet design. For the previous example, assume the
intermediate FFN size of each expert in the Supernet to be 3072 (shape of weight matrix for first
FFN layer is 3072 × 640 and second FFN layer is 640 × 3072). Assume the sampled subnet to
be designed for 2 experts with intermediate FFN size of one expert to be 2048 while the other to
be 1024. For the first expert, the weight matrices of the subnet of shape 2048 × 512 (Input) and
512× 2048 (Output) are extracted from the first 2048 rows, 512 columns (Input) and first 512 rows,
2048 columns (Output) of the corresponding Supernet weights. For the second expert, the weight
matrices of shape 1024 × 512 (Input) and 512 × 1024 (Output) are extracted from the first 1024
rows, 512 columns (Input) and first 512 rows, 1024 columns (Output) of the corresponding Super-
net weights. This example is illustrated in Figure 2 (b). The subnet extraction technique does not
extract weights from the third and fourth experts of the Supernet as the subnet is designed to have
only two experts (not shown in the figure). Such a weight sharing technique allows us to design ar-
chitectures with varying intermediate FFN size for each expert. Additional techniques for improving
expert capacity such as stacking FFN layers, and techniques for improving Supernet performance
with sandwich sampling (Yu et al., 2019), in-place knowledge distillation (Yu et al., 2019), gradient
conflict reduction (Gong et al., 2022) are left for future work.

3.3 SEARCHING FOR EFFICIENT SUB-TRANSFORMER WITH COMPUTATIONAL CONSTRAINT

AutoMoE search is based on an evolutionary algorithm that takes the hardware computational con-
straint (e.g., latency ≤ 200ms) as input and aims to identify the sub-architecture which achieves
maximum accuracy for the task while satisfying the constraint. The algorithm works by randomly
sampling from the design space an initial set of sparsely activated candidate architectures; evolving
the top architectures iteratively by mutation followed by crossover; until the search iterations are
exhausted. Candidate architectures are easily ranked by the Supernet performance estimator based
on the validation score for the task. Latency estimate for each architecture is obtained by measuring
the latency directly on the target device. The standard approach measures gold latency for forward
propagation of a batch of examples for a large number (e.g., 300) of passes and then computes the
truncated mean (after removing bottom and top 10% outlier latencies). This latency estimation can
be costly given the large space of candidate architectures. To overcome this challenge, AutoMoE
uses partially gold latency, which is obtained by forward propagation of a batch of examples for a
small number (e.g., 100) of passes and then computing truncated mean. After the search is com-
pleted, the architecture with the highest performance is selected as the optimal one.

3.4 TRAINING EFFICIENT SUB-TRANSFORMER

Once the optimal sparsely activated architecture is identified, we train the model weights for the
final architecture from scratch to convergence for the same number of training steps – following the
evaluation setting of HAT (Wang et al., 2020) for a fair comparison.

4 EXPERIMENTS

Datasets and evaluation metrics.

We evaluate AutoMoE on standard machine translation benchmarks: WMT’14 En-De, WMT’14
En-Fr and WMT’19 En-De with dataset statistics in Table 10. We use pre-processed datasets and
evaluation setup from Wang et al. (2020). We report BLEU score (Papineni et al., 2002) as a
performance metric with beam of size 5 and a length penalty of 0.6 (for WMT).

Baselines and AutoMoE variations. We compare AutoMoE against both manually designed and
NAS-searched architectures. For the manual baseline, we consider: (a) densely activated Transform-
ers Vaswani et al. (2017a) with no experts; (b) sparsely activated MoE with homogeneous experts

6

Under review as a conference paper at ICLR 2023

Dataset Network #Active
Params (M)

Sparsity
(%)

FLOPs
(G)

BLEU GPU
hours

WMT’14 En-De
Transformer Dense 176 0 10.6 28.4 184
Transformer Sparse (every layer) 71 39 4.3 28.7 -
Evolved Transformer NAS over Dense 47 0 2.9 28.2 2,192,000
HAT NAS over Dense 56 0 3.5 28.2 264
Random Search NAS over Sparse 27 50 2.2 27.3 126
AutoMoE (6 Experts) NAS over Sparse 45 62 2.9 28.2 224

WMT’14 En-Fr
Transformer Dense 176 0 10.6 41.2 240
Transformer Sparse (every layer) 71 39 4.3 41.5 -
Evolved Transformer NAS over Dense 175 0 10.8 41.3 2,192,000
HAT NAS over Dense 57 0 3.6 41.5 248
Random Search NAS over Sparse 27 50 2.2 40.3 130
AutoMoE (6 Experts) NAS over Sparse 46 72 2.9 41.6 236AutoMoE (16 Experts) NAS over Sparse 135 65 3.0 41.9

WMT’19 En-De
Transformer Dense 176 0 10.6 46.1 184
Transformer Sparse (every layer) 71 39 4.3 46.3 -
HAT NAS over Dense 63 0 4.1 45.8 264
Random Search NAS over Sparse 27 50 2.2 43.7 126
AutoMoE (2 Experts) NAS over Sparse 45 41 2.8 45.5 248AutoMoE (16 Experts) NAS over Sparse 69 81 3.2 45.9

Table 3: FLOPs improvement of AutoMoE vs. baselines with Pareto-optimal architectures high-
lighted in blue. Changes in revision are highlighted in red. We report both active model parameters;
and sparsity measured as non-active parameters as a percentage of total parameters. We report
training time for one Nvidia V100 GPU and training cost following HAT (Wang et al., 2020) corre-
sponding to 40K training steps.

(i.e. same number and FFN size) placed in every other layer (Fedus et al., 2022b; Kim et al., 2021;
Zuo et al., 2022; Du et al., 2022; Artetxe et al., 2021). For the NAS baselines, we consider (c)
HAT (Wang et al., 2020), which is a Supernet-based state-of-the-art NAS framework for identify-
ing efficient densely activated sub-Transformers for neural machine translation (same task setting as
ours); and (d) Evolved Transformer (So et al., 2019) which is one of the earlier works on finding
efficient dense sub-Transformers with evolution-based architecture search.

Training configurations. All the baselines and AutoMoE variants including the Supernet and final
model are trained with the same setting for fair comparison, following HAT. All the models are
trained for 40K steps, with a warmup of 10K steps from 10−7 to 10−3 and use cosine annealing to
10−7 for the rest of the steps. All models are trained using fairseq toolkit (Ott et al., 2019) with an
effective batch size of 524K tokens on 16 V100 GPUs.

Evolutionary search setup. For performance estimation, we monitor the validation loss of the sub-
net on the NMT task. We compute latency by measuring the time taken to perform translation from
a source sentence to a target sentence with same desired input/output length (30 for WMT) and orig-
inal beam settings (see Section 4) on the target device (NVIDIA V100 GPU). We measure latency
300 times for gold (to report final metrics) and 100 times for partially gold (during evolutionary
search) respectively; discard the top and bottom 10% (outlier latency) and compute mean of the
rest. Hyper-parameter settings for evolutionary search include: 15 as iterations, 125 as population
size, 25 as parents’ size, 50 as mutation population size with mutation probability of 0.3 and 50 as
crossover population size. Unless otherwise stated, the latency constraint for all the experiments is
set to 200 ms.

5 RESULTS

5.1 AUTOMOE VS. BASELINES – PERFORMANCE COMPARISON

Table 3 presents the comparison of AutoMoE with baseline models on several computational met-
rics and task performance. We report the number of parameters without embedding weights, and
FLOPs without the last decoding layer for all the models, consistent with Wang et al. (2020) eval-
uation settings. AutoMoE-generated sparsely activated sub-Transformers obtain 4× reduction in
FLOPs over manually designed (densely-activated) Transformer-big. Compared to NAS baselines

7

Under review as a conference paper at ICLR 2023

3 4 5 6
#Decoder Layers

2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00

FL
O

Ps
 (G

)
(a) #Decoder layers vs. FLOPs.

12 16 20 24 28 32 36 40
Total Experts

0.52
0.56
0.60
0.64
0.68
0.72
0.76
0.80

#
En

co
de

r E
xp

er
ts

 F
ra

c.

(b) Encoder experts as ratio of total experts.

1 2 3 4 5 6
Encoder Layer

0.152
0.156
0.160
0.164
0.168
0.172
0.176
0.180

#
En

co
de

r
Ex

pe
rt

s
%

(c) Encoder layer vs. #Expert (%).

1 2 3 4 5 6
Decoder Layer

0.165
0.180
0.195
0.210
0.225
0.240
0.255
0.270

#
D

ec
od

er
 E

xp
er

ts
 %

(d) Decoder layer vs. #Expert (%).

250 300 350 400 450
Overall Latency (ms)

250

300

350

400

450

D
ec

od
er

 L
at

en
cy

 (m
s)

(e) Overall vs. Decoder latency.

Figure 3: Architecture analysis for AutoMoE-generated sparsely activated models. We sample
several architectures from the Pareto frontier for AutoMoE-variants and baselines, and report the
aggregate statistics in terms of the impact on different computational metrics.

like Evolved Transformer So et al. (2019) and HAT Wang et al. (2020) that generate densely ac-
tivated sub-Transformers, AutoMoE improves on both FLOPs and BLEU score on an aggregate
across all tasks. Notably, Supernet-based AutoMoE and HAT have a massively reduced amortized
training cost (GPU hours) compared to Evolved Transformer with progressive evolutionary search.

Dataset FLOPs Latency
(ms)

BLEU

WMT’14 En-De
HAT 3.5 205 28.2
AutoMoE 2.9 190 28.2

WMT’14 En-Fr
HAT 3.6 212 41.5
AutoMoE 2.9 196 41.6

WMT’19 En-De
HAT 4.1 212 45.8
AutoMoE 2.8 180 45.5

Table 4: AutoMoE reduces FLOPs by 23% and
latency by 10% over optimal HAT (Wang et al.,
2020) architectures under same latency constraint
(200 ms) in aggregate with similar task perfor-
mance – demonstrating NAS over sparse networks
is more efficient than NAS over dense networks.

Compared to all the other densely-activated
models, we observe that AutoMoE generates
networks with high sparsity resulting in mas-
sively reduced active parameters and active
model size. For the NAS models, we train
the top-2 sub-Transformers in the Pareto fron-
tier and report the one with the best BLEU vs.
FLOPs trade-off on the validation set. The op-
timal maximum experts vary for different tasks,
with 6 experts for WMT’14 En-De and 16 ex-
perts for WMT’14 En-Fr and WMT’19 En-De
– given that the latter two datasets are 10×
larger than the former.

5.2 ANALYSIS

Decoder layers vs. FLOPs. Figure 3 (a) shows
the average FLOPs for all AutoMoE variants
with different decoder layers as obtained during our search (varying from 3 to 6) and baseline mod-
els. Notice that the FLOPs increase with increase in decoder layers, given the auto-regressive nature
of NMT tasks which require generating tokens sequentially. In contrast to manually designed Trans-
formers with 6 decoder layers (both dense and sparsely activated MoE variants), AutoMoE- and
HAT-searched architectures reduce the number of decoder layers with a resulting decrease in both
FLOPs and latency. This is also evident in Figure 3 (e) which shows that decoder latency dominates
the total inference latency for all the models by more than 90%.

Expert distribution in encoder vs. decoder. Figure 3 (b) plots the number of encoder experts as
ratio of total experts for AutoMoE-generated sub-Transformers. We observe that AutoMoE assigns
a significant number of experts to the encoder as compared to the decoder. As a result, encoders have
much higher capacity (i.e., encoder parameters as a proportion of overall parameters) than decoders.
This correlates with the earlier observation that models with higher encoder layers compared to
decoder layers enjoy better latency-performance trade-off (Kasai et al., 2021). Our findings from

8

Under review as a conference paper at ICLR 2023

AutoMoE designed architectures indicate that the number of layers and experts are two knobs that
jointly help in modulating encoder capacity and decoder latency to design efficient models.

Expert distribution in different layers. Figures 3 (c) and (d) show the percentage of experts allo-
cated to different layers for encoders and decoders – averaged over several sampled architectures.
Notice that the middle encoder layers (3rd, 5th) are allocated the maximum number of experts, while
the first layer receives the least. The trend reverses for decoder, with the first layer receiving most ex-
perts with gradual reduction in expert allocation. This is also consistent with keeping decoders light
by dropping layers to reduce latency, while compensating for the reduced capacity with increased
experts in the first few layers.

Pareto-optimal AutoMoE designed architectures. Table 7 in Appendix shows the sparsely ac-
tivated expert architectures designed by two variants of AutoMoE (‘std-expert’: expert FFN size
same in each layer and variable across; ‘fract-expert’: fully heterogeneous expert size) for different
datasets with the best trade-off in BLEU vs. latency. On aggregate 69% of the experts are allocated
to the encoder compared to the decoder. Meanwhile, 70% of the expert layers in ‘fract-expert’ ar-
chitectures have 2 or more experts, out of which more than 75% of the expert layers have varying
capacities (i.e., experts with different FFN intermediate size).

Search Space Variation BLEU FLOPs
(G)

Varying number of encoder layers
HAT 28.2 3.5
HAT w/ #Encoder-Layers ∈ {1 − 6} 28.1 3.4
AutoMoE (Std-expert, 2 Experts) w/
fixed encoder layers

28.2 2.9

AutoMoE (Std-expert, 2 Experts) w/
#Encoder-Layers ∈ {1 − 6}

28.3 3.7

AutoMoE 28.2 2.9
AutoMoE (Std-expert, 2 Experts) w/ manually
designed homogeneous experts
1-2-1-2-1-2 28.3 3.5
1-1-1-2-2-2 28.3 3.8
2-2-2-1-1-1 28.3 3.1

AutoMoE (Fract-expert, 2 experts)
AutoMoE (Fract-expert) 28.4 3.5
w/ Identity Expert - FFN Intermediate
size ∈ {0, 3072}

28.1 2.7

Table 5: Variations in AutoMoE’s search
space on WMT’14 En-De dataset.

Search space variations. Table 5 presents the im-
pact of different search space choices on the efficiency
and performance trade-off. The first variation is to
make ‘#Encoder Layers’ an elastic search dimension.
Note that both HAT and AutoMoE consider the num-
ber of encoder layers to be fixed (refer to Table 2).
We observe that varying encoder layers degrades the
model efficiency in terms of FLOPs (top major row),
re-inforcing our prior observations on the importance
of encoder capacity and depth.

In the second variation (Table 5, second major row),
we fix the expert architecture (with 2 experts manu-
ally placed uniformly) in the search space and only
search for the standard Transformer hyper-parameters.
Observe that AutoMoE-designed experts have better
FLOPs than such manually designed MoE architec-
tures.

The last variation introduces identity or dummy experts (i.e., expert with 0 intermediate FFN size,
equivalent to identity operation). This explores the idea that we can skip the computation for some
of the tokens based on context rather than always forcing them through an FFN. We observe that
identity experts marginally hurt the performance but significantly reduce FLOPs (last major row).

6 CONCLUSION

AutoMoE is the first framework to explore the space of sparsely activated Mixture-of-Experts
(MoE) models for neural architecture search (NAS). AutoMoE identifies efficient sparsely-activated
sub-Transformers with reduction in FLOPs and latency over both manually designed and NAS-
searched architectures, with parity in BLEU score on benchmark machine translation (MT) tasks.
AutoMoE explores a fully heterogeneous search space with variable number of experts, their size
and placement choices in different layers for encoders and decoders, alongside other standard Trans-
former architectural hyper-parameters. Our experiments show that AutoMoE reduces FLOPs by
23% and latency by 10% over optimal HAT architectures under the same latency constraint in the
aggregate, across benchmark MT tasks, while maintaining similar task performance.

Given our focus on finding efficient MoE models under computational constraints, AutoMoE search
space and evaluation has been restricted in scale to big-sized Transformer models for benchmark MT
tasks. A natural extension of this work is to explore the limits of MoE models like SwitchTransform-
ers (Fedus et al., 2022b) and GShard (Lepikhin et al., 2020) that are significantly larger containing
billions to trillions of parameters; as well as designing sparse and transferable efficient expert mod-
els (Zoph et al., 2022) for diverse types of tasks like reasoning, summarization and understanding.

9

Under review as a conference paper at ICLR 2023

7 REPRODUCIBILITY STATEMENT

The source code to reproduce AutoMoE results can be found as part of the supplementary material.
There will be a ‘readme.md’ file that has scripts to run the complete pipeline:

1. Download WMT datasets from web.

2. Train Supernet for performance estimation (Section 3.2).

3. Run evolutionary search to identify best subnet (Section 3.3).

4. Compute latency of best subnet (Section 4).

5. Compute FLOPs of best subnet (Section 4).

6. Train best subnet from scratch (Section 3.4).

7. Compute BLEU score of best subnet.

Training configurations of supernet, evolutionary search hyperparameters and training configura-
tions of subnet has been discussed in Section 4.

AutoMoE is built over fairseq (Ott et al., 2019) and HAT (Wang et al., 2020) implementation (pub-
licly available at https://github.com/mit-han-lab/hardware-aware-transformers).
For fair comparison, we retain most of the hyper-parameters, training and evaluation recipes, pre-
processed datasets from the original HAT implementation.

REFERENCES

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria
Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Anantharaman, Xian Li, Shuohui
Chen, Halil Akin, Mandeep Baines, Louis Martin, Xing Zhou, Punit Singh Koura, Brian O’Horo,
Jeff Wang, Luke Zettlemoyer, Mona T. Diab, Zornitsa Kozareva, and Ves Stoyanov. Efficient
large scale language modeling with mixtures of experts. CoRR, abs/2112.10684, 2021. URL
https://arxiv.org/abs/2112.10684.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations, 2020. URL https://arxiv.org/pdf/1908.09791.pdf.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Chenhe Dong, Guangrun Wang, Hang Xu, Jiefeng Peng, Xiaozhe Ren, and Xiaodan Liang. Effi-
cientBERT: Progressively searching multilayer perceptron via warm-up knowledge distillation.
In Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 1424–1437,
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.findings-emnlp.123. URL https://aclanthology.org/2021.
findings-emnlp.123.

10

https://github.com/mit-han-lab/hardware-aware-transformers
https://arxiv.org/abs/2112.10684
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/pdf/1908.09791.pdf
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/2021.findings-emnlp.123
https://aclanthology.org/2021.findings-emnlp.123

Under review as a conference paper at ICLR 2023

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P Bosma,
Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen
Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen,
and Claire Cui. GLaM: Efficient scaling of language models with mixture-of-experts. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 5547–5569. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/du22c.html.

William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning,
2022a. URL https://arxiv.org/abs/2209.01667.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022b. URL http://jmlr.org/papers/v23/21-0998.html.

Jiahui Gao, Hang Xu, Han Shi, Xiaozhe Ren, Philip L. H. Yu, Xiaodan Liang, Xin Jiang, and
Zhenguo Li. Autobert-zero: Evolving BERT backbone from scratch. In Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Ap-
plications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pp.
10663–10671. AAAI Press, 2022. URL https://ojs.aaai.org/index.php/AAAI/
article/view/21311.

Chengyue Gong, Dilin Wang, Meng Li, Xinlei Chen, Zhicheng Yan, Yuandong Tian, qiang liu, and
Vikas Chandra. NASVit: Neural architecture search for efficient vision transformers with gradient
conflict aware supernet training. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=Qaw16njk6L.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), Computer Vision - ECCV 2020
- 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XVI, vol-
ume 12361 of Lecture Notes in Computer Science, pp. 544–560. Springer, 2020. doi: 10.1007/
978-3-030-58517-4\ 32. URL https://doi.org/10.1007/978-3-030-58517-4_
32.

Mojan Javaheripi, Shital Shah, Subhabrata Mukherjee, Tomasz L. Religa, Caio C. T. Mendes, Gus-
tavo H. de Rosa, Sebastien Bubeck, Farinaz Koushanfar, and Debadeepta Dey. Litetransform-
ersearch: Training-free on-device search for efficient autoregressive language models, 2022. URL
https://arxiv.org/abs/2203.02094.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, and Noah Smith. Deep encoder, shal-
low decoder: Reevaluating non-autoregressive machine translation. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
KpfasTaLUpq.

Young Jin Kim, Ammar Ahmad Awan, Alexandre Muzio, Andrés Felipe Cruz-Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and Hany Hassan Awadalla. Scalable and ef-
ficient moe training for multitask multilingual models. CoRR, abs/2109.10465, 2021. URL
https://arxiv.org/abs/2109.10465.

Sneha Kudugunta, Yanping Huang, Ankur Bapna, Maxim Krikun, Dmitry Lepikhin, Minh-Thang
Luong, and Orhan Firat. Beyond distillation: Task-level mixture-of-experts for efficient inference.
In Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 3577–3599,
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.findings-emnlp.304. URL https://aclanthology.org/2021.
findings-emnlp.304.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional

11

https://proceedings.mlr.press/v162/du22c.html
https://arxiv.org/abs/2209.01667
http://jmlr.org/papers/v23/21-0998.html
https://ojs.aaai.org/index.php/AAAI/article/view/21311
https://ojs.aaai.org/index.php/AAAI/article/view/21311
https://openreview.net/forum?id=Qaw16njk6L
https://doi.org/10.1007/978-3-030-58517-4_32
https://doi.org/10.1007/978-3-030-58517-4_32
https://arxiv.org/abs/2203.02094
https://openreview.net/forum?id=KpfasTaLUpq
https://openreview.net/forum?id=KpfasTaLUpq
https://arxiv.org/abs/2109.10465
https://aclanthology.org/2021.findings-emnlp.304
https://aclanthology.org/2021.findings-emnlp.304

Under review as a conference paper at ICLR 2023

computation and automatic sharding. CoRR, abs/2006.16668, 2020. URL https://arxiv.
org/abs/2006.16668.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In Marina Meila and Tong Zhang (eds.), Pro-
ceedings of the 38th International Conference on Machine Learning, volume 139 of Proceed-
ings of Machine Learning Research, pp. 6265–6274. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/lewis21a.html.

Rui Liu, Young Jin Kim, Alexandre Muzio, and Hany Hassan. Gating dropout: Communication-
efficient regularization for sparsely activated transformers. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 13782–13792. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/liu22g.html.

Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jianfeng Gao. Very deep transformers for neural ma-
chine translation. arXiv preprint arXiv:2008.07772, 2020.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics (Demonstrations), pp. 48–53, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-4009. URL https://aclanthology.
org/N19-4009.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002.
Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https:
//aclanthology.org/P02-1040.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. DeepSpeed-MoE: Advancing mixture-of-
experts inference and training to power next-generation AI scale. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceed-
ings of the 39th International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 18332–18346. PMLR, 17–23 Jul 2022. URL https:
//proceedings.mlr.press/v162/rajbhandari22a.html.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason E Weston. Hash layers for large
sparse models. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, 2021. URL https://openreview.net/
forum?id=lMgDDWb1ULW.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=B1ckMDqlg.

David So, Quoc Le, and Chen Liang. The evolved transformer. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 5877–5886. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/v97/so19a.html.

David So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V
Le. Searching for efficient transformers for language modeling. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 6010–6022. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
2f3c6a4cd8af177f6456e7e51a916ff3-Paper.pdf.

12

https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://proceedings.mlr.press/v139/lewis21a.html
https://proceedings.mlr.press/v139/lewis21a.html
https://proceedings.mlr.press/v162/liu22g.html
https://proceedings.mlr.press/v162/liu22g.html
https://aclanthology.org/N19-4009
https://aclanthology.org/N19-4009
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://openreview.net/forum?id=lMgDDWb1ULW
https://openreview.net/forum?id=lMgDDWb1ULW
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://proceedings.mlr.press/v97/so19a.html
https://proceedings.neurips.cc/paper/2021/file/2f3c6a4cd8af177f6456e7e51a916ff3-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2f3c6a4cd8af177f6456e7e51a916ff3-Paper.pdf

Under review as a conference paper at ICLR 2023

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 3645–3650, Florence, Italy, July 2019. Association for Computational Linguis-
tics. doi: 10.18653/v1/P19-1355. URL https://aclanthology.org/P19-1355.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017a. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017b. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pp. 353–355, Brussels, Belgium, November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/W18-5446. URL https://aclanthology.org/W18-5446.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. HAT:
Hardware-aware transformers for efficient natural language processing. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 7675–7688, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.686. URL
https://aclanthology.org/2020.acl-main.686.

Dongkuan Xu, Subhabrata (Subho) Mukherjee, Xiaodong Liu, Debadeepta Dey, Wenhui Wang,
Xiang Zhang, Ahmed H. Awadallah, and Jianfeng Gao. Autodistil: Few-shot task-agnostic neural
architecture search for distilling large language models. ArXiv, February 2022a. URL https:
//arxiv.org/abs/2201.08539.

Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian Li, Tao Qin, and Tie-Yan Liu. Nas-bert: Task-
agnostic and adaptive-size bert compression with neural architecture search. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21,
pp. 1933–1943, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450383325. doi: 10.1145/3447548.3467262. URL https://doi.org/10.1145/
3447548.3467262.

Jin Xu, Xu Tan, Kaitao Song, Renqian Luo, Yichong Leng, Tao Qin, Tie-Yan Liu, and Jian Li.
Analyzing and mitigating interference in neural architecture search. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceed-
ings of the 39th International Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 24646–24662. PMLR, 17–23 Jul 2022b. URL https:
//proceedings.mlr.press/v162/xu22h.html.

Yichun Yin, Cheng Chen, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. AutoTinyBERT:
Automatic hyper-parameter optimization for efficient pre-trained language models. In Proceed-
ings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.
5146–5157, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.acl-long.400. URL https://aclanthology.org/2021.acl-long.400.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=H1gMCsAqY7.

13

https://aclanthology.org/P19-1355
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/W18-5446
https://aclanthology.org/2020.acl-main.686
https://arxiv.org/abs/2201.08539
https://arxiv.org/abs/2201.08539
https://doi.org/10.1145/3447548.3467262
https://doi.org/10.1145/3447548.3467262
https://proceedings.mlr.press/v162/xu22h.html
https://proceedings.mlr.press/v162/xu22h.html
https://aclanthology.org/2021.acl-long.400
https://openreview.net/forum?id=H1gMCsAqY7
https://openreview.net/forum?id=H1gMCsAqY7

Under review as a conference paper at ICLR 2023

Seniha Esen Yuksel, Joseph N. Wilson, and Paul D. Gader. Twenty years of mixture of experts.
IEEE Transactions on Neural Networks and Learning Systems, 23(8):1177–1193, 2012. doi:
10.1109/TNNLS.2012.2200299.

Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and Tian Guo. Few-shot neural
architecture search. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 12707–12718. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/
v139/zhao21d.html.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models, 2022. URL
https://arxiv.org/abs/2202.08906.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Jianfeng Gao,
and Tuo Zhao. Taming sparsely activated transformer with stochastic experts. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=B72HXs80q4.

14

https://proceedings.mlr.press/v139/zhao21d.html
https://proceedings.mlr.press/v139/zhao21d.html
https://arxiv.org/abs/2202.08906
https://openreview.net/forum?id=B72HXs80q4
https://openreview.net/forum?id=B72HXs80q4

Under review as a conference paper at ICLR 2023

A APPENDIX

Hyperparameter HAT AutoMoE (std-experts) AutoMoE (fract-
experts)

Trans-Base
/ Big

Encoder-Embedding-Size {512, 640} {512, 640} {512, 640} 512 / 1024
Decoder-Embedding-Size {512, 640} {512, 640} {512, 640} 512 / 1024
#Encoder-Layers {6} {6} {6} 6
#Decoder-Layers {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} 6
Encoder-QKV-Dim {512} {512} {512} 512 / 1024
Decoder-QKV-Dim {512} {512} {512} 512 / 1024
#Encoder-Self-Att-Heads (PL) {4, 8} {4, 8} {4, 8} 8 / 16
#Decoder-Self-Att-Heads (PL) {4, 8} {4, 8} {4, 8} 8 / 16
#Decoder-Cross-Att-Heads (PL) {4, 8} {4, 8} {4, 8} 8 / 16
#Decoder-Arbitrary-Att (PL) {-1, 1, 2} {-1, 1, 2} {-1, 1, 2} -1
Encoder-FFN-Intermediate-Size (PL) {1024, 2048, 3072} {1024, 2048, 3072} {1024, 2048, 3072} 2048 / 4096
Decoder-FFN-Intermediate-Size (PL) {1024, 2048, 3072} {1024, 2048, 3072} {1024, 2048, 3072} 2048 / 4096

#Encoder-Experts (PL) - {1, 2, · · · M} {1, 2, · · · M} -
#Decoder-Experts (PL) - {1, 2, · · · M} {1, 2, · · · M} -
Enc-Expert-FFN-Inter-Size (PL, PE) - - {1024, 2048, 3072} -
Dec-Expert-FFN-Inter-Size (PL, PE) - - {1024, 2048, 3072} -

Table 6: Search space of AutoMoE vs. HAT vs. manually designed Transformer-Base /
Big (Vaswani et al., 2017b). ‘PL’ refers to per layer while ‘PE’ refers to per expert. M denotes
maximum number of experts per layer.

Qualitative analysis of expert architectures. Table 7 presents the expert architectures designed
by both variants of AutoMoE across datasets. On an average, more than 69% of the experts get
assigned to the encoder compared to the decoder. As a result, overall capacity of the encoder can be
significantly increased by introducing more experts, without having a drastic impact on the overall
model latency and FLOPs. On an average, more than 70% of the expert layers in ‘fract-expert’
architectures have 2 or more experts, out of which more than 75% of the expert layers have varying
capacities (i.e., expert with different FFN intermediate size).

Model Encoder Decoder
Dataset #Experts per layer Expert FFN Inter Size #Experts per layer Expert FFN Inter

Size

Std-expert
WMT’14 En-De 3-2-4-1-5-2 2048-3072-3072-3072-3072-3072 2-1-1-1 2048-3072-3072-

3072
WMT’14 En-Fr 1-1-3-1-3-3 3072-2048-3072-3072-3072-3072 2-1-1-1 3072-3072-3072-

3072
WMT’19 En-De 1-2-5-1-2-4 3072-3072-3072-3072-3072-3072 4-4-1-1 3072-3072-3072-

3072

Fract-expert
WMT’14 En-De 3-2-3-4-1-3 [2048-3072-2048]-[3072-1024]-

[3072-3072-1024]-[3072-1024-
3072-2048]-3072-[3072-1024-
3072]

3-1-1-1 [3072-1024-2048]-
3072-3072-3072

WMT’14 En-Fr 6-2-3-4-4-5 [2048-1024-2048-1024-1024-
3072]-[2048-2048]-[3072-3072-
2048]-[3072-3072-2048-3072]-
[3072-1024-1024-2048]-[2048-
3072-3072-2048-2048]

2-1-4-2 [3072-3072]-3072-
[3072-3072-3072-
2048]-[3072-2048]

WMT’19 En-De 2-3-1-2-6-1 [3072-3072]-[3072-3072-3072]-
3072-[3072-2048]-[3072-1024-
2048-3072-1024-2048]-3072

2-4-1-1 [3072-3072]-[3072-
1024-2048-3072]-
3072-3072

Table 7: AutoMoE-generated Pareto-optimal architectures for different datasets. FFN intermediate
sizes for fractional experts (i.e. varying expert sizes within each layer) are enclosed within square
brackets.

Full Architecture Design. Figure 4, 5 and 6 present the full architecture design of pareto-efficient
architectures generated by AutoMoE.

Partially Gold Latency vs. Latency Predictor. Table 8 shows the comparison of different latency
estimators: proposed partially gold latency and latency predictor. On all datasets, our proposed par-

15

Under review as a conference paper at ICLR 2023

512 Embedding-Size

4 Self-Attention-Heads

Router (token)

3072 FFN-Inter 5 Experts

1

En
co

de
r L

ay
er

 1

512 Embedding-Size

4 Self-Attention-Heads

Router (token)

De
co

de
r L

ay
er

 1

8 Cross Attention-
Heads

2 3 4 5

8 Self-Attention-Heads

Router (token)

3072 FFN-Inter

1 Expert

En
co

de
r L

ay
er

 2

8 Self-Attention-Heads

Router (token)

3072 FFN-Inter

1 Expert

En
co

de
r L

ay
er

 3

4 Self-Attention-Heads

Router (token)

3072 FFN-Inter 2 Experts

1

En
co

de
r L

ay
er

 4

8 Self-Attention-Heads

Router (token)

2048 FFN-Inter

1 Expert

En
co

de
r L

ay
er

 5
8 Self-Attention-Heads

Router (token)

3072 FFN-Inter

1 Expert

En
co

de
r L

ay
er

 6

2

3072 FFN-Inter

1 Expert

8 Self-Attention-Heads

Router (token)

De
co

de
r L

ay
er

 2

8 Cross Attention-
Heads

3072 FFN-Inter

1 Expert

4 Self-Attention-Heads

Router (token)

De
co

de
r L

ay
er

 3

8 Cross Attention-
Heads

3072 FFN-Inter

1 Expert

8 Self-Attention-Heads

Router (token)

De
co

de
r L

ay
er

 4

8 Cross Attention-
Heads

3072 FFN-Inter

1 Expert

Input

Output

Figure 4: AutoMoE-generated architecture for WMT’14 En-De.

16

Under review as a conference paper at ICLR 2023

512 Embedding-Size

4 Self-Attention-Heads

Router (token)

3072 FFN-Inter

En
co

de
r L

ay
er

 1

512 Embedding-Size

8 Self-Attention-Heads

Router (token)

De
co

de
r L

ay
er

 1

8 Cross Attention-
Heads

8 Self-Attention-Heads

Router (token)

3072 FFN-Inter 4 Experts

En
co

de
r L

ay
er

 2

8 Self-Attention-Heads

Router (token)

3072 FFN-Inter 2 Experts

En
co

de
r L

ay
er

 3

8 Self-Attention-Heads

Router (token)

3072 FFN-Inter 6 Experts

En
co

de
r L

ay
er

 4

8 Self-Attention-Heads

Router (token)

3072 FFN-Inter 5 Experts

En
co

de
r L

ay
er

 5
8 Self-Attention-Heads

Router (token)

3072 FFN-Inter 5 Experts

En
co

de
r L

ay
er

 6

3072 FFN-Inter 2 Experts

8 Self-Attention-Heads

Router (token)

De
co

de
r L

ay
er

 2

8 Cross Attention-
Heads

3072 FFN-Inter

1 Expert

8 Self-Attention-Heads

Router (token)

De
co

de
r L

ay
er

 3

8 Cross Attention-
Heads

3072 FFN-Inter

1 Expert

8 Self-Attention-Heads

Router (token)

De
co

de
r L

ay
er

 4

8 Cross Attention-
Heads

3072 FFN-Inter, 3 Experts

Input

Output

1 Expert

1 2 3 4

1 2

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5 6

1 2

1 2 3

Figure 5: AutoMoE-generated architecture for WMT’14 En-Fr.

17

Under review as a conference paper at ICLR 2023

512 Embedding-Size

8 Self-Attention-Heads

Router (token)

3072 FFN-Inter

En
co

de
r L

ay
er

 1

512 Embedding-Size

8 Self-Attention-Heads

Router (token)

De
co

de
r L

ay
er

 1

8 Cross Attention-
Heads

4 Self-Attention-Heads

Router (token)

3072 FFN-Inter

En
co

de
r L

ay
er

 2

8 Self-Attention-Heads

Router (token)

3072 FFN-Inter 2 Experts

En
co

de
r L

ay
er

 3

8 Self-Attention-Heads

Router (token)

3072 FFN-Inter

En
co

de
r L

ay
er

 4

8 Self-Attention-Heads

Router (token)

3072 FFN-Inter 2 Experts

En
co

de
r L

ay
er

 5
8 Self-Attention-Heads

Router (token)

2048 FFN-Inter

En
co

de
r L

ay
er

 6

3072 FFN-Inter

8 Self-Attention-Heads

Router (token)

De
co

de
r L

ay
er

 2

8 Cross Attention-
Heads

3072 FFN-Inter

1 Expert

8 Self-Attention-Heads

Router (token)

De
co

de
r L

ay
er

 3

8 Cross Attention-
Heads

3072 FFN-Inter

1 Expert

8 Self-Attention-Heads

Router (token)

De
co

de
r L

ay
er

 4

8 Cross Attention-
Heads

3072 FFN-Inter, 2 Experts

Input

Output

1 Expert

1 2

1 2

1 Expert

1 Expert

1 2

1 Expert

1 Expert

Figure 6: AutoMoE-generated architecture for WMT’19 En-De.

18

Under review as a conference paper at ICLR 2023

Dataset Latency Estimator #Active
Params (M)

Sparsity
(%)

FLOPs
(G)

BLEU Latency
(ms)

WMT’14 En-De
AutoMoE (2 Experts) Partially Gold Latency 46 29 2.9 28.1 178
AutoMoE (2 Experts) Latency Predictor 46 29 2.9 28.2 189

WMT’14 En-Fr
AutoMoE (2 Experts) Partially Gold Latency 46 29 2.9 41.2 176
AutoMoE (2 Experts) Latency Predictor 46 29 2.9 41.1 190

WMT’19 En-De
AutoMoE (2 Experts) Partially Gold Latency 45 40 2.8 45.5 180
AutoMoE (2 Experts) Latency Predictor 51 40 3.2 46.0 229

Table 8: Latency improvement with the proposed partially gold latency vs. latency predictor. We
report both active model parameters; and sparsity measured as non-active parameters as a percentage
of total parameters.

Search Constraint BLEU FLOPs
(G)

Latency
(ms)

Latency ≤ 200ms
AutoMoE (2 Experts) 41.23 2.9 176
AutoMoE (4 Experts) 41.22 3.0 198

FLOPs ≤ 3 GFLOPs
AutoMoE (2 Experts) 41.09 3.0 216
AutoMoE (4 Experts) 41.10 3.0 229

Table 9: Impact of different search constraints on WMT’14 En-Fr dataset.

tially gold latency yields better latency, for same or better FLOPs, BLEU, active model parameters
and sparsity.

Latency vs. FLOPs as constraint for search. Table 9 presents the impact of latency and FLOPs as
computational constraints on the performance-efficiency trade-off. Constraining FLOPs results in
models that fully exhaust the FLOPs budget for 3 GFLOPs and 4 GFLOPs; while leading to higher
latency. On the other hand, constraining the latency tends to underutilize the budget and leads to
relatively superior FLOPs and latency, thereby providing a stricter control.

Dataset Year Source
Lang

Target
Lang

#Train #Valid #Test

WMT 2014 English
(en)

German
(de)

4.5M 3000 3000

WMT 2019 English
(en)

German
(de)

43M 2900 2900

WMT 2014 English
(en)

French
(fr)

35M 26000 26000

Table 10: Machine translation benchmark data.

19

	Introduction
	Background
	Neural Architecture Search for Mixture-of-Experts
	Heterogeneous Search Space
	Supernet Training
	Searching for Efficient Sub-Transformer with Computational Constraint
	Training Efficient Sub-Transformer

	Experiments
	Results
	AutoMoE vs. Baselines – Performance Comparison
	Analysis

	Conclusion
	Reproducibility Statement
	Appendix

