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ABSTRACT

Open set detection (OSD) aims at identifying data samples of an unknown class (i.e.,
open set) from those of known classes (i.e., closed set) based on a model trained
from closed set samples. However, a closed set may involve a highly imbalanced
class distribution. Accurately differentiating open set samples and those from a
minority class in the closed set poses a fundamental challenge as the model may
be equally uncertain when recognizing samples from the minority class. In this
paper, we propose Adaptive Robust Evidential Optimization (AREO) that offers a
principled way to quantify sample uncertainty through evidential learning while
optimally balancing the model training over all classes in the closed set through
adaptive distributively robust optimization (DRO). To avoid the model to primarily
focus on the most difficult samples by following the standard DRO, adaptive DRO
training is performed, which is governed by a novel multi-scheduler learning
mechanism to ensure an optimal model training behavior that gives sufficient
attention to the difficult samples and the minority class while capable of learning
common patterns from the majority classes. Our experimental results on multiple
real-world datasets demonstrate that the proposed model outputs uncertainty scores
that can clearly separate samples from closed and open sets, respectively, and the
detection results outperform the competitive baselines.

1 INTRODUCTION

In many practical scenarios (e.g., drug discovery, anomaly detection etc.), it is likely to encounter
unknown samples and it is desirable that the model can properly detect these samples as unknown.
Various approaches have been proposed to tackle the unknown sample detection problem (Bendale
& Boult, 2016; Sun et al., 2020), using techniques such as Weibull-Calibration SVM (W-SVM)
(Scheirer et al., 2013), reconstruction error (Zhang & Patel, 2017), nearest neighbor (Júnior et al.,
2016), and quasi-linear function (Cevikalp & Yavuz, 2017). As a representative example, the
Openmax framework removes softmax from the last layer of a neural network and includes an
additional layer to produce the probability of a sample being unknown. This essentially redistributes
the probability mass to (K + 1) classes (with unknown being a new class). Multiple efforts follow
this direction (Sun et al., 2020; Neal et al., 2018). While this technique is viable to detect open-set
samples, the additional layer is included during the testing phase. As a result, the training still follows
the closed set assumption.

Recent advances in uncertainty quantification provide a more systematic way to break the closed set
limitation by explicitly modeling the uncertainty mass that corresponds to the unknown class. One
representative work is the evidential deep learning (EDL) model (Sensoy et al., 2018), which treats
the predicted multi-class probability as a multinomial opinion according to subjective logic (Jøsang,
2016). Similar to EDL, Prior Networks (PNs) (Malinin & Gales, 2018) explicitly considers the
distributional uncertainty that quantifies the distributional mismatch (Malinin & Gales, 2018). The
Posterior Networks further improves PNs by leveraging normalizing flows for density estimation in
the latent space to predict a posterior distribution, which can be used to identify out-of-distribution
(OOD) samples from in-distribution ones (Charpentier et al., 2020).

Despite the promising progress in OSD that focuses on differentiating samples from the closed
and open sets, respectively, limited attention has been devoted to the situation where the closed set
involves highly imbalanced classes, which may be quite common in many practical settings. For
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example, for anomaly detection, the known types of anomalies available for model training are
usually unevenly distributed into multiple categories (e.g., car accident vs. shooting). Similarly, for
computer-aided medical diagnosis, the known diseases (to the model) may be highly imbalanced
based on the available cases. Thus, following the standard Empirical Risk Minimization (ERM)
framework for training, the model may not learn properly from the minority class due to the lack
of positive samples. As a result, it is more likely to misidentify a minority-class sample as an
unknown-class sample during OSD, leading to a high false-positive rate.

Distributionally Robust Optimization (DRO) offers an effective means to handle the imbalance class
distribution in the closed set setting (Qi et al., 2020; Zhu et al., 2019). In DRO, the worst case
weighted loss is optimized, where the weights are searched in a given neighborhood (referred to
as the uncertainty set) of the empirical sample distribution such that the overall loss is maximized.
By expanding the uncertainty set, the model is encouraged to assign higher weights to difficult
samples. As a result, samples from the minority class will be given more emphasis during model
training if not properly learned (which incurs a larger loss). Another common solution to handle
imbalanced class distribution in the closed set is through oversampling to achieve a more balanced
class distribution (Chawla et al., 2002). While both oversampling and DRO may help to improve the
closed set performance, neither of them is adequate to address OSD from imbalanced data.

A fundamental challenge lies in the interplay between samples from the minority class and the
difficult samples from the majority classes. As a result, simply oversampling the minority class may
neglect these difficult samples. Similarly, applying DRO with a flexible uncertainty set may put too
much emphasis on these difficult samples and ignore the minority class as well as some representative
samples from the majority classes, which affects proper model training. In fact, directly applying
these models for OSD may lead to even worse detection performance, which is evidenced by our
experimental results. Few recent approaches try to address the OSD under class-imbalanced setting.
Liu et al. (2019) leverage the visual similarity across the centroids of closed set classes to allow more
effective training from the minority class samples. However, it is possible that the samples from
the minority class may look quite different from most other samples, making such a strategy less
effective. Further, Wang et al. (2022) try to push minority class samples away from open set ones in
the feature space using contrastive learning. However, the final OSD depends heavily on the selection
of open set samples as evidenced by our experiment results.

To systematically tackle the fundamental challenge as outlined above, we propose Adaptive Robust
Evidential Optimization (AREO) that offers a principled way to quantify sample uncertainty through
evidential learning while optimally balancing the model training over all classes in the closed set
through novel adaptive DRO learning. To avoid the model from primarily focusing on the most
difficult samples by following the standard DRO, the adaptive learning strategy gradually increases
the size of the uncertainty set using Multi Scheduler Function (MSF), which allows the model to learn
from easy to hard samples. A class-ratio biased loss is further assigned to the minority class to ensure
proper learning from its limited samples. Our main contribution is fourfold:

• a novel extension of DRO to evidential learning, which enables principled uncertainty quantifica-
tion under the class imbalanced setting, critical for many applications, including OSD,

• adaptive DRO training governed by a uniquely designed multi-scheduler learning mechanism to
ensure an optimal model training behavior that gives sufficient attention to the difficult samples
and the minority class while capable of learning common patterns from the majority classes,

• theoretical connection to a boosting model (i.e., AdaBoost), which ensures the nice convergence
and generalization properties of AREO,

• state-of-the-art OSD performance on various datasets.

2 RELATED WORK

Open set detection. Various SVM based techniques (Scheirer et al., 2013; Jain et al., 2014;
Scheirer et al., 2014) have been proposed for OSD. For instance, Scheirer et al. (Scheirer et al.,
2013) proposed an SVM based model, which performs detection using a Weibull-calibrated SVM
(W-SVM) by leveraging Extreme Value Theory (EVT). Reconstruction based approaches have been
proposed (Zhang & Patel, 2017), where a threshold defined over the reconstruction error is used
to decide whether the sample is from a known or an unknown class. Other traditional models,
such as nearest neighbor (Júnior et al., 2016), quasi-linear function (Cevikalp & Yavuz, 2017),
have also been explored as well. Deep learning models have been increasingly applied for open
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set detection (Yoshihashi et al., 2019; Sun et al., 2020; Bendale & Boult, 2016). As an example,
OpenMAX replaces the softmax function and probability of the softmax is redistributed to produce
the probability of a sample being unknown (Bendale & Boult, 2016). Sun et al. (2020) proposed
VAE based open set recognition, where the probability of a sample belonging to each of the known
classes is used as a proxy to detect whether the sample is known or unknown. Each known class
distribution is modeled as a Gaussian using the training data. Some recent approaches aim to learn a
more compact representation of closed set samples (Cevikalp et al., 2021; Yang et al., 2020) or push
the open set class samples to a specific region in an embedding space for better recognition (Chen
et al., 2021). Special loss functions (Dhamija et al., 2018) and generative processes (Perera et al.,
2020) have also been leveraged to separate open set samples from closed set ones.

Recently, systematic approaches have been presented to break the closed set limitation by explicitly
modeling the uncertainty mass belonging to the unknown distribution. One of the representative
work inline with this is the evidential deep learning (EDL) model (Sensoy et al., 2018). Similar
to this work, Malinin & Gales (2018) propose Prior Networks (PNs) that explicitly consider the
distributional uncertainty to quantify the distribution mismatch. Despite having a natural way to
quantify the uncertainty, both of these methods require OOD data samples for model training, which
is less practical. Charpentier et al. (2020) propose the posterior networks that leverage the normalizing
flows for density estimation in the latent space in order to predict the posterior distribution by only
using in-distribution samples. Despite the significant progress in OSD, limited attention has been
drawn to the scenario, where the closed set involves highly imbalanced classes. Few recent works try
to tackle this fundamental challenge of OSD under class-imbalanced setting. Liu et al. (2019) propose
a technique based on the assumption that visual similarity exists between head and tail classes in the
closed set. A model is designed to leverage this similarity to make it more robust for recognizing
minority class samples. However, such an assumption may not universally hold, which limits the
applicability of the model in general settings. Further, Wang et al. (2022) leverage contrastive learning
to push the minority class samples away from the open set ones in the feature space during the training
process. However, the final OSD performance highly depends on the training open set samples.

Distributionally robust optimization. Distributionally robust optimization is based on principled
statistical learning theory, where the worst case weighted loss is optimized by searching the weights
in a given uncertainty set (Duchi & Namkoong, 2019; Zhu et al., 2019; Namkoong & Duchi, 2016).
DRO offers a systematic way to handle the imbalanced class distribution and has been commonly
used in supervised learning setting (Qi et al., 2020; Zhu et al., 2019) as well as in multiple instance
learning (Sapkota et al., 2021). In a similar way, Li et al. (2020) propose a technique called Tilted
Empirical Risk Minimization (TERM) by redefining the ERM with the introduction of hyperparameter
t. Depending on the tunable parameter t value, different variants of loss (maximum, minimum, and
average) are recovered and thereby provide a unified way to perform effective training in the presence
of outlier and class imbalance scenarios. While DRO may help to improve the closed set performance,
it is not sufficient to address the OSD problem with imbalanced data. This is because DRO with a
flexible uncertainty set may put too much emphasis on the difficult samples and ignores the ones
from the minority class as well as representative samples from majority classes.

Our proposed AREO model offers an adaptive learning strategy to learn from easy samples in the
early training phase and gradually shift the focus to the difficult samples. Furthermore, the class-ratio
biased loss ensures proper learning from the limited samples in the minority class.

3 METHODOLOGY

3.1 PRELIMINARIES

Evidential Learning for OSD. Let DN = {X,Y} = {(x1,y1), ..., (xN ,yN )} be a set of training
samples in the closed set. Each xn ∈ RD is a D-dimensional feature vector and yn ∈ {0, 1}C
indicates the one hot encoding associated with its class label: ynj = 1 and ynk = 0 for all k ̸= j
with j being the true label. Following the principle of Subjective Logic (SL) (Jøsang, 2016), we
consider a total of C + 1 mass values with C being the number of classes. We assign a belief mass
bc,∀c ∈ [C], to each singleton, which corresponds to one class in the closed set and the remaining
mass is referred to as the uncertainty mass, denoted by u. The belief masses and the uncertainty mass
are all non-negative and sum to one: u+

∑C
c=1 bc = 1, u ≥ 0 and bc ≥ 0. They can be evaluated as

bc =
ec
S
, u =

C

S
(1)
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where S =
∑C
c=1(ec + 1) with ec ≥ 0 being the evidence derived for the cth singleton, which can

be generated by a neural network enabled with a non-negative output. The belief mass assignment
in the above expression corresponds to a Dirichlet distribution with the concentration parameters
αc = ec + 1:

Dir(p|α) =

{
1

B(α)

∏C
c=1 p

αc−1
c , for p ∈ SC

0, otherwise
(2)

where SC is a (C − 1)-simplex and B(α) is a beta function. Given the evidences, the expected
probability for the cth singleton is given by E[pc] =

αc

S . Consider a sample xn and let f(xn,Θ)
denote the evidence vector generated by an evidential neural network parameterized by Θ. This allows
us to fully characterize the Dirichlet distribution, whose mean vector gives rise to the probability of
assigning xn to each class. There are multiple ways to design a loss function to train the evidential
neural network (Sensoy et al., 2018). A simple but effective option is the sum of square loss:

rlEL
n (Θ) = ∥yn − E[pn]∥22 + λtKL[Dir(pn|α̃n)|Dir(pn|(1, ...., 1)⊤)] (3)

where λt = min(1, t10 ) is the annealing coefficient at epoch t and α̃n = yn + (1− yn)⊙αn.

Remark. Besides being used as a powerful model for closed set classification, a unique benefit
of evidential learning is that it offers a principled way to quantify the uncertainty mass, which is
explicitly allocated to account for something that is ‘unknown’ to the model. Intuitively, a properly
trained evidential model will output a high total evidence for data samples whose features are
sufficiently exposed to the model during training. In contrast, it should predict a low total evidence
for less representative samples in the training data. For these samples, their corresponding uncertainty
mass u will be large (as the total mass sums to one). As a result, the uncertainty mass fits squarely
for detecting open set samples, which have not been exposed to the model that is trained using the
closed set samples.
Distributionally Robust Optimization. Distributionally Robust Optimization (DRO) is inherently
used to handle the minority and/or difficult class samples by optimizing the worst-case loss where
weights assigned to each sample are given by uncertainty set. Let ln(Θ) be the loss for the xn sample
network parameterized by Θ. Then the corresponding DRO loss is given as

LDRO(Θ) = max
p∈PDRO

N∑
n=1

pnln(Θ) (4)

The uncertainty set defined to assign weights (p) is given as

PDRO :=

{
p ∈ RN : p⊤1 = 1,p ≥ 0, Df (p∥

1
N

) ≤ η
}

(5)

where Df (p∥q) is f -divergence between two distributions p and q and η controls the size of the
uncertainty set. When η is large, the weight distribution p can deviate a lot from the uniform
distribution, making it possible to assign a very high weight to certain data samples. In contrast, a
small η will constrain p to be close to the uniform distribution and all samples share a similar weight.

3.2 DISTRIBUTIONALLY ROBUST EVIDENTIAL OPTIMIZATION

The standard evidential learning does not explicitly consider an imbalanced class distribution. Further,
it also does not focus on the difficult samples resulting from multi-modality where a single class can
have multiple types of samples. As a result, minority classes and/or difficult samples are usually
assigned a higher uncertainty mass due to a lack of sufficient training data. While this may not
significantly impact the closed set performance (i.e., accuracy), it poses a more severe issue for OSD
as difficult/minority class samples become equally uncertain as those open set samples. To address
this challenging solution, one straightforward way would be to integrate evidential learning with
DRO for robust uncertainty mass quantification on minority class/difficult samples in the close-set.
Intuitively, since the model explicitly focuses on learning from minority class/difficult samples,
it provides a low uncertainty mass for minority/difficult samples while remain high (in terms of
uncertainty mass) for those open set samples. This novel integration of DRO and evidential learning
allows us to define a distributionally robust evidential loss (DREL) given as

LDREL(Θ) = max
p∈PDRO

N∑
n=1

pnl
EL
n (Θ) (6)
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Figure 1: Examples of Scheduler Functions

Details of solving (6) is provided in Appendix B. Depending on η in the uncertainty set, we can
decide whether we want to assign an equal weight to all data samples or focus on the most difficult
ones. The lemma below reveals the relationship between DREL and the standard evidential loss.

Lemma 1. With η → 0, the EDL loss under DRO reduces to the standard EDL loss.

When η is set to be very small, the model gives similar weights to all samples, which allows them to
participate equally in the training process. At another extreme, we can direct the model to fully focus
on the most difficult sample with the maximum loss, as summarized in the lemma below.

Lemma 2. With η →∞, the loss under DRO becomes equivalent to a maximum loss based approach
focusing only on the hardest sample.

The above lemma implies that a highly flexible uncertainty set may cause the model to put too much
emphasis on difficult samples. Since these difficult samples may come from the majority classes,
simply setting a large η will not be necessary to direct the model’s attention to the samples from the
minority class. Furthermore, using a flexible uncertainty set in the initial phase of the model training
may misguide the model to neglect a large number of representative data samples. As a result, the
model will not be able to capture the common patterns that exhibit in most of the training samples.
As such, the direct integration of DRO and EDL does work well which is also justified experimentally
through the comparison of the proposed technique with DRO technique.

3.3 ADAPTIVE ROBUST EVIDENTIAL OPTIMIZATION (AREO)

The key idea to address the limitations in the distributionally robust evidential optimization is to
gradually increase the size of the uncertainty set, which allows the model to learn from easy to hard
samples from closed set classes. Scheduler functions (SF) provide a natural way to achieve the
desired training behavior. Figure 1 (a-c) shows three typical SFs, including cosine in (a): cos

(
πt
2T

)
,

offset cosine in (b): 1
2 cos

(
πt
T

)
+ 1

2 , and exponential in (c): exp
(
− t
β

)
, where t denotes the index

of the training epoch, T is the terminating epoch, and β is a specific parameter of the exponential
function. It can be seen that while the general trends of different SFs are similar, they exhibit some key
differences that may lead to quite distinct model training behaviors. For example, a cosine function
can help to ensure the uncertainty set to stay small for a relatively longer time in the beginning of
model training. This ensures the model to learn from the representative samples in the majority
classes (according to Lemma 1). In contrast, an exponential function can change the size of the
uncertainty set very rapidly, which can give the model more time to learn from the difficult samples
at the later phase (according to Lemma 2). The offset cosine function can offer both a relatively long
initial learning and later learning phases. However, choosing a SF that best matches the nature of a
given dataset poses a key challenge. Furthermore, a single SF may not be rich enough to express the
desired training behavior of a complex dataset.

To address this key challenge, we propose to conduct multi-scheduler learning to automatically
construct a composite scheduler function that can be automatically learned for each given dataset
to deliver the optimal training behavior. More specifically, the multi-scheduler function (MSF) is
formulated as a convex combination of a set of atomic SFs:

MSF(w,β, t, T ) =
M∑
m=1

wmSFm(βm, t, T ),

M∑
m=1

wm = 1, wm ≥ 0 ∀m ∈ [M ] (7)

where w are the mixing weights and β is a set of specific parameters for the atomic SFs. Figure 1 (d)
visualizes an example MSF that combines a cosine and exponential functions with different mixing
weights and fixed β = 20, T = 600. As can be seen, the MSF is much more expressive then either its
component SF, which makes it capable to represent a much broader range of training behaviors.
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By leveraging the proposed MSF to control the size of the uncertainty set, we can achieve adaptive
robust training. Let η0 be the initial size of the uncertainty set and the size of the set at epoch t is

ηt =
ηt−1

MSF(w,β, t, T )
(8)

Based on this adaptive uncertainty set, we define the Adaptive Robust Evidential Loss (AREL) as

LAREL(Θ) = max
p∈PARO

N∑
n=1

pnl
EL
n (Θ) (9)

where lEL
n is the uncertainty mass loss for the xn given by Eq. (3) under adaptive robust optimization

framework and PARO is the adaptive robust uncertainty set defined as

PARO :=

{
p ∈ RN : p⊤1 = 1,p ≥ 0, Df (p∥

1
N

) ≤ ηt
}

(10)

As ηt increases, the model gradually shifts its focus from easier samples to the more difficult ones. In
this way, the model can be trained to first capture the common patterns in the data and then conduct
fine-tuning by attending to those difficult samples. However, for imbalanced classes, there may be a
good number of difficult samples from the majority classes. Therefore, solely controlling the size of
the uncertainty set does not guarantee a sufficient training over the minority class. To address this,
we further leverage the label of the minority-class c to formulate a ratio biased weight augmentation
on samples from this class. Let p(c) =

∑
∀ync=1 pn be the total weight for minority class c obtained

by solving (9). Then, the weights for the minority class samples are adjusted as:

p̃(c) =

{
p(c), if p(c) ≥ 1

C

min
(

1
C , p(c)

MSF(w′,β′,t,T )
)
, otherwise p̃n =


p̃(c)
p(c)pn, if ync = 1

1−p̃(c)
1−p(c)pn, otherwise

(11)

As the MSF monotonically decreases over the training epochs, the total weight for the minority class
samples will eventually reach 1

C , making it equally weighted as the other (C − 1) classes.

Remark. Our approach considers a minority class if there is an obvious gap between the percentage
of samples from the minority class over the total samples from all C classes and 1

C . Any other class
that is not a minority one is regarded as a majority class. Our approach can handle the multiple
minority classes which can be achieved by applying the ratio biased weighted augmentation (given
by Eq. (11)) to each minority class.

The adaptive robust training is achieved through a bi-level optimization, where the inner loop
optimizes the the model parameters (Θ) and the outer loop optimizes the MSF parameters W =
{w,w′,β,β′}:

min
W
LAREL
val (Θ∗,W), s.t. Θ∗ = argmin

Θ
LAREL
train(Θ,W) (12)

where LAREL
train, LAREL

val are training and validation losses, respectively. The outer loop optimization can
be solved by computing the Hypergradients (Maclaurin et al., 2015; Pedregosa, 2016) or through a
population-based methods (Jaderberg et al., 2017), where the former may easily get stuck in local
optimum (Tao et al., 2020). To this end, we extend the existing population based method to learn an
optimal MSF and the details are given in Appendix B.

3.4 THEORETICAL ANALYSIS

We establish the key theoretical properties of AREO, including the convergence speed in model
training and the generalization capability by formally demonstrating the equivalence between AREO
and AdaBoost under a non-convex robust uncertainty loss. The key idea is to leverage the equivalence
between AdaBoost and the gradient descent search of an optimal function from a linear combination
of a set of (weak) learners (Mohri et al., 2012; Blanchet et al., 2019). Let F = {f1, ..., fK} be a set
of different classifiers, and the linear span generated by the set F is

LS(F) =

{
f : f =

K∑
k=1

σkfk, 1 ≤ k ≤ K

}
(13)
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AREO training consists of two alternative updates between optimizing the worst case probability and
predicting function f . The update in function prediction can be regarded as finding a sub-gradient
Gt ∈ ∂LAREL(ft) and updating with

∏
LS(F)(G) = argminf∈LS(F) ∥f − Gt∥DN

where DN is the
training data. Letting Ln(ft) be the loss associated with the data sample xn, the update of p involves
the optimization of the following objective with ft being fixed:

LAREL(ft) = max
p∈PARO

N∑
n=1

pnLn(ft) (14)

where the uncertainty set is given by (10). The corresponding Lagrangian of the above optimization
problem is given by

max
p≥0,p⊤1=1

N∑
n=1

pnLn(ft)− α

[(
N∑
n=1

pn log pn

)
− ηt

]
(15)

It should be noted that finding the optimal f value is non-trivial because the optimization involves
the nonconvex loss (i.e., LAREL). This creates difficulty showing equivalence between AREO and
AdaBoost. To ensure the convergence of f to a stationary point, we adapt the ProbAbilistic Gradient
Estimator technique (PAGE) (Li et al., 2021) to our unique adaptive robust evidential optimization
setting. This convergence guarantee helps to move forward showing the equivalence between AREO
and Adaboost given by the theorem below.
Theorem 3. Under the assumption of finite exponential moment for Ln(f), with α ≥ 0 being
sufficiently large and

ηt = β∗ψ
′
(β∗)− ψ(β∗) (16)

the worst case probability p∗ is given by

p∗n =
exp

(
Ln(ft)
α

)
∑N
j=1 exp

(
Lj(ft)
α

) (17)

where β∗ = 1
α∗ , α∗ ≥ 0 be the optimal α, and ψ(β) = log

[∑N
n=1 exp(βLn(ft))

N

]
. The alternative

optimization between f and with above worst case probability solution exactly recovers the AdaBoost
algorithm proposed in (Freund & Schapire, 1997).

Remark. There are several key benefits of connecting AREO with AdaBoost. First, AdaBoost is less
prone to overfitting even running for a large number of iterations (Mease & Wyner, 2008). Inheriting
such a property is crucial for OSD as an overfitted evidential model can produce highly confident
wrong predictions. This implies that a low uncertainty may be predicted for samples that the model is
less familiar with, resulting in a false negative detection of an open set sample. Furthermore, since
the target function is expressed as a linear combination of a set of weak learners, the optimal function
can be regarded as maximizing the l1 geometric margin among the training samples to ensure good
generalization capability like other maximum-margin classifiers (Mohri et al., 2012). This ensures a
decent closed set performance from AREO (as shown by our experiments). The proof of Theorem 3
is provided in Appendix C.

4 EXPERIMENTS

We perform extensive experimentation to evaluate the effectiveness of the proposed AREO model.
We first describe five real-world image datasets where a minority class is introduced to create an
imbalanced setting. We then assess the OSD performance of the proposed technique by comparing
with competitive baselines. Finally, we conduct some qualitative analysis, which uncovers deeper
insights on the performance advantage of the proposed model.

4.1 DATASETS

Our experiments involve five real-world image datasets: Cifar10, Cifar100 (Krizhevsky, 2009),
ImageNet (Deng et al., 2009), MNIST (Deng, 2012), and Architecture Heritage Elements Dataset
(AHED) (Llamas, 2017). In our experimentation, model training is performed solely based on the
closed set samples. During the detection phase, the testing samples corresponding to the closed
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set classes will be assessed against the samples from open set classes. For all datasets, for the
hyperparameter optimization, randomly selected 20% of the training set is used. The brief description
for each dataset is given below. For the detailed description and data sample distribution in majority
and minority classes, please refer to the Appendix.

• MNIST: Five classes are treated as open set and the rest as the closed set. To make the dataset
imbalanced, we consider class ‘3’ as a minority class and randomly select 30% data samples as
compared with other majority classes. The same imbalanced ratio is applied to both training and
testing sets. In addition to the MNIST open set classes as described above, we follow other existing
works (Sun et al., 2020) and further test the OSD performance on additional open set samples
from three more sources: (1) MNIST-Noise, (2) Noise, and (3) Omnigolot (Lake et al., 2015).

• Cifar10: Five classes are assigned as open set and closed set, respectively. Bird is made as the
minority class using the same strategy introduced above. In addition to the open set classes from
Cifar10 itself, we further assess the OSD performance with Cifar+10 and Cifar+50.

• Cifar100: ’Living being’ related super classes are assigned as the closed set and the remaining
super classes are assigned as the open set. We make ‘insect’ related classes as the minority one.

• ImageNet: Five classes are assigned as open set and closed set, respectively. We make ’king crab’
as the minority class.

• Architectural Heritage Elements Dataset (AHED): Five classes are assigned as open set and
closed set, respectively. This is inherently highly imbalanced dataset where number of data points
are unevenly distributed across different classes. The class ‘portal’ is the minority one.

4.2 EXPERIMENTAL SETTINGS

Evaluation metric. To assess the model performance, we report mean average precision (MAP)
score which summarizes the precision-recall curve as a weighted mean of precision achieved at each
threshold, with the increase in recall from previous threshold as the weight. Specifically, in the OSD,
we treat the open set samples as positive and closed set samples as negative and compute the MAP
score based on the uncertainty score produced by the trained model. Different from AUROC, MAP
places more emphasis on initial part of the ROC curve, which gives preference if model can rank the
open set samples on the top based on their predicted uncertainty scores. This MAP metric works well
in practice as the main focus may be devoted to the first few predicted candidate samples, especially
when there is a long candidate list. The theoretical result shows that MAP is approximately the
AUROC times the initial precision of the model (Su et al., 2015). Therefore, we focus on reporting
the MAP performance and leave the AUROC results in Appendix D. It is worth to note that our
AUROC results also show a consistent trend as the MAP results.

Network architecture. In terms of the architecture of the evidential neural network, for all datasets,
we use an LeNet5 network with tanh activation in the feature extractor and ReLU in the fully connected
layers. For training, we use the Adam optimizer with a learning rate of 0.001 and l2 regularization
with a coefficient of 0.001. The detailed hyperparameter setting is provided in Appendix.

4.3 PERFORMANCE COMPARISON

In our comparison study, we include baselines that are most relevant to our model, including EDL,
EDL augmented with oversampling using SMOTE (Chawla et al., 2002) (referred to as AEDL), and
EDL with standard DRO training (referred to as DRO). Further, we also compare the performance
with the Posterior networks (Charpentier et al., 2020) and its robust form, PostNet (RS), proposed by
Kopetzki et al. (Kopetzki et al., 2021). In addition, we also compare with representative baselines
with outstanding OSD performance: OpenMAX (Bendale & Boult, 2016), CGDL (Sun et al., 2020),
and OLTR (Liu et al., 2019). Please refer to the Appendix D for the more detailed description of the
baselines used in our comparison study along with additional results and an ablation study.

Tables 1 presents the OSD performance comparison between different models for all five datasets.
AREO consistently outperforms all the baselines across all the datasets. For certain datasets, the
performance advantage over the second best model is more than or close to 10%. This clearly
demonstrates the benefits of conducting evidential learning through adaptive DRO training to achieve
an optimal balanced learning from all classes and different types of data samples. We also observe
that EDL consistently performs better than other non-evidential learning based models, such as
OpenMAX, in most cases. The better OSD performance from EDL is attributed to its explicit
modeling of the uncertainty mass that works naturally for detecting the open set samples. In contrast,
directly applying DRO with a flexible uncertainty set, which aims to address the imbalanced class

8



Published as a conference paper at ICLR 2023

Table 1: OSD (MAP) performance on all datasets

Approach Cifar10 Cifar100 ImageNetCifar10 Cifar+10 Cifar+50
EDL 62.42± 0.31 29.23± 0.38 65.75± 1.11 52.00± 2.40 55.93± 4.30

AEDL 54.19± 0.77 26.21± 0.68 63.04± 0.70 52.79± 0.91 57.94± 0.07
DRO 57.86 ± 2.94 18.35± 0.40 56.04± 1.63 50.78± 4.44 55.67± 3.86

OpenMAX 59.65± 1.03 24.48± 1.34 62.80± 2.08 50.88± 0.60 53.24± 0.39
CGDL 54.27± 2.06 16.83± 0.20 50.15± 1.08 50.59± 4.56 55.47± 1.53
PostNet 56.71± 6.08 25.71± 5.39 62.51± 4.68 53.85± 2.76 56.83± 1.52

PostNet (RS) 51.54± 11.32 18.28± 1.50 53.13± 4.33 51.75± 0.98 56.21± 0.75
OLTR 56.37± 0.25 19.59± 0.49 53.98± 0.68 48.48± 0.29 50.71± 0.66
AREO 72.48± 4.08 37.14± 2.06 73.87± 1.42 57.52± 1.60 62.02± 1.11

Approach MNIST AHEDMNIST Noise MNIST-Noise Omnigolot
EDL 87.32± 4.01 82.16± 8.74 82.89± 8.06 77.62± 6.79 50.23± 1.84

AEDL 75.37± 11.14 71.90± 11.45 76.23± 12.67 67.29± 10.77 52.22± 0.26
DRO 63.25± 4.32 46.78± 1.22 49.59± 3.98 48.15± 1.70 42.28± 0.18

OpenMAX 84.11± 1.55 83.03± 1.71 78.31± 2.745 81.14± 0.89 48.13± 0.19
CGDL 61.33± 1.53 74.88± 8.42 73.92± 8.41 90.72± 2.16 48.57± 1.39
PostNet 55.58± 9.12 47.53± 13.88 43.94± 8.00 72.79± 4.24 46.69± 1.90

PostNet (RS) 49.3± 4.071 36.14± 0.59 39.96± 2.20 77.43± 9.80 46.10± 4.37
OLTR 86.38± 0.51 90.61± 1.43 83.75± 1.28 55.27± 3.04 49.26± 1.66
AREO 90.80± 0.058 94.24± 0.32 94.18± 0.21 93.80± 0.2 53.21± 0.65

Bird1 Bird2 Bird3

Boat Truck

(a) Representative difficult samples

Sample Approach
EDL AEDL DRO AREO

Bird1 137 1533 3109 4
Bird2 4548 4225 3985 100
Bird3 1928 2258 4452 183
Boat 1274 1520 1249 223
Truck 3308 1318 4208 51

(b) Ranking of samples

Figure 2: (a) Top row: minority class; bottom-row: majority classes; (b) sample ranking.

distribution, leads to a rather poor OSD performance due to the reasons as analyzed in prior sections.
Similarly, AEDL does not perform better than the standard EDL due to the lack of fine-tuning of the
difficult examples from the majority classes that become inseparable from the open set samples with a
high predicted uncertainty score. Table 10 in the Appendix also shows the closed set performance as
a reference. Further, for the deeper insight on the superior OSD of AREO please refer to Appendix.

4.4 QUALITATIVE EXAMPLES

We perform a qualitative analysis to further assess the effectiveness of AREO. Figure 2 (a) top row
shows representative testing samples from the minority class (‘bird’) in Cifar10. These images appear
to be difficult even for the humans to identify the bird as only a small part is visible. Thus, EDL,
AEDL, and DRO assign a relative higher uncertainty score for them. As a result, many open set
samples may be assigned a relatively lower uncertainty score, leading to false negative detection on
these samples. Figure 2 (b) shows the ranking of these samples according to the uncertainty scores (a
lower ranking indicates a lower uncertainty). In contrast, AREO assigns much lower rankings for
these birds objects. This analysis justifies the effectiveness of AREO for detecting minority class data
samples in the closed set. Similarly, Figure 2 (a) bottom row show representative images from some
majority classes. Again, AREO is able to recognize these difficult samples and assign a relatively low
uncertainty score to avoid them being mis-identified as open set samples as shown by Figure 2 (b).

5 CONCLUSION

In this paper, we focus on open set detection from imbalanced closed set data. To address the
fundamental challenge due to the interplay between the minority-class samples and difficult samples
from the majority classes, we propose an important extension of DRO to the evidential learning
setting, leading to a novel Adaptive Robust Evidential Optimization (AREO) model. As an evidential
learning model, AREO effectively breaks the closed set assumption by explicitly modeling the
uncertainty mass that is uniquely suitable for detecting open set samples. An adaptive DRO training
process is achieved through multi-scheduler learning to achieve an optimal training behavior. The
experimentation conducted on five real-world datasets with diverse types of open set data samples
justifies the effectiveness of the proposed model.
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Appendix

In this appendix, we first summarize the major notations used in the main paper in Appendix A. We
then present the detailed description of the training process obtained through a bi-level optimization
in Appendix B. Proofs of main theoretical results are provided in Appendix C. Finally, we present
more detailed experimental dataset, result, and settings in Appendix D. The link to the source code is
provided in Appendix E.

A SUMMARY OF NOTATIONS

Table 2 summarizes all the major symbols along with their descriptions.

Table 2: Symbols with Descriptions

Notation Description
bc Belief mass associated with class c
C Total number of classes
ec Evidence for the cth singleton
u Uncertainty mass
α Dirichlet Parameters
pc Probability for the cth singleton
yn One hot encoded C dimensional multinomial variable
ync Class label for the nth data sample for class c
pnc Probability of the nth data sample belonging to class c
ηt Uncertainty set size for AREO
β Hyperparameter controlling the schedule
γ Hyperparameter controlling the emphasis in a minority class
p Probability distribution in the DRO framework

PDRO Uncertainty set of DRO
PARO Uncertainty set of ARO
Θ Evidential network parameters

lEL
n (Θ) Evidential loss with the nth data sample

LAREL(Θ) Adaptive robust evidential Loss
F Set of Different classifiers
σk Weight associated with kth weak learner

p(c) Weight associated with the cth class from Eq. (6)
p̃(c) Readjusted weight associated with the cth class from Eq. (11)
w Mixing weights associated with the MSF to control uncertainty set ηt
w′ Mixing weights associated with MSF to readjust the class-specific weights
β Set of Specific parameters for the SFs to control uncertainty set ηt
β′ Set of Specific parameters for the SFs to readjust the class-specific weights
W MSF Parameter sets associated in our model training
T Total number of Epcochs

B TRAINING THROUGH BI-LEVEL OPTIMIZATION

Our training involves a bi-level optimization, where we jointly optimize the network parameter
Θ along with the MSF parameters W. Algorithm 1 shows the overall training process based on
the population based optimization. We randomly initialize the MSF parameters Wp and network
parameters Θp from the corresponding spaces H and Θparam respectively shown in Line 3. We
perform this initialization for P different models. Next, in each epoch we independently optimize
P models using the proposed objective function defined in Eq. (6). After s epochs, we evaluate
the accuracy of each model by using ‘eval’ as the evaluation metric in the validation set. It should
be noted that in our case, we used closed set classification performance (MAP) as ‘eval’ metric.
We identify P̂ (with P̂ < P ) worst performing models and replace their model parameters by the
randomly selected model parameters from set of b highest accurate models. This process is known as
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exploitation and is demonstrated in Line 12. MSF parameters for those worst performing model can be
obtained either through random selection from the original spaceH or through small perturbation of
the W of the model whose parameter is copied. This process is called exploration as we are searching
for the new MSF parameters and is shown in Line 13. The best performing model parameters and
accuracy are stored in the Θ∗ and acc∗ respectively. Finally, the best model Θ∗ is returned as the
optimal model for the testing.

Algorithm 1: Multi-Scheduler Learning Process

Input: H, P , s, eval, P̂ , T
1 Initialize: epoch = 0, Θ∗ = None, acc∗ = None
2 for p ∈ [P ] do
3 Θp,Wp ← initialize (Θparam,H)
4 while epoch<T do
5 Θp ← optimize(Θp|Wp), p ∈ [P ]
6 if epoch%s = 0 then
7 accp → eval(Θp,Wp), p ∈ [P ]

8 sorted_idx← arg sortDesc{accp}Pp=1

9 bottom_idx← sorted_idx[: −P̂ ]
10 top_idx← sorted_idx[: P̂ ]
11 for idx ∈ bottom_idx do
12 Θ_idx, j ← uniform({Θj}top_idx

j )

13 W_idx← explore(H,Wj)

14 best_model_idx← top_idx[0]
15 if Θ∗ not None then
16 if acc∗ < accbest_model_idx then
17 acc∗ = accbest_model_idx
18 Θ∗ = Θbest_model_idx

19 else
20 Θ∗ = Θbest_model_idx

21 epoch← epoch+ 1

22 return Θ∗ with the highest acc

The optimization specified in (9) involves an inequality constraint, which incurs a higher computa-
tional overhead. Therefore, in our actual optimization process, we consider a regularized version of
the AREO loss as follows:

LAREL = max
p≥0,p⊤1=1

N∑
n=1

pnl
t
n − λDf

(
p∥ 1
N

)
(18)

Solving the above maximization problem leads to a closed form solution for p∗ as shown by the
following lemma. It should be noted that the role of the λ is exactly opposite as that of the η.
Specifically, we start from a high λ so that the model gives equal emphasis to all data samples. Next,
in each step we decrease λ using the following Equation

λt = λt−1MSF(w,β, t, T ) (19)
Decreasing λ helps the model focus on the difficult samples as training progresses.
Lemma 4. Assuming that Df is the KL divergence, then solving (18) leads to the following solution

LAREL =

N∑
n=1

p∗nl
t
n (20)

where p∗n is given by

p∗n =
exp

(
ltn
λ

)
∑N
j=1 exp

(
ltj
λ

) (21)
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The detailed proof is below in C.

C PROOFS OF THEORETICAL RESULTS

In this section, we present the detailed proofs for Lemmas 1, 2, 4, and Theorem 3.

Proof of Lemma 1: By setting η → 0, we have Df (p∥ 1
N ) → 0. This implies that p is uniform

with each element as 1
N . As a result, the optimization problem becomes

LDRO(Θ) =
1

N

N∑
n=1

lELn (Θ) (22)

Proof of Lemma 2: With η →∞, the uncertainty set defined in (5) reduces to the following

PDRO :=
{
p ∈ RN : p⊤1 = 1,p ≥ 0

}
(23)

Now, the corresponding Lagrangian form of (6) becomes

LDRO(Θ,u, λ) =
N∑
n=1

(
pnl

EL
n (Θ) + unpn

)
+ µ

(
N∑
n=1

pn − 1

)
(24)

where un and µ are Lagrangian multipliers. Taking gradient with respect to pn and setting it zero, we
get

lELn (Θ) + un + µ = 0 (25)

Let k = argmaxn l
EL
n (Θ) be the index of data sample with the maximum loss (and assuming it is

unique). Then, the following holds true

uk < un; ∀n ∈ [1, N ], n ̸= k (26)

This consequently leads to un > 0,∀n ∈ [1, N ], n ̸= k. Due to the KKT conditions,

unpn = 0; ∀n ∈ [1, N ] (27)

we have pn = 0,∀n ∈ [1, N ], n ̸= k. By using the following constraint
N∑
n=1

pn = 1 (28)

we have the following conclusion

pn =

{
1, if n = k
0, otherwise (29)

This means our optimization reduces to the following

LAREL(Θ) = max
n

lELn (Θ) (30)

which proves the lemma.

Proof of Lemma 4: The the Lagrangian of the regularized loss in (18) is

LAREL(Θ, v, λ) =
N∑
n=1

pnl
t
n − λ

(
N∑
n=1

pn log pn + logN

)
+ v

[(
N∑
n=1

pn

)
− 1

]
(31)

where v is the Lagrangian multiplier. Taking the derivative with respect to pn and setting it to 0:

ltn − λ log pn − λ+ v = 0 (32)

Simplifying above equation, we get pn as

pn = exp

(
ltn + v

λ
− 1

)
(33)
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Using the summation constraint over pn i.e.,
∑N
n=1 pn = 1, it leads to following

N∑
n=1

exp

(
ltn + v

λ
− 1

)
= 1 (34)

Solving the above equation we get the expression for v as follows

v = λ log

 1∑N
n=1 exp

(
ltn
λ − 1

)
 (35)

Substituting the v value into (33) gives

pn =
exp

(
ltn
λ

)
∑N
n=1 exp

(
ltn
λ

) (36)

The concludes the proof of Lemma 4.

Proof of Theorem 3. AdaBoost can be achieved through alternative optimization between a
classification function f and the worst case probability solution (Freund & Schapire, 1997). To show
equivalence with the proposed AREO, our proof includes three steps: (i) a specially designed deep
neural network (DNN) architecture and a loss function adapted to match the learning process of
AdaBoost, (ii) projected functional sub-gradient descent to optimize the classification function f , and
(iii) optimizing the worst case probability solution.

Step 1: A specially designed DNN. Let ϕ(x) ∈ RM denote a M -dimensional feature vector learned
using a DNN. By applying a fully connected linear layer with a weight matrix W ∈ RK×M on top
of the feature vector, we obtain a set of K (discriminative) functions: f = (f1, ..., fK)⊤ =Wϕ(x).
Then, the final output of the DNN is obtained by aggregating these K functions, leading to f = σ⊤f ,
where σ = (σ1, ..., σK)⊤. As a result of this design, the final function output by the DNN can be
regarded as lying in the linear span of a set of functions F = {f1, ..., fK}, given by

LS(F) =

{
f : f =

K∑
k=1

σkfk, 1 ≤ k ≤ K,σk ∈ (−∞,∞)

}
(37)

Training of AREO involves alternating between re-weighting using the worst case probability dis-
tribution and updating the prediction function f . Next, we prove that given the specially designed
DNN, we can exactly optimize the classification function f by keeping the worst case probability
fixed and vice versa.

Step 2: Optimizing the classification function f under the worst case probability. We first formulate
the distributional robust evidential loss, which is given by

LAREL = max
p∈PARO

N∑
n=1

pnLn(f) (38)

where Ln(f) is the loss associated with the datasample xn. Then, the optimal f∗ can be obtained by
minimizing the distributional robust loss:

f∗ = min
f∈LS(F)

LAREL (39)

This optimization involves a nonconvex loss LAREL. To ensure the convergence of f to a stationary
point, we adapt the ProbAbilistic Gradient Estimator (PAGE) technique (Li et al., 2021) to the DRO
setting (shown in Algorithm 2) which ensures the convergence in O(b+ b

ϵ2 ) steps with b being the
batch size. Please refer to Theorem 6 further details.

To show that an optimal f∗ can be achieved, we first verify that the specially designed DNN
and the loss function as described above meet a number key conditions as specified by (Blanchet
et al., 2019): (i) the loss functional LAREL is L-smooth, (ii) for two different functions f1, f2 ∈
LS(F), f1(ϕ(xn)) ̸= f2(ϕ(xn)), and (iii) LS(F) has a finite dimensional basis. First, (i) is true
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because LAREL is the convex combination of the losses Ln(f). As each individual loss involves the
ReLU term with ReLU added in the output of DNN (to ensure non-negativity of the evidence), the
resulting convex combination may not be smooth. Therefore, we use the SoftPlus which is smooth
function to approximate the ReLU. The the convex combination of SoftPlus results in the function
LAREL to be L-smooth. Second, the rich and high dimensional input data (i.e., diverse images) and
the feature encoding through the deep architecture of the DNN ensures (ii) is true. Last, since the
dimensionality of the weight matrix W is K ×M , it implies that the dimensionality of the basis of
LS(F) is bounded by K, so (iii) holds true.

The smoothness ofLAREL ensures that a stationary solution is achieved within the O(b+ b
ϵ2 ) gradient

steps. This allows us to have a guaranteed stationary solution with E[∥∇LAREL∥] ≤ ϵ in a non-
convex optimization setting. Furthermore, since LAREL is a functional on f , the next two conditions
ensure that the functional gradient exists and can be evaluated (Blanchet et al., 2019). During the
optimization process, we need to make sure that the trajectory of the functional gradient lies in the
space LS(F), which can be achieved through functional gradient projection.

Step 3: Optimizing the worst case probability solution. Let ft denote the optimal classification func-
tion for the current iteration t. Next, we continue to optimize the worst case probability solution. The
following lemma shows that such an optimal solution exists.

Lemma 5. Assuming that Ln(ft) has a finite exponential moment with α ≥ 0 being sufficiently large
and

ηt = β∗ψ
′
(β∗)− ψ(β∗) (40)

the worst case probability is given as

p∗n =
exp

(
Ln(ft)
α

)
∑N
j=1 exp

(
Lj(ft)
α

) (41)

where β∗ = 1
α∗ , α∗ ≥ 0 be the optimal α, and ψ(β) = log

[∑N
n=1 exp(βLn(ft))

N

]
.

Proof. Taking the derivative of the Lagrangian for the optimization problem given in (15) with
respect to pn leads to

Ln(ft)− α log pn − α+ un = 0 (42)

where un is the Lagrangian multiplier for the constraint p ≥ 0 and α is the Lagrange multiplier for
the DRO constraint with the size defined by ηt. Simplification of the above expression yields

log pn =
Ln(ft)
α

+
un − α
α

(43)

For some λ
′

with pn = λ
′
exp

(
Ln(ft)
α

)
, a candidate solution is

p∗n =
exp

(
Ln(ft)
α

)
)∑N

j=1 exp
(

Lj(ft)
α

) (44)

The above equation involves the expression in terms of the Lagrangian multiplier. By leveraging
the sufficiency result presented in Chapter 8 Theorem 1 of (Luenberger, 1997), we can find the
relationship between the multiplier and our constraint parameter ηt. As such, our optimal solution
can be expressed in terms of original constraint. Suppose that we can find α∗ ≥ 0 and p∗ ∈ PARO
such that p∗ maximizes (15) for α = α∗ and

∑N
n=1 p

∗
n log p

∗
n = ηt with the optimal solution defined

in (44). Considering this, we have the following

ηt =

N∑
n=1

p∗n log p
∗
n =

N∑
n=1

p∗n
Ln(ft)
α∗ − log

 N∑
j=1

exp

(
Lj(ft)
α∗

) = β∗ψ
′
(β∗)− ψ(β∗) (45)

where we define β∗ = 1
α∗ and ψ(β) = log

∑N
n=1 exp (βL(ft)). This allows us to express the

Lagrangian multiplier using ηt. Next, we verify that there exists an unique solution defined in (44) by
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leveraging the convexity of the exponential function. Specifically, substituting (44) in (15), we get
the following

N∑
n=1

p∗nLn(ft)− α

(
N∑
n=1

p∗n log p
∗
n

)
= α log

N∑
n=1

exp

(
Ln(ft)
α

)
(46)

If we could show the following inequality holds true

α log

N∑
n=1

exp

(
Ln(ft)
α

)
≥

N∑
n=1

pnLn(ft)− α
N∑
n=1

pn log pn (47)

then we can claim that the above candidate solution is the optimal solution. Rearranging the terms,
we get the following

N∑
n=1

exp

(
Ln(ft)

α

)
≥ exp

N∑
n=1

(
pnLn(ft)

α
− pn log pn

)
(48)

This can be shown as

N∑
n=1

exp

(
Ln(ft)
α

)
=

N∑
n=1

pnp
−1
n exp

(
Ln(ft)
α

)
=

N∑
n=1

pn exp

(
Ln(ft)
α

− log pn

)

Now applying Jensen inequality to the exponential function ψ
(∑

xi

n

)
≤

∑
ψ(xi)
n , we have the

following

N∑
n=1

pn exp

(
Ln(ft)
α

− log pn

)
≥ exp

(
N∑
n=1

pnLn(ft)
α

− pn log pn

)
(49)

This completes the proof of the lemma.

Theorem 6. Suppose that LAREL holds the L-smoothness criteria with following inequality

∥∇LAREL(f1)−∇LAREL(f2)∥ ≤ L∥f1 − f2∥ (50)

Then choosing a learning rate γ ≤ 1

L
(
1+

√
1−p
pb′

) with minibatch size b = n, secondary minimbatch

size b′ < b, the number of iterations required to be performed by our algorithm for finding ϵ-
approximate solution i.e., E[∥∇LAREL(f̂T )∥ ≤ ϵ] can be bounded by the following:

T =
2∆0L

ϵ2

(
1 +

√
1− p
pb′

)
(51)

Further the gradient complexity in terms of number of gradient steps is given as

Ngrad = b+
2∆0L

ϵ2

(
1 +

√
1− p
pb′

)
(pb+ (1− p)b′) (52)

Before giving the formal proof, we first show two lemmas that are used during the proof.

Lemma 7. The L-smoothness condition given by Eq. (50), leads to the following inequality

LAREL(f2) ≤ LAREL(f1) + ⟨∇LAREL(f1), f2 − f1⟩+ L

2
∥f2 − f1∥2, ∀f1, f2 ∈ Rm. (53)

where ⟨a, b⟩ = aT b, and ∥ · ∥ is the Euclidean norm.
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Proof of Lemma 7. For the completeness the proof of the above Lemma is as follow.

LAREL(f2)

≤ LAREL(f1) +
∫ 1

0

⟨∇LAREL(f1) + τ(f2 − f1)), f2 − f1⟩dτ

= LAREL(f1) + ⟨∇LAREL(f1), f2 − f1⟩

+

∫ 1

0

⟨∇LAREL(f1 + τ(f2 − f1))−∇LAREL(f2), f2 − f1⟩dτ

Cauchy-Schwarz inequality ⟨u, v⟩ ≤ ∥u∥∥v∥ leads to the following

LAREL(f2)
≤ LAREL(f1) + ⟨∇LAREL(f1), f2 − f1)⟩

+

∫ 1

0

∥∇LAREL(f1 + τ(f2 − f1))−∇LAREL(f1)∥∥f2 − f1∥dτ

Now lets use the L-smoothness assumption from Eq. (50), we have

LAREL(f2)

≤ LAREL(f1) + ⟨∇LAREL(f1), f2 − f1)⟩+
∫ 1

0

Lτ∥f2 − f1∥2dτ

= LAREL(f1) + ⟨∇LAREL(f1), f2 − f1)⟩+ L

2
∥f2 − f1∥2

Now, we provide another important Lemma required to prove the above Theorem based on Lemma 7

Lemma 8. Considering L-smoothness assumption in Eq. (50), and let ft+1 := ft − γgt. Then for
any gt ∈ RM and γ > 0 we have the following

LAREL(ft+1)

≤ LAREL(ft)−
γ

2
∥∇LAREL(ft)∥2 −

(
1

2γ
− L

2

)
∥ft+1 − ft∥2 +

γ

2
∥gt −∇LAREL(ft)∥2

(54)
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Proof of Lemma 8. Let f̄t+1 := ft − γ∇LAREL(ft). Then using L-smoothness of LAREL, we
have the following

LAREL(ft+1)

≤ LAREL(ft) + ⟨∇LAREL(ft), ft+1 − ft⟩+
L

2
∥ft+1 − ft∥2

= LAREL(ft) + ⟨∇LAREL(ft)− gt, ft+1 − ft⟩+ ⟨gt, ft+1 − ft⟩+
L

2
∥ft+1 − ft∥2

= LAREL(ft) + ⟨∇LAREL(ft)− gt,−γgt⟩ −
(
1

γ
− L

2

)
∥ft+1 − ft∥2

= LAREL(ft) + γ∥∇LAREL(ft)− gt∥2 − γ⟨∇LAREL(ft)− gt,∇LAREL(ft)⟩

−
(
1

γ
− L

2

)
∥ft+1 − ft∥2

= LAREL(ft) + γ∥∇LAREL(ft)− gt∥2 −
1

γ
⟨ft+1 − f̄t+1, ft − f̄t+1⟩

−
(
1

γ
− L

2

)
∥ft+1 − ft∥2

= LAREL(ft) + γ∥∇LAREL(ft)− gt∥2 −
(
1

γ
− L

2

)
∥ft+1 − ft∥2

− 1

2γ

(
∥ft+1 − f̄t+1∥2 + ∥ft − f̄t+1∥2 − ∥ft+1 − ft∥2

)
= LAREL(ft) + γ∥∇LAREL(ft)− gt∥2 −

(
1

γ
− L

2

)
∥ft+1 − ft∥2

− 1

2γ

(
∥γ2∥∇LAREL(ft)− gt∥2 + γ2∥∇LAREL(ft)∥2 − ∥ft+1 − ft∥2

)
= LAREL(ft)−

γ

2
∥∇LAREL(ft)∥2 −

(
1

2γ
− L

2

)
∥ft+1 − ft∥2 +

γ

2
∥gt −∇LAREL(ft)∥2

This completes the Proof of Lemma 8. The last term is the variance and it can be bounded using the
following lemma.

Lemma 9. Suppose that the smoothness assumption in Eq. (50) holds. If the gradient estimator gt+1

is defined in Algorithm 2 Line 13, then we have the following

E[∥gt+1 −∇LAREL(ft+1)∥2] ≤ (1− pt)∥gt −∇LAREL(ft)∥2 +
(1− pt)L2

b′
∥ft+1 − ft∥2 (55)

Proof of Lemma 9. According to Algorithm 2, we have the following

gt+1 =


1
b

∑
n∈B an(ft+1)∇Ln(ft+1) with probability pt

gt +
1
b′

∑
n∈B′(an(ft+1)∇Ln(ft+1)− an(ft)∇Ln(ft)), with probability 1− pt

(56)
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Using this the left hand side of the above lemma can be written as

E[
∥∥gt+1 −∇LAREL(ft+1)

∥∥2]
= ptE

[
∥1
b

∑
n∈B

an(ft+1)∇Ln(ft+1)−∇LAREL(ft+1)∥2
]

+ (1− pt)E

[
∥gt +

1

b′

∑
n∈B′

(an(ft+1)∇Ln(ft+1)− an(ft)∇Ln(ft))−∇LAREL(ft+1)∥2
]

= (1− pt)E

[
∥gt +

1

b′

∑
n∈B′

(an(ft+1)∇Ln(ft+1)− an(ft)∇Ln(ft))−∇LAREL(ft+1)∥2
]

= (1− pt)E

[
∥gt −∇LAREL(ft) +

1

b′

∑
n∈B′

(an(ft+1)∇Ln(ft+1)− an(ft)∇Ln(ft))

]
+ (1− pt)E

[
−∇LAREL(ft+1) +∇LAREL(ft)∥2

]
= (1− pt)E

[
∥ 1
b′

∑
n∈B′

(an(ft+1)∇Ln(ft+1)− an(ft)∇Ln(ft))−∇LAREL(ft+1) +∇LAREL(ft)∥2
]

+ (1− pt)∥gt −∇LAREL(ft)∥2

=
1− pt
b′2

E

[∑
n∈B′

∥(an(ft+1)∇Ln(ft+1)− an(ft)∇Ln(ft))

]

− 1− pt
b′2

E
[
(∇LAREL(ft+1)−∇LAREL(ft))∥2

]
+ (1− pt)∥gt −∇LAREL(ft)∥2

≤ (1− pt)L2

b′
∥LAREL(ft+1)− LAREL(ft)∥2 + (1− pt)∥gt −∇LAREL(ft)∥2

Using the L-smoothness assumption in Eq. (50), we have

E[∥gt+1 −∇LAREL(ft+1)∥2] ≤
(1− pt)L2

b′
∥ft+1 − ft∥2 + (1− pt)∥gt −∇LAREL(ft)∥2

Proof of Theorem 6. We leverage the above lemmas to prove the Theorem. Adding Eq. (54) with
γ
2p×Eq. (55) and taking expectation results in the following:

E

[
LAREL(ft+1)− LAREL∗ +

γ

2p
∥gt+1 −∇LAREL(ft+1∥2

]
≤ E

[
LAREL(ft)− LAREL∗ − γ

2
∥∇LAREL(ft)∥2 −

(
1

2γ
− L

2

)
∥ft+1 − ft∥2

]
+
γ

2
E
[
∥gt −∇LAREL(ft)∥2

]
+

γ

2p
E
[
(1− p)∥gt −∇LAREL(ft)∥2

]
+

γ

2p
E

[
(1− p)L2

b′
∥ft+1 − ft∥2

]
= E

[
LAREL(ft)− LAREL∗ +

γ

2p
∥gt −∇LAREL(ft)∥2

]
− E

[
1

2γ
− L

2
− (1− p)γL2

2pb′
∥ft+1 − ft∥2

]
where LAREL∗ is the loss at the optimal f∗. Using the inequality of 1

2γ −
L
2 −

(1−p)ηL2

2pb′ ≥ 0, i.e.,

γ ≤ 1

L
(
1 +

√
1−p
pb′

) (57)
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we can write the following

E[∥gt+1 −∇LAREL(ft+1)∥2]

≤ E

[
LAREL(ft)− LAREL∗ +

γ

2p
∥gt −∇LAREL(ft)∥2 −

γ

2
∥∇LAREL(ft)∥2

]
Now let us define ϕt := LAREL(ft) − LAREL∗ + γ

2p∥gt −∇L
AREL(ft)∥2 then we can write the

following
E[ϕt+1] ≤ E[ϕt]−

γ

2
E[∥∇LAREL(ft)∥2] (58)

Now summing from t = 0 to T − 1 results in the following

E[ϕT ] ≤ E[ϕ0]−
γ

2

T−1∑
t=0

E[∥∇LAREL(ft)∥2] (59)

According to the Algorithm 2, f̂T is chosen from {ft}t∈[T ] and ϕ0 = LAREL(f0) − LAREL∗ +
γ
2p∥g0 −∇L

AREL(f0)∥2 = LAREL(f0)− LAREL∗ = ∆0, we have

E[∥∇LAREL(f̂T ∥2] ≤
2∆0

γT
(60)

Setting T = 2∆0

ϵ2γ and using Jensen’s inequality results in the following

E[∥∇LAREL(f̂T )∥] ≤ E[∥∇LAREL(f̂T )∥2] ≤

√
2∆0

γT
= ϵ (61)

With the following total number of iterations

T =
2∆

ϵ2γ
=

2∆0L

ϵ2

(
1 +

√
1− p
pb′

)
(62)

we can obtain ϵ-approximate stationary point solution. The number of gradient steps required in the
Algorithm 2 is given as

Ngrad = b+ T (pb+ (1− p)b′) (63)

Replacing T by Equation (62), we have the following

Ngrad = b+
2∆0L

ϵ2

(
1 +

√
1− p
pb′

)
(pb+ (1− p)b′) (64)

This proves Theorem 6.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 DATASET DESCRIPTIOM

MNIST. In this dataset, classes corresponding to digits ‘1’, ‘3’, ‘5’, ‘7’, and ‘9’ are treated as
closed set classes and the rest as the open set. As the number of data samples per class is not exactly
the same, we first sample 5,000 samples per class in the training set. For testing, we sample 1,000
samples per class. To make the dataset imbalanced, we consider class ‘3’ as a minority class and
randomly select 30% data samples as compared with other majority classes. The same imbalanced
ratio is applied to both training and testing sets. Table 3 shows the number of data samples from both
the minority class and majority classes. In addition to the MNIST open set classes as described above,
we follow other existing works (Sun et al., 2020) and further test the OSD performance on additional
open set samples from three more sources: (1) MNIST-Noise, (2) Noise, and (3) Omnigolot (Lake
et al., 2015). More specifically, MNIST-Noise is constructed by adding random noises to the closed
set testing samples, Noise consists of random noises, and Omnigolot consists of data samples from
the Omnigolot dataset. For those classes, we select the same data samples as those of the closed set
samples.
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Algorithm 2: Alternative Optimization between f and p using Probabilistic SGD
1 Initialize: f0, stepsize γ, minibatch sizes b, b′ < b, pt ∈ [0, 1], t = 0, pn(f0) = 1∀n ∈ [1, b]

2 compute g0 = 1
b

∑
n∈B an(f0)∇LDROn (f0) an(f0) = b ∗ pn(f0) with B,B′ being random

minibatch samples with |B| = b and |B′| = b′

3 while t<T do
4 ft+1 ← ft − γgt
5 prev_use ∼ Ber(pt)
6 if prev_use = 1 then
7 Find loss Ln(f) associated with datasample xn, ∀n ∈ B

8 Find an(f t+1) = b ∗
exp

(
L\(ft)

α

)
∑b

j=1 exp
(Lj(ft)

α

)
9 Find gt+1 = 1

b

∑
n∈B an(ft+1)∇Ln(f t+1)

10 else
11 Find loss Ln(f) associated with data sample xn, ∀n ∈ B′

12 Find an(ft+1) = b′ ∗
exp

(
L\(ft)

α

)
∑b

j=1 exp
(Lj(ft)

α

)
13 Find gt+1 = gt +

1
b′
∑
n∈B′(an(ft+1)∇Ln(ft+1)− an(ft)∇Ln(ft))

14 t← t+ 1

15 return f̂T chosen from {ft}t∈[T ]

Table 3: Number of closed set samples in different datasets
Split Cifar10 Cifar100 MNIST ImageNet AHED

Majority Minority Majority Minority Majority Minority Majority Minority Majority Minority
Train 20000 1500 22500 800 20000 1500 2960 222 5071 246
Test 4000 300 4500 150 4000 300 744 56 1271 64

Cifar10. In the Cifar10 dataset, classes ‘Airplane’, ‘Automobile’, ‘Bird’, ‘Ship’, and ‘Truck’ are
considered as the closed set classes and ‘Cat’, ‘Deer’, ‘Dog’, ‘Frog’, and ‘Horse’ as open set classes .
Furthermore, the class ‘Bird’ is made as the minority class using the same strategy introduced above.
In addition to the open set classes from Cifar10 itself, we further assess the OSD performance with
Cifar+10 and Cifar+50. In particular, Cifar+10 includes data samples from the randomly selected
10 classes of the Cifar100 dataset and Cifar+50 includes data samples from 50 randomly selected
classes of the Cifar100 dataset.

Cifar100. In the Cifar100 dataset, ‘living being’ related super classes are regarded as the closed set
classes and the remaining ‘non-living being’ related super classes are regarded as the open set classes.
We make ‘insect’ related classes as the minority one.

ImageNet. In the ImageNet dataset, we performed experimentation by randomly picking 5 classes
as known classes and five classes as unknown classes. Specifically classes ’ant’, ’king crab’, ’lion’,
’French bulldog’, ’great white shark’ are treated as known classes whereas, classes ’iPod’, ’lipstick’,
’street sign’, ’bookshop’, and ’miniskirt’ as unknown classes. We make ’king crab’ as the minority
class in this dataset.

Architectural Heritage Elements Dataset (AHED). In this dataset, we pick classes ‘bell tower’,
‘portal’, ‘gargoyle’, ‘dome’, and ‘column’ as open set classes whereas, classes ‘apse’, ‘vault’, ‘altar’,
‘stained glass’, and ‘flying buttress’ as unknown classes. This is inherently highly imbalanced dataset
where number of data points are unevenly distributed across different classes. The class ‘portal’ is
the minority class in this dataset.

D.2 DETAILED EXPERIMENTAL SETTING

For all datasets, we use LeNet5 (Lecun et al., 1998) as the network architecture with Tanh activation
in the CNN layers and SoftPlus activation in the fully connected layers. Training involves the Adam
optimizer with a learning rate of 0.001 and l2 regularization coefficient of 0.001. We initialize
the uncertainty set λ0 = 100 for all datasets so that model gives the equal emphasis to the all
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Table 4: Ablation Study on OSD Results for the Different Datasets.

Cosine Exponential Cifar10 Cifar100 ImageNet
Cifar10 Cifar+10 Cifar+50

✓ 70.43± 0.48 29.41± 1.86 69.71± 2.32 55.61± 1.85 60.68± 0.79
✓ 61.62± 0.26 25.17± 1.22 60.94± 1.19 53.22± 0.70 59.59± 1.48

✓ ✓ 72.48± 4.08 37.14± 2.06 73.87± 1.42 57.52± 1.60 62.02± 1.11
Cosine Exponential MNIST AHED

MNIST Noise MNIST-Noise Omnigolot
✓ 80.82± 10.49 88.81± 6.42 84.01± 4.30 85.72± 6.55 52.18± 1.18

✓ 87.38± 2.96 89.85± 7.47 85.29± 6.26 82.44± 5.88 53.08± 1.43
✓ ✓ 90.80± 0.06 94.25± 0.32 94.18± 0.21 93.80± 0.20 53.21± 0.65

data samples. In terms of MSF parameters (w and w′) for each model in P , we initialize them by
uniformly sampling from [0, 1]. Next, we follow the training procedure shown in Algorithm 1 with
random parameter selection in the exploration phase.

D.3 ABLATION STUDY ON SCHEDULER FUNCTIONS

Table 4 compares the OSD performance between the MSF obtained through the proposed multi-
scheduler learning strategy with a prefixed atomic scheduler function, including cosine and exponen-
tial. Due to the lack of expressiveness, a single atomic SF function usually cannot work well for all
datasets. For example, in Cifar10, cosine yields a relatively better OSD compared to exponential,
whereas in the case of MNIST, exponential produces a relatively higher OSD performance. In
contrast, by combining both of them and properly balancing their contribution based upon the nature
of the dataset, MSF achieves the best performance in all cases.

Figure 3 below shows the resulting MSF function output for the Cifar10 and Cifar100 datasets that
exhibit quite different learning behaviors. For Cifar10, the model can quickly learn from the classes
due to relatively easy data samples. As the MSF function decreases quickly, the resulting η value
in AREO increases quickly making the model focusing mostly on the difficult samples. In case of
Cifar100, because of its difficult nature, the model takes more time to learn well from all samples.
Only in the latter phase of training, the model starts to put more emphasis on the difficult samples by
increasing the η value in the AREO.
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Figure 3: MSF Function output Visualization for Multiple Datasets

D.4 PERFORMANCE ON MULTIPLE IMBALANCED CLASSES

To demonstrate the capability of handling the multiple minority classes with severe imabalanced
condition, we conduct an experiments with multiple minority classes under two different settings
discussed below

Same Cardinality: In this first setting we demonstrate the ability of our technique handling multiple
imbalanced classes. In this case, we consider two minority classes with c1 = 6% and c2 = 6%. In
each step, we randomly select minority classes and repeat the experimentation two times and take an
average over those runs to get the final score. Table 5 shows the performance for different baselines
along with our proposed AREO. As shown, our technique has a far better performance in terms of
OSD compared to the existing baselines.
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Table 5: OSD (MAP) performance on Multiple Imbalanced Classes with Same Cardinality

Approach Cifar10 MNIST
Cifar10 Cifar+10 Cifar+50 MNIST Noise MNIST-Noise Omnigolot

EDL 65.04 30.61 67.71 85.50 90.42 86.15 90.26
AEDL 58.12 23.20 58.70 87.57 94.96 89.26 90.67
DRO 53.40 22.19 58.62 60.89 29.04 37.88 33.57
OLTR 59.06 22.06 56.85 84.24 91.65 80.26 53.68
AREO 71.38 31.21 68.78 90.16 98.15 93.45 95.18

Different Cardinality with Severe Imbalance: In this setting, we demonstrate the ability of our
approach on the multiple imbalanced classes with different cardinality.In this case, we consider two
minority classes with c1 = 6% and c2 = 3%. Similar to first case, we randomly select minority
classes and repeat the experimentation two times and take an average over those runs to get the
final score. Further, this also demonstrates the ability of our technique handling severe type of the
imbalanced scenario where c2 = 3%. Table 6 shows the performance comparison across different
techniques. As shown, our AREO has a better performance compared to the existing baselines.

Table 6: OSD (MAP) performance on Multiple Imbalanced Classes with Different Cardinality

Approach Cifar10 MNIST
Cifar10 Cifar+10 Cifar+50 MNIST Noise MNIST-Noise Omnigolot

EDL 68.46 33.05 69.17 87.16 93.87 90.00 91.37
AEDL 59.60 23.85 62.44 87.98 92.45 89.26 89.91
DRO 57.38 22.72 61.82 67.72 80.32 66.59 71.74
OLTR 59.33 21.71 56.00 84.46 84.94 79.94 60.28
AREO 70.01 33.79 71.31 89.97 96.31 94.24 92.22

D.5 DETAILED DESCRIPTION OF BASELINES AND ADDITONAL COMPARION RESULT

D.5.1 DESCRIPTION OF BASELINES

CGDL uses a variational autoencoder that can learn the class conditional posterior distribution for
each class in the latent space (Sun et al., 2020). Any sample with a low probability of belonging to any
of the classes are regarded as the outliers. CGDL is consistently outperformed by the proposed AREO
model. One possible reason is that CGDL may not learn the minority class posterior distribution
properly in the latent space. Further, the approach may ignore the difficult samples when forming
the posterior distribution. As such, the model is not able to differentiate the minority class and OOD
samples as both may have low probability of belonging to any of the classes resulting in the lower
performance.

Posterior networks (Charpentier et al., 2020) leverage the normalizing flows to obtain the posterior
distribution over the predicted probabilities. In this case, the latent representation is learned using the
encoder and per class probability density value for that latent representation is determined to get the
posterior distribution. In case of the minority class, the normalizing flow may not learn well to have a
high probability density value to the sample. As such, while computing the uncertainty, it may still
assign to the low uncertainty to minority class. Further, the model may not learn well to produce the
high density value for difficult samples from other classes. As such, it is likely the model may have a
confusion between hard samples and OOD samples resulting in difficulty in OSD. As shown in Table
1, the posterior networks have consistently lower performance compared to AREO.

Kopetzki et al. (2021) propose a more robust form of the posterior networks by training the network
using randomized smoothing (RS). The key idea is to draw multiple samples xis ∼ N (xi, σ) around
the input sample xi. Although this technique has shown improvement over the adversarial attack, it is
not designed for the imbalanced situation as demonstrated by its lower OSD performance in Table 1.

We have also included an approach called OLTR proposed by Liu et al. (2019) as a baseline. This
work has proposed a way to deal with the OSD in the imbalanced data distribution however it has
several limitations. First, the approach is based on the assumption that visual similarity is shared
across the minority and majority classes and thereby having robust learning even for the minority
class. So, if the minority class is different from other majority classes, the model may not properly
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learn the minority classes and thereby the model may be confused between minority and open set
samples. Also, the proposed OLTR does not have a mechanism to focus on the difficult samples
from the majority classes while training. As such, the model may detect difficult samples as open
set samples. Those limitations are reflected in the performance shown in Table 1. Recently, Wang
et al. (2022) propose a contrastive loss based approach where minority classes are pushed from the
OOD samples in the feature space. Although, this paper also considers the open set detection under
class imbalanced-setting, it heavily relies on the selection of open set samples involved during the
training process. Table 7 shows the OSD performance with respect to open set training datasets
Flower (Nilsback & Zisserman, 2006) and MIT Indoor Scene (Quattoni & Torralba, 2009). As shown,
the performance using this method is highly dependent on the selection of the OOD dataset during
training process.

Table 7: OSD (MAP) performance on (Wang et al., 2022)

Openset Cifar10 Cifar100
Cifar10 Cifar+10 Cifar+50

Flower 70.67± 1.69 25.78± 2.08 64.09± 3.00 53.96± 0.57
Indoor 72.94± 0.52 31.70± 3.35 69.65± 3.71 55.74± 0.35

D.5.2 ADDITIONAL COMPARISON RESULTS

In this section, we first provide a detailed discussion on recently developed general open set recogni-
tion methods, which do not specifically focus on imbalanced data. We then choose some representative
methods and present a comparison with the proposed AREO model. Finally, we discuss some recent
OSD models designed for few-shot learning under the meta-learning setting.

Chen et al. (2021) conduct Adversarial Reciprocal Point Learning (ARPL), where the adversarial
point is generated for each known class in the embedding space by leveraging representations of other
known class samples along with the unknown samples generated using an adversarial mechanism.
During training, it maximizes the gap between the representations of known class samples and that
of the adversarial point. Meanwhile, the model tries to push the unknown samples’ representations
into a specific region using the adversarial margin constraint. In order to achieve this, diverse and
confusing training samples are generated through adversarial learning. Cevikalp et al. (2021) leverage
the polyhedral conic function and define two losses. The first loss ensures a good separation among
the known classes whereas the second loss achieves the compactness within each class so that the
open set samples could be easily rejected. Dhamija et al. (2018) also leverage two losses, where the
Entropic open set loss is to ensure that the softmax output for the open set samples are uniformly
distributed to the all known classes and the Objectosphere loss aims to assign a higher feature
magnitude to the known class samples in the embedding space than those from the open set classes.
The proposed approach requires open set datasets to be available during the training set, which may
limit its applicability in more general settings. In (Perera et al., 2020), self supervision is performed
to construct the decision boundary between classes based on the semantics in the feature space. A
generative model is then trained based on the known class samples. Thus, the generated images
will be close to that of the closed set class samples. As the open set samples are not seen during
the generative modeling process, the produced images will exhibit a high disparity with those of
the closed set samples. Finally, Yang et al. (2020) propose the Convolutional Prototype Network
(CPN) where a prototype for each known class is constructed in the feature space and two different
loss functions are defined. To define the generative loss, generative assumption is followed where
the class-specific features are drawn from certain distributions (e.g., Gaussian) with the mean given
by the prototype representation. This generative loss helps to reduce the intra-class variance and
thereby making the known class sample representation very compact. Thus, the model can reserve
more spaces for unknowns, making OSD relatively easier. The second loss (i.e., discriminative loss)
encourages the separation of the class samples from different classes based on the distance between
sample and prototype representations.

We perform comparison with the first three methods discussed above, including two most recent
baselines with competitive OSD performance. We report the comparison results on Cifar 10, Cifar
100, and MNIST datasets in Table 8. As discussed earlier, all these methods are general open set
recognition models and hence suffer from a lower OSD performance for the more challenging setting
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that involves imbalanced data. The results further justify the effectiveness of the proposed AREL
model.

Table 8: OSD (MAP) performance on Multiple Imbalanced Classes with Different Cardinality
Approach Cifar10 MNIST Cifar100

Cifar10 Cifar+10 Cifar+50 MNIST Noise MNIST-Noise Omnigolot
ARPL (Chen et al. (2021)) 58.90 29.33 69.00 90.27 74.57 50.38 39.08 48.74

Agnostophobia (Dhamija et al. (2018)) 68.50 29.11 68.36 85.03 78.43 72.72 75.76 52.93
DC ECPP (Cevikalp et al. (2021)) 61.22 23.54 58.30 77.56 55.80 71.91 89.44 53.22

AREO 72.48 37.14 73.87 90.80 94.24 94.18 93.80 57.52

In addition to the above baselines, there are also recent OSD models specifically developed for
few-shot learning (FSR) under the meta-learning setting. For instance, Jeong et al. (2021) propose a
few-shot open-set recognition (FSOSR) model. This approach is designed to work with testing tasks
with limited labeled data through meta-learning. The design of the training paradigm is based on
episodic learning (Snell et al., 2017) widely used in meta-learning, where query and support sets are
constructed by selecting subsets of the meta-training data. In contrast, our model is not designed
for few-shot setting through meta-learning. Furthermore, the FSOSR approach in (Jeong et al.,
2021) does not consider the imbalanced class distribution, either. Therefore, the problem setting,
model training, and evaluation process are all different. Similarly, Liu et al. (2020) propose an oPen
set mEta LEaRning (PEELER) algorithm that adapts ProtoNet to FSOSR under the meta-learning
setting. There are two key differences between our technique and PEELER. First, PEELER assumes
that the unknown samples are also available during the training process. Second, the algorithm is
also designed under the meta-learning setting that makes the direct comparison with our approach
infeasible.

Kong & Ramanan (2021) propose the OpenGAN model to discriminate the open set samples from
the close-set ones. There are some key differences from our work. First, OpenGAN introduces open
set samples in the training as well as validation sets whereas our approach does not involve any open
set samples in training or validation sets. Second, OpenGAN only works in the binary classification
setting where the loss function is proposed to discriminate whether a sample is in the open set or
closed set. In this case, the loss function does not perform closed set classification. In contrast, our
approach achieves a state-of-the-art OSD performance while ensuring decent closed set performance.
Finally, OpenGAN does not have a specific mechanism to handle the imbalanced setting, which is
one primary design focus of our approach.

D.6 PERFORMANCE COMPARISON USING AUROC

In addition to the MAP scores, the AUROC scores, which are reported in Table 9, also show a
consistent trend in terms of OSD performance.

Table 9: OSD (AUC) performance on Multiple Datasets

Approach Cifar10 MNIST Cifar100
Cifar10 Cifar+10 Cifar+50 MNIST Noise MNIST-Noise Omnigolot

EDL 66.36 77.66 69.07 88.72 95.36 93.08 91.23 52.38
DRO 61.67 51.62 56.49 64.64 51.58 53.41 53.29 51.12

AEDL 51.38 63.31 59.89 76.36 81.35 83.41 75.51 50.62
OpenMAX 64.98 65.37 65.54 91.21 92.26 93.38 92.53 52.62

AREO 72.52 74.33 72.69 92.75 96.86 96.69 96.02 55.49

D.7 CLOSED SET PERFORMANCE

Table 10 below shows the closed set performance for competitive baselines. It is interesting to see
that DRO with a flexible uncertainty set performs the worst in the closed set setting as it does not
learn properly from the most representative samples in the training data while only focusing on
the difficult ones. AEDL performs very competitively and achieves the best performances on two
datasets. This is partly because we are evaluating MAP by treating the minority class as positive and
oversampling helps to improve the prediction on the minority class quite significantly. AREO also
performs competitively and achieves the best performance on the other two datasets. The good closed
set performance further confirms our theoretical result that proves the equivalence between AREO
and AdaBoost, which justifies its strong generalization capability.
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Table 10: closed set performance (MAP) on all datasets
Approach Cifar10 Cifar100 ImageNet MNIST AHED

EDL 55.39± 3.78 31.80± 2.37 55.84± 1.60 99.58± 0.26 40.48± 2.65
AEDL 54.98± 0.63 36.11± 0.08 55.62± 0.58 99.62± 0.23 41.36± 3.98
DRO 27.16± 5.94 10.50± 0.25 20.71± 1.00 90.87± 3.89 30.02± 0.93

AREO 54.65± 1.02 36.44± 0.23 55.31± 1.11 99.88± 0.01 49.68± 1.58

(a) EDL (b) DRO (c) AEDL (d) AREO

Figure 4: OSD performance comparison from imbalanced Cifar10 dataset.

D.8 SUPERIOR OSD PERFORMANCE OF AREO

Figure 4 provides a deeper insight on the superior OSD performance of AREO than other competitive
baselines, including EDL, DRO, and AEDL. Cifar10 is used as an illustrative example and similar
patterns are obtained on other datasetts. First, while EDL is able to separate outliers from most
samples in the majority classes based on their predicted uncertainty scores, it assigns much higher
uncertainty scores to samples from the minority class, making them hard to be separated from the
outliers. Second, the uncertainty scores for the majority classes span a wide range, which implies that
several (difficult) samples from these classes have also been assigned very high uncertainty scores. If
the goal is to ensure that most top-ranked samples are true outliers for effective detection in practice,
these highly uncertain close-set samples may significantly affect the detection effectiveness. Third,
while oversampling can help to better detect the samples from the minority class, which is indicated
by lower uncertainty scores achieved by AEDL, most majority classes become much more uncertain
and some of them have even a higher average uncertainty score than the outliers. Furthermore, the
uncertainty scores from most classes also span a wide range. Finally, DRO effectively narrows down
the range of the uncertainty scores as it allows the model to focus more on the difficult samples.
However, it does not effectively bring down the high uncertainty scores of the minority class, either,
which is still higher than outliers. Similar to DRO, the proposed AREO also manages to keep the
uncertainty scores of data samples from the majority classes low so that even the difficult samples are
unlikely to be mis-identified as outliers. Meanwhile, it effectively lowers the uncertainty scores of the
minority-class examples so that they can better separated from the outliers.

E LINK TO SOURCE CODE

For the source code, please click here.
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