
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STORM : STOCHASTIC REGION MIXUP

Anonymous authors
Paper under double-blind review

ABSTRACT

A number of data-augmentation strategies have been proposed to alleviate prob-
lems such as over-fitting, distribution shifts, and adversarial attacks in deep neural
networks. A growing body of literature has investigated computationally expen-
sive techniques like inclusion of saliency cues, diffusion processes or even fractal-
like noise to improve upon robustness, clean accuracy. Although these methods
may be intuitively compelling, there is limited theoretical justification for such
techniques, especially given their computational inefficiencies and other issues.
Thus, in this paper, we take a detour from them and propose Stochastic Region
Mixup (StoRM). We simply focus on increasing the diversity of augmented sam-
ples. We show that this strategy can be extended to outperform saliency-based
methods with lower computational overheads in several key metrics, and the key
bottleneck in mixup based methods is the dimensionality of the vicinial risk space.
StoRM—a stochastic extension of Region Mixup—stochastically combines multi-
ple regions from a plurality of images leading to more diverse augmentations. We
present empirical studies and theoretical analysis demonstrating that this richer
augmentation space yields improved generalization and robustness while preserv-
ing label integrity through careful area-based mixing. Across benchmarks, StoRM
consistently outperforms state-of-the-art mixup methods. The code will be re-
leased publicly upon acceptance.

1 INTRODUCTION

Data augmentation is a fundamental technique in deep learning that artificially expands datasets
by introducing diverse transformations to existing samples. This approach enhances model gen-
eralization by exposing it to varied versions of the same data, fostering robustness with minimal
computational overhead. However, conventional augmentation methods apply transformations in-
dependently to each image while preserving its label, which constrains their ability to extend beyond
the natural data distribution. Consequently, they fall short in addressing challenges such as model
overfitting and susceptibility to adversarial perturbations.

Image-mixing-based data augmentation methods offer a straightforward yet powerful approach to
improving a model’s ability to generalize to unseen data. These methods strategically blend ran-
domly selected natural images and their corresponding labels from the training dataset using various
mixing strategies, creating augmented images and labels. This process helps create more balanced
class representations, reduces the likelihood of overconfident misclassifications, and refines deci-
sion boundaries, particularly in regions distant from the training data. Typically, such augmentation
involves linear interpolation in either the input or feature space, to synthesize new training examples
Their ability to improve deep learning model performance has been widely validated in various ap-
plications. Yet, a fundamental question remains open: what exactly defines an effective interpolation
between images?

Several researchers (Kang & Kim, 2023; Uddin et al., 2021; Kim et al., 2020) have attempted to
answer this question by proposing saliency-based mixup techniques, where the most informative
regions of one image are superimposed onto the less critical areas (primarily the background) of
another. Beyond saliency, other works have explored approaches such as diffusion-based processes
(Islam et al., 2024) or the incorporation of fractal-like noise (Huang et al., 2023; Hendrycks et al.,
2022).
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However, these approaches come with significant computational overhead, making it challenging to
achieve optimal performance efficiently. Beyond computational inefficiency, these methods are also
constrained by the inherent limitations of saliency detection techniques, as well as by dependencies
on intricate structure etc. The primary motivation behind this research direction is the argument that
traditional mixup strategies produce overlayed images that appear unnatural (Yun et al., 2019) and
may fail to preserve sufficient saliency information.

In this work, we take a detour and focus on increasing the diversity of augmented samples. Most
mixup methods are limited to combining only two samples, with little analysis or design considera-
tion for the impact of mixing more than two on model performance. Recent studies (Saha & Garain,
2024; Greenewald et al., 2023; Jeong et al., 2023) suggest that incorporating multiple samples can
further enrich the diversity of augmented data. However, these approaches often achieve suboptimal
performance due to restricted spatial configurations.

To address this issue, we introduce Stochastic Region Mixup (StoRM) to localize the blending
operation in a stochastic manner while trying to retain saliency information. Rather than applying
a single interpolation coefficient across the entire image, StoRM randomly partitions an image into
tiles of varying sizes, and each tile is mixed with a different sample using its own Beta-distributed
mixing coefficient. This localized blending not only preserves more spatial structure within each tile
but also exposes the model to a much richer space of augmented samples. Crucially, StoRM weights
label contributions by the tile’s area, ensuring that mixed labels accurately reflect the proportion of
each class in the composite image.

StoRM maintains the simplicity and computational efficiency of existing mixup-based approaches.
Its implementation consists primarily of partition sampling and per-tile interpolation, which can
be readily integrated into standard training pipelines without significantly increasing overhead.
Through extensive experiments, StoRM demonstrates consistent improvements over strong base-
lines on a wide range of tasks, including general image classification, robustness, highlighting its
broad applicability.

2 RELATED WORKS

Mixup (Zhang et al., 2018) creates augmented images by blending two randomly chosen images
and their associated labels through linear interpolation. Manifold Mixup (Verma et al., 2019) pro-
motes the learning of smooth interpolations between data points within the hidden layers of neural
networks, resulting in enhanced accuracy compared to Mixup. CutMix (Yun et al., 2019) enhances
performance by substituting a segment of an original image with a patch from a randomly chosen
different image. Rather than selecting regions randomly, saliency can be used to identify objects
from different images and combine them into a single image. SaliencyMix (Uddin et al., 2021)
introduces a CutMix-inspired method, where a randomly sized patch is cut from the most salient
region in an image. SnapMix (Huang et al., 2021) proposes an asymmetric replacement of a ran-
domly sized patch in one image with a patch from another, guided by a class activation map (CAM)
(Zhou et al., 2016) to align with semantic labels. PuzzleMix (Kim et al., 2020) transfers signifi-
cant salient information to another image by solving an optimal transport problem. Co-Mixup (Kim
et al., 2021) upgrades mixup by selecting diverse, suitable samples within a mini-batch, framing
the mixing process as an optimization problem across multiple samples, and leveraging saliency
maps from pre-trained models. GuidedMixup (Kang & Kim, 2023) introduces a greedy pairing al-
gorithm to minimize the conflict of salient regions of paired images and achieve rich saliency in
mixup images. However, saliency-based mixup methods incur significant computational costs to
achieve optimal performance. AugMix (Hendrycks et al., 2020) applies a variety of transformations
to generate highly diverse augmented images, strengthening corruption robustness and improving
model calibration. To raise overall structural diversity, PixMix (Hendrycks et al., 2022) and IPMix
(Huang et al., 2023) leverage synthetically generated images with intricate structures, like fractals.
DiffuseMix (Islam et al., 2024) integrates a diffusion model with the mixup technique. AlignMixup
(Venkataramanan et al., 2022) geometrically aligns two images in feature space, allowing interpola-
tion between their features while keeping one image’s spatial layout. This method retains the geom-
etry or pose of one image and the texture of the other. Catch-up Mix (Kang et al., 2024) observed
that CNNs favor powerful filters, so dropping slower-learning ones can hurt performance. It pro-
posed a filtering module that merges features from weaker filters to yield mixed features with better
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performance. k-Mixup (Greenewald et al., 2023) increased the diversity of augmented samples by
interpolating data points based on the Wasserstein distance, introducing perturbations across batches
of k samples relative to additional k reference points. DCutMix (Jeong et al., 2023) extended the
conventional CutMix strategy by performing multiple cut-and-paste operations per sample. Empiri-
cal analyses demonstrated that such multi-sample augmentation techniques, particularly as explored
in Landspace, guided neural networks toward broader (flatter) and deeper minima in the loss land-
scape. AutoMix (Liu et al., 2022) learns a patch-wise mixup policy through a lightweight “Mix
Block” optimized jointly with the classifier — stabilized by a momentum pipeline — so it automati-
cally generates label-consistent mixed images. Adversarial AutoMixup (Qin et al., 2024) alternately
trains a mix-block to craft hard mixed images that maximize the classifier’s loss and a classifier that
learns to beat those adversarial mixes, yielding stronger regularization and robustness than standard
AutoMix. The mixup literature is vast, so an exhaustive review is beyond our scope. Interested
readers can find comprehensive overviews in the surveys by Cao et al. (2024); Jin et al. (2025).

3 STOCHASTIC REGION MIXUP

Figure 1: An overview of StoRM: Stochastic Region Mixup.

3.1 METHOD

Consider a training image X ∈ RW×H×C with its one-hot encoded class label y. We aim to divide
the image into k×k random-sized tiles by sampling k−1 partition points along the width and height
axes. Let Pw = {pw0 , pw1 , . . . , pwk−1, p

w
k }, where pw0 = 0, pwK = W , and 0 < pw1 < pw2 < · · · <

pwk−1 < W , be the partition points along the width. Similarly, Ph = {ph0 , ph1 , . . . , phk−1, p
h
k} with

ph0 = 0, pyk = H , and 0 < ph1 < ph2 < · · · < phK−1 < H are the partition points along the height.
The entire region is divided into k × k tiles Tij , where i, j ∈ [k]. The set {1, . . . , k} is denoted as
[k]. Each tile Tij is defined as

Tij =

{
(w, h) ∈ [0,W )× [0, H)

∣∣∣∣∣ p
w
i−1 ≤ w < pwi ,

phj−1 ≤ h < phj

}
. (1)

This set represents all pixel coordinates (w, h) within the boundaries defined by pwi−1 to pwi and phj−1

to phj . For each tile Tij , we define a binary mask Mij : [0,W )× [0, H)× [0, C)→ {0, 1} such that

Mij(w, h, c) =

{
1 if (w, h) ∈ Tij , c ∈ [0, C)

0 otherwise
. (2)

Thus, Mij equals one on all pixels (across all channels) belonging to tile Tij . Let X ∈ RW×H×C

be an image that we want to distort and {X1, X2, . . . , Xk2} be a set of k2 images (each with labels
{y1, y2, . . . , yk2 }) sampled from the distribution of images. We index them as

X∗
ij = X(i−1)k+j , y∗ij = y(i−1)k+j , (3)
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for i, j ∈ [k]. The mixed image X̃ ∈ RW×H×C is created by combining tiles from the original
image X with the corresponding tiling from the sampled images X∗

ij using the mixing coefficient
λij :

X̃ =

k∑
i=1

k∑
j=1

[
Mij ⊙

(
λijX + (1− λij)X

∗
ij

)]
. (4)

To ensure the labels reflect the same partition-based mixing, we define αij as the fraction of the total

image area that tiles Tij occupies:αij =
|Tij |
WH

. Here, |Tij | denotes the (integer) number of pixels in
tile Tij . Then, the mixed label ỹ is given by

ỹ =

k∑
i=1

k∑
j=1

[
αij ·

(
λijy + (1− λij)y

∗
ij

)]
. (5)

Hence, each tile’s contribution to the label is weighted by its spatial proportion αij , and within that
tile, we mix the labels of X and X∗

ij by the same λij used for the region mixing.

3.2 ALGORITHM

Algorithm 1 t-th training iteration of StoRM
Input: Mini-batch (X,y) of size N , classifier f with parameters θt−1, model optimizer SGD

1: Sample λij ∼ Beta(β, β) for i, j ∈ [k]
2: Sample (k-1) points independently from Uniform(0,W ) and sort them in ascending order:

0 < pw1 < pw2 < · · · < pwk−1 < W

3: Repeat the same for the height axis [0, H) to obtain 0 < ph1 < ph2 < · · · < phk−1 < H
4: for i = 1 . . . k do
5: for j = 1 . . . k do
6: (X∗

ij ,y
∗
ij)← RandomPermute(X,y) for

7: end for
8: end for
9: Compute (X̃, ỹ) using Equations (4) and (5)

10: L = CE
(
f(X),y

)︸ ︷︷ ︸
Standard Cross-entropy loss

+ CE
(
f(X̃), ỹ

)︸ ︷︷ ︸
StoRM loss

▷ CE is cross-entorpy loss.
11: θt ← SGD

(
θt−1,

∂L
∂θt−1

)
Output: Updated parameters θt

Compared to standard mixup (Zhang et al., 2018), which typically merges two images using a single
global mixing coefficient, region mixup (Saha & Garain, 2024) offers finer spatial control by seg-
menting the image into a fixed k × k grid and mixing each tile with a (potentially) different image
(see Appendix A.1). This tile-wise approach mitigates the over-smoothing effect of a single λ and
produces more localized feature blends, thereby improving generalization beyond standard mixup.
In addition, StoRM mixes up to k2 images plus the original sample, assigning each tile an inde-
pendent Beta-distributed coefficient λij . This combination of stochastically placed tiles and per-tile
mixing ratios generates a richer set of composite images, significantly enhancing the diversity of
augmented samples.

However, region mixup still relies on a rigid grid partition that repeats identically across training
samples, potentially failing to capture more varied spatial configurations. Stochastic Region Mixup
addresses this limitation by randomly sampling partition boundaries for each image, thus mitigating
the risk of repeatedly mixing the same contiguous blocks of pixels. Finally, by weighting label
contributions proportionally to tile area, StoRM tries to maintain label integrity even when partitions
vary in size, ensuring a more accurate alignment between image regions and their corresponding
labels. Empirically, this fine-grained calibration (see Appendix A.2) of region-level mixing has
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shown improvements in classification, robustness and other downstream tasks over existing mixup
baselines in our experiments. We posit that these gains stem from StoRM exposing the network
to a broader span of spatial configurations and class combinations. Figure 1 presents a schematic
overview of the StoRM augmentation.

Random partitioning can juxtapose unrelated or contradictory semantic content, potentially con-
fusing the model and hurting performance. Reducing semantic coherence may misguide models,
particularly on datasets with highly structured spatial information. To mitigate this, following Saha
& Garain (2024), we incorporate the standard cross-entropy loss as a regularization term in the
StoRM loss, as described in Algorithm 1.

4 MECHANISTIC EXPLANATION: STORM AS A VICINAL KERNEL WITH
ORTHOTOPIC GEOMETRY

LetX = RW×H×C andY = ∆m−1 be the input and label spaces. The dataset Dn = {(Xs, Ys)}ns=1
is i.i.d. from an unknown distribution P on X × Y . For any measurable space (Z,A) and z0 ∈ Z ,
the Dirac measure δz0 is the probability measure δz0(A) = 1{z0 ∈ A} for A ∈ A, equivalently∫
g dδz0 = g(z0) for bounded measurable g. The empirical measure is P̂n = 1

n

∑n
s=1 δ(Xs,Ys).

Given a predictor f : X → ∆m−1 and loss ℓ : ∆m−1 × ∆m−1 → R+, ERM minimizes
E(X,Y )∼P̂n

[
ℓ(f(X), Y )

]
= 1

n

∑n
s=1 ℓ

(
f(Xs), Ys

)
. ERM trains on the empirical distribution P̂n =

1
n

∑n
i=1 δ(Xi,Yi), which is a pile of spikes (point masses) at the training examples. Vicinal Risk Min-

imization (VRM) replaces each spike by a small cloud (a local neighborhood or “vicinity”) around
it via a vicinal kernel K, producing v(n) = 1

n

∑
i K(· | Xi, Yi) (Chapelle et al., 2000).

Definition 1 (Vicinal kernel and Vicinal Risk Minimization). A vicinal kernel is a conditional
probability kernel K : (x, y) 7→ K(· | x, y) ∈ P(X × Y) that prescribes a distribution of syn-
thetic pairs (X̃, Ỹ ) in a neighborhood of (x, y). The vicinal distribution associated with Dn is
v(n) = 1

n

∑n
s=1 K(· | Xs, Ys), and the vicinal risk isRv(f) = E(X̃,Ỹ )∼v(n) [ℓ(f(X̃), Ỹ )].

Smoothing the empirical distribution into these local vicinities reduces effective complexity — in-
tuitively, it removes the wiggle room a model has between isolated points. So, the hypothesis class
as seen through the data is simpler (its Rademacher complexity under the vicinal distribution is
smaller), which tightens generalization bounds and reduces overfitting. The price is a bit of bias
— training on neighbors instead of the exact point — but when the kernel is local and respects the
data geometry, that bias stays small while the variance reduction from averaging over vicinities is
substantial.

The StoRM vicinal kernel Let (X,Y ) be an anchor sample. Let Π denote the random partition
of the image domain into k×k disjoint, axis-aligned tiles as specified in Section 3.1; a realization of
Π is the collection {Tij}ki,j=1 with binary masks Mij ∈ {0, 1}W×H×C (replicated across channels)
and normalized areas αij := |Tij |/(WH). Conditioned on Π, draw per-tile donors {(X∗

ij , Y
∗
ij)}

from the training set and independent weights λij ∼ Beta(β, β); write tij := 1 − λij ∈ [0, 1],
Vij := Mij ⊙ (X∗

ij −X), and ∆Yij := Y ∗
ij − Y . We algebraically rearrange the StoRM-generated

vicinal pair
X̃ = X +

∑
i,j

tij Vij , Ỹ = Y +
∑
i,j

αij tij ∆Yij . (6)

Randomizing (Π, {(X∗
ij , Y

∗
ij)}, {λij}) induces the conditional vicinal kernel KSTORM(A |

X,Y ) := P
(
(X̃, Ỹ ) ∈ A

∣∣∣ X,Y
)
, and the corresponding vicinal distribution over the dataset

v
(n)
STORM = 1

n

∑n
s=1 KSTORM( · | Xs, Ys ).

Orthotopic geometry We use the affine form in equation 6 (coefficients {tij} and directions
{Vij} determined by Π) to analyze the induced orthotopic geometry and smoothing.

Lemma 1 (Disjoint masks ⇒ orthogonality). Let D := WHC and equip RD with the standard
inner product ⟨A,B⟩ =

∑D
u=1 AuBu. If supp(Mij) ∩ supp(Mi′j′) = ∅, then ⟨Mij ⊙A, Mi′j′ ⊙

5
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B⟩ = 0, for all A,B ∈ RD. In particular, for Vij := Mij ⊙ (X∗
ij −X) as in equation 6, we have

Vij ⊥ Vi′j′ whenever (i, j) ̸= (i′, j′); hence any nonzero subfamily of {Vij} is linearly independent.

Proposition 1 (StoRM vicinities are orthotopes). Fix (X,Π, {X∗
ij}) and let t = (tij) ∈

[0, 1]k
2

. The image set VX,Π :=
{
X +

∑
i,j tijVij : tij ∈ [0, 1]

}
is an orthotope

O
(
X; {Vij}

)
⊂ RD with affine dimension dim

(
aff VX,Π

)
= rank{Vij} = #{(i, j) :

Vij ̸= 0} ≤ k2, and vertices {X +
∑

i,j ϵijVij : ϵij ∈ {0, 1} }.

Proposition 1 identifies the StoRM vicinity (for fixed partition and donors) as a d-dimensional ortho-
tope VX,Π with d = #{Vij ̸= 0}, which strictly generalizes global mixup: the classic 1D segment
is recovered as a degenerate face when k = 1 or when all directions are collinear and the coefficients
tij are tied. Because tile masks are disjoint, these axes are orthogonal (Lemma 1), making the map
t 7→ X +

∑
tijVij block-separable; this structure removes first-order cross-terms and yields clean

second-order analyses and interpretable regularization along semantically local directions. Across
epochs, random partitions and donors generate a union of such orthotopes that broadens coverage
without drifting far from the data manifold. StoRM preserves the spirit of mixup but lifts it from a
single global direction to many orthogonal, part-level directions, delivering richer yet local vicinities
and stronger, analyzable regularization that translate into improved robustness and generalization.

5 EXPERIMENTS AND RESULTS

In this section, we assess StoRM’s performance and efficiency by contrasting it with baseline meth-
ods. We begin by examining its generalization capability on widely used classification benchmarks,
including CIFAR-100 (Krizhevsky, 2009), CIFAR-10 (Krizhevsky, 2009), TinyImageNet (Le &
Yang, 2015), and ImageNet (Deng et al., 2009). To further verify the breadth of its impact on gener-
alization, we also evaluate StoRM on three Fine-Grained Vision Classification (FGVC) datasets—
Caltech-UCSD Birds-200-2011 (CUB) (Wah et al., 2023), Stanford Cars (Cars) (Krause et al., 2013),
and FGVC-Aircraft (Aircraft) (Maji et al., 2013). These datasets provide a highly diverse set of im-
ages, spanning flora, fauna, varied scenes, textures, transportation modes, human activities, satellite
imagery, and general objects. Throughout this paper, we report experimental results assessing the
effectiveness of StoRM across multiple architectures: ResNet (He et al., 2016a), PreActResNet (He
et al., 2016b), DenseNet (Huang et al., 2017), and Wide-ResNet (Zagoruyko & Komodakis, 2016).
We report performance metrics from previous research (Kim et al., 2020; Kang et al., 2024; Islam
et al., 2024; Kang & Kim, 2023) for direct comparison.

5.1 GENERAL CLASSIFICATION

Table 1: Clean error rates for StoRM on CIFAR-10 (↓). Each experiment reports the mean and
standard deviation over three random seeds.

Vanilla MixUp CutMix AugMix PixMix IPMix StoRM

WRN-28-10 3.8±0.07 3.6±0.08 3.4±0.05 3.4±0.07 3.8±0.13 3.3±0.08 3.02±0.06

ResNet-18 4.4±0.05 4.2±0.04 4.0±0.04 4.5±0.03 4.4±0.05 4.2±0.07 3.86±0.09

CIFAR-10 We conduct experiments on CIFAR-10 using two distinct backbone architectures:
Wide ResNet-28-10 and ResNet-18. Our evaluation compares StoRM against IPMix and several
other data augmentation techniques, including MixUp, CutMix, AugMix, and PixMix. Following
the training protocol of IPMix (Huang et al., 2023), our results in Table 1 show that StoRM consis-
tently achieves the highest accuracy across both architectures.

CIFAR-100 Following different training protocols, we train two residual neural networks,
WRN28-10 and PreActResNet18. For WRN28-10, we adhere to the IPMix training setup, while
for PreActResNet18, we adopt the protocol from Verma et al. (2019) (Verma et al., 2019), training
for 1200 epochs. Table 2 shows that StoRM achieves strong Top-1 and Top-5 accuracy across both
architectures.

6
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Table 2: Performance comparison of StoRM with state-of-the-art data augmentation methods on
CIFAR-100.

PreActResNet-18 WRN-28-10

Top-1% Top-5% Top-1%

Vanilla 76.33 91.02 81.0±0.13

MixUp 76.84 92.42 81.6±0.12

Manifold 79.02 93.37 —
CutMix 76.8 91.91 82.0±0.11

AugMix 75.31 91.62 80.6±0.11

PixMix 79.70 — 81.7±0.13

SaliencyMix 79.75 94.71 —
Guided-SR 80.60 94.00 —
Guided-AP 81.40 94.88 —
IPMix — — 82.6±0.25

PuzzleMix 80.38 94.15 —
Co-Mixup 80.15 — —

StoRM 82.060.07 95.550.09 82.6±0.17

Tiny-ImageNet We train a PreActResNet18 network on the Tiny-ImageNet dataset, which con-
sists of 200 classes, each containing 500 training images and 50 test images at a resolution of 64×64.
Our training setup follows the PuzzleMix protocol. On Tiny-ImageNet, StoRM achieves significant
improvements in classification performance. Compared to the Vanilla model, it yields notable Top-1
and Top-5 accuracy gains of 12.26% and 13.58%, respectively. Furthermore, StoRM outperforms
the second-best method, DiffuseMix, with additional gains of 3.72% in Top-1 accuracy and 3.57%
in Top-5 accuracy. See Table 3 for a complete comparison.

Table 3: Top-1/Top-5 accuracy rates (%, ↑) and FGSM error rate (%, ↓) of mixup baselines trained
on TinyImageNet datasets using PreActResNet-18. FGSM values are reported by averaging Kim
et al. (2020); Kang et al. (2024).

Top-1%(↑) Top-5%(↑) FGSM(%, ↓)
Vanilla 57.23 73.65 90.60
MixUp 56.99 73.02 89.85
Manifold 58.01 74.12 89.00
CutMix 56.67 73.59 87.10
AugMix 55.97 74.68 90.00
SaliencyMix 56.54 76.14 93.75
Guided-SR 59.44 75.54 —
Co-Mixup 64.15 — 91.11
PuzzleMix 63.48 75.52 89.87
Guided-AP 64.63 82.49 —
DiffuseMix 65.77 83.66 —
StoRM 69.49 87.23 82.84

ImageNet Following the protocol outlined by Liu et al. (2022); Qin et al. (2024), we trained a
ResNet-50 model on the ImageNet dataset for 100 epochs. As shown in Table 4, StoRM surpasses
the next-best method, AdAutoMix (Qin et al., 2024), by 0.26%. It also improves on the vanilla
implementation by 1.47%. Given this substantial difference, we believe StoRM provides a com-
pelling trade-off, effectively balancing performance and efficiency—even on ImageNet. However,
we do not compare with DiffuseMix (Islam et al., 2024), as it uses fractal blending and introduces
significantly higher augmentation overhead.

7
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Table 4: Top-1 and Top-5 accuracies comparison on ImageNet using ResNet-50. Compared numbers
are taken from Islam et al. (2024); Liu et al. (2022); Qin et al. (2024).

Method Top-1 Acc. Top-5 Acc.
Vanilla 76.83 92.66
AugMix 76.75 93.30
Manifold 77.01 93.50
Mixup 77.12 93.52
CutMix 77.17 93.45
SaliencyMix 77.14 —
Guided-SR 77.20 93.66
PixMix 77.40 —
PuzzleMix 77.54 93.76
GuidedMixup 77.53 93.86
Co-Mixup 77.63 93.84
AutoMix 77.91 —
AdAutoMix 78.04 —
StoRM 78.30 94.16

5.2 ROBUSTNESS

Robustness against Data Corruption we assess the model’s resilience to data corruption using
CIFAR-100-C, which introduces 19 different corruption types—such as snow, fog, blur, brightness
changes, and noise—applied to the CIFAR-100 test set at five varying severity levels. To quantify ro-
bustness, we report the mean Corruption Error (mCE, %, ↓) of PreActResNet-18, averaged across all
corruption types, as shown in Table 5. Our findings highlight that StoRM consistently outperforms
other methods in handling corrupted data, achieving the lowest mCE. Notably, this improvement is
achieved without any specialized training designed to counteract data corruption.

Table 5: Comparison of Mean Corruption Error (mCE, %, ↓) on CIFAR-100-C and FGSM error
(%, ↓) rate on CIFAR-10 for PreActResNet-18.

FGSM Error(%, ↓) mCE (%, ↓)
Vanilla 84.93 51.43
MixUp 75.72 44.84
Manifold 81.96 44.32
CutMix 80.13 53.74
SaliencyMix 81.25 47.85
Co-Mixup 87.94 53.72
PuzzleMix 79.33 46.21
StoRM 76.04 43.11±0.23

Robustness against Adversarial Attacks Here we examine the adversarial robustness of classi-
fiers trained with different mixup-based augmentation strategies. We assess robustness by evaluating
model performance on adversarial examples generated using the Fast Gradient Sign Method (FGSM)
with an l∞ perturbation of 4

255 applied to the test dataset. As shown in Table 2, StoRM significantly
improves resistance to adversarial attacks on Tiny-ImageNet with PreActResNet-18, reducing the
FGSM Top-1 error rate by 4.26% compared to the strongest baseline. For CIFAR-100 (Table 5),
StoRM maintains competitive robustness, achieving a Top-1 accuracy of 76.04%, closely aligning
with MixUp’s 75.72%.

5.3 AUGMENTATION OVERHEAD

Here, we assess both the computational efficiency and generalization performance of StoRM. To
measure computational efficiency, we use the augmentation overhead, defined as the proportionate
increase in training time due to the inclusion of augmentation. This metric is computed as follows
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(Kang & Kim, 2023): Augmentation Overhead =
Taug − Tvanilla

Tvanilla
×100(%), where Taug represents

the total training time, while Tvanilla refers to the training time without augmentation. To ensure a
fair comparison, we measure the augmentation overhead without employing multi-processing dur-
ing the augmentation process. Figure 2 demonstrates the effectiveness of our method, highlighting
StoRM as a well-balanced solution that optimally trades off generalization performance and aug-
mentation overhead.

Figure 2: Augmentation overhead (+%) vs. accuracy (%) on the CUB dataset with a batch size of
16. The optimal augmentation strategies appear closer to the upper left corner, representing minimal
overhead and higher accuracy.

Additional experiments on transfer learning, data scarcity, weakly-supervised object localization
(WSOL), and ablation studies are provided in the Appendix C.

6 LIMITATIONS AND FUTURE WORKS

StoRM assumes that the objects within the images are distributed fairly evenly. If objects are highly
localized (e.g., small objects in the center), mixing regions may result in excessive distortion and
loss of meaningful features. Hyperparameters (number of partitions k, Beta-distribution parame-
ter α) could be crucial for adapting StoRM in datasets from different domains. Labels constructed
using weighted averages of multiple samples might not adequately represent the semantic content
of the mixed image. Furthermore, StoRM increases memory footprint as it requires loading mul-
tiple additional images (to execute the mixing process) per training instance. This can become a
bottleneck for large-scale datasets, particularly when dealing with high-resolution images. While
StoRM is primarily designed for images, its extension to other structured modalities, such as medi-
cal imaging, 3D point clouds, and video frames, holds significant potential. As future work, we will
benchmark StoRM against Transformer-based architectures (e.g., ViT variants) (Chen et al., 2022;
Li et al., 2022).

7 CONCLUSION

In this paper, we introduce Stochastic Region Mixup, a novel data augmentation technique that
significantly increases both the diversity and effectiveness of mixed training samples for deep neural
networks. Unlike conventional mixup methods, StoRM randomly divides images into variably sized
tiles and applies region-specific mixing coefficients to each tile, balancing the need to preserve
local saliency with the goal of maximizing diversity. By weighting label contributions in proportion
to each tile’s area, StoRM accurately represents the composite regions, leading to more effective
training. Our findings demonstrate that key bottleneck in mixup based methods is the dimensionality
of the vicinial risk space and enhancing the diversity of augmented data through stochastic and
spatially nuanced mixing strategies can substantially improve model performance.

9
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