
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation

Anonymous Author(s)∗

ABSTRACT
The results of information retrieval (IR) are usually presented in the
form of a ranked list of candidate documents, such as web search
for humans and retrieval-augmented paradigm for large language
models (LLMs). List-aware retrieval aims to capture the list-level
contextual features to return a better list, mainly including rerank-
ing and truncation. Reranking finely re-scores the documents in
the list. Truncation dynamically determines the cut-off point of
the ranked list to achieve the trade-off between overall relevance
and avoiding misinformation from irrelevant documents. Previous
studies treat them as two separate tasks and model them separately.
However, the separation is not optimal. First, it is hard to share
information between the two tasks. Specifically, reranking can
provide fine-grained relevance information for truncation, while
truncation can provide utility requirement for reranking. Second,
the separate pipeline usually meets the error accumulation prob-
lem, where the small error from the reranking stage can largely
affect the truncation stage. To solve these problems, we propose a
Reranking-Truncation joint model (GenRT) that can perform the
two tasks concurrently. GenRT integrates reranking and truncation
via generative paradigm based on encoder-decoder architecture.
We also design the novel loss functions for joint optimization to
make the model learn both tasks. Sharing parameters by the joint
model is conducive to making full use of the common modeling
information of the two tasks. Besides, the two tasks are performed
concurrently and co-optimized to solve the error accumulation
problem between separate stages. Experiments on public learning-
to-rank benchmarks and open-domain Q&A tasks show that our
method achieves SOTA performance on both reranking and trun-
cation tasks for web search and retrieval-augmented LLMs. To the
best of our knowledge, this is the first work that discusses list-aware
retrieval (esp. truncation task) in retrieval-augmented LLMs.

CCS CONCEPTS
• Information systems→ Retrieval models and ranking.

KEYWORDS
Reranking, Truncation, Retrieval-augmented LLMs
ACM Reference Format:
Anonymous Author(s). 2024. List-aware Reranking-Truncation Joint Model
for Search and Retrieval-augmented Generation. In Proceedings of the ACM
Web Conference 2024 (www ’24), May 13–17, 2024, Singapore. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WWW ’24, May 13–17, 2024, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

4

�
3 0 04

�� � �
2

�
2

� � �
0 0

Reranking Truncation

(b)

(c)

0

�
0 4 32

�� � �
4

�
2

� � �
0 0

4

�
2 3 04

�� � �
0

�
0

� � �
0 2

4

�
3 0 04

�� � �
2

�
2

� � �
0 0

4

�
2 3 04

�� � �
0

�
0

� � �
0

Cut-off
Point

(a)

(d)

Similar Reranking Performances
NDCG: (a) = 0.89 (b) = 0.90

Very Different Truncation Results
Metric for Truncation: (c) = 25.8 (d) = 19.4

Input:

Cut-off
Point

2

loss of relevant docs

Figure 1: Problems of the separation of reranking and trun-
cation. Separate pipeline leads to the error accumulation
problem between two stages and the loss of relevant docu-
ments. Similar reranking but results in different truncations.

GenRT

Relevance
Scoring

Sequence Generating

Truncation
Scoring

Reranking Truncation

0
𝑬𝑬

0 4 32

𝑫𝑫𝑨𝑨 𝑩𝑩 𝑪𝑪
4

𝑭𝑭
2

𝑮𝑮 𝑯𝑯 𝑰𝑰
0 0

2
𝑮𝑮

4 3 24

𝑨𝑨𝑪𝑪 𝑭𝑭 𝑫𝑫
0

𝑩𝑩
0

𝑬𝑬 𝑯𝑯 𝑰𝑰
0 0

2
𝑮𝑮

4 3 24

𝑨𝑨𝑪𝑪 𝑭𝑭 𝑫𝑫

Previous

Ours

Figure 2: Comparison with previous methods.

1 INTRODUCTION
In information retrieval (IR), even though the ranking methods
based on probability ranking principle [39] (PRP) that assumes the
relevance of each document is modeled independently for a query
have been widely used [9, 22, 40], many studies have shown that
users’ feedback of the retrieval result is based on the entire returned
list [41, 47, 48]. In web search, humans usually compare multiple
documents in the list before clicking. In retrieval-augmented par-
adigm for LLMs, LLMs process the documents in the list via self-
attention [42] and select the information for generation [23, 27, 46].
It has been proven that the performance of the retrieval-augmented
LLMs is affected by the length of the retrieved list and the arrange-
ment of documents within the list provided in the prompt [27].

Therefore, list-aware retrieval models [31] are proposed as the
post-processing stage of IR, which are used to capture the list-level
contextual features. List-aware retrieval mainly includes reranking
and truncation. Reranking exploits list-level contextual features to
re-score each document. Truncation dynamically determines the
cut-off point of the list to achieve the optimal trade-off between
overall relevance and weeding out irrelevant documents, which is
meaningful to improve retrieval efficiency and avoid misinforma-
tion [27, 43]. Truncation is important for the domains that need
users to use the high cost to judge the relevance of documents [29].
It is also important for retrieval-augmented LLMs. Because the

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13–17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

performance of LLMs fluctuates with the number of retrieved docu-
ments, while for different prompts, the suitable number of retrieved
documents changes dynamically. Blindly increasing the number
of retrieved documents will not always improve performance, but
will affect the efficiency of LLMs and introduce noise [27].

Previous methods model reranking and truncation separately [1,
4, 31, 43], first rerank and then truncate. Although LeCut [29] ex-
changes features between the two models in training, it still treats
them as separate models and stages during inference. This leads to
several problems. First, these two tasks are interdependent but the
separation makes it hard to exploit the information shared between
them. Document relevance modeled by reranking can provide an
important basis for truncation. Trade-off characterization of the
relevance and position of documents in the list modeled by trun-
cation provides important contextual interaction information for
reranking. Second, the separate pipeline usually meets the error
accumulation problem, where the error from the reranking stage
can affect the truncation stage largely, which cannot be directly op-
timized during training. There are two factors that cause this. 1) In-
consistent document relevance judgment in two separate stages. As
shown in list (b) of Figure 1, the reranking model mistakenly thinks
that 𝐵 and 𝐸 are highly relevant, but the truncation model thinks
they are irrelevant and thus truncates the list at top-ranked position.
2) Reranking and truncation have different concerns to ranking list.
Truncation is more sensitive to the ranking performance of the top-
ranked documents because once too many irrelevant documents
appear at the top of list, it causes the list to be truncated at these
documents to lose relevant documents that are ranked behind it.
But reranking focuses on the overall ranking performance of the
entire list and is not sensitive to the case that irrelevant documents
appear at the top of list. Figure 1 shows that although (a) and (b)
have similar reranking performance (0.89 and 0.90), two irrelevant
top-ranked documents (𝐵 and 𝐸) of (b) result in the worse result of
reranking-truncation pipeline than (a) (19.4 < 25.8).

To solve the above problems, it is necessary to get a joint model to
perform them concurrently. However, there are several challenges.
First, how to make the two tasks share the modeling information
effectively (C1). Second, reranking is a process of dynamically
changing the ranking list. However, the truncation decision needs
to be based on a static list, how to perform them concurrently (C2).
Third, how to design loss functions for joint learning (C3).

In this paper, we propose a Reranking-Truncation joint model via
sequence generation called GenRT (shown in Figure 2). The input
of GenRT is a ranked list, and GenRT can perform reranking and
truncation concurrently to directly output the final list that has been
reranked and truncated. Specifically, to address C1, we design the
global dependency encoder to provide global list-level contextual
features within ranked lists that can be shared by reranking and
truncation. To address C2, different from the mainstream ranking
model that ranks documents by estimating the score of documents,
GenRT outputs the final reranked list step by step in the paradigm
of sequence generation. At each time step, the document at the
current ranking position is selected according to the previous state
and the current candidate set, and the local optimal truncation
decision is made at the same time. Truncation is transformed into
a binary classification task based on the forward and backward
sequential information of the dynamic list at each step. Sequence

generation paradigm records the forward information and we also
introduce the local backward window to provide the backward
information. In this way, our model can combine dynamic reranking
with static truncation. To address C3, we design step-adaptive
attention loss and step-by-step lambda loss and combine them
as the objective function for reranking. We introduce the reward
augmented maximum likelihood (RAML [30]) to design the RAML-
based soft criterion as the loss function for truncation at each step.

To sum up, our contributions are: (1) We point out the problem
of separating reranking and truncation in list-aware retrieval and
propose that these two tasks can be concurrently done with a
joint model. (2) We propose the novel model, inference paradigm,
and loss function to jointly optimize and perform reranking and
truncation on only one model. (3) Experimental results on public
learning-to-rank benchmarks and open-domain Question-answer
tasks show that our method achieves state-of-the-art performance
on both reranking and truncation tasks for web search and retrieval-
augmented LLMs. The code will be released on GitHub.

2 RELATEDWORK
2.1 Reranking in List-aware Retrieval
Reranking in list-aware retrieval exploits list-level contextual fea-
tures to re-score and rank each document in the list. DLCM [1]
uses recurrent neural network (RNN) to encode the contextual in-
formation of the list and reranks the documents. GSF [2] proposes
a multivariate scoring function framework to score the document
affected by other documents. SetRank [31] employs multi-head
self-attention to capture interaction information within the list.
PRM [32] optimizes personalized recommendations by capturing
user-personalized information. IRGPR [28] employs GNN to capture
the relationship between candidate items. DASALC [35] further
explores neural IR models from data augmentation perspective.
SRGA [33] proposes a scope-aware reranking model with gated
attention. MIR [45] considers the dynamic interaction between
the user behavior and the candidate set. [13, 14, 17, 44] exploit
counterfactual signals for re-score. Different from them, we use
the sequence generation method to directly generate a reranked
list. Although Seq2Slate [5] and Globalrerank [49] also use the
similar generative method, they do not satisfy the permutation-
invariant [31]. The most prominent difference between previous
studies is that our method can not only be applied to single rerank-
ing task but also perform reranking and truncation concurrently.

2.2 Truncation in List-aware Retrieval
Truncation aims to determine the best cut-off point for the in-
put ranked list to achieve the optimal trade-off between overall
relevance and weeding out irrelevant documents. Recently, some
work uses machine learning methods to solve the truncation prob-
lem. [11] investigate machine learning approaches for learning dy-
namic cut-offs within cascade-style IR systems. BiCut [26] leverages
bidirectional LSTM to find the best truncation point. Choppy [4]
uses transformer to model the input ranked list. AttnCut [43] uses
RAML [30] to make the model optimize user-defined metric di-
rectly and smoothly. LeCut [29] passes the relevance information
of the ranking model to the truncation model during training time
and iteratively trains between ranking and truncation. Different

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

List-aware Reranking-Truncation Joint Model for Search and Retrieval-augmented Generation WWW ’24, May 13–17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Input list

��1 ��2 ���

��1 ��2 ���

Sequential Dependency
 Decoder

Global Dependency
 Encoder

��1
1

 �1
� < 0.5

Sequential Dependency
 Decoder

Doc @ 1
(��

�)

����� �����

Truncate at �
��

�, ��
�, …, ��

�Reranked and Truncated List:

Sequential Dependency
 Decoder

��1
�−1��1

2��1
1�����

� = 1 � = 2 � = �� = 3 to C-1

Truncate @ 1
(��

� < 0.5)
Doc @ 2

(��
�)

Truncate @ 2
(��

� < 0.5)
Doc @ C

(��
�)

Truncate @ C
(��

� ≥ 0.5)

Figure 3: Overview of GenRT. Global dependency encoder captures the features of the initial list. Sequential dependency
decoder generates the final list step-by-step with decreasing relevance and concurrently makes truncation decision.

from them, we focus on jointly modeling truncation and reranking.
We transform truncation into a step-by-step binary classification
task and leverage the paradigm of sequence generation to com-
bine dynamic reranking with static truncation and design binary
classification soft criterion as the optimization object for truncation.

3 METHOD
The overall architecture of GenRT is shown in Figure 3. GenRT
aims to jointly model reranking and truncation by a shared model
and perform these two tasks concurrently during the inference. The
most critical challenge to achieve this is that reranking dynamically
changes the ranked list, while the truncation decision needs to
be based on a static list. To address the challenge, GenRT adopts
encoder-decoder architecture consisting of a global dependency
encoder and a sequential dependency decoder. Global dependency
encoder is used to capture the global list-level contextual features
of the input list by multi-head self-attention (MHSA) [42], which
can be shared by the reranking and truncation. Sequential depen-
dency decoder generates the final list step-by-step with decreasing
relevance and makes truncation decision at each step based on the
bidirectional sequential information. This sequence generation par-
adigm combines dynamic reranking with static truncation, which
can address the critical challenge. Details are introduced below.

3.1 Global Dependency Encoder
Global dependency encoder captures the list-level contextual fea-
tures within the input list. As for the input of the encoder, each
document in the input list is represented as an embedding. As shown
in Figure 4, given a query 𝑞, a document list𝐷 = [𝑑1, 𝑑2, ..., 𝑑𝑁], and
initial ranking score list 𝐿 = [𝑙1, 𝑙2, ..., 𝑙𝑁] obtained from previous
ranking stage (e.g. retrieval), input embedding for document 𝑑𝑖 is:

u𝑑𝑖 = 𝑓 (𝑞, 𝑑𝑖 , 𝑙𝑖), u𝑑𝑖 ∈ R
𝑍 , 𝑖 ∈ [1, 𝑁] . (1)

𝑁 is the number of documents in the input list, 𝑓 is used to fuse
the features of 𝑞, 𝑑𝑖 and the initial ranking feature 𝑙𝑖 . Specifically,
for the feature-based ranking tasks such as MSLR (input data is
the learning-to-rank feature), we follow [1, 31] to use the tradi-
tional learning-to-rank method to extract the features (matching,
pagerank, etc.) between 𝑞 and 𝑑𝑖 as described in SetRank [31] and
concatenate the features with the ranking score 𝑙𝑖 to obtain u𝑑𝑖 . For
the text-based ranking tasks such as Natural Questions [25] (input

Transfer Layer

Multi-head Self-Attention

Cross Ranking FFN

 Truncation Module

1~T-1 reranked list

Dynamic Ranking Module

1~T-1

Top 1

Whether to truncate at T (��
�)

1~T for next step
(Selected From U)

1~T for next step
(Selected From O)

Output document
at T (��

�)

M

S

R

G
F B

X′

U′

��1
�−1��1

1�����
����� ��1

�

��1
1 ��1

�−1

��1
1 ��1

�

�����
′

�����

Local Backward
Window

Multi-head
Self-Attention

Transfer Layer

Layer Norm

Add

U

X

��1

��1 ��2 ���

��2 ���

Input list

⨀I

O

P

(a) (b)

Figure 4: (a) Global Dependency Encoder and (b) Sequential
Dependency Decoder at T-th step.

data is text), we use the output embedding of [CLS] token in the
interaction-based ranking model as the representation (𝐶 (𝑞, 𝑑𝑖)) for
𝑞 and 𝑑𝑖 . The score 𝑙𝑖 is mapped to a learnable position embedding
lp𝑖 ∈ R𝑍 according to its rank in 𝐿. Then,𝐶 (𝑞, 𝑑𝑖) and lp𝑖 are added
element-wise to obtain u𝑑𝑖 . The embeddings corresponding to the
documents in the list are concatenated to get U ∈ R𝑁×𝑍 , and the
matrix of vectors for the input list 𝐿 can be represented as:

U = [u𝑑1 , u𝑑2 , ..., u𝑑𝑁]𝑇 . (2)

Transfer layer is used to map U to the vector space of multi-head
self-attention (MHSA) [42] and align the dimensions:

X = 𝑆𝑤𝑖𝑠ℎ(MLP(U)),X ∈ R𝑁×𝐸 , (3)

where MLP is multilayer perceptron, 𝑆𝑤𝑖𝑠ℎ is the activation func-
tion that is shown to have stronger generalization [38], 𝐸 is the
dimension of MHSA. In order to retain the feature of the document
itself while capturing the list-level contextual features, we adopt

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13–17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

the residual connection method as:

O = X +MHSA(LN(X)), (4)

where O = [o𝑑1 , o𝑑2 , ..., o𝑑𝑁]𝑇 is the output of global dependency
encoder. o𝑑𝑖 contains the list-level contextual features in the ranked
list and the input feature of 𝑑𝑖 , which can be shared by reranking
and truncation. LN is layer normalization [3].

3.2 Sequential Dependency Decoder
Sequential dependency decoder follows the paradigm of generating
sequences to generate the final list step-by-step with decreasing
relevance and makes truncation decision at each step based on
the bidirectional sequential information. In Figure 4, we show the
operation of the decoder at the 𝑇 -𝑡ℎ step. Multi-head self-attention
captures the interaction information of the document sequence
from 1 to 𝑇 − 1 steps of the reranked list. Previously generated
documents from 1 to 𝑇 − 1 steps serve as sequential dependency
information to facilitate the selection of subsequent relevant docu-
ments [10, 15]. Cross ranking FFN and dynamic ranking module
determine the dynamic ranking list and select the best output doc-
ument at each step. The ordinal number of the step is the rank of
its output document in the final reranked list. At the same time,
the truncation module makes truncation decision based on the bidi-
rectional sequential information obtained by the dynamic ranking
module and local backward window at each step.

We describe the operation mechanism of the decoder at the𝑇 -𝑡ℎ
step in detail. Given an input document list 𝐷

′
= {𝑟11 , 𝑟

2
1 , ..., 𝑟

𝑇−1
1 }

(𝑟𝑡1 is the output document at step 𝑡) from 1 to𝑇 − 1 (the documents
that have been reranked), the representation vectors 𝑼

′
and 𝑿

′
can

be obtained according to Equ.(1)(2)(3) with the same parameters.
MHSA is used to capture the list-level contextual features of the
reranked list from 1 to 𝑇 − 1 and it can be used as the sequential
dependency for the current step:

MHSA(X
′
) → [m𝑟 11 ,m𝑟 21 , ...,m𝑟𝑇 −1

1
]𝑇 .

Cross ranking FFN estimates the generation score for each docu-
ment to select the best output document at the current generating
step, which is the core module of the decoder. The input of this mod-
ule comes from decoder and encoder. Specifically, the input from
the decoder side is m𝑟𝑇 −1

1
from MHSA(X′), which is the sequential

dependency information at 𝑇 -𝑡ℎ step. Expand m𝑟𝑇 −1
1

∈ R𝐸 to the
matrix M ∈ R𝑁×𝐸 , each row of M is m𝑟𝑇 −1

1
. The input from the

encoder side is I ∈ R𝑁×𝐸 that can be obtained by latent cross [6, 35]:

I = (1 +MLP(O)) ⊙ FFN-Swish(U), (5)

where U and O are obtained from Equ. (2) and (4) respectively, MLP
is multilayer perceptron, FFN-Swish is the block of MLP and Swish,
⊙ is the element-wise multiplication operator. I is the embedding
matrix of the candidate document set at the current step. M is the
sequential dependency matrix of the current step and is used to
interact with the embedding of each document in I to get the score.
Specifically, I andM are concatenated and processed by a row-wise
FFN (rFFN) to get the predicted score of each document in the
candidate set at the current step:

S = rFFN(Concat(I,M)), S ∈ R𝑁 . (6)

Dynamic ranking module masks the documents in steps 1 to 𝑇 − 1
(avoid selecting duplicate documents) and ranks the remaining
candidate documents according to S in descending order to get
the ranking list 𝑅 = {𝑟𝑇1 , 𝑟

𝑇
2 , ..., 𝑟

𝑇
𝑁−𝑇+1} at the current step. The

generated document at current step is the Top-1 element in this list
(i.e., 𝑟𝑇1). Document generation is finished and the next is truncation.

Previous truncation models need to be performed on a static
list. However, reranking is a process of dynamically changing the
ranking list, which is the challenge for the joint model to perform
reranking and truncation concurrently (C2 in Section 1). To address
this challenge, we transform truncation into a binary classification
task at each step. Truncation module aggregates forward and back-
ward information of the current generated document (𝑟𝑇1) to make
truncation decision. Specifically, the module records the embedding
sequence of the selected documents (𝐷

′
) in O (Equ. 4) from 1 to T-1

as the forward information:

F = [o𝑟 11 , o𝑟 21 , ..., o𝑟𝑇 −1
1

]𝑇 ,

which is the sequence of the documents that precede the document
output at the current step (𝑟𝑇1) in the reranked list. Reranking-
Truncation joint model has to complete the truncation decision
when reranking. However, the reranked list is generated step by step
with decreasing relevance, when outputting the current document
𝑟𝑇1 , the model cannot capture the backward information of the
documents ranked behind 𝑟𝑇1 in the final reranked list. To address it,
local backwardwindow is proposed to select 𝛽 documents behind 𝑟𝑇1
in the ranking list 𝑅 at the current step and gets the corresponding
embedding sequence from O:

B = [o𝑟𝑇2 , o𝑟𝑇3 , ..., o𝑟𝑇𝛽+1]
𝑇 .

The reason why only 𝛽 documents are selected is that 𝑅 is only a
local ranking list of the current step and cannot represent the global
result of reranking, selecting all the remaining documents will in-
troduce noise. Embedding sequences F, o𝑟𝑇1 , and B are concatenated
to G = Concat(F, o𝑟𝑇1 ,B) as the input of truncation module.

To distinguish between forward and backward information and
the position of document embedding in G, we introduce relative
position encoding into MHSA like T5 [36] for truncation module.
Specifically, attention calculation with relative position encoding
for the 𝑎-𝑡ℎ and 𝑏-𝑡ℎ vectors of the input is H𝑎W𝑄 (H𝑏W𝐾)𝑇 +
𝑝𝑜𝑠𝑎,𝑏 , whereW𝑄 ,W𝐾 are matrices in MHSA, H𝑎 and H𝑏 are em-
beddings of input, 𝑝𝑜𝑠𝑎,𝑏 = 𝑏𝑢𝑐𝑘𝑒𝑡 (𝑎 − 𝑏), 𝑏𝑢𝑐𝑘𝑒𝑡 is a bucketing
function. We call this module MHSA𝑝𝑜𝑠 , which is used to aggregate
the bidirectional sequential information at the current step and
make the truncation decision at 𝑟𝑇1 . The result of the truncation
decision for step 𝑇 (𝑟𝑇1) can be obtained by:

MHSA𝑝𝑜𝑠 (G) → [j𝑟 11 , ..., j𝑟𝑇 −1
1

, j𝑟𝑇1 , j𝑟𝑇2 , ..., j𝑟𝑇𝛽+1
]𝑇 ,

P = Softmax(MLP(j𝑟𝑇1)), P ∈ R2,
(7)

P = [𝑝0, 𝑝1] is a binary probability distribution representing the
probability of truncating or not at the current step (i.e., at 𝑟𝑇1). If
the decision is truncating, GenRT directly returns the documents
generated at steps 1 to 𝑇 as the final reranked and truncated list, if
not, the model continues to execute until the decision is truncating
or the reranking of all documents is completed.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

List-aware Reranking-Truncation Joint Model for Search and Retrieval-augmented Generation WWW ’24, May 13–17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

The document generation and truncation decision at the cur-
rent step are finished and the sequential dependency state can be
passed to the next step by U

′
𝑛𝑒𝑥𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡 (U′

, u𝑟𝑇1) and F𝑛𝑒𝑥𝑡 =

𝐶𝑜𝑛𝑐𝑎𝑡 (F, o𝑟𝑇1). For the first step without history dependency, a
trainable vector called 𝑠𝑡𝑎𝑟𝑡 is used as the initial input.

The final reranked and truncated list 𝑅𝑒𝑠 = {𝑟11 , 𝑟
2
1, 𝑟

𝜖
1 } is the

document sequence generated from step 1 to 𝜖 , where 𝜖 is the first
truncated step or the number of documents in the input list, 𝑟𝑡1
indicates the output document at the 𝑡-𝑡ℎ step.

3.3 Training and Inference
We design different loss functions for reranking and truncation
respectively. For reranking, we design the step-adaptive attention
loss (improved from [1]) and step-by-step lambda loss under the
generative ranking paradigm and combine them as the optimiza-
tion objective. Specifically, for 𝑇 -𝑡ℎ step, given a query 𝑞, a can-
didate document list 𝐷 = [𝑑1, 𝑑2, ..., 𝑑𝑁], the relevance label set
𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑁 } and set 𝐷

′
in which the documents has been

selected, the ground-truth attention score 𝑎𝑖 for 𝑑𝑖 is assigned as:

𝑎𝑖 =
exp(𝜙 (𝑑𝑖))∑

𝑑 𝑗 ∈𝐷 exp(𝜙 (𝑑 𝑗))
, 𝜙 (𝑑𝑖) =

{
−104, 𝑑𝑖 ∈ 𝐷

′
;

𝑦𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(8)

For the document scoring matrix of candidate document set S =

[𝑠1, 𝑠2, ..., 𝑠𝑁]𝑇 (obtained by Equ. (6)) predicted by the model at step
𝑇 , the same attention distribution strategy as Equ.(8) is used to get
the predicted attention score 𝑝𝑖 for 𝑑𝑖 . The step-adaptive attention
loss at 𝑇 -𝑡ℎ step is the cross entropy of the attention distribution:

𝐿𝑇𝑠𝑎-𝑎𝑡𝑡 = −
∑︁
𝑑𝑖 ∈𝐷

𝑎𝑖 log(𝑝𝑖),L𝑠𝑎-𝑎𝑡𝑡 =
𝑁∑︁
𝑡=1

𝛼𝑡𝐿
𝑡
𝑠𝑎-𝑎𝑡𝑡 , (9)

where 𝑡 is the ordinal number of the step and indicates the rank
of the document in reranked list, 𝛼𝑡 = 1

log(1+𝑡) makes the model
give more optimization weight to the top-ranked documents, 𝑁
is the number of documents in the input list, i.e. the number of
steps performed by the decoder. In addition to L𝑠𝑎-𝑎𝑡𝑡 , we also
design the step-by-step lambda loss (sbs loss). Given an already
generated reranking sequence including 𝜖 documents1 𝑅𝑒𝑠

′
=

{𝑟11 , 𝑟
2
1 , ..., 𝑟

𝜖
1 }, its relevance label list 𝑌

′
= {𝑦1, 𝑦2, ..., 𝑦𝜖 } and a list

of the scoring matrix for the candidate document set at each step
S = {S1, S2, ..., S𝜖 } (𝑟𝑡1 , 𝑦

𝑡 , S𝑡 mean the output document, label of
the document and scoring matrix (Equ. (6)) at step 𝑡 respectively),
the sbs loss is described as Algorithm 1. Specifically, sbs loss modi-
fies the scoring matrix of the model at the corresponding step by
adding penalty terms to the document pairs with non-decreasing
relevance in the generated sequence (for example, in S𝑡𝑓 at step 𝑡𝑓 ,
because 𝑦𝑡𝑏 is bigger than 𝑦𝑡𝑓 , 𝑠𝑡𝑏 should be bigger than 𝑠𝑡𝑓 , so that
𝑟
𝑡𝑏
1 can be ranked before 𝑟𝑡𝑓1), so as to give priority to generating
high-relevance documents. The loss function for L𝑠𝑏𝑠 is:

L𝑠𝑏𝑠 =
𝜖∑︁
𝑖=1

𝜖∑︁
𝑗=𝑖+1

I(𝑦 𝑗 > 𝑦𝑖)Δ𝑁 log(1 + 𝑒𝑠𝑖−𝑠 𝑗),

where 𝑠 𝑗 (𝑠𝑖) is the predicted score at step 𝑖 for 𝑟 𝑗1 (𝑟
𝑖
1) in S𝑖 , Δ𝑁

is the Lambda Loss (NDCG𝑠𝑤𝑎𝑝 − NDCG). The loss function for
1The superscript indicates the ordinal of the step.

Algorithm 1 Step-by-step lambda loss.

Input: 𝑅𝑒𝑠 , 𝑌
′
, S, 𝜖 ; Output: L𝑠𝑏𝑠

1: Let L𝑠𝑏𝑠 = 0.
2: for 𝑡𝑓 = 1 to 𝜖 do
3: for 𝑡𝑏 = 𝑡𝑓 + 1 to 𝜖 do
4: if 𝑦𝑡𝑏 > 𝑦𝑡𝑓 then
5: 𝑟

𝑡𝑏
1 is ranked behind 𝑟𝑡𝑓1 but more relevant than 𝑟

𝑡𝑓
1 .

6: Δ𝑁𝐷𝐶𝐺 = 𝑁𝐷𝐶𝐺𝑠𝑤𝑎𝑝 − 𝑁𝐷𝐶𝐺 (𝐿𝑎𝑚𝑏𝑑𝑎 𝐿𝑜𝑠𝑠)
7: 𝑠𝑡𝑓 is the predicted score at step 𝑡𝑓 for 𝑟

𝑡𝑓
1 from 𝑺𝑡𝑓

8: 𝑠𝑡𝑏 is the predicted score at step 𝑡𝑓 for 𝑟
𝑡𝑏
1 from 𝑺𝑡𝑓

9: L𝑝𝑎𝑖𝑟 = log(1 + exp(𝑠𝑡𝑓 − 𝑠𝑡𝑏)).
10: L𝑠𝑏𝑠+ = Δ𝑁𝐷𝐶𝐺×L𝑝𝑎𝑖𝑟
11: end if
12: end for
13: end for
14: return L𝑠𝑏𝑠

reranking is the combination of L𝑠𝑎-𝑎𝑡𝑡 and L𝑠𝑏𝑠 :
L𝑅 = L𝑠𝑎-𝑎𝑡𝑡 + 𝜂L𝑠𝑏𝑠 ,

where 𝜂 ∈ [0, 1] is the hyperparameter used to tune the weights.
For truncation, which makes binary decision based on bidirec-

tional sequential information at each step, we define the binary
soft label for each step based on RAML [30] and compute loss by
maximum likelihood estimation (MLE) criterion. Specifically, we
introduce the metric for truncation [20] and call it TDCG:

TDCG@𝑥 =

𝑥∑︁
𝑡=1

𝛾 (𝑦𝑥)
log(𝑡 + 1) , (10)

where 𝑥 is the truncation position, 𝛾 can add penalty items to low-
relevant documents. High-relevant documents bring higher TDCG,
while low-relevant documents will reduce TDCG. This reward
mechanism enables the model to learn the optimal truncation point
so that the returned list contains as few low-relevant documents as
possible while retaining high-relevant documents. For the𝑇 -𝑡ℎ step,
given reranked list𝐷

′
= {𝑟11 , 𝑟

2
1 , ..., 𝑟

𝑇−1
1 } from 1 to𝑇 −1, output doc-

ument 𝑟𝑇1 , and the list of documents 𝑅
′
= {𝑟𝑇2 , 𝑟

𝑇
3 , ..., 𝑟

𝑇
𝛽+1} obtained

from the local backward window, the local reranked list can be de-
fined as {𝑟11 , 𝑟

2
1 , ..., 𝑟

𝑇−1
1 , 𝑟𝑇1 , 𝑟

𝑇
2 , ..., 𝑟

𝑇
𝛽+1}. If the model truncates the

reranked list at the current step (𝑟𝑇1), the reward is TDCG@𝑇 , oth-
erwise, the reward is TDCG@(𝑇 +𝛽), 𝛽 is the size of local backward
window. Binary soft label at step 𝑇 is:

𝑦𝑇𝑐𝑢𝑡 =
exp(TDCG@𝑇)

exp(TDCG@𝑇) + exp(TDCG@(𝑇 + 𝛽)) ,

𝑦𝑇𝑛𝑜𝑐𝑢𝑡 =
exp(TDCG@(𝑇 + 𝛽))

exp(TDCG@𝑇) + exp(TDCG@(𝑇 + 𝛽)) .

The loss function of truncation can be defined as:

L𝑇 = −
𝑁∑︁
𝑡=1

(𝑦𝑡𝑐𝑢𝑡 log(𝑝𝑡1) + 𝑦
𝑡
𝑛𝑜𝑐𝑢𝑡 log(𝑝𝑡0)),

where 𝑝𝑡1 and 𝑝
𝑡
0 are defined as Equ.(7).

In the first epoch of training, the model only learns to rerank.
In this way, the model can obtain the basic ability to judge the

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13–17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

relevance of documents. In later epochs, the model learns to rerank
and truncate alternately in batches. When the model learns to
rerank, the parameters of truncation module are fixed and L𝑅 is
the objective. When the model learns to truncate, the parameters
of cross ranking FFN are fixed and L𝑇 is the objective.

In inference, the reranked list is generated step by step and the
ordinal number of the step is the rank of the document in final
list. At each generation step, the model selects the best output
document at current position based on the global and sequential
dependency and makes the truncation decision concurrently. The
final generated sequence is the reranked and truncated list with
decreasing relevance. GenRT can be applied to scenarios that only
require reranking or truncation. When the IR system does not need
truncation, the truncation result can be not considered directly.
When the IR system does not need reranking, the scoring matrix
S at each step can be obtained from the input ranked list. For the
scenarios that only require reranking, we propose an acceleration
strategy that balances latency and accuracy. In training, it follows
the generation paradigm step by step as described above. In infer-
ence, it directly uses the trainable vector 𝑠𝑡𝑎𝑟𝑡 as the sequential
dependency and uses the scoring matrix 𝑺 at the first step as the
reranking results without generating sequence.

4 EXPERIMENTS
4.1 Experiment Settings
Datasets. Datasets in our experiments can be divided into two
categories: (1) Learning-to-rank public benchmarks for web search
including Microsoft LETOR 30K (MSLR30K) [34], Yahoo! LETOR
set 1(Yahoo!)2 and Istella LETOR (Istella)3. These three datasets
are collected from real search engines and they are feature-based.
Each sample in these datasets is a feature vector, and the label has
five-level relevance annotation from 0 (irrelevant) to 4 (perfectly
relevant). (2) Open-domain Question-Answering datasets including
Natural Queations [25] and TriviaQA [21]. These two datasets are
text-based and the label has 2-level relevance annotation from 0
(irrelevant) to 1 (relevant). They are used to measure the reranking
and truncation models on retrieval-augmented LLMs.

Baslines and EvaluationMetrics. We select the SOTAmodels for
reranking and truncation respectively as the baselines. For rerank-
ing, we select the following SOTA list-aware reranking models:
GlobalRerank [49],DLCM [1], Seq2Slate [5],GSF [2], PRM [32],
SetRank [31], CRUM [44], SRGA [33]. DASALC [35] is not com-
pared because it is a much larger model (50 times the number
of parameters of GenRT). Methods based on gradient boosting
tree are not considered because they can not be applied to text-
based data. For truncation, BiCut [26], Choppy [4], AttnCut [43]
and LeCut [29] are selected as the baselines. We also introduce
Fixed-𝑥 that truncates the given ranking list at the fixed posi-
tion 𝑥 . Some retrieval-augmented works such as FID, REALM and
Retro [7, 16, 19] are not considered. Because they need to train
language models. Our work only focuses on the training of the
IR models and does not require the training of language models,
which can be flexibly compatible with black-box LLMs.

2http://learningtorankchallenge.yahoo.com
3http://blog.istella.it/istella-learning-to-rank-dataset/

For the metrics on three web search datasets, Normalized Dis-
counted Cumulative Gain (NDCG) [20], Expected Reciprocal Rank
(ERR) [8] and Mean Average Precision (MAP) are used to evalu-
ate the performance of reranking [1, 31]. Following [43], TDCG
(Equ.(10)) are used to evaluate the performance of truncation. 𝛾 in
TDCG (Equ. (10)) means that if the label is 0, outputs -4, if the label
is 1, outputs -2, otherwise (2, 3, 4) outputs the label itself.

For the metrics on retrieval-augmented LLMs, improving the
performance of LLMs is the ultimate goal of the retrieval system,
so we use the accuracy of LLMs in answering open-domain ques-
tions as the evaluation metric. Since the labels in open-domain QA
datasets are binary categories, 𝛾 in TDCG (Equ. (10)) is set that if
the label is 0, outputs -1, if the label is 1, outputs 1.

Implementation. MHSA for global dependency encoder has 2
blocks and for sequential dependency decoder has 1 block. Each
block has 8 heads and 256 hidden units. Compared with SetRank
(6 blocks), our method has fewer parameters, which alleviates the
inference overhead caused by generative paradigm to some extent.
The shapes of transfer layer, 𝐹𝐹𝑁 and 𝑟𝐹𝐹𝑁 are [𝑍, 256], [𝑍, 256]
and [512, 32, 1] respectively where 𝑍 is the dimension of the input
feature vector. The interaction-based ranker model for retrieval-
augmented LLMs is bert-base [12]. The 𝛽 of local backward window
is set as 4. The hyperparameter 𝜂 used to balance the two reranking
loss is set as 0.1. In training, the batch size is 16 and Adam [24] with
learning rate 10−5 is used to optimize the loss. We implement our
model in PyTorch. Our method has the following implementations:
GenRT: Jointly trained Reranking-Truncation model. GenRT𝑓 𝑎𝑠𝑡 :
Same training method as GenRT but uses the acceleration strategy
that directly uses the scoring matrix 𝑺 at the first step as the rerank-
ing results in inference. GenRT- w/o T: Only learns to rerank.
GenRT- w/o R: Only learns to truncate.

4.2 Performance on Web Search
This section evaluates the performance of GenRT and baselines
on three learning-to-rank benchmarks collected from web search
engine. Specifically, we follow the settings in SetRank [31] and
DLCM [1] that use LambdaMart implemented by RankLib to re-
trieve the top 40 documents for each query as the input ranked lists.
The lists are used as the input for list-aware reranking models.

List-aware Reranking Performance. Table 1 shows that com-
pared with the baselines, GenRT achieves the best list-aware rerank-
ing performance on three IR benchmark datasets. In the training,
GenRT jointly learns to rerank and truncate end-to-end, in the in-
ference, we decouple the two tasks (i.e., do not truncate the list) and
use NDCG to evaluate its reranking performance. GenRT is better
than GenRT-w/o T shows that joint modeling of reranking and
truncation facilitates the sharing of contextual information and im-
proves the performance of reranking. GenRT-w/o T outperforming
most baselines (except SRGA on Yahoo!) indicates the effectiveness
of integrating global and sequential dependency to represent the
list-level contextual features and the sequence generation paradigm.
GenRT𝑓 𝑎𝑠𝑡 is an acceleration strategy and outperforms most base-
lines with the faster inference than SetRank, which indicates that
GenRT is a highly flexible model that achieves improvements for
efficiency and performance in single reranking scenario.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

List-aware Reranking-Truncation Joint Model for Search and Retrieval-augmented Generation WWW ’24, May 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Performance of different reranking models on three learning-to-rank benchemark datasets (bold: best; underline:
runner-up; †: results with significant performance improvement with p-value ≤ 0.05 in T-test compared with baselines).

MSLR 30K Yahoo! Istella
Reranker NDCG ERR MAP NDCG ERR MAP NDCG ERR MAP

@5 @10 @5 @10 - @5 @10 @5 @10 - @5 @10 @5 @10 -
GlobalRerank 0.4501 0.4689 0.3445 0.3617 0.5110 0.6983 0.7425 0.4375 0.4514 0.7101 0.6190 0.6679 0.7001 0.7101 0.6840
DLCM 0.4500 0.4690 0.3440 0.3620 0.5109 0.6990 0.7430 0.4380 0.4517 0.7105 0.6194 0.6680 0.7005 0.7104 0.6843
Seq2Slate 0.4533 0.4701 0.3473 0.3685 0.5170 0.6993 0.7438 0.4385 0.4523 0.7143 0.6201 0.6693 0.7012 0.7114 0.6851
GSF 0.4151 0.4374 0.3215 0.3479 0.5073 0.6838 0.7316 0.4273 0.4405 0.7092 0.5968 0.6508 0.6822 0.7015 0.6805
PRM 0.4435 0.4602 0.3402 0.3550 0.5112 0.7072 0.7500 0.4390 0.4528 0.7147 0.6189 0.6605 0.6901 0.7080 0.6842
SetRank 0.4515 0.4696 0.3458 0.3632 0.5143 0.7029 0.7453 0.4380 0.4525 0.7140 0.6345 0.6834 0.7103 0.7273 0.6995
CRUM 0.4603 0.4812 0.3523 0.3745 0.5171 0.7078 0.7486 0.4397 0.4532 0.7150 0.6417 0.6902 0.7245 0.7401 0.7084
SRGA 0.4449 0.4672 0.3420 0.3619 0.5120 0.7079 0.7502 0.4400 0.4541 0.7159 0.6235 0.6713 0.7039 0.7120 0.6877
GenRT 0.4757† 0.4919† 0.3623† 0.3805† 0.5200† 0.7085† 0.7505† 0.4408† 0.4550† 0.7172† 0.6535† 0.7032† 0.7418† 0.7479† 0.7329†

GenRT- w/o T 0.4662 0.4878 0.3507 0.3760 0.5170 0.7068 0.7492 0.4392 0.4539 0. 7145 0.6520 0.7018 0.7398 0.7450 0.7253
GenRT𝑓 𝑎𝑠𝑡 0.4698 0.4891 0.3542 0.3780 0.5179 0.7072 0.7498 0.4394 0.4540 0.7161 0.6529 0.7023 0.7405 0.7462 0.7275

Table 2: Performance of different truncation models on three
learning-to-rank benchemark datasets (bold: best; underline:
runner-up; †: results with significant performance improve-
ment with p-value ≤ 0.05 in T-test compared with baselines).

Reranker Truncation MSLR Yahoo! Istella
TDCG@𝑥

GenRT

Fixed-𝑥 (𝑥=5) -1.15 1.14 4.50
Fixed-𝑥 (𝑥=10) -3.29 0.50 3.55
BiCut 0.12 2.55 3.22
Choppy 0.33 2.63 3.77
AttnCut 0.42 2.89 4.40
LeCut 0.43 2.91 4.42
LeCut+JOTR 0.54 2.93 4.45
GenRT- w/o R 0.61 3.01 4.48

GenRT (End-to-End) 0.84† 3.11† 5.03†

List-aware Truncation Performance. Table 2 shows the trunca-
tion performance of GenRT and previous SOTA models. As GenRT
is the best reranker demonstrated in Table 1, we use its reranking
results as the input for the previous baselines models to achieve the
fair comparison. The experimental results indicate that Reranking-
Truncation joint model GenRT gets the best truncation performance.
Specifically, GenRT outperforms GenRT- w/o R demonstrates the
positive effect of joint modeling on truncation. GenRT- w/o R work-
ing better than previous SOTA models indicates the positive ef-
fects of integrating global and sequential information to make fine-
grained truncation decision step by step and using RAML-based
local binary classification soft criterion as the objective functions.
In addition, our method outperforming LeCut+JOTR (a method
that jointly trains reranking and truncation but still treats them as
separate models and stages) shows the effectiveness of integrating
the two tasks into a joint model and performing them concurrently.

4.3 Performance on Retrieval-augmented LLMs
This section evaluates the performance of GenRT and baselines
on open-doma QA datasets under the retrieval-augmented LLMs

Table 3: Reranking on retrieval-augmented LLMs. The input
lists for list-aware reranker are retrieved by Contriever and
ranked by interaction-based ranker. Acc. is for LLM.

Reranker NQ TriviaQA
R@5 R@10 Acc. (LLM) R@5 R@10 Acc. (LLM)

- 59.40 77.31 57.63 68.22 85.24 62.70
Seq2Slate 60.15 77.50 58.05 68.90 85.47 63.55
SetRank 60.02 77.48 57.92 68.74 85.32 63.29
GenRT 60.78† 77.63† 58.79 70.01† 85.70† 64.37

settings. We use Wikipedia passage-collection provided by [22] as
the corpus, use Contriever [18] and interaction-based ranker [9]
to perform retrieval-ranking pipeline to get top 40 passages as the
input ranked list for list-aware reranking models. We use gpt-3.5-
turbo-16k as the LLM. We provide the returned passage list from
IR system to LLM in prompt and let LLM answer questions. We
use EM [37] to count the accuracy of LLM answering questions by
referring to the returned passage list.

List-aware Reranking Performance. Table 3 shows that the list
reranked by GenRT can help LLM achieve better performance than
retrieval-ranking pipeline and other list-aware reranking baselines4.
The reason is that our method better reranks the passages in list to
make relevant passages appear more at the top of the ranked list
(higher Recall@5 and Recall@10). It means relevant information
appears more at the start of the text input to LLM. There has been
study [27] proves that LLMs prefer to exploit information at the start
of the input text for generation, which can support our conclusion.

List-aware Truncation Performance. Table 4 shows that our
method beats all baselines in balancing the number of passages
in the retrieved list and the performance of LLMs. Specifically, as
GenRT is the best reranker demonstrated in Table 1 and 3, we use its
reranking results as the input for all truncation models to achieve

4Since most of the list-aware reranking models in the baselines are designed for feature-
based data, we only reproduce SetRank and Seq2Slate that are suitable for text-based
data (open-domain QA) and perform well in Table 1.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, May 13–17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Truncation on retrieval-augmented LLMs. Length is
the number of passages in the list. Acc. is for LLM.

Truncation NQ TriviaQA
TDCG ↑ Length ↓ Acc. ↑ TDCG ↑ Length ↓ Acc. ↑

Fixed-𝑥 (𝑥=5) -0.78 5.00 54.80 0.23 5.00 60.03
Fixed-𝑥 (𝑥=10) -0.95 10.00 55.72 -0.17 10.00 61.19
Fixed-𝑥 (𝑥=20) -1.67 20.00 56.98 -1.10 20.00 62.35
Fixed-𝑥 (𝑥=30) -4.78 30.00 56.05 -2.34 30.00 62.30
Fixed-𝑥 (𝑥=40) -5.05 40.00 58.20 -3.46 40.00 63.17
BiCut -0.35 22.75 56.79 0.38 25.83 62.30
Choppy -0.20 25.43 57.01 0.40 29.72 62.42
AttnCut -0.21 17.70 56.95 0.42 21.96 62.40
LeCut+JOTR -0.15 20.21 57.84 0.55 22.50 62.89
GenRT -0.06† 17.25 58.15 0.74† 22.19 63.25

the fair comparison. Compared with Fixed-40, our method achieves
comparable accuracy with much shorter retrieved list length. Com-
pared with Fixed-20, our method achieves better accuracy with
comparable length. This shows that our method effectively dynam-
ically determines the suitable length of the retrieved list for each
query, achieving the balance between efficiency (longer input list
will increase the computational overhead of LLM) and accuracy.

4.4 Analysis
Effect of Generative Ranking. We explore the effect of genera-
tive ranking paradigm. One of the significant differences between
GenRT and other methods is that it adopts global dependency en-
coder and sequential dependency decoder to combine list-level
contextual features to generate the final reranked list step by step
in the paradigm of sequence generation. The intuition is that the
high-relevance documents (easy to distinguish) that have been
generated are used as sequential dependency to control the subse-
quent document selection, which makes it easier for the model to
distinguish confusing candidate documents. Figure 5(a) confirms
our intuition. The solid line shows minimum distance between
positive and negative samples in GenRT (the result of the lowest-
scoring positive sample minus the highest-scoring negative sample
in the scoring matrix 𝑺 (obtained by Equ.(6))). The dashed line is
the corresponding distance estimated by SetRank. The distance of
GenRT is bigger than the distance of SetRank and increases with
step 𝑇 , which indicates that sequential dependency makes relevant
documents easier to be selected.

Size of Local Backward Window. Figure 5(b) shows that 𝛽 (the
size of local backward window) affects the truncation performance.
The results of the three datasets show that when 𝛽 is from 0 to
4, performance gets better because more valuable backward infor-
mation is introduced, when 𝛽 is greater than 4, the performance
deteriorates as 𝛽 increases because enlarging the window intro-
duces more noise information caused by local ranking, which is not
conducive to fine-grained modeling the truncation information.

Loss Function in Reranking. In Section 3.3, we design two loss
functions and combine them to optimize reranking. In this section,
we do the ablation study on Istella for them and results in Table 5
show that L𝑠𝑎-𝑎𝑡𝑡 plays the most critical effect, and L𝑠𝑏𝑠 further
improves the reranking performance on the basis of L𝑠𝑎-𝑎𝑡𝑡 .

Table 5: Ablation study for two loss functions of reranking.

Reranker NDCG@1 NDCG@5 NDCG@10
GenRT 0.6911 0.6535 0.7032

- w/o L𝑠𝑎-𝑎𝑡𝑡 0.6089 0.5748 0.6273
- w/o L𝑠𝑏𝑠 0.6807 0.6436 0.6954

0 1 2 3 4 5 6 7 8 9
T

−1.8

−1.5

−1.2

−0.9

−0.6

−0.3

0.0

M
in

im
um

 D
is

ta
nc

e

MSLR
Istella
Yahoo!

(a)

1 2 3 4 5 6 7 8 9 10
β

0

1

2

3

4

5

6

TD
C
G

MSLR
Istella
Yahoo!

(b)

Figure 5: (a) Minimum distance varies with generation step
𝑇 (solid line: GenRT, dashed line: SetRank). (b) TDCG varies
with local backward window size.

Efficiency Analysis of List-aware Retrieval. Compared with
the reranking and truncation models that directly output the scores
of all candidate documents (e.g. SetRank), GenRT generates the
final list step by step. This leads to the increase in inference time
of the IR system. To alleviate this problem, we propose two ac-
celeration strategies. One is described in Section 3.3 that for the
scenarios that only require reranking without truncation, the scor-
ing matrix 𝑺 at the first step can be used as the reranking result
directly and we call it GenRT𝑓 𝑎𝑠𝑡 . The other is that we use fewer
parameters than SetRank, especially for the decoder. The efficiency
evaluation result performed on one Tesla V100 shows that for the
inference time of reranking, GenRT𝑓 𝑎𝑠𝑡 is 0.6 times shorter than
SetRank and GenRT is 2.1 times longer than SetRank. For the in-
ference time of reranking-truncation pipeline, GenRT is 1.6 times
longer than SetRank-AttnCut. Different from the efficiency require-
ments of first-stage retrieval, reranking and truncation have a much
smaller candidate set and pay more attention to the performance
of tasks. Considering the performance of reranking and truncation
in Table 1, 2, 3 and 4, GenRT achieves significant performance im-
provement at the cost of a little longer inference time and has a
positive effect on saving the computational overhead of LLM.

5 CONCLUSION
In this paper, we propose a Reranking-Truncation joint model
called GenRT for list-aware retrieval in web search and retrieval-
augmented LLMs. We adopt the structure of global dependency
encoder and sequential dependency decoder to fully capture the
list-level contextual features of the ranked list and share the in-
formation on reranking and truncation. We transform truncation
into a step-by-step binary classification task and leverage the para-
digm of sequence generation to combine dynamic reranking with
static truncation. Experimental results on public learning-to-rank
benchmarks and open-domain QA tasks show that our method
achieves state-of-the-art performance on both reranking and trun-
cation tasks for web search and retrieval-augmented LLMs.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

List-aware Reranking-Truncation Joint Model for Search and Retrieval-augmented Generation WWW ’24, May 13–17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Qingyao Ai, Keping Bi, Jiafeng Guo, and W. Bruce Croft. 2018. Learning a

Deep Listwise Context Model for Ranking Refinement. In Proceedings of the 2018
Conference on SIGIR. ACM, 135–144.

[2] Qingyao Ai, Xuanhui Wang, Sebastian Bruch, Nadav Golbandi, Michael Bender-
sky, and Marc Najork. 2019. Learning Groupwise Multivariate Scoring Functions
Using Deep Neural Networks. In Proceedings of the 2019 Conference on ICTIR.
ACM, 85–92.

[3] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normaliza-
tion. CoRR abs/1607.06450 (2016). arXiv:1607.06450

[4] Dara Bahri, Yi Tay, Che Zheng, Donald Metzler, and Andrew Tomkins. 2020.
Choppy: Cut Transformer for Ranked List Truncation. In Proceedings of the 2020
Conference on SIGIR, Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa
Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.). ACM, 1513–1516.

[5] Irwan Bello, Sayali Kulkarni, Sagar Jain, Craig Boutilier, Ed Huai-hsin Chi, Elad
Eban, Xiyang Luo, AlanMackey, and Ofer Meshi. 2018. Seq2Slate: Re-ranking and
Slate Optimization with RNNs. CoRR abs/1810.02019 (2018). arXiv:1810.02019
http://arxiv.org/abs/1810.02019

[6] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H.
Chi. 2018. Latent Cross: Making Use of Context in Recurrent Recommender
Systems. In Proceedings of the 2018 Conference on WSDM. ACM, 46–54.

[7] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, et al. 2021. Improving
language models by retrieving from trillions of tokens. CoRR abs/2112.04426
(2021). arXiv:2112.04426 https://arxiv.org/abs/2112.04426

[8] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. 2009. Expected
Reciprocal Rank for Graded Relevance. In Proceedings of the 18th ACM Conference
on Information and Knowledge Management (Hong Kong, China) (CIKM ’09).
621–630. https://doi.org/10.1145/1645953.1646033

[9] Dongmei Chen, Sheng Zhang, Xin Zhang, and Kaijing Yang. 2020. Cross-Lingual
Passage Re-RankingWith Alignment AugmentedMultilingual BERT. IEEE Access
8 (2020), 213232–213243.

[10] Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yixing Fan, and Xueqi Cheng. 2022.
GERE: Generative Evidence Retrieval for Fact Verification. In Proceedings of the
2022 Conference on SIGIR (SIGIR ’22). 2184–2189. https://doi.org/10.1145/3477495.
3531827

[11] J. Shane Culpepper, Charles L. A. Clarke, and Jimmy Lin. 2016. Dynamic Cut-
off Prediction in Multi-Stage Retrieval Systems. In Proceedings of the 21st Aus-
tralasian Document Computing Symposium (Caulfield, VIC, Australia) (ADCS
’16). Association for Computing Machinery, New York, NY, USA, 17–24. https:
//doi.org/10.1145/3015022.3015026

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Association for Computational Linguistics, Minneapolis,
Minnesota, 4171–4186. https://doi.org/10.18653/v1/N19-1423

[13] Yufei Feng, Yu Gong, Fei Sun, et al. 2021. Revisit Recommender System in the
Permutation Prospective. CoRR abs/2102.12057 (2021).

[14] Yufei Feng, Binbin Hu, Yu Gong, Fei Sun, Qingwen Liu, and Wenwu Ou. 2021.
GRN: Generative Rerank Network for Context-wise Recommendation. ArXiv
abs/2104.00860 (2021).

[15] Norbert Fuhr. 2008. A probability ranking principle for interactive information
retrieval. Inf. Retr. 11, 3 (2008), 251–265.

[16] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang.
2020. Retrieval augmented language model pre-training. In International confer-
ence on machine learning. PMLR, 3929–3938.

[17] Guangda Huzhang, Zhenjia Pang, Yongqing Gao, Yawen Liu, Weijie Shen, Wen-
Ji Zhou, Qing Da, Anxiang Zeng, Han Yu, Yang Yu, and Zhi-Hua Zhou. 2021.
AliExpress Learning-To-Rank: Maximizing Online Model Performance without
Going Online. IEEE Transactions on Knowledge and Data Engineering PP (07
2021), 1–1. https://doi.org/10.1109/TKDE.2021.3098898

[18] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bo-
janowski, Armand Joulin, and Edouard Grave. 2022. Unsupervised Dense Infor-
mation Retrieval with Contrastive Learning. arXiv:2112.09118 [cs.IR]

[19] Gautier Izacard and Edouard Grave. 2021. Leveraging Passage Retrieval with
Generative Models for Open Domain Question Answering. In Proceedings of the
16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, EACL 2021, Online, April 19 - 23, 2021, Paola Merlo, Jörg
Tiedemann, and Reut Tsarfaty (Eds.). Association for Computational Linguistics,
874–880. https://doi.org/10.18653/v1/2021.eacl-main.74

[20] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Trans. Inf. Syst. 20, 4 (2002), 422–446. https://doi.org/10.
1145/582415.582418

[21] Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. 2017. TriviaQA:
A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehen-
sion. In Proceedings of the 2017 Conference on ACL. Association for Computational
Linguistics, Vancouver, Canada, 1601–1611. https://doi.org/10.18653/v1/P17-

1147
[22] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell Wu,

Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval
for Open-Domain Question Answering. In Proceedings of the 2020 Conference on
EMNLP. Association for Computational Linguistics, 6769–6781.

[23] Omar Khattab, Keshav Santhanam, Xiang Lisa Li, et al. 2023. Demonstrate-Search-
Predict: Composing retrieval and language models for knowledge-intensive NLP.
arXiv:2212.14024 [cs.CL]

[24] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In Proceedings of the 2015 Conference on ICLR, Yoshua Bengio and Yann
LeCun (Eds.).

[25] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee,
Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M.
Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural Questions: A
Benchmark for Question Answering Research. Transactions of the Association for
Computational Linguistics 7 (2019), 452–466. https://doi.org/10.1162/tacl_a_00276

[26] Yen-Chieh Lien, Daniel Cohen, and W. Bruce Croft. 2019. An Assumption-Free
Approach to the Dynamic Truncation of Ranked Lists. In Proceedings of the 2019
Conference on ICTIR. ACM, 79–82.

[27] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2023. Lost in the Middle: How Language Models
Use Long Contexts. arXiv:2307.03172 [cs.CL]

[28] Weiwen Liu, Qing Liu, Ruiming Tang, Junyang Chen, Xiuqiang He, and Pheng-
Ann Heng. 2020. Personalized Re-ranking with Item Relationships for E-
commerce. In Proceedings of the 2020 Conference on CIKM. ACM, 925–934.

[29] Yixiao Ma, Qingyao Ai, Yueyue Wu, Yunqiu Shao, Yiqun Liu, Min Zhang, and
Shaoping Ma. 2022. Incorporating Retrieval Information into the Truncation of
Ranking Lists for Better Legal Search. In Proceedings of the 2022 Conference on
SIGIR (SIGIR ’22). Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3477495.3531998

[30] Mohammad Norouzi, Samy Bengio, Zhifeng Chen, Navdeep Jaitly, Mike Schuster,
Yonghui Wu, and Dale Schuurmans. 2016. Reward Augmented Maximum Likeli-
hood for Neural Structured Prediction. In Proceedings of the 2016 Conference on
NIPS. 1723–1731.

[31] Liang Pang, Jun Xu, Qingyao Ai, Yanyan Lan, Xueqi Cheng, and Jirong Wen.
2020. SetRank: Learning a Permutation-Invariant Ranking Model for Information
Retrieval. In Proceedings of the 2020 Conference on SIGIR. ACM, 499–508.

[32] Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun,
Jian Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, and Dan Pei. 2019. Personalized
re-ranking for recommendation. In Proceedings of the 13th ACM Conference on
RecSys 2019. ACM, 3–11.

[33] Hao Qian, Qintong Wu, Kai Zhang, Zhiqiang Zhang, Lihong Gu, Xiaodong Zeng,
Jun Zhou, and Jinjie Gu. 2022. Scope-aware Re-ranking with Gated Attention
in Feed. In The Fifteenth ACM International Conference on WSDM 2022. ACM,
804–812.

[34] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010. LETOR: A benchmark collection
for research on learning to rank for information retrieval. Information Retrieval
13 (2010), 346–374.

[35] Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui
Wang, Michael Bendersky, and Marc Najork. 2021. Are Neural Rankers still
Outperformed by Gradient Boosted Decision Trees?. In Proceedings of the 2021
Conference on ICLR. OpenReview.net.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. 21 (2020), 140:1–140:67.

[37] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100,000+ Questions for Machine Comprehension of Text. In Proceed-
ings of the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics, Austin, Texas, 2383–2392.
https://doi.org/10.18653/v1/D16-1264

[38] Prajit Ramachandran, Barret Zoph, andQuoc V. Le. 2018. Searching for Activation
Functions. In Proceedings of the 2018 Conference on ICLR. OpenReview.net.

[39] S.E. Robertson. 1977. THE PROBABILITY RANKING PRINCIPLE IN IR. Journal
of Documentation 33, 4 (1977), 294–304.

[40] Stephen E. Robertson, Steve Walker, and Micheline Hancock-Beaulieu. 1995.
Large Test Collection Experiments on an Operational, Interactive System: Okapi
at TREC. Inf. Process. Manag. 31, 3 (1995), 345–360.

[41] Falk Scholer, Andrew Turpin, and Mark Sanderson. 2011. Quantifying Test
Collection Quality Based on the Consistency of Relevance Judgements (SIGIR
’11). Association for Computing Machinery, New York, NY, USA, 1063–1072.
https://doi.org/10.1145/2009916.2010057

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Proceedings of the 2017 Conference on NIPS. 5998–6008.

[43] ChenWu, Ruqing Zhang, Jiafeng Guo, Yixing Fan, Yanyan Lan, and Xueqi Cheng.
2021. Learning to Truncate Ranked Lists for Information Retrieval. In Proceedings

9

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1810.02019
http://arxiv.org/abs/1810.02019
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2112.04426
https://doi.org/10.1145/1645953.1646033
https://doi.org/10.1145/3477495.3531827
https://doi.org/10.1145/3477495.3531827
https://doi.org/10.1145/3015022.3015026
https://doi.org/10.1145/3015022.3015026
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/TKDE.2021.3098898
https://arxiv.org/abs/2112.09118
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://arxiv.org/abs/2212.14024
https://doi.org/10.1162/tacl_a_00276
https://arxiv.org/abs/2307.03172
https://doi.org/10.1145/3477495.3531998
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1145/2009916.2010057

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, May 13–17, 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

of the 2021 Conference on AAAI. AAAI Press, 4453–4461.
[44] Yunjia Xi, Weiwen Liu, Xinyi Dai, Ruiming Tang, Weinan Zhang, Qing Liu,

Xiuqiang He, and Yong Yu. 2021. Context-aware Reranking with Utility Maxi-
mization for Recommendation. ArXiv (2021).

[45] Yunjia Xi, Weiwen Liu, Jieming Zhu, Xilong Zhao, Xinyi Dai, Ruiming Tang,
Weinan Zhang, Rui Zhang, and Yong Yu. 2022. Multi-Level Interaction Reranking
with User Behavior History. In Proceedings of the 2022 Conference on SIGIR,
Vol. abs/2204.09370.

[46] Shicheng Xu, Liang Pang, Huawei Shen, Xueqi Cheng, and Tat-Seng Chua. 2023.
Search-in-the-Chain: Towards Accurate, Credible and Traceable Large Language
Models for Knowledge-intensive Tasks. arXiv:2304.14732 [cs.CL]

[47] Ziying Yang. 2017. Relevance Judgments: Preferences, Scores and Ties. In Pro-
ceedings of the 2017 Conference on SIGIR. ACM, 1373. https://doi.org/10.1145/
3077136.3084154

[48] Emine Yilmaz, Manisha Verma, Nick Craswell, Filip Radlinski, and Peter Bailey.
2014. Relevance and Effort: An Analysis of Document Utility. In PProceedings
of the 2014 Conference on CIKM. ACM, 91–100. https://doi.org/10.1145/2661829.
2661953

[49] Tao Zhuang, Wenwu Ou, and Zhirong Wang. 2018. Globally Optimized Mutual
Influence Aware Ranking in E-Commerce Search. In Proceedings of the 2018
Conference on IJCAI. ijcai.org, 3725–3731.

A APPENDIX
A.1 Details of Datasets

Table 6: Details of feature-based datasets for web search.

Dataset #Queries #Queries #Doc #Doc #Feature
Train Test Train Test

MSLR30K 18,919 6,306 2,270k 753k 136
Yahoo! 19,944 6,983 473k 165k 700
Istella 20,317 9,799 7,325k 3,129k 201

Table 6 shows the details of feature-based datasets for web search.
Each sample in these datasets is a feature vector extracted by tradi-
tional learning-to-rank method such as matching, BM25 and pager-
ank.

A.2 Relevance Capturing in Truncation
We explore the ability of truncation models to capture the relevance
of documents. The relevance of the documents at the truncation
point (i.e, the first truncated document) can reflect the ability of the
truncation model to understand document relevance. On the one
hand, if the document at the truncation point is high-relevant, it
means that the truncation model misunderstands the relevance of

the document and truncates the high-relevant document, leading
to the negative impact on the metric (i.e. DCG). On the other hand,
if the document at the truncation point is low-relevant, it at least
proves that the truncation model can distinguish low-relevant doc-
uments. Figure 6 shows the relevance distribution of the documents
at the truncation point obtained from different models. The result
shows that the documents at the truncation point obtained from
GenRT have lower relevance, which indicates that GenRT has the
strongest ability to capture the relevance of documents in trunca-
tion compared with the other baselines. This performance comes
from joint modeling of reranking and truncation, which enables
the truncation to take full advantage of the modeling information
of document relevance in reranking. While separation between
reranking and truncation makes the two cannot share information
well.

0 1 2 3 4
Relevance

0.0

0.1

0.2

0.3

0.4

0.5

D
is
tri
bu
tio
n

AttnCut
LeCut
LeCut+JOTR
GenRT

(a) MSLR 30k

0 1 2 3 4
Relevance

0.0

0.1

0.2

0.3

0.4

0.5

D
is
tri
bu
tio
n

AttnCut
LeCut
LeCut+JOTR
GenRT

(b) Yahoo!

0 1 2 3 4
Relevance

0.0

0.1

0.2

0.3

0.4

0.5

D
is
tri
bu
tio
n

AttnCut
LeCut
LeCut+JOTR
GenRT

(c) Istella

Figure 6: Relevance distribution of the first truncated documents. X-axis is the relevance. Y-axis represents the distribution of
the first truncated document with the corresponding relevance out of all first truncated documents. For low-relevant (0 and 1)
documents, the higher the value the better, for high-relevant (2, 3 and 4) documents, the lower the value the better.

10

https://arxiv.org/abs/2304.14732
https://doi.org/10.1145/3077136.3084154
https://doi.org/10.1145/3077136.3084154
https://doi.org/10.1145/2661829.2661953
https://doi.org/10.1145/2661829.2661953

	Abstract
	1 Introduction
	2 Related Work
	2.1 Reranking in List-aware Retrieval
	2.2 Truncation in List-aware Retrieval

	3 Method
	3.1 Global Dependency Encoder
	3.2 Sequential Dependency Decoder
	3.3 Training and Inference

	4 Experiments
	4.1 Experiment Settings
	4.2 Performance on Web Search
	4.3 Performance on Retrieval-augmented LLMs
	4.4 Analysis

	5 Conclusion
	References
	A Appendix
	A.1 Details of Datasets
	A.2 Relevance Capturing in Truncation

