
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

NB+: An improved Naïve Bayesian algorithm

Appavu alias Balamurugan ⇑, Ramasamy Rajaram, S. Pramala, S. Rajalakshmi, C. Jeyendran,
J. Dinesh Surya Prakash
Department of Information Technology, Thiagarajar College of Engineering, Madurai 15, India

a r t i c l e i n f o

Article history:
Received 17 June 2008
Received in revised form 26 September
2010
Accepted 26 September 2010
Available online 7 October 2010

Keywords:
Data mining
Classification
Naïve Bayesian algorithm
Conflicting data
Lazy learning

a b s t r a c t

A novel algorithm named NB+ which is an extended version of the traditional Naïve Bayesian algorithm
has been presented in this paper. An exception occurs when there is an equal probability for the class
label value in the Naïve Bayesian algorithm. The approach aims to suggest a solution with the help of
a partial matching method. Consequently, the classification accuracy has drastically improved. Experi-
mental evaluation has been done on various databases to show that NB+ algorithm outperforms the tra-
ditional Naïve Bayesian algorithm.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

In data mining we sort, extract and establish relationships
between huge amounts of data. Potentially useful information
from large datasets or databases can be extracted. We can relate
data mining and enterprise resource planning (ERP) to identify pat-
terns during the analysis of the large sets of transaction data.

Classification in data mining is a procedure where grouping of
information is done based on certain traits or characteristics. In
the learning step or the training phase of a classification algorithm,
analysis of the training set is done to build the classifier Y = f(X),
which can be called as a mapping function can predict the associ-
ated class label Y for a given tuple X. This can represented as either
rules or decision tress or formulae.

In the second step, while measuring the predictive accuracy of
the classifier we use the training set in order to get an optimistic
estimate. A test set consisting of test tuples and their correspond-
ing class labels is used. These randomly selected tuples are inde-
pendent of the training tuples and are not used in the model
generation. If the accuracy of the classifier is considered accept-
able, it can then be used to classify unknown sample. There are
many types of classifiers like Bayesian classification, classification
by decision tree induction, and back propagation.

Since the Naïve Bayes algorithm’s conditional independence
assumption is rarely true, efforts are being made to improve the
efficiency of this algorithm. Other aspects of knowledge discovery,
such as identification of relevant features and inconsistent data are

only of secondary importance to the Naïve Bayes algorithm. It also
cannot classify a particular kind of record when the training data
satisfy the constraint given below:

1. The probability of every class label attribute is evenly distrib-
uted among the distinct attribute values.

The NB+ algorithm presented in this paper aims at deciding the
correct class label value when the training data have the above men-
tioned constraints. It is important to solve this problem because
there are several real world datasets where the classification of
the given unknown sample has to be accurate. For example in a
dataset belonging to a hospital repository with various symptoms
as their attributes and final diagnosis as the class value, it is very
essential that a more precise classification is done to get a correct
diagnosis. If we get a sample from a patient having symptoms that
do not exactly match any tuple in our dataset, then this ‘closely
matching attribute selection’ method aids in diagnosing the disease
more accurately, rather than a random pick as in the traditional
Naïve Bayes algorithm. This paper conducts a series of tests on the
real world data to evaluate the approach. The approach described
is general and can be used to analyze not only real world data but
also other types of databases. The paper is organized in the follow-
ing manner: Section 2 defines related works in this area. Section 3
portrays the problem handled in this paper. Section 4 explains our
proposed algorithm with experimental examples. Section 5 gives a
note of comparison between the Naïve Bayes classifier and the pro-
posed algorithm, highlighting its advantages. Finally, Section 6 sum-
marizes the proposed algorithm and concludes the paper.
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2. Related works

The Naïve Bayes classifier (NB) has been a widely researched
classification model, used in many cases as a benchmark for com-
parison to new methods. The elegant simplicity and apparent accu-
racy of NB even when the independence assumption is violated [6]
fosters the on going interest in the model. Much of the current re-
search is based on the idea that ‘‘small alterations” to NB in the lit-
erature is growing fast. As there is an abundance of proposed
adjustments to NB in the literature to find the model with the cor-
rect adjustments for a particular type of data would mean an
empirical analysis of many models. This would lead to a result only
applicable to that data. This study uses a form of meta-analysis to
give a broader result. Meta-analysis is a technique for comparing
different studies to try and draw a concensus of option [50]. It is
used mainly in the social sciences, biology and psychology,
[13,23]. Meta-analysis has been used rarely in pattern recognition
with a meta-analysis of classification-algorithms given by Lu et al.
[40], a meta-analysis of face recognition algorithms given by Phil-
lips and Newton [30] and most recently a landscape of clustering
algorithms given by Chen et al. [14]. The idea behind Bayesian net-
works is given in [29]. A unique joint probability distribution over
the set of features is defined by the network.

Boosting is a machine learning technique that focuses the learn-
ing of a model on the cases that are hard to classify. The first poly-
nomial-time boosting algorithm was proposed by Schapire [37].
This was improved upon by Freund [9] to make it more efficient.
This improvement was optimal in many cases but had practical
drawbacks. Adaboost proposed by Freund [10] solved many of
the practical difficulties of boosting and is widely used today. An
introduction to boosting algorithms is given by Schapire [38]. A
comparison study by Lewis [22] concentrated in applying NB to
textual data. The literature of the Naïve Bayes algorithm has been
well-studied in [7,19,25,36,39]. The various approaches proposed
in the literature have been reviewed to improve the performance
of the Naïve Bayes algorithm.

In a decision tree Naïve Bayes hybrid (NBTree) [18], a standard
decision tree is grown with a NB deployed at the leaves, creating a
penultimate layer of the tree. These classifiers leave a classifier la-
bel as the output when a new case is submitted to them, acting as
the final decision of the tree. Iterative Bayes (IB), [11] begins with a
contingency table built by the standard NB. An iterative procedure
then updates these tables by cycling through all the training exam-
ples. In ensemble feature selection Naïve Bayes (EFSNB) [44], an
ensemble of NB classifiers is created. Randomly sampled subset
of the original set of features is used to train each NB. In each of
the following methods, sequential forward selection Naïve Bayes
(SFSNB), sequential backward selection Naïve Bayes (SBSNB), ge-
netic algorithm Naïve Bayes (GANB), [43] an ensemble of NB clas-
sifiers is created. Each NB is trained on a subset of the original
features. The selection of the feature subsets is achieved in a
sequential forward selection, in a sequential backward selection
and by genetic algorithm methods, respectively. Xiao et al. [15]
introduces group method of data handling theory to Bayesian clas-
sification and proposed GMBC algorithm for structure identifica-
tion of Bayesian classifiers. On the classification performance of
TAN and general Bayesian networks given by [26].

In a tree augmented Bayesian network (TAN), [8] a network is
grown in which none of the class labels have a parent. For every fea-
ture the class variable is assigned as its parent and at most one other
feature, making TAN a one-dependency network. In the probability
dependence Tree2 (PDT2), [16] the network is initialized to NB. Each
node is considered for the super parent in turns by extending edges
to every node which does not have a parent, besides the class node.
In sequential forward selection and Naïve Bayes (SFS to Bayes), [21]

a subset of the original feature is chosen by sequential forward
selection. A NB is then trained using only these selected features.
Using sequential forward selection and joining (SFSJ), and sequen-
tial backward selection and joining (SBSJ), [28] the subsets of fea-
tures are selected for the NB classifier. At each step of the feature
selection, one of the features may be added to (SFS), or removed
from (SBS) the subset, or a feature may be joined to another one al-
ready present in the subset. In a K-Dependence Bayesian network
(KDEPBN), [35] the space of k dependencies is searched for the most
appropriate Bayesian network for the problem. The value of k is
decided by the user. Aggregating one dependence estimators
(AODE), [48] the class-conditional pdf, P(xjwk) is approximated as
the average of n ‘‘mini”-pdfs, one for each feature. In lazy Bayesian
rules (LBR), [52] each test case LBR generates an appropriate rule
with a conjunction of feature-value pairs as its antecedent and a lo-
cal NB as its consequent. The conditional independence tree (CI-
Tree), [51] represents a joint distribution over all the features
explicitly defining the conditional dependencies among them. Chen
et al. [14] proposed a selective Bayes classifier for classifying incom-
plete data based on gain ratio.

Independent component analysis Naïve Bayes (ICABayes), [2]
the independent analysis of an n-dimensional random vector is
the linear transform which minimises the statistical dependence
between its components. The lazy version of the tree augmented
network (Lazy-TAN), [47] is the lazy variant of the super parent
algorithm PDT2, [16]. The interval estimation Naïve Bayes (IENB),
[33] calculates confidence intervals for the NB point estimations
of P(xijwj). In a random tree augmented network (RTAN), [24] an
ensemble of TAN classifiers is grown. It is then integrated using
the majority voting method.

In the adapted boosting for Naïve Bayes (Active Boost), [46] a
new test case is labelled and then added to the training set. The up-
dated data set is then used to train another NB. Adjusted probabil-
ity Naïve Bayes classifier [49] uses the probability distributions
produced by NB. Homologous Naïve Bayes (HNB), [12] takes
advantage of the knowledge that multiple cases submitted for
labeling come from the same unknown class. In fuzzy Naïve Bayes
(FNB), [41] each feature value of x is accompanied by a degree of
membership in the interval [0,1]. The interpretable boosted Naïve
Bayes (IBNB), [32] method aims to improve NB by boosting. Yet it
still has an end product that is interpretable by the user. The semi-
Naïve Bayes (SNB), [20] partitions the feature into groups using
statistical tests of independence. Kernel-based and joining Naïve
Bayes (KJNB), [4] features are joined if they are highly correlated.
In Naïve Bayes committees (NBC), [53] a set of NB classifiers are
generated in sequential trials. NB base is generated as the founder
of the ‘committee’ using all of the features.

In boosted Naïve Bayes (BNB), [5] the boosting strategy is ap-
plied to NB. The training samples are selected by the bootstrap
method. In clustered Naïve Bayes (CNB), [45] the examples from
each class are clustered. The training data is then relabeled using
the cluster labels. The neuro-fuzzy Naïve Bayes (NFNB), [27] de-
rives fuzzy classifiers from data using neural-network inspired
learning. The method maps NB to a neuro-fuzzy classifier. Mini-
mum Description Length (MDL) principle in Naïve Bayes (MNB),
[17] starts with a Bayesian network representing class-conditional
independence. Selective Bayesian classifier (SBC), [31] runs the
decision tree algorithm, C 4.5 on 10% of the training set. The fea-
tures on the first three levels of the decision tree are selected. This
is repeated five times on different 10% selections of the training
data. In boosted levelled Naïve Bayes trees (BLNBT), [42] a standard
decision tree of user defined depth is grown as in the Nbtree [18]
method. The extended Bayes (EB), [34] finds sets of dependent fea-
tures using information gain measure. [1] Presented a novel algo-
rithm named ID6NB for extending decision tree induced by
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Quinlan’s non-incremental ID3 algorithm. Chinese text classifica-
tion by the Naïve Bayes Classifier and the associative classifier with
multiple confidence threshold values given in [40].

3. Problem definition

The constraint due to which both the Naïve Bayes algorithm fail
to classify a particular kind of instance is given below:

‘‘The probability of every class attribute is evenly distributed
among the distinct attribute values”.

In the case of Naïve Bayes algorithm, incorrect and inaccurate
classification occurs due to the random assignment of class labels.

3.1. Resolving problem in the Naïve Bayes

The Naïve Bayes algorithm fails when ‘‘The probability of every
class label attribute is evenly distributed among the distinct attri-
bute values in the training dataset”.

Here the condition P(XjCi) P(Ci) = P(XjCj) P(Cj) for 1 6 j 6m, j – i,
where m refers to number of classes C1, C2. . .Cm

3.1.1. Illustrative example on a real world dataset
Consider Table 1 which contains the dataset possessing the con-

straints mentioned in the problem definition.
The data samples are described by the attributes BI-RADS, Age,

Shape, Margin and Density. The class label attribute, Severity, has
two distinct values (namely, {malignant, benign}). Let C1 corre-
spond to the class Severity = ‘‘malignant” and C2 correspond to
the class Severity = ‘‘benign”. The unknown sample we wish to
classify is X = (BI-RADS = ‘‘E”, Age = ‘‘Senior”, Shape = ‘‘Irregular”,
Margin = ‘‘Circumscribed”, Density = ‘‘iso”)

P (Severity = ‘‘malignant”) = 1/2
P (Severity = ‘‘benign”) = 1/2
P (BI-RADS = ‘‘E” jseverity = ‘‘malignant”) = 1/2
P (BI-RADS = ‘‘E” jseverity = ‘‘benign”) = 1/2
P (Age = ‘‘senior” jseverity = ‘‘malignant”) = 1/2
P (Age = ‘‘senior” jseverity = ‘‘benign”) = 1/2
P (shape = ‘‘irregular” jseverity = ‘‘malignant”) = 1/2
P (shape = ‘‘irregular” jseverity = ‘‘benign”) = 1/2
P (margin = ‘‘circumscribed” jseverity = ‘‘malignant”) = 1/2
P (margin = ‘‘circumscribed” jseverity = ‘‘benign”) = 1/2
P (density = ‘‘iso” jseverity = ‘‘malignant”) = 1/2
P (density = ‘‘iso” jseverity = ‘‘benign”) = 1/2

Using the above probabilities we obtain.

P(X jseverity = ‘‘malignant”) = 1/2 � 1/2 � 1/2 � 1/2 � 1/2 = 1/32
P(X jseverity = ‘‘benign”) = 1/2 � 1/2 � 1/2 � 1/2 � 1/2 = 1/32
P(X jseverity = ‘‘malignant”) P(X jseverity = ‘‘malignant”) = /32 �
1/2 = 0.0156
P(X jseverity = ‘‘benign”) P(X jseverity = ‘‘benign”) = 1/32 � 1/2 =
0.0156.

From this example it is clear that the Naïve Bayes algorithm
fails when

PðXjCiÞPðCiÞ ¼ PðXjCjÞPðCjÞ

Since there is equal probability for Severity = ‘‘malignant” and
Severity = ‘‘benign”, we are in a fix. This is the problem found in
the Naïve Bayes algorithm. In order to resolve the problem the im-
proved Naïve Bayes is introduced.

4. The proposed learning algorithm

NB update procedure to handle the cases where the class prob-
abilities are exactly the same is given below.

1. Let A1. . .An be the total number of predictive Attributes in both
the test and training data where n refers to maximum number
of predictive Attributes.

2. Let C1. . .Cm be the different class labels assigned to the training
data where m refers to the number of classes.

3. The Influence Factor is calculated for the training data. The for-
mula for the Influence Factor is given below:

Influence Factor IðXjCiÞ ¼
NðXjCiÞ
NðCiÞ

where N(X jCi) = Number of records in which attribute value X
has the class label Ci.
N(Ci) = Total Number of records in which the class label is Ci.
The Influencing Factor gives the dependability of the attri-
bute value on the class attribute. The Steps involved are:

(i) The records having the same class label values are extracted
from the training dataset and made into separate sub tables.
If there are ‘m’ lass labels then we have ‘m’ numbers of sub
tables with ‘i’ records in each sub table.

(ii) The Influence Factor is found for all the attribute values. The
values with highest Influence Factor are only considered
and their corresponding attributes are called Influencing
Attributes. Other attributes are called Non Influencing
Attributes.

4. The test data is compared with every record in the training set
and let ‘q’ be the maximum number of attributes that match.
As q < n, many different combinations of q attribute sets are
possible which are called ‘Available Attribute Combinations’
(AAC).

5. If there is only one AAC then
(i) If all the records inside this AAC have a class label say Ci

then that class label is directly assigned to the test data.
(ii) If the records inside this AAC have different class labels say

Ci, Cj, Ck. . . then the occurrence of each of the class label is
found.
a. If there is equal occurrence for each of the class label

then we go for the next AAC with q � 1 attributes. For
e.g. consider an AAC with class labels Ci and Cj. If both
the class labels Ci and Cj occur twice in the AAC then
we can’t decide upon the class label and hence we go
for the next AAC with q � 1 attributes.

Table 1
Mammographic mass dataset.

BI-RADS Age Shape Margin Density Severity

C M Round Obscured High Benign
E Y Irregular Spiculated High Malignant
C Y Irregular Spiculated Low Benign
A M Lobular Ill-defined Low Malignant
A Y Round Ill-defined High Malignant
E S Irregular Spiculated Iso Malignant
A S Irregular Circumscribed Iso Benign
D S Oval Circumscribed High Benign
A Y Oval Spiculated Low Benign
B S Oval Obscured Low Malignant
B Y Oval Obscured Iso Malignant
E S Irregular Obscured Iso Benign
D S Irregular Circumscribed Fat Malignant
C Y Lobular Microlobulated High Malignant
B Y Irregular Ill-defined Fat Benign
C M Round Microlobulated High Malignant
D S Irregular Circumscribed Iso Malignant
E S Lobular Microlobulated Iso Benign
D Y Round Microlobulated High Benign
B M Lobular Ill-defined High Benign
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b. If the occurrence of each one of the class labels in the
AAC is different, then the one with the greatest occur-
rence is selected as the class label for that AAC and the
same is assigned to the test data.

6. If there two or more AACs, then the occurrence of the class label
in the records of each one of the AACs is found. If there is equal
occurrence for every class label, such AAC’s are called EAAC i.e.,
‘Equal occurrence in Available Attribute Combination’ else it is
called NAAC i.e., ‘Non-Equal occurrence in Available Attribute
Combination’. The EAACs are dropped and they are not used
to classify the test data. If all the obtained AACs are EAACs,
we go for the next iteration.

7. If an AAC is NAAC, the one with the greatest occurrence is
selected as the class label for that particular AAC. Similarly
the class labels for all the NAACs’ are found.
(a) If all the NAACs result in the same class label, that class

label is assigned to the test data.
(b) If each NAAC results in different class label, the above men-

tioned Step 3 is executed i.e., the Influence Factor is found for
all the NAACs separately. The NAACs’ with the highest number
of Influencing Attributes are considered for the classification.
(i) If there is only one NAAC with highest number of

Influencing Attributes, its class label is directly
assigned to the test data.

(ii) If there are two or more NAACs with highest number
of Influencing attributes then

a. If the class label for all these NAACs are the same, it is
directly assigned to the test data.

b. If the class label is different for different NAACs, the
occurrence of each of the class label is found.

� If there is equal occurrence for each of the class label, we
go for the next AAC with q � 1 attributes.

� If the occurrence of each of the class label in the NAAC is
different, the one with the greatest occurrence is selected
as the class label for that NAAC and the same is assigned
to the test data.

5. Implementation of the proposed algorithm

To prove the efficiency of the proposed algorithm we consider
Table 1 used in the problem definition. When the probability of
every class label is evenly distributed among the distinct attribute
values, exceptions occur in the Naïve Bayes algorithm.

In the case of NB the class label values are equal. So an updated
procedure has been proposed to decide upon the class label. The
unknown sample we wish to classify is X = (BI-RADS = ‘‘E”,
Age = ‘‘Senior”, Shape = ‘‘Irregular”, Margin = ‘‘Circumscribed”,
Density = ‘‘iso”).

5.1. Finding influence factor

Step 1: Divide the training data based on the class label. Here in
this example the records having the class label ‘malig-
nant’ are separated from the records having the class
label value ‘benign’ and so two tables are got. Training
data having class label malignant and benign are shown
in Table 2a and 2b.

Step 2: Find the influence factor for all the attribute values. The
influence factor gives the dependability of the attribute
value on the class label.

Influence Factor IðXjCiÞ ¼
NðXjCiÞ
NðCiÞ

where N(X jCi) = Number of records in which attribute value X has
the class label Ci.N(Ci) = Total Number of records in which the class
label is Ci.

Step 2a: Find the influence factor for all the attribute values of
the Table 2a.
BI-RADS Attribute:
I (BI-RADS = ‘‘A” jseverity = ‘‘malignant”) = 2/10
I (BI-RADS = ‘‘B” jseverity = ‘‘malignant”) = 2/10
I (BI-RADS = ‘‘C” jseverity = ‘‘malignant”) = 2/10
I (BI-RADS = ‘‘D” jseverity = ‘‘malignant”) = 2/10
I (BI-RADS = ‘‘E” jseverity = ‘‘malignant”) = 2/10
The impact factor is equal for all the attributes. So the
attribute ‘BI-RADS’ does not influence the class label.
AGE Attribute:
I(age = ‘‘senior” jseverity = ‘‘malignant”) = 4/10
I (age = ‘‘medium” jseverity = ‘‘malignant”) = 2/10
I (age = ‘‘young” jseverity = ‘‘malignant”) = 4/10
The impact factor is more for the attribute values senior
and young. So the values ‘S’ and ‘Y’ of the ‘AGE’ attribute
have greater influence on the class label.
SHAPE Attribute:
I (shape = ‘‘irregular” jseverity = ‘‘malignant”) = 4/10
I (shape = ‘‘oval” jseverity = ‘‘malignant”) = 2/10
I (shape = ‘‘lobular” jseverity = ‘‘malignant”) = 2/10
I (shape = ‘‘round” jseverity = ‘‘malignant”) = 2/10
The impact factor is more for the attribute value irregu-
lar. The value ‘Irregular’ of the ‘SHAPE’ attribute influ-
ences the class label more.
MARGIN Attribute:
I (margin = ‘‘circumscribed” jseverity = ‘‘malignant”) = 2/10
I (margin = ‘‘spiculated” jseverity = ‘‘malignant”) = 2/10
I (margin = ‘‘obscured” jseverity = ‘‘malignant”) = 2/10
I (margin = ‘‘ill-defined” jseverity = ‘‘malignant”) = 2/10
I (margin = ‘‘microlobulated” jseverity = ‘‘malignant”) = 2/
10
The impact factor is equal for all the attributes. So the
attribute ‘MARGIN’ does not influence the class label.
DENSITY Attribute:
I (density = ‘‘iso” jseverity = ‘‘malignant”) = 3/10
I (density = ‘‘fat” jseverity = ‘‘malignant”) = 1/10

Table 2a
Training data having class label malignant.

BI-RADS Age Shape Margin Density Severity

E Y Irregular Spiculated High Malignant
A M Lobular Ill-defined Low Malignant
A Y Round Ill-defined High Malignant
E S Irregular Spiculated Iso Malignant
B S Oval Obscured Low Malignant
B Y Oval Obscured Iso Malignant
D S Irregular Circumscribed Fat Malignant
C Y Lobular Microlobulated High Malignant
C M Round Microlobulated High Malignant
D S Irregular Circumscribed Iso Malignant

Table 2b
Training data having class label benign.

BI-RADS Age Shape Margin Density Severity

C M Round Obscured High Benign
C Y Irregular Spiculated Low Benign
A S Irregular Circumscribed Iso Benign
D S Oval Circumscribed High Benign
A Y Oval Spiculated Low Benign
E S Irregular Obscured Iso Benign
B Y Irregular Ill-defined Fat Benign
E S Lobular Microlobulated Iso Benign
D Y Round Microlobulated High Benign
B M Lobular Ill-defined High Benign
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I (density = ‘‘low” jseverity = ‘‘malignant”) = 2/10
I (density = ‘‘high” jseverity = ‘‘malignant”) = 4/10
The impact factor is more for the attribute value ‘high’.
Its influence on the class label is more.

Step 2b: Find the influence factor for all the attribute values of
the Table 2b.
BI-RADS Attribute:
I (BI-RADS = ‘‘A” jseverity = ‘‘benign”) = 2/10
I (BI-RADS = ‘‘B” jseverity = ‘‘benign”) = 2/10
I (BI-RADS = ‘‘C” jseverity = ‘‘benign”) = 2/10
I (BI-RADS = ‘‘D” jseverity = ‘‘benign”) = 2/10
I (BI-RADS = ‘‘E” jseverity = ‘‘benign”) = 2/10
The impact factor is equal for all the attributes. So none
of the attribute values influence the class label.
AGE Attribute:
I (age = ‘‘senior” jseverity = ‘‘benign”) = 4/10
I (age = ‘‘medium” jseverity = ‘‘benign”) = 2/10
I (age = ‘‘young” jseverity = ‘‘benign”) = 4/10
The impact factor is more for the attribute values senior
and young. So the values ‘S’ and ‘Y’ of the ‘AGE’ attribute
have greater influence on the class label.
SHAPE Attribute:
I (shape = ‘‘irregular” jseverity = ‘‘benign”) = 4/10
I (shape = ‘‘oval” jseverity = ‘‘benign”) = 2/10
I (shape = ‘‘lobular” jseverity = ‘‘benign”) = 2/10
I (shape = ‘‘round” jseverity = ‘‘benign”) = 2/10
The impact factor is more for the attribute value ‘irregu-
lar’. It has greater influence on the class label.
MARGIN Attribute:
I (margin = ‘‘circumscribed” jseverity = ‘‘benign”) = 2/10
I (margin = ‘‘spiculated” jseverity = ‘‘benign”) = 2/10
I (margin = ‘‘obscured” jseverity = ‘‘benign”) = 2/10
I (margin = ‘‘ill-defined” jseverity = ‘‘benign”) = 2/10
I (margin = ‘‘microlobulated” jseverity = ‘‘benign”) = 2/
10
The impact factor is equal for all the attributes. So none
of the attribute values influence the class label.
DENSITY Attribute:
I (density = ‘‘iso” jseverity = ‘‘benign”) = 3/10
I (density = ‘‘fat” jseverity = ‘‘benign”) = 1/10
I (density = ‘‘low” jseverity = ‘‘benign”) = 2/10
I (density = ‘‘high” jseverity = ‘‘benign”) = 4/10
The impact factor is more for the attribute value high. It
influences the class label more.

5.2. Applying updated procedure on the training set

Step 1: We find the tuples which closely match the unknown sam-
ple. They are shown in Table 3.

Step 2: We now pick out the closely matching attributes from
these closely matching tuples. They are shown in Table 4.
The second set of closely matching attributes from Table 4
is shown in Table 5.

Step 3: We now find that the class label values ‘malignant’ and
‘benign’ are present in equal probabilities in both the 4-
attribute sets. A tie occurs and we are not able to decide
upon the class label value.

Step 4: We now go for the second iteration. We consider attri-
butes that are one less than the previous set of attributes.
So we now consider three attributes among the four attri-
butes, i.e., from the selected set of closely matching attri-
butes we find the next AAC.

Step 5: We now look up the table to find the corresponding AAC of
closely matching tuples. They are shown in Tables 6–9,
respectively.

Table 3
Closely matching tuple from Table 1.

BI-RADS Age Shape Margin Density Severity

E S Irregular Spiculated Iso Malignant
E S Irregular Obscured Iso Benign
D S Irregular Circumscribed Iso Malignant
A S Irregular Circumscribed Iso Benign

Table 4
First set of closely matching attributes from Table 3.

BI-RADS Age Shape Margin Density Severity

E S Irregular Spiculated Iso Malignant
E S Irregular Obscured Iso Benign

In the first one it is BI-RADS, Age, Shape and Density and in the second one it is Age,
Shape, Margin and Density. We take four closely matching attributes here. Selected
attributes: BI-RADS, Age, Shape and Density.

Table 5
Second set of closely matching attributes from Table 4.

BI-RADS Age Shape Margin Density Severity

D S Irregular Circumscribed Iso Malignant
A S Irregular Circumscribed Iso Benign

Selected Attributes: Age, Shape, Margin and Density.

Table 6
AAC I from Table 1.

BI-RAD Age Density Severity

E S Iso Benign
E S Iso Benign
E S Iso Malignant

Class label-Benign Influence factor-1 (age).

Table 7
AAC II from Table 1.

Age Shape Margin Severity

S Irregular Circumscribed Malignant
S Irregular Circumscribed Malignant
S Irregular Circumscribed Benign

Class label-Malignant Influence factor-2 (age, shape).

Table 8
AAC III from Table 1.

Age Shape Density Severity

S Irregular Iso Malignant
S Irregular Iso Benign
S Irregular Iso Malignant
S Irregular Iso Benign

Class label-Undefined Influence factor-2 (age, shape) This table-III is not taken for
consideration.

Table 9
AAC IV from Table 1.

Shape Margin Density Severity

Irregular Circumscribed Iso Malignant
Irregular Circumscribed Iso Benign

Class label-Undefined Influence factor-1 (shape) This table-IV is not taken for
consideration.
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AAC-I
AAC-II
AAC-III
AAC-IV

Step 6: Attributes that influence the class label are – AGE, SHAPE,
and DENSITY (From Step 2.a) Attribute values that influ-
ences the class label are:

Age S, Y
Shape Irregular
Density High

Comparing the test data with these values, the attribute values
– S, Irregular only match. So only ‘age’ and ‘shape’ attributes are
considered for calculating the Influence Factor in Step 5.

Step 7: Since there are two influencing attributes in the AAC- II we
consider the same and assign the class label as ‘Malignant’
for the unknown Test sample.

6. Performance analysis

Experiment with the 10-fold cross validation method has been
carried out to evaluate the prediction accuracy of proposed NB+,
and to compare the experimental results with NB as our bench-
marks. Eighteen public datasets have been chosen from the UCI
machine learning repository [3]. Information about these datasets
is listed in Table 10.

The comparison between NB with NB+ in testing accuracy with
the 10-fold cross validation method is listed in Table 11. We have
extended the original datasets to contain tuples satisfying the con-
straint referred to in the problem definition.

It is clear from the experimental results that the average classi-
fication accuracy of our proposed IPMM method is better than NB
in 10-fold cross validation. The proposed method significantly im-
proves the efficiency of NB by handling the cases where the class
probabilities are exactly the same. This is represented in Fig. 1.
The graphs below clearly explain that there is a significant rise in
the accuracy of the classification. The experimental results show
that the average accuracy rate of the proposed method is 85.65%.

7. Summary and conclusion

In this paper an updated procedure has been proposed for the
Naïve Bayes algorithm to solve one of its disadvantages. Under
the conditions mentioned in this paper equal probability occurs
in the class values and so the Naïve Bayes classifier fails to classify
the record correctly. When an unknown test sample is to be classi-
fied from a finite training dataset with constraints, a better result
has been shown to be obtained on the proposed NB+ algorithm is
applied. As the method of closely matching tuples is used in the

Table 10
Detailed description of dataset used in the experiment.

Dataset No. of instances No. of attributes No. of classes

Monks’ 432 7 2
Iris 150 4 3
All electronics 602 4 2
Wisconsin breast

cancer
699 10 2

Hepatitis 155 19 2
Cleveland heart disease 303 13 5
Diabetes 768 20 2
Glass 214 10 7
Chess 3196 36 2
Pima 768 8 2
Soyabean large 307 35 4
Vehicle 946 18 4
Vote 435 16 2
Ionosphere 351 34 2
Telugu vowel 871 3 6
Wine 178 13 3
Yeast 1484 8 10
Zoo 101 17 7

Table 11
A comparison of NB, and NB+ method.

Dataset NB Proposed IPMM

Monk 1 74.99 77.80
Monk 2 65.81 68.10
Monk 3 97.23 98.80
Iris 93.13 95.40
All Electronics 91.25 94.10
Wisconsin Breast Cancer 96.4 98.10
Hepatitis 86.3 89.20
Cleveland Heart Disease 82.5 85.12
Diabetes 75.5 77.18
Glass 69.66 73.80
Chess 87.15 92.19
Pima 75.81 82.95
Soybean-Large 91.29 96.10
Vehicle 58.28 66.40
Vote 90.34 93.77
Average 82.37 85.78

Fig. 1. Predictive accuracy between NB and the Proposed NB+.
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NB+ algorithm, a minimal set of attributes (at least one) is neces-
sarily present when the test sample is matched up with the train-
ing data. The classification is done considering the influence of the
minimal set of attributes on the class label value of the training set.
A decision made by the NB+ algorithm based on the above criteria
has a higher degree of accuracy than the traditional NB algorithm
which makes a random pick of the class label. For achieving a high-
er degree of accuracy even when the ‘minimal set’ contains only
one attribute, it is necessary to extend the proposed work and con-
struct a more robust and scalable classifier in the near future.
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