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Abstract

We present a simple, sample-efficient algorithm for introducing large but directed learn-
ing steps in reinforcement learning (RL), through the use of evolutionary operators. The
methodology uses a population of RL agents training with a common experience buffer,
with occasional crossovers and mutations of the agents in order to search efficiently through
the policy space. Unlike prior literature on combining evolutionary search (ES) with RL,
this work does not generate a distribution of agents from a common mean and covariance
matrix. It also does not require the evaluation of the entire population of policies at every
time step. Instead, we focus on gradient-based training throughout the life of every policy
(individual), with a sparse amount of evolutionary exploration. The resulting algorithm is
shown to be robust to hyperparameter variations. As a surprising corollary, we show that
simply initialising and training multiple RL agents with a common memory (with no further
evolutionary updates) outperforms several standard RL baselines.

1 Introduction

Reinforcement learning (RL) has always faced challenges with stable learning and convergence, given its
reliance on a scalar reward signal and its propensity to reach local optima (Sutton et al., 1999). While
tabular RL admits theoretical analysis, there are few guarantees in the case of Deep RL. In this paper, we
propose a novel way of combining Evolutionary Search (ES) with standard RL that improves the probability
of converging to the globally optimal policy.

1.1 Motivation

Researchers have attempted to improve the sample complexity and global optimality of RL through paral-
lelisation (Mnih et al., 2016), different batching techniques for training (Schaul et al., 2015; Khadilkar &
Meisheri, 2023), reward shaping (Andrychowicz et al., 2017; Strehl & Littman, 2008), and improved explo-
ration (Badia et al., 2020). However, all of these still focus on local incremental updates to the policies,
using standard gradient-based methods. This is a barrier to effective exploration of the policy space and is
heavily dependent on initialisation.

More recently, some studies have sparked a renewed interest in meta-heuristics such as evolutionary methods
(Michalewicz et al., 1994) for solving RL problems. The original approach encompasses methods such as
genetic algorithms (Mitchell, 1998) and simulated annealing (Van Laarhoven et al., 1987), and is based
on randomised search with small or large steps, with acceptance/rejection criteria. Such algorithms have
recently been extended to policy optimisation with an approach known as neuro-evolution (Salimans et al.,
2017; Such et al., 2017). We describe these approaches in detail in related work, along with an intriguing
compromise that combines local RL improvements with global evolutionary steps. We then propose a sample
efficient version of the basic idea.
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1.2 Related work

The earliest evolutionary search (ES) strategies for RL problems are collectively known as covariance matrix
adaptation (CMA-ES), introduced by Hansen & Ostermeier (1997; 2001). Intuitively, this strategy favors
previously selected mutation or crossover steps as a way to direct the search, but is difficult to scale. Hansen
et al. (2003) proposed a methodology to improve convergence for a larger number of parameters, as applicable
to neural networks, using higher rank (roughly analogous to higher moments of functions) information from
the covariance matrix. Applications of CMA-ES to reinforcement learning (RL) include theoretical studies
that focus on reliable ranking among policies (Heidrich-Meisner & Igel, 2009a;b), but their implementation is
through direct policy search (without gradient-based updates) (Schmidhuber & Zhao, 1999), which is limited
to simple algebraically modeled environments (Neumann et al., 2011).

CMA-ES has been used in realistic environments using different simplifications. The first option is to ab-
stract out the problem into a simpler version. Zhao et al. (2019) take this approach for traffic signal timing.
Alternatively, one may combine CMA-ES with a heuristic (Prasad et al., 2020), or with classification-based
optimisation (Hu et al., 2017), or with Bayesian optimization (Le Goff et al., 2020). A more fundamental ap-
proach was taken by Maheswaranathan et al. (2019) using low-dimensional representations of the covariance
matrix. In all these cases, scalability and the parallel evaluation requirements are challenging. Some studies
have used ES to find the optimal architecture of the RL agent (Metzen et al., 2008; Liu et al., 2021). Yet
another variant is to combine ES and RL for neural architecture search (Zhang et al., 2021). With increasing
compute availability, some studies have also attempted to drop back to fundamental ES approaches to solve
RL problems, with these ideas being referred to as ‘neuro-evolution’. Salimans et al. (2017) and Such et al.
(2017) both propose the use of ‘neuro-evolution’ to solve RL problems, but both methods rely on detailed
reparameterization and large distributed parallel evaluation of policies.

More recently, a practical version of CMA-ES based on the cross-entropy method (CEM) (Mannor et al.,
2003) has been proposed. Effectively, it is a special case of CMA-ES derived by setting certain parameters to
extreme values (Stulp & Sigaud, 2012). The specific version of our interest is CEM-RL by Pourchot & Sigaud
(2018), which maintains a mean actor policy πµ and a covariance matrix Σ across the population of policies.
In each iteration, n versions of the actor policies are drawn from this distribution (see Figure 1, left). Half
of the policies are directly evaluated in the environment, while the other half receive one actor-critic update
step and are then evaluated. The best n/2 policies are then used to update πµ and Σ. The drawback of this
approach is that the entire population is drawn from a single distribution, which can reduce the effectiveness
of exploration. A generalised asynchronous version of CEM-RL was introduced by Lee et al. (2020), but this
also has similar exploration and sampling limitations.

Apart from active RL and ES combination, some studies have used ES for experience collection and RL for
training. Khadka & Tumer (2018) use a fitness metric evaluated at the end of the episode, similar to the
Monte-Carlo backups used in the proposed work. However, their focus is specifically on sparse reward tasks.
The mechanism is to let only the ES actors interact with the environment, collecting experience. A separate
(offline) RL agent learns policies based on this experience. Periodically, the RL policy replaces the weakest
policy in the ES population. The drawback of this method is that the exploration as well as parallelisation is
available only to ES, and the gradient based learning is limited to a single RL policy. Another method that
also collects experience with a separate policy is GEP-PG (Colas et al., 2018), which uses a goal exploration
process instead of standard ES.

1.3 Contributions and usage

In this paper, we focus on methods and environments that do not require the massively parallel architectures
of typical ES methods. We are likely to encounter such constraints wherever parallel simulations are expensive
or even unavailable (for example, physical environments or finite element methods). Therefore we assume
that only one policy is able to interact with the environment in one episode.

We believe that the proposed algorithm (called Evolutionary Operators for Reinforcement Learning or
EORL) has the following novel and useful characteristics. First, it is very simple to implement, and modifica-
tions to standard RL and ES algorithms are minimal. Second, it requires far fewer environment interactions
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Figure 1: Comparison of the CEM-RL framework from literature (on the left) with the proposed EORL
framework (on the right), using a population of n policies. In CEM-RL, the whole population is generated
in every time step and needs to be constantly evaluated by the environment. In EORL, every episode is run
with a single policy. The common memory buffer is used to train all the individual policies. Occasionally,
an evolutionary operator replaces the weakest policy in the population.

than other RL+ES approaches. Specifically, only one policy interacts with the environment at a time, thus
making EORL equivalent in sample complexity to standard RL approaches1. Third, the existence of multiple
policies allows the algorithm to have more diverse experiences than single-policy RL. Fourth, the introduc-
tion of Evolutionary Operators gives us the ability to take large search steps in the policy space, and to
explore regions that are already promising.

It is important to note that EORL is complementary to existing off-policy RL approaches, such as ones
with prioritised experience or directed exploration. Furthermore, it applies to both value based and policy
gradient based methods, so long as they are off-policy.

2 Problem Description

We consider a standard Reinforcement Learning (RL) problem under Markov assumptions, consisting of a
tuple (S,A, R, P, γ), where S denotes the state space, A the set of available actions, R is a real-valued set of
rewards, and P : (S,A → S) is a (possibly stochastic) transition function, and γ is a discount factor. In this
paper, we limit the possible solution approaches to value-based off-policy methods (Sutton & Barto, 2018),
although we shall see that the idea is extensible to other regimes as well. The chosen solution approaches
focus on regressing the value of the total discounted return,

Gt = rt + γ rt+1 + γ2 rt+2 + . . . + γT −tRT ,

where rt is the step reward at time t, the total episode duration is T , and the terminal reward is RT . Further
in this paper, we consider finite-time tasks with a discount factor of γ = 1, although this is purely a matter
of choice and not an artefact of the proposed method. Therefore the goal of any value-based algorithm is
to compute a Q−value approximation, Q(st, at) ≈ Gt =

∑T
t rt. The standard approach for converting this

approximation (typically implemented by a neural network in a form called Deep Q Networks (Mnih et al.,
2015)) into a policy π, is to use an ϵ−greedy exploration strategy with ϵ decaying exponentially from 1 to 0
over the course of training. Specifically,

π := choose at =
{

arg max Q(st, at) w.p. (1− ϵ)
uniform random from A w.p. ϵ

(1)

1We implicitly assume that parallelisation at least does no harm to the rate of convergence compared to standard RL
approaches, while of course hoping that it actually converges even faster than standard RL
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Figure 2: Intuition behind EORL. The two policies π1 and π2 are at good performance levels, while πk is
performing poorly. At some random point, it can be replaced either through crossover between π1 and π2,
or through mutation of one of the policies. This retains a high level of diversity.

Off-policy methods use a memory buffer B to train the regressor Q(st, at), and their differences lie in (i)
the way the buffer is managed, (ii) the way memory is queried for batch training, (iii) the way rewards rt

are modified for emphasising particular exploratory behaviours, and (iv) the use of multiple estimators Q
for stabilising the prediction. All the algorithms (proposed and baselines) in this paper follow this broad
structure. In the next section, we formally define EORL, a method that utilises multiple Q estimators for
improving the convergence of the policy.

3 Methodology

3.1 Intuition: How and why EORL works

The intuition behind Evolutionary Operators for Reinforcement Learning (EORL) is simple, and is based on
the well-established principles of parallelised random search (Price, 1977). In a high-dimensional optimiza-
tion scenario, it is a well-understood phenomenon that the probability of reaching the global optimum is
improved by spawning multiple random guesses and searching in their local neighbourhoods (Karp & Zhang,
1993; Zhigljavsky, 2012). EORL reuses this result by implementing parallelisation through multiple policy
instances, and local search through standard gradient-based value updates. A more exhaustive search can
be achieved by augmenting the local perturbations by occasional (and structured) large perturbations, in
this case implemented using genetic algorithms (Mitchell, 1998). This by itself is not a novel concept, and
has been used several times before.

The novelty of EORL lies in the observation that it is suboptimal to collapse the whole population into
a single distribution in every time step (Pourchot & Sigaud, 2018) or to restrict the interaction of RL to
offline samples (Khadka & Tumer, 2018). Instead, it is more efficient to continue local search near good
solutions (see Figure 2), and to eliminate ones that are doing badly. The computational resources freed
up by elimination are used to thoroughly search in promising neighborhoods. Therefore, EORL retains
the gradient-based training for all but the worst policies in the current population, and even then replaces
these policies only occasionally. Even the simple act of spawning multiple initial guesses, with no further
evolutionary interventions, is enough to outperform most baseline algorithms.

We submit the following logical reasons for why EORL should work well.

First, EORL utilises the improved convergence characteristics of multiple random initial solutions, as de-
scribed by Martí et al. (2013). The underlying theory is that of stochastic optimisation methods (Robbins
& Monro, 1951), which introduced the concept of running multiple experiments to successively converge on
the optimum.

Second, EORL retains the local improvement process for more promising solutions, for an extended period.
This is quite important. It is well-known that the input-output relationships in neural networks are dis-
continuous (Szegedy et al., 2013). The arg max selection criterion in equation 1 can lead to a significant
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deviation in the state-action mapping on the basis of incremental updates to the Q approximation. This
cannot be predicted with single-point evaluation of policies.

Third, we know that RL has a tendency to converge to locally optimal policies (Sutton et al., 1999). This is
true even of Deep RL methods because unlike supervised settings, the samples generated by online Deep RL
methods are correlated. Training multiple versions with different random initializations is one workaround
to this problem. Alternatively, one can use multiple policies being evaluated in parallel. However, both
these approaches are very compute-heavy. EORL can be thought of as a tradeoff, where multiple randomly
initialized policies are retained, but only one representative interacts with the environment at one time.

3.2 Evolutionary operators

The evolutionary operators that we define are described below, and are based on standard operators defined
by Michalewicz et al. (1994). We assume that the policy πi is parameterised by Θi, a vector composed of
P scalar elements (weights and biases) θi,p, with p ∈ {1, . . . , P}. All policies πi contain the same number
of parameters, since they have the same architectures. In the following description, we represent the newly
spawned child policy by πc, and the parent policies by πi and πj (the latter only when applicable). The
‘fitness’ of πi is given by a scalar value Ai, further elaborated later.

O-1 Random crossover: The cross ratio is given by (τ, 1− τ) = softmax(Ai, Aj). Then every parameter of
πc is chosen with probability τ from πi with a multiplicative noise factor. Specifically,

θc,p =
{

θi,p · N (1, σ) w.p. τ

θj,p · N (1, σ) w.p. (1− τ)
,

where N (1, σ) is a random variable drawn from a normal distribution with mean 1. The multiplicative noise
scales parameters proportional to their magnitude, but importantly it does not change the expectation
of the product. Since intuitively neural networks are multiplicative chains of weights, perturbing with
multiplicative noise ensures that the signal is not unnecessarily dimmed. In this paper, we use σ = 0.25.

O-2 Linear crossover: We again work with a cross ratio of (τ, 1 − τ) = softmax(Ai, Aj), but now the τ
simply defines the weight for averaging of the parameters:

θc,p = (τ θi,p + (1− τ) θj,p) · N (1, σ)

O-3 Random mutation: This operator only has a single parent policy πi, and generates πc solely with
multiplicative noise:

θc,p = θi,p · N (1, σ)

3.3 Specification

The formal definition of EORL is given in Algorithm 1, which is best understood after we define the following
terms. Consider a scenario where there is a fixed population size of n policies πi, i ∈ {1, . . . , n} throughout
the course of training. The fitness Ai of policy πi undergoes a soft update after every episode that is run
according to πi. Specifically,

Ai ← q Ai + (1− q)
T∑

t=1
rt, (2)

for an episode of T steps that runs using πi and with a user-defined weight q. All Ai are initialised to 0
at the start of training. If a child policy πc is generated using an evolutionary operator (Section 3.2) from
policies πi and πj in ratio τ : (1 − τ), then the fitness is reset according to Ac ← τ Ai + (1 − τ) Aj . Note
that the update equation 2 is carried out only for one policy per episode. Furthermore, using a large value
of q (we use q = 0.9) keeps the estimates stable in stochastic environments.

The choice of policy in every episode is made using ϵ−greedy principles. With a probability ϵ, a policy is
chosen randomly among the n available policies. With a probability (1− ϵ), we choose the best-performing
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Algorithm 1 Implementation of Evolutionary Operators for RL (EORL)
1: Define: Population size n, crossover and mutation rates κ and µ
2: Initialise: Buffer B ← ∅, fitness values Ai ← 0, i ∈ {1, . . . , n}
3: for episode e ∈ {1, . . . , E} do ▷ Outer coordination loop
4: Reset environment
5: Choose agent policy πe from {π1, . . . , πn} ▷ See section 3.3
6: Run episode using πe until timeout or goal reached
7: Add samples to buffer B
8: Train πi, i ∈ {1, . . . , n} with independently sampled mini-batches from B
9: if evolutionary operation is called for then

10: Choose operator from O-1 , O-2 , O-3 ▷ See section 3.2
11: Pick parent policy/policies from πi, i ∈ {1, . . . , n} from top-50 percentile
12: Pick child policy πk, k = arg min(Ai) to be replaced
13: Replace πk with newly generated policy
14: Set Ak ← weighted average of parent policy/policies
15: end if
16: end for

policy among the group, based on their values of Ai. If there are multiple policies at the highest level of Ai,
a policy is chosen randomly among the best-performing subgroup. The only exception to this rule is when
a newly generated (through evolutionary operators) policy exists; in this case the newly generated policy
is chosen to run in the next episode. At the end of every episode, an evolutionary operator may be called
according to one of the following two schemes:

Uniform Random: We define fixed values of crossover rate κ and mutation rate µ. At the end of every
episode e out of a total training run of E episodes, a crossover operation may be called with a probability
κ(1− e/E), decaying linearly over the course of training. If called, one of the two crossover operators (O-1
and O-2 ) is chosen with equal probability. If the crossover operation is not called, the mutation operator
O-3 is called with probability µ(1− e/E). In both cases, the parent policy/policies is/are chosen randomly
from the top 50 percentile of policies.

Active Random: An obvious alternative to the predefined annealing schedule as described above, is an
active or dynamic probability of calling the evolutionary operators. We first define a ‘reset’ point e∗, which
is the episode when either (i) an evolutionary operator was last called, or (ii) a total reward in excess of
95% of the best observed reward was last collected. The policy selection is identical to the uniform random
method (above) until the exploration rate ϵ decays to 0.05. At this point, the multiplier for rates κ and µ
switches from (1 − e/E) to [(e − e∗)/n], clipped between (1 − e/E) and 5. Essentially, we linearly increase
the probability of an evolutionary operation if good rewards are not being consistently collected towards the
end of training.

4 Results

4.1 Baseline algorithms

The results presented in this paper compare 5 versions of EORL with 6 baseline value-based off-policy
algorithms. Among EORL versions, three versions use the Uniform Random evolutionary option, with (κ, µ)
given by (0.05, 0), (0.05, 0.05), and (0.1, 0.05) respectively. They are referred to respectively as EORL-05-
00, EORL-05-05, and EORL-10-05 in results. The fourth version of EORL (EORL-ACTV) uses the Active
Random procedure. Finally, we run a baseline without evolutionary operations but with n initialised policies
(EORL-FIX) as an ablation study of the effect of crossovers and mutations. This is effectively EORL with
κ = µ = 0.

All the 11 algorithms use identical architectures as described below, with learning rates of 0.01, a memory
buffer size of 100 times the timeout value of the environment, a training batch size of 4096 samples, and
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training for 2 epochs at the end of each episode. All 10 random seeds for each algorithm and environment
version are run in parallel on a 10−core CPU with 64 GB RAM. The number of policies for CEM-RL and
the various versions of EORL is set to n = 8 based on ablation experiments described later.

We briefly describe the remaining baselines here. More details are given in Appendix A. Vanilla DQN (called
VAN) (Mnih et al., 2015) and Contrastive Experience Replay (CER) (Khadilkar & Meisheri, 2023) are run
with standard hyperparameter settings as described by the authors (apart from the ones defined above).
Prioritised Experience Replay (PER) (Schaul et al., 2015) is run with β increasing linearly from 0.4 to 1.0
during training, and α = 0.6. Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) uses a goal
buffer size of 8 to match the number of parallel policies in EORL, containing the terminal states of the best
8 episodes during training. Count-based exploration (CBE) (Strehl & Littman, 2008) augments the true
step reward provided by the environment with a count-based term β/

√
1 + N(s, a), where N is the number

of visits to the particular state-action pair (s, a). We use β = 1 and un-normalised N after a reasonable
amount of fine-tuning.

Cross-Entropy Method (CEM-RL) was introduced by Pourchot & Sigaud (2018). We have to modify the
basic procedure in order to retain comparable sample complexity. Instead of parallel evaluation of all n
policies, we run them in round-robin fashion to minimise update latency. If the outcome is in the bottom
50 percentile, the policy is replaced (with probability 0.5) by another drawn from the best existing policies.
Otherwise, it is put in the pool of RL policies. All policies in the RL pool (roughly 3/4 of the population)
are trained using gradient-based updates after every episode.

Note that we do not compare EORL with methods such as Rainbow (Hessel et al., 2018), because we wish
to observe the individual contributions of the modifications given above. Since EORL is a complementary
(rather than competing) approach to each of the above, it can always be used as one more tool in addition
to the ensemble included in Rainbow.

4.2 Environments

We select the following two simple environments for demonstrating the results. We also emphasise that EORL
is designed to work in conjunction with other off-policy algorithms, and so the point of experimentation is
to emphasise its consistency of performance. Experiments on more complex environments are deferred to
future work because of a lack of timely access to the required compute infrastructure.

4.2.1 1D bit-flipping

The first task is adapted from Hindsight Experience Replay (Andrychowicz et al., 2017). We consider a
binary number of m bits, with all zeros being the starting state, and all ones as the goal state. The agent
observes the current number as the m-dimensional state. The action set of the agent is a one-hot vector of
size m, indicating which bit the agent wants to flip. The step reward is a constant value of −1

5m for every
bit flip that does not result in the goal state, and a terminal reward of +10 for arriving at the goal state.
There is a timeout of 5m moves. In a modified version of the environment, we introduce a ‘subgoal’ state
consisting of alternating zeros and ones. The agent gets a reward of +10 if it gets to the goal after passing
through the subgoal, and only +1 if it goes directly to the goal. This modification increases the exploration
complexity of the environment.

All the algorithms in this version of the environment are trained on 10 random seeds, 400 episodes per seed,
and an ϵ−greedy decay multiplier of 0.99 per episode. All the agents (except HER) use a fully connected
network with an input of size m, two hidden layers of size 32 and 8 respectively with ReLU activation, and a
linear output layer of size m. Since HER augments the input state with the intended goal, its input size is
2m. Rewards are computed using Monte-Carlo style backups.

4.2.2 2D grid navigation with subgoals

The second environment is adapted from Contrastive Experience Replay (Khadilkar & Meisheri, 2023). We
consider an m × m grid, with the agent spawning at position [1, 1] in each episode, and the goal state at
position [m, m] as shown in Figure 3. There are 4 possible actions in each step, UP,DOWN,LEFT,RIGHT.
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Figure 3: A graphical illustration of the 2D grid environment, showing two subgoals. The significance of
different trajectories is explained in text.

Multiple versions of the same task can be produced by varying the effect of the subgoals I1 and I2 located
at [1, m] and [m, 1] respectively.

Subgoal 0: In the most basic version, visiting either or both subgoals on the way to the goal has no effect.
If tmax is the timeout defined for the task, the agent gets a reward of −1/tmax for every step that does not
lead to a goal, and a terminal reward of +10 for reaching the goal.

Subgoal 1: The exploration can be made more challenging by ‘activating’ one subgoal, I1. The agent gets
a terminal reward of +10 if it visits subgoal I1 at position [1, m] on the way to the goal, and a smaller
terminal reward of +1 for going to the goal directly without visiting I1. The other subgoal I2 has no effect.
Among the trajectories shown in Figure 3, the green and purple ones will get a terminal reward of +10, the
blue one gets +1, and the red one gets 0.

Subgoal 2+: In this case, both subgoals are activated. The agent gets a reward of +10 only if both I1 and
I2 are visited on the way to the goal (regardless of order between them). A terminal reward of +2 is given
for visiting only one subgoal on the way, and a reward of +1 is given for reaching the goal without visiting
any subgoals (blue= +1, purple= +2, green= +10, red= 0 in Figure 3).

Subgoal 2-: A final level of complexity is introduced by providing a negative reward for visiting only one
subgoal. The agent gets a reward of +10 only if both I1 and I2 are visited on the way to the goal (regardless
of order between them). A terminal reward of −1 is given for visiting only one subgoal on the way, and a
reward of +1 is given for reaching the goal without visiting any subgoals.

All the algorithms in this version of the environment are trained on 10 random seeds, but with varying
episode counts and decay rates based on complexity of the task. The timeout is set to 10 times the length of
the optimal path. All the agents (except HER) use a fully connected feedforward network with an input of
size 4 (consisting of normalised x and y position and binary flags indicating whether I1 and I2 respectively
have been visited in the current episode), two hidden layers of size 32 and 8 respectively with ReLU activation,
and a linear output layer of size 4. Since HER augments the input state with the intended goal, its input
size is 8. Rewards are computed using Monte-Carlo backups.

Introducing stochasticity: Finally, we create stochastic versions of each of the 2D environments by
introducing different levels of randomness in the actions. With a user-defined probability, the effect of any
action in any time step is randomised uniformly among the movement directions.

4.3 Experimental results

The saturation rewards (averaged over the last 100 training episodes) achieved by all algorithms on the 1D
environment are summarised in Table 1, with size m between 6 and 10. Among the algorithms, the Active
Random version of EORL has the highest average reward, as well as the greatest number of instances (four)
with the highest reward. All the algorithms fail to learn for the environment with m = 10 and 1 subgoal.
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Figure 4: Sample training plots, from [left] the 1D environment of size 6 without subgoals, and [right] the 2D
subgoal 2+ environment, size 8×8. Each algorithm is run for 10 random seeds, with shaded regions denoting
the standard deviation across random seeds. Full results in appendix.

A full set of training plots is included in Appendix C. Note also that HER results deviate from the original
paper Andrychowicz et al. (2017) because of the much shorter episode length, as well as the subgoal.

Along similar lines, Table 2 summarizes the results for the 2D navigation environment. There are many
variations possible in this case, in terms of subgoals, stochasticity, and grid size. Hence the full table (with
56 instances) is provided in Appendix B. The summary table also shows interesting characteristics, with
a Uniform Random version (κ = 0.05, µ = 0.0) outperforming the other environments in terms of average
reward as well as the number of times it is the best-performing algorithm. Although EORL-ACTV is fourth
in terms of average reward, it is ranked second in terms of best-results. Figure 4 shows a sample training
plot.

We make the following observations from a general analysis of the results. First, that the EORL algorithms
are dominant across the whole range of experiments, being the best-performing ones in 60 of 66 instances
across the two environments (with one instance – 1D, size 10, 1 subgoal – having no winners). This is
consistent with the ranking according to average rewards as well. Second, we note that the milder versions
of EORL (lower κ and µ) perform better for simpler environments, either with smaller size or with fewer
subgoals. We may conclude that harder environments need higher evolutionary churn, which is intuitive.
Third and most surprising, we see that EORL-FIX with n policies and no evolutionary operations consis-
tently outperforms all baselines apart from CEM-RL. This is a strong indication that the idea of running
multiple random initialisations within a single training has merit.
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Figure 5: Effect of number n of parallel policies being maintained by various algorithms. All the four EORL
versions are averaged for clarity, and the plots correspond to the average total reward in the last 100 episodes
of training for 10 random seeds. We consider 2D grid with size 16×16, 20×20, and 40×40 respectively, all
with 1 subgoal, trained for 1000 episodes at an ϵ decay rate of 0.995.
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Table 1: 1D bit-flipping environment results with a decay rate of 0.99 and 400 episodes, averaged over 10
random seeds. Reported values are average total reward in the last 100 episodes of training. The last row
indicates the number of experiments in which a particular algorithm was the best-performing.

Size Sub VAN CER HER PER CBE EORL CEM EORL EORL EORL EORL
goal FIX RL 05-00 05-05 10-05 ACTV

6 0 7.69 7.07 2.19 7.59 4.21 8.80 8.68 9.19 9.29 9.12 9.14
7 0 8.11 6.90 −0.77 5.62 0.11 7.06 8.20 8.90 8.22 8.52 8.86
8 0 4.78 2.78 −0.84 5.14 −0.95 4.02 3.90 6.05 4.78 5.04 4.49
9 0 0.79 −0.86 −1.00 −0.71 −1.00 −0.93 −0.27 0.01 1.03 −0.92 1.81
10 0 −1.00 −1.00 −1.00 −0.97 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −0.94
6 1 6.94 9.03 0.33 7.14 0.01 8.89 9.12 8.27 6.34 7.02 8.81
7 1 0.27 1.66 −1.00 0.96 −1.00 1.73 1.77 1.88 2.80 1.38 1.86
8 1 −0.58 −0.27 −1.00 −0.30 −1.00 −0.67 −0.52 −0.41 −0.73 0.43 −0.67
9 1 −0.99 −0.89 −1.00 −1.00 −1.00 −0.86 −1.00 −0.86 −0.86 −1.00 −0.78
10 1 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00
Average 2.50 2.34 −0.51 2.25 −0.26 2.60 2.79 3.10 2.89 2.76 3.16

Best results 0 0 0 0 0 0 1 1 2 1 4

Table 2: Summary of 2D grid results, aggregated over environment sizes for various subgoal versions and
stochasticity levels. There are a total of 56 variations. A full list of results is provided in Appendix B. The
environment sizes range from 8×8 to 80×80. Reported values are average reward in the last 100 episodes
of training. The last row indicates the number of experiments in which a particular algorithm was the
best-performing one (counted as 0.5 in case of ties).

Sub Stoch VAN CER HER PER CBE EORL CEM EORL EORL EORL EORL
goal FIX RL 05-00 05-05 10-05 ACTV

0 0.00 6.59 6.89 6.55 6.35 3.59 8.03 8.74 9.34 9.14 9.55 9.17
0 0.10 7.10 6.51 6.86 6.31 4.22 8.89 8.89 9.63 9.52 9.65 9.43
0 0.20 7.41 7.60 6.54 6.56 4.53 8.73 8.51 9.79 9.62 9.59 9.69
1 0.00 3.30 3.75 4.15 2.90 1.00 5.40 6.14 7.56 7.27 7.14 6.56
1 0.10 3.27 3.48 3.91 3.53 0.53 5.60 6.62 7.35 7.23 7.31 6.43
1 0.20 4.01 4.10 4.01 3.62 0.78 5.76 5.81 6.92 6.73 6.75 6.20

2+ 0.00 1.87 2.36 1.75 1.33 −0.19 2.69 2.75 3.16 3.08 2.99 3.34
2+ 0.10 1.99 3.05 2.81 1.91 0.37 3.15 3.58 3.78 3.34 3.83 3.50
2- 0.00 1.75 1.94 1.29 1.08 0.10 2.09 2.53 3.15 3.14 3.53 3.12

Average 4.43 4.65 4.48 4.02 1.84 5.96 6.32 7.16 6.98 7.10 6.77
Best results 1 3 0 0 0 6 0 19.5 9 8 9.5

4.4 Ablation to understand the effect of n

Apart from the crossover and mutation rates (of which we have already shown results with multiple combi-
nations), the only other design decision unique to EORL is the value of n, the size of the policy population.
Figure 5 shows the average reward in the last 100 episodes of training for 10 random seeds, for various
algorithms. The three Uniform Random and the Active Random version of EORL are averaged into a sin-
gle plot for visual clarity. We can see that all algorithms show a roughly increasing trend as n increases
from 2 to 12, with the relatively smaller environments (16×16 and 20×20) showing some signs of saturation
for n ≥ 8. This is why we choose n = 8 for the bulk of our experiments, as a compromise between the
computational/memory intensity and the performance level.

5 Conclusion and limitations

We showed that there is a simple way of introducing evolutionary ideas into reinforcement learning, without
increasing the number of interactions required with the environment.
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One obvious limitation of the proposed approach is its difficulty in adaptation to on-policy algorithms.
Specifically, the basis of EORL is to use samples collected by other policies for training any given policy in
the population. This directly violates the on-policy assumption. However, it is possible that some form of
policy similarity metric may be used to bridge this gap. This is a thread for future work.

Additionally, a more thorough investigation of the present version of EORL on a variety of environments is
under way, including those with continuous state-action spaces.
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A Details of baseline implementations

1. Vanilla DQN as described by Mnih et al. (2015), shortened to VAN in results.

2. Count-based exploration (CBE) as introduced by Strehl & Littman (2008). As per their MBIE-EB
model, we augment the true step reward provided by the environment with a count-based term
β/

√
1 + N(s, a), where N is the number of visits to the particular state-action pair (s, a). We use

β = 1 and un-normalised N after a reasonable amount of fine-tuning. Higher values of β led to
too much exploration considering the number of training episodes, while lower values of β behaved
identically to vanilla DQN.

3. Hindsight Experience Replay (HER), introduced by Andrychowicz et al. (2017). We use a goal
buffer size of 8 to match the number of parallel policies in EORL, containing the terminal states of
the best 8 episodes during training. HER is the only algorithm among the 11 which has a different
input size, in order to accommodate the goal target in addition to the state. The specifics are given
in Section 4.2.
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4. Prioritised Experience Replay (PER), introduced by Schaul et al. (2015). We use the hyperparameter
values as reported by Khadilkar & Meisheri (2023), with β increasing linearly from 0.4 to 1.0 during
training, and α = 0.6.

5. Contrastive Experience Replay (CER), proposed by Khadilkar & Meisheri (2023). Since the second
environment used in this paper is adapted from CER, we use the same hyperparameter settings
reported by the authors.

6. Cross-Entropy Method (CEM-RL), introduced by Pourchot & Sigaud (2018). For a fair comparison
with the other algorithms, we cannot spawn and evaluate the entire population of policies in every
episode (as originally proposed). Instead, we evaluate policies by choosing them in a round-robin
manner for every episode. If the outcome is in the bottom 50 percentile, the policy is replaced
(with probability 0.5) by another drawn from the best existing policies. Otherwise, it is put in the
pool of RL policies. All policies in the RL pool (roughly 3/4 of the population) are trained using
gradient-based updates after every episode.

7. Fixed population of policies (EORL-FIX). This is a basic version of EORL which spawns n policies
at the start and trains them throughout using gradient-based RL, with no evolutionary operations.
Effectively, this is EORL with κ = µ = 0.

For further details, please refer to the attached codes and readme file.

B Detailed tabulated results for all environments

Table 3: Full set of results on 2D navigation environment, averaged over 10 random seeds. Reported values
are average total reward in the last 100 episodes of training. Version of environment is given by the subgoals
column, and size indicates one side of the square (for example, size of 80 implies an 80×80 sized environment).
The number of episodes run for training each seed are given in the E column. Note that E = 1000 was
run with an ϵ decay rate of 0.995 per episode, E = 2500 was run with a decay rate of 0.998 per episode,
and E = 4000 with a decay rate of 0.999 per episode. The stochasticity (probability of choosing a random
action) is also listed. The last two rows provide aggregate results, with average total reward and the number
of times a given algorithm had the best performance in an experiment (counted as 0.5 for every tie between
two algorithms).

Size Sub Stoch E VAN CER HER PER CBE EORL CEM EORL EORL EORL EORL
goal FIX RL 05-00 05-05 10-05 ACTV

8 0 0.00 1000 7.64 6.90 9.63 7.70 7.93 8.58 9.65 9.58 9.75 9.71 9.71
12 0 0.00 1000 6.42 7.57 7.63 7.34 7.18 7.69 9.51 9.81 9.70 9.75 9.80
16 0 0.00 1000 8.71 8.81 9.38 8.75 6.46 9.88 9.59 9.78 9.86 9.71 9.74
20 0 0.00 1000 9.80 9.83 8.63 8.76 1.14 8.79 9.37 9.60 8.65 9.74 9.77
40 0 0.00 1000 6.40 5.44 3.12 5.54 0.92 8.80 9.46 9.35 9.69 9.40 9.84
60 0 0.00 1000 4.89 7.49 5.45 3.03 1.42 8.76 8.19 9.62 9.38 9.44 8.53
80 0 0.00 1000 2.29 2.21 2.02 3.35 0.09 3.69 5.40 7.66 6.94 9.06 6.78
8 0 0.10 1000 7.03 7.39 7.73 8.79 9.30 8.73 9.76 9.71 9.81 9.87 9.88
12 0 0.10 1000 8.60 8.29 9.74 7.54 8.13 8.78 9.68 9.86 9.82 9.81 9.86
16 0 0.10 1000 7.70 6.65 9.76 8.63 7.17 9.84 9.57 9.78 9.86 9.79 9.85
20 0 0.10 1000 8.40 8.69 7.27 9.76 3.57 9.89 9.73 9.87 9.81 9.84 9.86
40 0 0.10 1000 8.77 7.61 4.74 6.37 0.07 8.70 9.41 9.85 9.67 9.45 9.84
60 0 0.10 1000 6.22 5.34 7.16 1.93 2.10 8.76 7.72 9.82 9.15 9.56 9.44
80 0 0.10 1000 2.99 1.59 1.63 1.16 −0.82 7.55 6.36 8.51 8.55 9.26 7.31
8 0 0.20 1000 9.12 9.86 9.86 9.01 9.69 9.86 9.71 9.87 9.86 9.85 9.87
12 0 0.20 1000 9.47 9.26 8.75 9.60 7.35 9.87 9.70 9.76 9.82 9.79 9.77
16 0 0.20 1000 9.60 9.83 8.80 7.73 6.88 8.78 9.53 9.80 9.86 9.83 9.82
20 0 0.20 1000 9.16 8.15 7.47 8.79 5.02 9.87 9.69 9.86 9.79 9.83 9.84
40 0 0.20 1000 4.07 5.52 5.53 4.42 1.52 8.73 8.54 9.84 9.77 9.67 9.87
60 0 0.20 1000 4.42 4.41 4.19 3.10 1.06 7.48 7.99 9.74 9.78 9.32 9.78
80 0 0.20 1000 6.03 6.19 1.20 3.28 0.19 6.55 4.39 9.67 8.49 8.87 8.89
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Size Sub Stoch E VAN CER HER PER CBE EORL CEM EORL EORL EORL EORL
goal FIX RL 05-00 05-05 10-05 ACTV

8 1 0.00 1000 6.59 7.81 9.58 6.15 6.44 8.61 9.47 9.81 9.70 9.80 9.73
12 1 0.00 1000 5.80 6.89 6.58 7.76 4.85 8.69 8.71 9.66 8.74 7.83 9.69
16 1 0.00 1000 5.81 3.57 6.41 4.87 −0.75 5.36 6.94 9.79 9.60 9.59 7.97
20 1 0.00 1000 2.29 3.34 3.13 2.21 −0.99 8.67 9.44 7.79 9.59 7.91 6.15
40 1 0.00 1000 0.91 1.39 2.86 0.77 −0.82 2.14 3.53 4.11 4.90 4.08 4.22
40 1 0.10 1000 2.01 1.38 0.47 2.03 −0.87 5.97 5.29 5.52 4.14 6.76 4.56
60 1 0.00 1000 1.14 1.00 1.37 −1.00 −0.92 1.15 2.32 6.46 3.88 6.55 2.02
80 1 0.00 1000 0.59 2.29 −0.91 −0.47 −0.79 3.19 2.56 5.32 4.47 4.23 6.10
8 1 0.10 1000 7.68 6.56 8.73 7.55 4.96 7.65 9.78 9.83 9.76 9.69 9.77
12 1 0.10 1000 5.08 7.93 8.48 6.97 1.36 7.14 9.43 8.85 9.25 9.55 8.91
16 1 0.10 1000 3.85 2.40 6.79 6.07 0.91 7.90 8.29 9.85 7.91 8.62 7.81
20 1 0.10 1000 4.50 3.91 2.94 2.33 −0.87 5.33 8.42 8.90 8.75 7.66 5.92
60 1 0.10 1000 0.07 1.91 −0.47 0.26 −0.76 3.65 3.62 4.45 4.24 5.72 3.74
80 1 0.10 1000 -0.31 0.28 0.45 −0.52 −0.99 1.57 1.51 4.04 6.57 3.18 4.30
8 1 0.20 1000 9.76 9.73 9.57 8.67 5.67 9.80 9.41 9.84 9.82 9.76 9.64
12 1 0.20 1000 6.67 6.59 7.28 5.91 1.89 7.77 8.72 9.62 7.65 8.72 7.88
16 1 0.20 1000 5.34 3.37 5.62 5.62 0.04 4.27 5.65 9.70 9.70 9.26 8.56
20 1 0.20 1000 2.03 5.31 4.36 4.16 −0.52 5.38 7.48 6.77 7.38 7.77 5.97
40 1 0.20 1000 2.77 2.37 1.50 0.29 −0.07 5.67 3.05 4.95 4.43 5.40 4.65
60 1 0.20 1000 0.57 1.27 −0.62 0.82 −0.72 5.09 3.97 4.24 4.32 4.06 3.27
80 1 0.20 1000 0.90 0.07 0.34 −0.11 −0.82 2.33 2.36 3.30 3.82 2.29 3.42
8 2+ 0.00 2500 4.13 6.06 6.54 3.10 2.36 8.13 8.60 9.50 8.94 8.81 9.77
12 2+ 0.00 2500 3.07 3.21 1.04 2.33 −0.13 2.21 2.45 2.72 3.28 2.70 4.26
16 2+ 0.00 2500 1.52 2.22 1.27 1.13 −1.00 1.42 1.56 1.70 1.70 1.67 1.62
20 2+ 0.00 2500 1.24 1.64 1.14 1.40 −0.82 1.71 1.66 1.78 1.72 1.60 1.92
40 2+ 0.00 4000 0.40 0.56 0.52 0.26 −0.57 1.32 1.52 1.80 1.46 1.70 1.51
60 2+ 0.00 4000 0.86 0.47 −0.02 −0.23 −0.97 1.36 0.69 1.47 1.38 1.44 0.99
8 2+ 0.10 2500 3.61 6.51 7.90 3.67 2.20 6.49 8.68 9.83 8.18 8.67 8.84
12 2+ 0.10 2500 0.82 2.02 1.32 1.16 0.60 2.65 2.56 1.79 1.77 3.32 1.84
16 2+ 0.10 2500 1.98 2.15 1.31 1.58 −0.70 1.79 1.54 1.67 1.80 1.64 1.80
20 2+ 0.10 2500 1.53 1.54 0.73 1.22 −0.62 1.65 1.54 1.82 1.63 1.70 1.52
8 2- 0.00 2500 3.69 5.62 3.96 2.19 3.02 5.75 7.68 7.97 9.78 9.65 8.86
12 2- 0.00 2500 0.75 0.89 0.38 0.89 −0.85 0.75 0.87 2.72 0.92 2.62 1.79
16 2- 0.00 2500 1.81 0.51 0.28 0.51 −0.77 0.93 0.87 0.95 0.94 0.95 0.93
20 2- 0.00 2500 0.74 0.75 0.55 0.72 −1.00 0.94 0.69 0.95 0.94 0.89 0.91

Average 4.43 4.65 4.48 4.02 1.84 5.96 6.32 7.16 6.98 7.10 6.77
Best results 1 3 0 0 0 6 0 19.5 9 8 9.5
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Figure 6: Sample training plots for 1D bit-flipping environment. Each algorithm is run for 10 random seeds,
with shaded regions denoting the standard deviation across seeds. The plots correspond to (i) size 6, subgoals
0, (ii) size 7, subgoals 0, and (iii) size 8, subgoals 0.
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Figure 7: Sample training plots for 1D bit-flipping environment. Each algorithm is run for 10 random seeds,
with shaded regions denoting the standard deviation across seeds. The plots correspond to (i) size 9, subgoals
0, (ii) size 10, subgoals 0, and (iii) size 6, subgoals 1.
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Figure 8: Sample training plots for 1D bit-flipping environment. Each algorithm is run for 10 random seeds,
with shaded regions denoting the standard deviation across seeds. The plots correspond to (i) size 7, subgoals
1, (ii) size 8, subgoals 1, and (iii) size 9, subgoals 1.
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Figure 9: Sample training plots for 2D navigation environment. Each algorithm is run for 10 random seeds,
with shaded regions denoting the standard deviation across seeds. Stochasticity is 0, subgoals are 0. The
plots correspond to (i) size 8×8, (ii) size 20×20, and (iii) size 80×80.
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Figure 10: Sample training plots for 2D navigation environment. Each algorithm is run for 10 random seeds,
with shaded regions denoting the standard deviation across seeds. Stochasticity is 0.1, subgoals are 0. The
plots correspond to (i) size 8×8, (ii) size 20×20, and (iii) size 80×80.
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Figure 11: Sample training plots for 2D navigation environment. Each algorithm is run for 10 random seeds,
with shaded regions denoting the standard deviation across seeds. Stochasticity is 0.2, subgoals are 0. The
plots correspond to (i) size 8×8, (ii) size 20×20, and (iii) size 80×80.
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Figure 12: Sample training plots for 2D navigation environment. Each algorithm is run for 10 random seeds,
with shaded regions denoting the standard deviation across seeds. Stochasticity is 0, subgoal is 1. The plots
correspond to (i) size 8×8, (ii) size 40×40, and (iii) size 80×80.
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Figure 13: Sample training plots for 2D navigation environment. Each algorithm is run for 10 random seeds,
with shaded regions denoting the standard deviation across seeds. Stochasticity is 0.1, subgoals are 1. The
plots correspond to (i) size 8×8, (ii) size 20×20, and (iii) size 80×80.
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Figure 14: Sample training plots for 2D navigation environment. Each algorithm is run for 10 random seeds,
with shaded regions denoting the standard deviation across seeds. Stochasticity is 0.2, subgoals are 1. The
plots correspond to (i) size 8×8, (ii) size 20×20, and (iii) size 80×80.
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Figure 15: Sample training plots for 2D navigation environment. Each algorithm is run for 10 random seeds,
with shaded regions denoting the standard deviation across seeds. Stochasticity is 0, subgoals is 2+. The
plots correspond to (i) size 8×8, (ii) size 12×12, and (iii) size 20×20.
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Figure 16: Sample training plots for 2D navigation environment. Each algorithm is run for 10 random seeds,
with shaded regions denoting the standard deviation across seeds. Stochasticity is 0.1, subgoals is 2+. The
plots correspond to (i) size 8×8, (ii) size 12×12, and (iii) size 20×20.
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Figure 17: Sample training plots for 2D navigation environment. Each algorithm is run for 10 random seeds,
with shaded regions denoting the standard deviation across seeds. Stochasticity is 0, subgoals is 2-. The
plots correspond to (i) size 8×8, (ii) size 12×12, and (iii) size 20×20.
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