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ABSTRACT

Auditing the privacy leakage of synthetic data is an important but unresolved
problem. Most existing privacy auditing frameworks for synthetic data rely on
heuristics and unreasonable assumptions to attack the failure modes of generative
models, exhibiting limited capability to describe and detect the privacy exposure
of training data through synthetic data release. In this paper, we study designing
Membership Inference Attacks (MIAs) that specifically exploit the observation
that tabular generative models tend to significantly overfit to certain regions of the
training distribution. Here, we propose Generative Likelihood Ratio Attack (Gen-
LRA), a novel, computationally efficient No-Box MIA that, with no assumption
of model knowledge or access, formulates its attack by evaluating the influence a
test observation has in a surrogate model’s estimation of a local likelihood ratio
over the synthetic data. Assessed over a comprehensive benchmark spanning
diverse datasets, model architectures, and attack parameters, we find that Gen-
LRA consistently dominates other MIAs for generative models across multiple
performance metrics. These results underscore Gen-LRA’s effectiveness as a
privacy auditing tool for the release of synthetic data, highlighting the significant
privacy risks posed by generative model overfitting in real-world applications

1 INTRODUCTION

Real world tabular data is often privacy-sensitive to the individual observations that compose these
samples, hindering their ability to be shared in open-science efforts that can aid in new research
and improve reproducibility. A promise of generative modeling is that models trained on sensitive
data can produce samples that preserve the privacy of the training set while maintaining much of its
intrinsic statistical information, enabling responsible release to a third party. In practice, a wide array
of methodologies have been proposed to accomplish synthetic data release involving modifying loss
functions (Abadi et al.l 2016;|Wang et al.,|2022), creating new generative model architectures (Yoon
et al.,2019;|2020a)), and studying data release strategies (Hardt et al.l 2012; |Gupta et al.| [2012} Takagi
et al.} 2021) to provide differential privacy guarantee. In another direction, a variety of methods have
been proposed that maximize the fidelity of synthetic data and argue that privacy is satisfied through
ad-hoc similarity metrics (Zhao et al 2021} |Guillaudeux et al.,[2022; [Liu et al.| [2023}; |Solatorio and
Dupriez, [2023)).

To audit the empirical privacy of synthetic data generators, Membership Inference Attacks (MIAs)
have recently been extended from traditional machine learning models to synthetic tabular data. Here,
privacy auditing is framed as an adversarial game: given specific constraints defined by a threat
model, an attacker attempts to determine whether a test observation belongs to a model’s training
dataset exploiting some notion of model failure (Shokri et al., 2017} |Chen et al.,|2020; |Carlini et al.|
2021). A successful attack represents a concrete privacy breach with clear real-world implications,
where other similarity-based metrics have been shown to fail to capture privacy risk (Platzer and
Reutterer}, [2021; |Ganev and Cristofarol 2023 'Ward et al., [2024).

While a promising, MIAs for generative models and synthetic data release have seen limited success.
Previous work in MIAs for synthetic data release has often relied on distance or density-based
heuristics for their attacks or have included additional assumptions about model query access that are
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Table 1: Mean (STD) relative rank of each MIA across models, datasets, training sizes, and seeds.
As means of MIA metrics can obfuscate their true performance, we report the relative rank of each
attack for AUC-ROC and TPR @FPR. We find that if an adversary were to choose Gen-LRA they
would ususally have selected the best attack.

MIA AUC-ROC TPR@FPR=0 TPR@FPR=0.001 TPR@FPR=0.01 TPR@FPR=0.1
Gen-LRA (ours) 1.32(1.04)  1.29 (0.83) 1.26 (0.81) 1.22 (0.77) 1.22 (0.77)
DCR 436(1.94)  4.25(0.90) 4.28 (0.93) 421 (1.11) 4.17 (1.58)
DCR-Diff 429(1.65) 430 (0.76) 4.31(0.79) 4.32(0.94) 4.38 (1.30)
DOMIAS 432(1.73)  4.44(0.67) 4.47(0.71) 4.53(0.83) 4.48 (1.33)
DPI 435171  4.43(0.72) 4.39 (0.73) 4.37 (0.90) 4.31(1.31)
LOGAN 452(1.60)  4.41(0.75) 4.44 (0.80) 4.47 (0.92) 4.53 (1.30)
MC 440(1.91)  4.46(0.85) 4.44 (0.87) 4.47 (1.02) 4.50 (1.55)

unrealistic to the release setting and computationally do not scale to modern architectures. In contrast,
we focus on studying membership inference for the release of synthetic data in a No-Box Threat
Model (Houssiau et al.,|2022). In this approach, we make no adversarial assumptions of knowledge
about model architecture, access, and training parameters that mimics real-world scenarios of parties
following best practices for releasing synthetic data in domains like healthcare and finance. Under this
threat model, we derive a powerful MIA called Generative Likelihood Ratio Attack (Gen-LRA) which
constructs an influence function formulated from likelihood ratio estimation to target privacy leakage
that occurs through model overfitting. We show that our attack broadly outperforms competing
methods especially at low fixed false positive rates, highlighting that overfitting presents a more
dangerous source of privacy leakage than previously suggested. Our contributions are as follows:

Contributions:

1. We introduce Gen-LRA, a novel MIA that uses an influence function framework to at-
tack overfitting in tabular generative models with minimal assumptions by evaluating the
likelihood ratio of synthetic data under a surrogate model trained with and without a test
point.

2. We show that Gen-LRA is computationally efficient and broadly outperforms other MIAs
for synthetic data generators across a diverse benchmark of datasets, model architectures,
and experiment parameters. (Table[2)

3. We demonstrate that Gen-LRA better identifies subgroups of training observation that
experience egregious privacy leakage relative to other attacks (Table[3). We also show that
Gen-LRA can be used as an evaluation tool for overfitting in tabular generative models
(Figure 2).

2 MEMBERSHIP INFERENCE ATTACKS FORMALISM

In this work, we specifically study the Membership Inference Attack Game in the context of synthetic
data release. The objective of this game is to determine whether a particular data point was included
in the original training dataset by examining the outputs of a generative model. We first introduce the
formal definition of the Membership Inference Attack Game:

Definition (Membership Inference Attack Game). The game proceeds between a challenger C and
an adversary A as follows:

1. The challenger samples a training dataset 7' = z;7-; from the population distribution
x; ~ P and uses T to train a tabular generative model G <— 7 (7). The generative model G
produces synthetic dataset .S.

2. The challenger flips a bit b € 0, 1. If b = 0, the challenger samples a test observation z*
from the population distribution P. Otherwise, the challenger selects the test observation z*
from the training set 7.

3. The challenger sends the test observation x* to the adversary A.
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4. The adversary has access to some information defined by a threat model and uses this
information to output a guess b < A(x*).

5. The output of the game is 1 if b = b, and 0 otherwise. The adversary wins if b="b,ie.,ifit
correctly identifies whether the test observation x* was part of the training set 7" or a freshly
sampled data point from the population distribution P.

Adversary’s Goal and Capabilities The adversary .4 in the Membership Inference Game aims
to determine whether a specific data point x* was part of the original training dataset 7" or was
drawn from the population distribution IP. Here, the adversary can utilize available information in any
manner to construct a method to classify the membership of =*. The performance of the classifier,
which can be evaluated with binary classification metrics, is a measure of the privacy leakage of the
training data from G through S. Formally, this classification or Membership Inference Attack can be
expressed as:

A(z®) =L[f(2*) > 7] €))
where [ is the indicator function, f(z*) is a scoring function of =*, and +y is an adjustable decision
threshold.

Threat Model In this paper, we consider a "No-box" (Houssiau et al.|[2022)) threat model where the
adversary is assumed to have no access to the internal structure, parameters, or sampling mechanism
of the generative model. Instead, the attack must be constructed using only two observed datasets: the
released synthetic dataset S ~ G(7T'), and an independently collected reference dataset R ~ P drawn
from the same underlying population. The auditor is not granted access to the training set 7', nor to
labeled membership indicators, and cannot issue queries to the generator. This reflects deployment
scenarios in which organizations release synthetic data for downstream analysis while keeping all
model knowledge confidential. The synthetic dataset S serves as the only potential leakage surface,
and the reference set R provides a statistical anchor for the population. This reference dataset is often
assumed in No-box attacks for synthetic data/Chen et al.| (2020); Houssiau et al.|(2022); van Breugel
et al.| (2023); Ward et al.| (2024) as well as generally for supervised learning models (Carlini et al.,
2021;|Ye et al.| [2022; Zarifzadeh et al.,[2024) and represents a kind of "worst case’ scenario where an
adversary may be able to find comparable data in the real world such as open source datasets, paid
collection, prior knowledge, etc.

Attack Strategy The adversary must develop a strategy in which to construct Equation (T)). We
specifically propose that the adversary utilize the degree of local overfitting within S as the primary
signal to determine whether a specific data point * belongs to the training set.

Overfitting is a common and difficult-to-eliminate failure mode in generative models, particularly in
the context of tabular synthetic data generation. In the setting of Membership Inference Attacks, this
failure mode becomes a significant source of privacy leakage. van Breugel et al.| (2023)) for example
identified that TVAE (Xu et al., |2019)) overfit to minority class examples in a medical training dataset,
leaking their privacy. Similarly,(Ward et al.| (2024) found that TabDDPM (Kotelnikov et al., |[2022),
when tasked with generating synthetic data for the well-known Adult dataset, heavily replicated
data points from certain demographic groups within the training data. The key insight drawn from
this phenomenon is that areas of the synthetic data distribution with higher density are likely to
reflect signals from the original training data. Leveraging this failure, it becomes possible to infer
whether specific data points were part of the training set, thus providing a basis for designing privacy
attacks. Our work builds on these findings by proposing a new method to measure the degree of local
overfitting in generative models. We utilize this metric to design a Membership Inference Attack
aimed at exposing the potential privacy risks inherent in synthetic data (See Section [3).

3 GENERATIVE LIKELIHOOD RATIO ATTACK

In this section, we propose Generative Likelihood Ratio Attack (Gen-LRA), a powerful MIA designed
to detect membership leakage in synthetic data through a statistical notion of likelihood influence.
Unlike usual MIAs that evaluate the density or distance of a test point itself, Gen-LRA poses
membership inference as a function designed to evaluate the influence of * on an estimate of the
likelihood of S. Here, the central idea is that if £* was in the training data and the generative model
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Figure 1: A geometric intuition for Gen-LRA with a 1-dimensional toy example. We visualize the
KDE plots of R, R U z*, S as well as the estimated densities of the synthetic observations over R
and R U z*. Left: we consider * = 0.5. In this example, the likelihood of the synthetic observations
(product of orange intersections) are higher under the density estimate of R U x* than R (product of
purple intersections) and therefore we conclude that z* € T'. Right: where x* = 0.9, the opposite is
true and we therefore conclude z* ¢ T.

is overfit, its inclusion to a surrogate density estimator should increase the estimated likelihood of the
synthetic dataset.

3.1 EMPIRICAL INFLUENCE FUNCTIONS

Before formalizing our approach, we introduce the concept of influence functions, which provides
the theoretical foundation for our attack. Originally developed in robust statistics (Hampel, |1974;
Cook and Weisberg, 1986), influence functions measure how statistical estimates change when
the underlying data distribution is perturbed. The influence function for an estimator 6 applied to
a distribution F' is defined as: Z(z*, F,0) = lim._,¢ 6((1_€)F+§61*)_9(F) where 0.+ is the Dirac
measure placing mass 1 at point x*.

This definition captures the sensitivity of @ to infinitesimal perturbations in F' at the point z*.
Intuitively, it measures how the estimator would change if we slightly increased the probability of
observing x*. In the empirical setting with finite samples, influence can be measured by evaluating
how estimates change when adding or removing a specific point. Let D = {z1,9,...,x,} be a
dataset of n samples. The empirical influence function is defined as:

T(a*,D,0) = (DU {z*}) — 6(D) ?)

For supervised learning models, influence is typically measured as a difference in loss or empirical
risk of models trained with and without * |Koh and Liang|(2017). In an MIA for tabular generative
models that assumes no model access however, measures of loss are not readily available. Rather
than examining how z* affects model parameters directly, Gen-LRA instead considers the influence
on the likelihood assigned to generated samples S over a surrogate estimator.

3.2 LIKELIHOOD INFLUENCE AS AN ATTACK SURFACE

To begin, recall that T', R ~ PP, our goal is to infer if 2* € T given S and R based on Equation|[I] and
that we hypothesize that due to model failure, S is overfit to *. Gen-LRA measures this overfitness
to * by formalizing an influence function defined as the difference in the estimated likelihood ratio
of the synthetic dataset under two surrogate models: one trained on the original reference dataset R,
and another on an augmented dataset R U {z*}. We define this influence function as:

I(z*; R, S) :=log p(S | RU{2*}) —logp(S | R), 3)
where p is the estimated probability. Intuitively (see Figure [I), if the inclusion of z* leads to
a significant increase in the likelihood of S under a surrogate model, it suggests that =* likely



Under review as a conference paper at ICLR 2026

contributed to the generative process. If the likelihood is unchanged or decreases, it implies 2* ¢ T
In principle, this influence function does not necessarily need to be a measure of the likelihood ratio.
However, there are several advantages relative to other options in that this formulation allows for a
great amount of flexibility in tuning the attack, and that the likelihood ratio is invariant to encodings
of the data.

Theorem 3.1. Letr S, R be sets of samples and x* a new sample point with probability distributions
on X. Define:

I(z*; R, S) = logp(S | RU{z"}) —logp(S | R) “
For any invertible function g : X — X, the log-likelihood ratio is invariant:
Z(g(«*),9(R), 9(S)) = Z(z*, R, S) ®)

We refer to Appendix 1.1 for the proof.

3.3 GEN-LRA IMPLEMENTATION

Having established our influence function in Equation |3} we can directly utilize this measurement as
the scoring function in our membership inference framework from Equation |1} such that f(z*) =
7 (z*; R, S). However, the practical deployment of Gen-LRA requires calibration of how we estimate
7 (z*; R, S) to optimize attack performance. Below, we detail the key implementation strategies
that enable us to achieve maximum discriminative power when distinguishing between training and

non-training samples. A corresponding description of the full algorithm can be found in Appendix
2.1.

Localization A common theme in designing MIAs is to adopt techniques that maximize the signal
of *’s membership in the attack. Realistically, there is likely to be very little signal in comparing the
likelihoods of .S over estimated probability density functions with a difference of a single observation.
Indeed, (3)) is an attack over the global likelihood of S which may not be sensitive to detecting subtle
patterns of local overfitting. Here, we localize Gen-LRA by only considering the k-nearest elements
in S to =* in our estimation. In practice, the choice of k& can have minor impacts on the effectiveness
of the attack, but we find we get excellent results with low values of k (See Appendix 4.1).

Choice of Surrogate Model In principle, most density estimation techniques such as tractable
probabilistic models (De Cao et al., [2019; [Kobyzev et al.,2021; Liu and Van den Broeck, [2021)) and
Bayesian methods (Hjort, |1996; |Grazian and Fan, [2020) can be used to estimate Equation@ We find
though that many of these methods are unsuccessful at estimating this likelihood ratio given a one
unit observation difference. As a rule of thumb, we use Gaussian Kernel Density Estimators (KDEs)
(Weglarczyk, Stanistaw, 2018)) as they are widely known, computationally cheap, and achieve state
of the art results. We also find in our experimentation that KDEs empirically outperform |De Cao et al.
(2019), a leading deep-learning-based density estimator (see Section[6.3).

Choice of Decision Threshold While Sectiondetails the derivation of a scoring function f(x*),
() still requires a decision threshold . Intuitively for Gen-LRA, the decision threshold + can be any

chosen threshold but 7 (S, R,2z*) > 1 implies some degree of local overfitting to z*.

4 RELATED WORKS

4.1 ASSESSING OVERFITTING IN TABULAR GENERATIVE MODELS

Several measures have been developed to assess the fitness of tabular synthetic data, particularly
from a privacy perspective. These metrics generally aim to measure the similarity between the
training and synthetic datasets, with the ideal outcome being that the synthetic data is neither too
similar to the training data nor too different. A widely used metric for this purpose is Distance to
Closest Recor<ﬂ (Park et al.,[2018; |Lu et al., 2019; Yale et al., 2019; |Zhao et al., 2021} \Guillaudeux

’DCR in the similarity metric case compares a training point to a synthetic point. However, Chen et al.| (2020)
proposes an MIA where the scoring function is a distance computation for a test point and a synthetic point. In
all other sections of the paper we use DCR to refer to the MIA.
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Figure 2: Average Wasserstein Distance and Average Maximum Mean Discrepancy plotted against
Gen-LRA AUC-ROC for benchmarked models. Bayesian Network and Tab-DDPM outperform other
models in these performance metrics but have higher privacy risk highlighting that Gen-LRA can be
used to characterize a privacy-utility tradeoff in tabular generative models.

et al., 2022} |Liu et al., [2023)), which compares the distance from each training point to its nearest
neighbor in the synthetic dataset to which a mean is computed. Another commonly used metric is the
Identical Matching Score (IMS) (Lu et al., 2019; |AlL [2020; [202 1)), which measures the proportion of
identical records between the training and synthetic datasets. While these measures can be useful for
describing overfitness from a distribution-level quality and model generalization perspective, they do
not characterize privacy risk because there is no assumed threat model and they are not evaluated
over non-member examples.

4.2 MIAS FOR TABULAR GENERATIVE MODELS

Membership Inference Attacks on the other hand, explicitly characterize the empirical privacy risk
of a machine learning model (Yeom et al., [2018; Song and Mittal, [2020). Originally, MIAs were
developed for attacking supervised learning classifiers (Shokri et al. 2017). In this context, the
general idea for these attacks is to query a model with different observations to learn patterns in its
class probability outputs. Membership can then be inferred by comparing the outputs of the model to
outputs from reference models in some manner (Sablayrolles et al.| 2019} Long et al., 2020; |Carlini
et al.l [2021; [Watson et al.,[2022; |Ye et al.| [2022; [Zarifzadeh et al., [2024).

To adapt to these structural differences, a wide range of MIAs for tabular generative models have
been proposed that utilize different threat models and strategies to construct (I) (Hayes et al.| 2017}
Hilprecht et al.|[2019; /Chen et al., [2020; |Stadler et al.l 2022} [Houssiau et al., 2022 |van Breugel et al.}
2023; Meeus et al., [2024; Ward et al., [2024). Of these, Gen-LRA is most related to DOMIAS |van
Breugel et al.|(2023)) and a line of work that extends query-based attacks to tabular generative models
Stadler et al.| (2022); [Houssiau et al.|(2022); [Meeus et al.| (2024).

DOMIAS follows the same threat model assumptions and has a similar construction to Gen-LRA

defining its scoring function in (I)) as a density ratio 5 Z ((ﬁg Gen-LRA however improves on

DOMIAS in that the score for DOMIAS can only be a single point estimate whereas Gen-LRA
can be comprised of many estimates of a local region, allowing it to incorporate more information.
Furthermore, Gen-LRA measures the effect of the specific inclusion of z* on S, which is more
proximal to the membership inference problem than measuring the density of z* from S. These
differences allow Gen-LRA to broadly outperform DOMIAS in our experimentation.

In another direction, Stadler et al.| (2022); Houssiau et al.|(2022)); Meeus et al.| (2024) propose query-
based attacks on tabular generators where they additionally assume an adversary has knowledge of
the implementation of target model. In these methods, an attacker trains many versions of the model
with R U z* and R which are used to generate many synthetic datasets. Summary statistics and
histograms are then constructed to represent each synthetic dataset as a vector and a classifier is then
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Table 2: Mean (STD) AUC-ROC for each Membership Inference Attack across model architectures
and datasets. Gen-LRA outperforms all other threat-model comparable attacks with an average rank
of 1 across all architectures.

Model Gen-LRA (Ours) DCR-Diff DOMIAS DPI DCR MC LOGAN
AdsGAN 0.534 (0.02) 0.517 (0.02) 0.517(0.02) 0.521(0.02) 0.516 (0.02) 0.515(0.02) 0.503 (0.02)
ARF 0.562 (0.03) 0.540 (0.02) 0.534 (0.02) 0.538 (0.02) 0.533(0.02) 0.527 (0.02) 0.504 (0.02)
Bayesian Network 0.679 (0.07) 0.656 (0.06) 0.632 (0.06) 0.557 (0.02) 0.665 (0.07) 0.625(0.05) 0.505 (0.02)
CTGAN 0.533 (0.02) 0.515(0.02) 0.515(0.02) 0.519(0.02) 0.513(0.02) 0.511(0.02) 0.504 (0.02)
Normalizing Flows 0.524 (0.02) 0.504 (0.02)  0.505 (0.02) 0.506 (0.02) 0.505(0.02) 0.504 (0.02) 0.502 (0.02)
PATEGAN 0.520 (0.02) 0.497 (0.02)  0.498 (0.02) 0.500 (0.02) 0.500 (0.02) 0.501 (0.02) 0.502 (0.02)
Tab-DDPM 0.603 (0.08) 0.587 (0.06) 0.587 (0.06) 0.552(0.03) 0.585(0.07) 0.564 (0.05) 0.505 (0.02)
TabSyn 0.583 (0.04) 0.553(0.02) 0.561 (0.06) 0.547 (0.06) 0.585(0.07) 0.517 (0.05) 0.501 (0.02)
TVAE 0.541 (0.02) 0.529 (0.03)  0.524 (0.03) 0.523(0.02) 0.529(0.03) 0.522(0.02) 0.504 (0.02)
Average Rank 1.0 34 3.6 38 38 5.34 6.4

trained using these representations to differentiate between synthetic datasets trained from R U z*
and R respectively.

These attacks are related to Gen-LRA as they all aim to estimate the likelihood ratio of (3), but Gen-
LRA improves upon them in two main ways. First, these attacks are unsuitable for auditing privacy in
synthetic data release as they are trivially easy to defeat because the defender can choose to just not
release the implementation of the architecture they used to generate the synthetic data. Indeed, |Golob
et al.| (2024)) has shown that there can be significant privacy leakage in differentially private synthetic
data generation from this exact scenario such that best practice for data releasing parties is to disclose
as little model information as possible. Gen-LRA makes no assumption about model implementation
and thus follows a more realistic threat model for synthetic data release. Secondly, these attacks are
computationally expensive as they rely on training many surrogate models for each z* to construct
their attack. In practice, it is impractical to train (NpestSetSampleSize + 1) * NSurrogateModels
separate models to audit a single trained model, especially as large diffusion and language model
architectures become more popular. Gen-LRA instead only requires a total of N7¢siSetSampieSize + 1
density estimators to be fit which is much cheaper.

5 EXPERIMENTS

5.1 BENCHMARKING

We evaluate Gen-LRA’s effectiveness across a benchmark of 15 tabular datasets, 7 membership
inference attacks (MIAs), and 9 tabular generative models (full details on MIAs, architectures, and
datasets are in Appendix 3.1). For each dataset, we randomly sample without replacement three
equal-sized sets: training 7, reference R, and holdout H. The training set is used to train each
architecture, which then generates an equally sized synthetic dataset. MIAs are evaluated using
one-hot and scaled encodings from the synthetic data to prevent data leakage. We repeat this process
over 10 seeds for each dataset with sample sizes of N = (250, 1000, 4000).

Since DOMIAS and Gen-LRA rely on density estimation techniques, we implement these methods
using Gaussian Kernel Density Estimation (KDE), as we find KDE with a Silverman’s Rule bandwidth
parameter outperforms deep learning-based estimators (see Section 3.3). Since KDE can struggle
with one-hot encoded categorical data, we use ordinal encoding for these MIAs. We present an
ablation study in Appendix 4.1 with various PCA and VAE-based encoding strategies, though our
experiments show ordinal encoding sees the best performance. For Gen-LRA, we found that the
locality parameter k has a modest impact on attack performance (see Appendix 4.2), so we set k = 10
throughout our experiments.

Baselines We compare Gen-LRA against all MIAs for Tabular Synthetic data that follow compatible
threat models: LOGAN, MC, DCR/DCR Difference, DOMIAS, and DPI (Hayes et al.| 2017}
Hilprecht et al., 2019; (Chen et al., [2020; van Breugel et al., 2023} |Ward et al., [2024). For synthetic
data architectures, we evaluate across nine models: Bayesian Network (BN), PATEGAN, Ads-
GAN, CTGAN, TVAE, Normalizing Flows (NFlows), ARF, Tab-DDPM, and TabSyn (Ankan and
Pandal, 2015 |Yoon et al., [2019; [2020b; (Xu et al., |2019; IDurkan et al., |2019; |Watson et al., [2023;
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Table 3: Mean (STD) True Positive Rates for MIAs at different fixed False Positive Rate levels across
experiment runs. Gen-LRA outperforms other threat-model compatible MIAs.

MIA TPR@FPR = 0.00l TPR@FPR=0.01 TPR@FPR = 0.1
LOGAN 0.003 (0.01) 0.012 (0.01) 0.102 (0.02)
DPI 0.002 (0.00) 0.014 (0.01) 0.118 (0.03)
MC 0.003 (0.00) 0.014 (0.01) 0.120 (0.04)
DOMIAS 0.002 (0.00) 0.016 (0.01) 0.134 (0.06)
DCR-Diff 0.005 (0.01) 0.019 (0.02) 0.138 (0.07)
DCR 0.016 (0.05) 0.036 (0.08) 0.153 (0.11)
Gen-LRA (ours) 0.031 (0.01) 0.056 (0.03) 0.193 (0.08)

Kotelnikov et al.l 2022} [Zhang et al.||2024)).) For TabSyn, we use the original implementation with
default hyperparameters, for all other architectures we use the default Synthcity (Qian et al.,2023)
implementations.

All experiments were conducted on an AWS G5.2xlarge EC2 instance. The main experimental
findings took approximately 72 hours of compute on this system between data generation and
auditing. Additional compute was used in preliminary and secondary experiments, especially those
described in Section [6.3| which was approximately 80 hours of compute.

6 DISCUSSION

6.1 GEN-LRA PERFORMANCE

Gen-LRA is a density-based attack that, using a simple estimation strategy, broadly outperforms
competing methods (Tables[T} [2] [3). Constructing the attack as a likelihood ratio over local regions of
the synthetic probability distribution allows greater attack performance as Gen-LRA is customizable
in its choice of k& to different datasets and architectures. Indeed as Table |2 shows, models like
Tab-DDPM and Bayesian Networks experience more privacy leakage than others and a tunable
attack can realize large performance gains. While Gen-LRA excels in a global attack evaluation
setting demonstrating that on average it outperforms all other attacks across all model architectures
with an average rank of 1. We additionally compare the average AUC-ROC for each architecture
from Gen-LRA to measures of model performance in Figure |2} We find that models with higher
performance also exhibit greater privacy leakage. This showcases that Gen-LRA can be used in
model benchmarking to characterize a privacy-performance tradeoff for synthetic data generation.
Lastly, we evaluate the relative rank for each MIA across experiment runs in Table[l|and find that
Gen-LRA dominates other attacks with an average relative rank of 1.32 for AUC-ROC.

6.2 THE Low FALSE POSITIVE SETTING

While AUC-ROC provides an easily comparable, well-understood global measure of an attack’s
effectiveness, from a privacy perspective it does not indicate how well an attack performs when
the False Positive Rate (FPR) is low. As|Carlini et al.| (2021) and Zarifzadeh et al.| (2024) argue,
researchers should analyze how well an attack performs with a low FPR because in practical settings
there is a greater privacy risk to individual training observations that can be correctly classified with
few false positives versus observations that are included with many false positives.

We therefore report the mean and standard deviation TPR@FPRs (True Positive Rate at False Positive
Rate) for a range of fixed FPR values for each MIA across datasets, architectures, and N-sizes
available in Table[3] Achieving a high TPR at a very low FPR is challenging in this scenario, however,
Gen-LRA nearly doubles the performance of the next best method at FPR = 0.001 and consistently
sees significant gains over the next best method at higher thresholds. This highlights that Gen-LRA is
better able to detect egregious overfitting to certain training observations, relative to other competing
attacks at comparable threat models.
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Mean AUC-ROC Comparison of BNAF and KDE
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Figure 3: A comparison of the Mean AUC-ROC for DOMIAS and Gen-LRA using density estimation
techniques BNAF and KDE. The group mean performance for each model are also plotted on each
attack/ estimation bar. Overall, we see that KDE outperforms BNAF for both DOMIAS and Gen-LRA.
While the variance of performance across models is less with BNAF than KDE for both attacks, KDE
outperforms BNAF on models that exhibit more egregious privacy leakage (Bayesian Network and
Tab-DDPM) whereas BNAF fails to identify it.

6.3 DEEP LEARNING DENSITY ESTIMATION

As Gen-LRA relies on estimating the likelihood of high dimensional data, it is surprising that it
excels with using Gaussian Kernel Density Estimation (KDE), which is a baseline that is usually
outperformed by more modern density estimation methods in metrics such Average Negative Log
Likelihood and Negative Evidence Lower Bound (De Cao et al., 2019; |Wen and Hangl 2022)). We
repeat this benchmarking experiment, and following [van Breugel et al.|(2023)), we use Block Neural
Autoregressive Flows (BNAF) to study the performance of DOMIAS and Gen-LRA with a more
powerful deep-learning-based density estimation technique.

We visualize these results in Figure[3|where we find that KDE actually better identifies privacy leakage
than BNAF for DOMIAS and Gen-LRA. Both of these attacks rely on estimating subtle differences
in the densities of local regions for two separately learned but similar probability distributions. We
hypothesize KDE could be better suited for the task of privacy auditing because it fits locally based
on its bandwidth parameter, whereas BNAF learns the global distribution using many sensitive
hyperparameters that can effect its performance. In any case, in all other experiments we default to
reporting the KDE version of DOMIAS and Gen-LRA and we recommend practitioners use KDE for
these methods as empirically it is better at identifying extreme cases of privacy leakage and is also
substantially less computationally expensive to run versus BNAF.

7 CONCLUSION

Membership Inference Attacks are a useful tool for privacy auditing generative models for synthetic
data release. They can characterize the privacy risk towards training observations, provide information
on how a model may be overfit, and add subtle context to patterns of behavior in generative models.
In this paper, we propose Gen-LRA, which attacks synthetic data by a evaluating a likelihood ratio
designed to detect overfitting. We show that Gen-LRA excels at attacking a diverse set of generative
models across a wide-range of datasets and that this success comes from Gen-LRA’s ability to
target a generative model’s tendency to overfit to training data relative to a broader population
distribution. We note that a limiation with Gen-LRA in that it requires hyperparameters based on
its localization and density estimation strategies. However, we point out that empirically, Gen-LRA
usually outperforms other attacks despite these disadvantages and is widely compatible with many
application or domain-specific density estimation techniques.

We believe that there are many directions for future work. Exploring emerging density estimation
methodologies would likely yield better empirical performance, especially on high dimensional
datasets. On a different front, research into developing adversarial techniques to better understand
model overfitting in general could also lead to important interpretability techniques. Lastly, we
believe that while tabular data generators provide a solution to the common privacy problem of data
sharing, more work needs to be done to develop practical auditing methodologies practitioners can
follow to audit potential security vulnerabilities in this emerging technology.
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8 STATEMENT OF ETHICS

The ability of adversaries to infer whether an individual’s data was part of the original dataset
poses risks to privacy, particularly in domains like healthcare, finance, and social sciences, where
sensitive personal data is frequently used. If synthetic data does not sufficiently obfuscate membership
information, it could lead to re-identification risks. While this work proposes one such re-identification
method, its ultimate goal is to help researchers and practitioners to conduct more powerful privacy
assessments before deploying synthetic datasets. We believe adversarial work is critical for the
research and development of better privacy systems.

9 STATEMENT OF REPRODUCIBILITY

We make our code available at [this link which facilitates running our main experiments. Furthermore
we provide dataset, generator, comparison MIA and a full Gen-LRA algorithm descriptions in the
Appendix.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS’16. ACM, October 2016. doi:
10.1145/2976749.2978318. URL http://dx.doi.org/10.1145/2976749.2978318.

Mostly Al. Truly anonymous synthetic data — evolving legal definitions and technologies (part ii),
2020. URL https://mostly.ai/blog/truly—anonymous—synthetic-data-1
egal-definitions—-part—-ii/.

Mostly AI. How to implement data privacy? a conversation with klaudius kalcher, 2021. URL
https://mostly.ai/data—-democratization-podcast/how—to-implement
~data-privacy/.

Ankur Ankan and Abinash Panda. pgmpy: Probabilistic graphical models using python. In Proceed-
ings of the Python in Science Conference, SciPy. SciPy, 2015. doi: 10.25080/majora-7b98e3ed-001.
URLhttp://dx.doi.org/10.25080/Majora-7b98e3ed-001.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, A. Terzis, and Florian Tramer. Membership
inference attacks from first principles. 2022 IEEE Symposium on Security and Privacy (SP),
pages 1897-1914, 2021. URL https://api.semanticscholar.org/CorpuslID;
244920593.

Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz. Gan-leaks: A taxonomy of membership
inference attacks against generative models. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, CCS *20. ACM, October 2020. doi: 10.1145/337229
7.3417238. URL http://dx.doi.org/10.1145/3372297.3417238.

R.D. Cook and S. Weisberg. Residuals and Influence in Regression. Monographs on statistics and
applied probability. Chapman and Hall, 1986.

Nicola De Cao, Ivan Titov, and Wilker Aziz. Block neural autoregressive flow. 35th Conference on
Uncertainty in Artificial Intelligence (UAII9), 2019.

Conor Durkan, Artur Bekasov, lain Murray, and George Papamakarios. Neural spline flows. Curran
Associates Inc., Red Hook, NY, USA, 2019.

Georgi Ganev and Emiliano De Cristofaro. On the inadequacy of similarity-based privacy metrics:
Reconstruction attacks against "truly anonymous synthetic data”, 2023.

10


https://anonymous.4open.science/r/gen_lra-C061
http://dx.doi.org/10.1145/2976749.2978318
https://mostly.ai/blog/truly-anonymous-synthetic-data-legal-definitions-part-ii/
https://mostly.ai/blog/truly-anonymous-synthetic-data-legal-definitions-part-ii/
https://mostly.ai/data-democratization-podcast/how-to-implement-data-privacy/
https://mostly.ai/data-democratization-podcast/how-to-implement-data-privacy/
http://dx.doi.org/10.25080/Majora-7b98e3ed-001
https://api.semanticscholar.org/CorpusID:244920593
https://api.semanticscholar.org/CorpusID:244920593
http://dx.doi.org/10.1145/3372297.3417238

Under review as a conference paper at ICLR 2026

Steven Golob, Sikha Pentyala, Anuar Maratkhan, and Martine De Cock. Privacy vulnerabilities in
marginals-based synthetic data, 2024. URL https://arxiv.org/abs/2410.05506,

Clara Grazian and Yanan Fan. A review of approximate bayesian computation methods via density
estimation: Inference for simulator-models. WIREs Computational Statistics, 12(4):e1486, 2020.
doi: https://doi.org/10.1002/wics.1486. URL https://wires.onlinelibrary.wiley,
com/doi/abs/10.1002/wics.1486.

Morgan Guillaudeux, Olivia Rousseau, Julien Petot, Zineb Bennis, Charles-Axel Dein, Thomas
Goronflot, Matilde Karakachoff, Sophie Limou, Nicolas Vince, Matthieu Wargny, and Pierre-
Antoine Gourraud. Patient-centric synthetic data generation, no reason to risk re-identification in
the analysis of biomedical pseudonymised data. 05 2022. doi: 10.21203/rs.3.rs-1674043/v1.

Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions and private data release.
In Ronald Cramer, editor, Theory of Cryptography, pages 339-356, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg. ISBN 978-3-642-28914-9.

Frank R. Hampel. The influence curve and its role in robust estimation. Journal of the American
Statistical Association, 69(346):383-393, 1974. ISSN 01621459, 1537274X. URL http{
//www. jstor.org/stable/2285666.

Moritz Hardt, Guy N. Rothblum, and Rocco A. Servedio. Private data release via learning thresholds.
In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
"12, page 168—187, USA, 2012. Society for Industrial and Applied Mathematics.

Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. Logan: Membership
inference attacks against generative models. Proceedings on Privacy Enhancing Technologies,
2019:133 — 152, 2017. URL https://api.semanticscholar.org/CorpusID:
52211986.

Benjamin Hilprecht, Martin Hérterich, and Daniel Bernau. Monte carlo and reconstruction member-
ship inference attacks against generative models. Proceedings on Privacy Enhancing Technologies,
2019:232 — 249, 2019. URL https://api.semanticscholar.org/CorpusID:
199546273.

N L Hjort. Bayesian Approaches to Non- and Semiparametric Density Estimation. In Bayesian
Statistics 5: Proceedings of the Fifth Valencia International Meeting. Oxford University Press,
05 1996. ISBN 9780198523567. doi: 10.1093/0s0/9780198523567.003.0013. URL https:
//doi.org/10.1093/0s0/9780198523567.003.0013!

Florimond Houssiau, James Jordon, Samuel N Cohen, Owen Daniel, Andrew Elliott, James Geddes,
Callum Mole, Camila Rangel-Smith, and Lukasz Szpruch. Tapas: a toolbox for adversarial privacy
auditing of synthetic data. arXiv preprint arXiv:2211.06550, 2022.

Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing flows: An introduction and
review of current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43
(11),2021. ISSN 1939-3539. doi: 10.1109/tpami.2020.2992934. URL http://dx.doi.org
/10.1109/TPAMI.2020.2992934l

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 1885—1894.
PMLR, 06-11 Aug 2017. URL https://proceedings.mlr.press/v70/kohl7a.h
tmll

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models, 2022.

Anji Liu and Guy Van den Broeck. Tractable regularization of probabilistic circuits. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages 3558-3570. Curran Associates, Inc., 2021.
URL https://proceedings.neurips.cc/paper_files/paper/2021/file/1
d0832c4969f6adcc8e8a8fffel83efb-Paper.pdfl.

11


https://arxiv.org/abs/2410.05506
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wics.1486
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wics.1486
http://www.jstor.org/stable/2285666
http://www.jstor.org/stable/2285666
https://api.semanticscholar.org/CorpusID:52211986
https://api.semanticscholar.org/CorpusID:52211986
https://api.semanticscholar.org/CorpusID:199546273
https://api.semanticscholar.org/CorpusID:199546273
https://doi.org/10.1093/oso/9780198523567.003.0013
https://doi.org/10.1093/oso/9780198523567.003.0013
http://dx.doi.org/10.1109/TPAMI.2020.2992934
http://dx.doi.org/10.1109/TPAMI.2020.2992934
https://proceedings.mlr.press/v70/koh17a.html
https://proceedings.mlr.press/v70/koh17a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/1d0832c4969f6a4cc8e8a8fffe083efb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/1d0832c4969f6a4cc8e8a8fffe083efb-Paper.pdf

Under review as a conference paper at ICLR 2026

Tongyu Liu, Ju Fan, Guoliang Li, Nan Tang, and Xiaoyong Du. Tabular data synthesis with
generative adversarial networks: design space and optimizations. The VLDB Journal, 33(2):
255-280, aug 2023. ISSN 1066-8888. doi: 10.1007/s00778-023-00807-y. URL https:
//doi.org/10.1007/s00778-023-00807~-y.

Yunhui Long, Lei Wang, Diyue Bu, Vincent Bindschaedler, Xiaofeng Wang, Haixu Tang, Carl A.
Gunter, and Kai Chen. A pragmatic approach to membership inferences on machine learning
models. In 2020 IEEE European Symposium on Security and Privacy (EuroS&P), pages 521-534,
2020. doi: 10.1109/EuroSP48549.2020.00040.

Pei-Hsuan Lu, Pang-Chieh Wang, and Chia-Mu Yu. Empirical evaluation on synthetic data generation
with generative adversarial network. In Proceedings of the 9th International Conference on
Web Intelligence, Mining and Semantics, WIMS2019, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450361903. doi: 10.1145/3326467.3326474. URL
https://doi.orqg/10.1145/3326467.3326474.

Matthieu Meeus, Florent Guepin, Ana-Maria Cretu, and Yves-Alexandre de Montjoye. Achilles’
Heels: Vulnerable Record Identification in Synthetic Data Publishing, page 380-399. Springer
Nature Switzerland, 2024. ISBN 9783031514760. doi: 10.1007/978-3-031-51476-0_19. URL
http://dx.doi.org/10.1007/978-3-031-51476-0_109.

Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu Park, and Youngmin
Kim. Data synthesis based on generative adversarial networks. Proc. VLDB Endow., 11(10):
1071-1083, June 2018. ISSN 2150-8097. doi: 10.14778/3231751.3231757. URL https:
//doi.orqg/10.14778/3231751.3231757.

Michael Platzer and Thomas Reutterer. Holdout-based empirical assessment of mixed-type synthetic
data. Frontiers in big Data, 4:679939, 2021.

Zhaozhi Qian, Bogdan-Constantin Cebere, and Mihaela van der Schaar. Synthcity: facilitating
innovative use cases of synthetic data in different data modalities, 2023. URL https://arxiv,
org/abs/2301.07573.

Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann Ollivier, and Hervé Jégou. White-
box vs black-box: Bayes optimal strategies for membership inference. In International Conference
on Machine Learning, 2019. URL |https://api.semanticscholar.org/CorpusID:
174799799

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine
learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pages 3—18, Los
Alamitos, CA, USA, may 2017. IEEE Computer Society. doi: 10.1109/SP.2017.41. URL
https://doi.ieeecomputersociety.orqg/10.1109/SP.2017.41l

Aivin V Solatorio and Olivier Dupriez. Realtabformer: Generating realistic relational and tabular
data using transformers. arXiv preprint arXiv:2302.02041, 2023.

Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks of machine learning models.
In USENIX Security Symposium, 2020. URL https://api.semanticscholar.org/Co
rpusID:214623088.

Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. Synthetic data — anonymisation ground-
hog day. In 31st USENIX Security Symposium (USENIX Security 22), pages 1451-1468, Boston,
MA, August 2022. USENIX Association. ISBN 978-1-939133-31-1. URL https://www.us
enix.org/conference/usenixsecurity22/presentation/stadler!

Namjoon Suh, Xiaofeng Lin, Din-Yin Hsieh, Merhdad Honarkhah, and Guang Cheng. Autodiff:
combining auto-encoder and diffusion model for tabular data synthesizing, 2023. URL https:
//arxiv.org/abs/2310.15479.

S. Takagi, T. Takahashi, Y. Cao, and M. Yoshikawa. P3gm: Private high-dimensional data release via
privacy preserving phased generative model. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pages 169-180, Los Alamitos, CA, USA, apr 2021. IEEE Computer Society.
doi: 10.1109/ICDE51399.2021.00022. URL https://doi.ieeecomputersociety.or
g/10.1109/ICDE51399.2021.00022.

12


https://doi.org/10.1007/s00778-023-00807-y
https://doi.org/10.1007/s00778-023-00807-y
https://doi.org/10.1145/3326467.3326474
http://dx.doi.org/10.1007/978-3-031-51476-0_19
https://doi.org/10.14778/3231751.3231757
https://doi.org/10.14778/3231751.3231757
https://arxiv.org/abs/2301.07573
https://arxiv.org/abs/2301.07573
https://api.semanticscholar.org/CorpusID:174799799
https://api.semanticscholar.org/CorpusID:174799799
https://doi.ieeecomputersociety.org/10.1109/SP.2017.41
https://api.semanticscholar.org/CorpusID:214623088
https://api.semanticscholar.org/CorpusID:214623088
https://www.usenix.org/conference/usenixsecurity22/presentation/stadler
https://www.usenix.org/conference/usenixsecurity22/presentation/stadler
https://arxiv.org/abs/2310.15479
https://arxiv.org/abs/2310.15479
https://doi.ieeecomputersociety.org/10.1109/ICDE51399.2021.00022
https://doi.ieeecomputersociety.org/10.1109/ICDE51399.2021.00022

Under review as a conference paper at ICLR 2026

Boris van Breugel, Hao Sun, Zhaozhi Qian, and Mihaela van der Schaar. Membership inference
attacks against synthetic data through overfitting detection. In Francisco Ruiz, Jennifer Dy, and
Jan-Willem van de Meent, editors, Proceedings of The 26th International Conference on Artificial
Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research, pages
3493-3514. PMLR, 25-27 Apr 2023. URL https://proceedings.mlr.press/v206
/breugel23a.htmll

Puyu Wang, Yunwen Lei, Yiming Ying, and Hai Zhang. Differentially private sgd with non-smooth
losses. Applied and Computational Harmonic Analysis, 56:306-336, 2022. ISSN 1063-5203. doi:
https://doi.org/10.1016/j.acha.2021.09.001. URL https://www.sciencedirect.com/sc
ience/article/pii/S1063520321000841.

Joshua Ward, Chi-Hua Wang, and Guang Cheng. Data plagiarism index: Characterizing the privacy
risk of data-copying in tabular generative models. KDD- Generative Al Evaluation Workshop,
2024. URL https://arxiv.org/abs/2406.13012.

David S. Watson, Kristin Blesch, Jan Kapar, and Marvin N. Wright. Adversarial random forests for
density estimation and generative modeling. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de
Meent, editors, Proceedings of The 26th International Conference on Artificial Intelligence and
Statistics, volume 206 of Proceedings of Machine Learning Research, pages 5357-5375. PMLR,
25-27 Apr 2023. URL https://proceedings.mlr.press/v206/watson23a.html.

Lauren Watson, Chuan Guo, Graham Cormode, and Alexandre Sablayrolles. On the importance of
difficulty calibration in membership inference attacks. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=3eIr1i0TwQ.

Hongwei Wen and Hanyuan Hang. Random forest density estimation. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 23701-23722. PMLR, 17-23 Jul 2022. URL https://proceedi
ngs.mlr.press/v162/wen22c.htmll

Weglarczyk, Stanistaw. Kernel density estimation and its application. ITM Web Conf., 23:00037,
2018. doi: 10.1051/itmconf/20182300037. URL https://doi.org/10.1051/itmconf/
20182300037.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional gan. In Neural Information Processing Systems, 2019. URL https:
//api.semanticscholar.org/CorpusID:195767064.

Andrew Yale, Saloni Dash, Ritik Dutta, Isabelle Guyon, Adrien Pavao, and Kristin P. Bennett.
Assessing privacy and quality of synthetic health data. In Proceedings of the Conference on
Artificial Intelligence for Data Discovery and Reuse, AIDR *19, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450371841. doi: 10.1145/3359115.3359124.
URLhttps://doi.org/10.1145/3359115.3359124|

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza Shokri. En-
hanced membership inference attacks against machine learning models. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, CCS ’22, page 3093-3106,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450394505. doi:
10.1145/3548606.3560675. URL https://doi.orqg/10.1145/3548606.3560675.

S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha. Privacy risk in machine learning: Analyzing the
connection to overfitting. In 2018 IEEE 31st Computer Security Foundations Symposium (CSF),
pages 268-282, Los Alamitos, CA, USA, jul 2018. IEEE Computer Society. doi: 10.1109/CSF.
2018.00027. URL https://doi.ieeecomputersociety.org/10.1109/CSF.2018
.00027.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. PATE-GAN: Generating synthetic data

with differential privacy guarantees. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=S1zk9iRgF 7.

13


https://proceedings.mlr.press/v206/breugel23a.html
https://proceedings.mlr.press/v206/breugel23a.html
https://www.sciencedirect.com/science/article/pii/S1063520321000841
https://www.sciencedirect.com/science/article/pii/S1063520321000841
https://arxiv.org/abs/2406.13012
https://proceedings.mlr.press/v206/watson23a.html
https://openreview.net/forum?id=3eIrli0TwQ
https://proceedings.mlr.press/v162/wen22c.html
https://proceedings.mlr.press/v162/wen22c.html
https://doi.org/10.1051/itmconf/20182300037
https://doi.org/10.1051/itmconf/20182300037
https://api.semanticscholar.org/CorpusID:195767064
https://api.semanticscholar.org/CorpusID:195767064
https://doi.org/10.1145/3359115.3359124
https://doi.org/10.1145/3548606.3560675
https://doi.ieeecomputersociety.org/10.1109/CSF.2018.00027
https://doi.ieeecomputersociety.org/10.1109/CSF.2018.00027
https://openreview.net/forum?id=S1zk9iRqF7

Under review as a conference paper at ICLR 2026

Jinsung Yoon, Lydia N Drumright, and Mihaela van der Schaar. Anonymization through data
synthesis using generative adversarial networks (ads-gan). IEEE journal of biomedical and health
informatics, 24(8):2378—2388, August 2020a. ISSN 2168-2194. doi: 10.1109/jbhi.2020.2980262.
URLhttps://doi.org/10.1109/jbhi.2020.2980262,

Jinsung Yoon, Lydia N Drumright, and Mihaela Van Der Schaar. Anonymization through data
synthesis using generative adversarial networks (ads-gan). IEEE journal of biomedical and health
informatics, 24(8):2378-2388, 2020b.

Sajjad Zarifzadeh, Philippe Liu, and Reza Shokri. Low-cost high-power membership inference
attacks, 2024. URL https://arxiv.org/abs/2312.03262.

Hengrui Zhang, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Xiao Qin, Chris-
tos Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with
score-based diffusion in latent space. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=4Ay23yeuz0.

Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y. Chen. Ctab-gan: Effective table data
synthesizing. In Vineeth N. Balasubramanian and Ivor Tsang, editors, Proceedings of The 13th
Asian Conference on Machine Learning, volume 157 of Proceedings of Machine Learning Research,
pages 97-112. PMLR, 17-19 Nov 2021. URL https://proceedings.mlr.press/vl
57/zhao2la.htmll

14


https://doi.org/10.1109/jbhi.2020.2980262
https://arxiv.org/abs/2312.03262
https://openreview.net/forum?id=4Ay23yeuz0
https://proceedings.mlr.press/v157/zhao21a.html
https://proceedings.mlr.press/v157/zhao21a.html

Under review as a conference paper at ICLR 2026

APPENDIX

A PROOFS

Theorem A.1. Let S be a set of samples, R a reference set, and r* a new sample point, with
probability distributions defined on X. Define the log-likelihood ratio:

A(S,R,z") =logp(S | RU{z"}) —logp(S | R) (6)
Let g : X — X,x v g(z) be some invertible function, and define transformed sets S = g(9),

R = g(R), and &* = g(x*) with respective distributions p. Then A(S, R, #*) = A(S, R, z*), i.e.,
the same log-likelihood ratio is obtained for either data representation.

Proof. Similarly to [van Breugel et al.| (2023), using the change of variables formula, we have
p(g(4)) = |§((i))| with Jacobian J(x) = %(aj) for any set A.

For the conditional probabilities, we have:

B(S, RU{3})

P8 RULa)) = s )
_ p(S,RU{a*})/|J(S, RU{z"})| ®)

p(RU{z*})/|J(RU {z*})]

Similarly:
(5| R)=" (félR) )
P(R)
~ p(S,R)/|J(S, R)|

= R/IR)] (1

Since J(S,RU {a*}) = J(S,R) and J(R U {z*}) = J(R) (the Jacobians are the same when
operating on spaces of the same dimension), we have:

BSIRU{z*}) _ p(S.RU{e*})/|J(S,R)| _ p(R)/|J(R)] (11
p(S | R) p(RU{z*})/[J(R)]  p(S,R)/|J(S, R)|
_P(S.RU{))  p(R) -
p(RU{z*})  p(S,R)
_ p(S[RU{z"})
= WSTR) (2
Taking logarithms:
PSIRU{z*}) . p(S|RU{a*})
TSGR WSIR) (1
15)
Which gives us:
A(S,R,7*) = A(S, R, z*) (16)
as desired. O
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B ALGORITHM

Algorithm 1 Gen-LRA

1:
2
3
4
5:
6.
7
8:
9:
10:
11:
12:

13:
14:

function GEN-LRA (Xies, S, R, k)

Ascores < 0 > Initialize score array
DEy < FitDensityEstimator(R)
for x € X do
R <+ RU{z}
DEp < FitDensityEstimator(R')
Selose < FindKNearestNeighbors(S, x, k)
LR’ — DER/(Sclose)
LR — DER(Sclose)
a +— Zsescm log(Lg/[s])—
2 seSum 108(LRS])
Ascores < Ascores U {a}
end for
return Agcores

15: end function

C EXPERIMENTS/ REPLICATION DETAILS

C.1

MIAS FOR GENERATIVE MODELS DESCRIPTIONS

The Membership Inference Attacks referenced in this paper is are described as follows:

* LOGAN Hayes et al.|(2017): LOGAN consists of black box and shadow box attack.
The black-box version involves training a Generative Adversarial Network (GAN) on the
synthetic dataset and using the discriminator to score test data. A calibrated version improves
upon this by training a binary classifier to distinguish between the synthetic and reference
dataset. In this paper, we only benchmark the calibrated version.

¢ Distance to Closest Record (DCR) / DCR Difference (Chen et al.| (2020): DCR is a
black-box attack that scores test data based on a sigmoid score of the distance to the nearest
neighbor in the synthetic dataset. DCR Difference enhances this approach by incorporating
a reference set, subtracting the distance to the closest record in the reference set from the
synthetic set distance.

* MC Hilprecht et al.| (2019): MC is based on counting the number of observations in the
synthetic dataset that fall into the neighborhood of a test point (Monte Carlo Integration).
However, this method does not consider a reference dataset, and the choice of distance
metric for defining a neighborhood is a non-trivial hyperparameter to tune.

* DOMIAS jvan Breugel et al.|(2023): DOMIAS is a calibrated attack which scores test
data by performing density estimation on both the synthetic and reference datasets. It then
calculates the density ratio of the test data between the learned synthetic and reference
probability densities.

* DPI|Ward et al.| (2024): DPI computes the ratio of k-Nearest Neighbors of z* in the synthetic
and reference datasets. It then builds a scoring function by computing the ratio of the sum
of data points from each class of neighbors from the respective sets.

C.2 GENERATIVE MODEL ARCHITECTURE DESCRIPTIONS

In all experiments, we use the implementations of these models from the Python package Synthcity
Qian et al.| (2023). For benchmarking purposes, we use the default hyperparameters for each model.
A brief description of each model is as follows:

¢ CTGAN Xu et al.|(2019): Conditional Tabular Generative Adversarial Network uses a GAN
framework with conditional generator and discriminator to capture multi-modal distributions.
It employs mode normalization to better learn mixed-type distributions.
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TVAE Xu et al.|(2019): Tabular Variational Auto-Encoder is similar to CTGAN in its use of
mode normalizing techniques, but instead of a GAN architecture, it employs a Variational
Autoencoder.

Normalizing Flows (NFlows) |Durkan et al.|(2019): Normalizing flows transform a simple
base distribution (e.g., Gaussian) into a more complex one matching the data by applying a
sequence of invertible, differentiable mappings.

Bayesian Network (BN) |Ankan and Pandal (2015): Bayesian Networks use a Directed
Acyclic Graph to represent the joint probability distribution over variables as a product of
marginal and conditional distributions. It then samples the empirical distributions estimated
from the training dataset.

Adversarial Random Forests (ARF) |Watson et al.[(2023): ARFs extend the random forest
model by adding an adversarial stage. Random forests generate synthetic samples which are
scored against the real data by a discriminator network. This score is used to re-train the
forests iteratively.

Tab-DDPM [Kotelnikov et al.| (2022): Tabular Denoising Diffusion Probabilistic Model
adapts the DDPM framework for image synthesis. It iteratively refines random noise into
synthetic data by learning the data distribution through gradients of a classifier on partially
corrupted samples with Gaussian noise.

PATEGAN |Yoon et al.[(2019): The PATEGAN model uses a neural encoder to map discrete
tabular data into a continuous latent representation which is sampled from during generation
by the GAN discriminator and generator pair.

Ads-GAN Yoon et al.| (2020b): Ads-GAN uses a GAN architecture for tabular synthesis but
also adds an identifiability metric to increase its ability to not mimic training data.

TabSyn Zhang et al.[(2024)

C.3 BENCHMARKING DATASETS REFERENCES

We provide the URL for the sources of each dataset considered in the paper. We use datasets common
in the tabular generative modeling literature Suh et al.[(2023) TabSyn uses a Variational Auto-Encoder
to learn a latent space in which it builds a diffusion model from. TabSyn usually achieves state of the
art data quality metrics relative to other methods compared.

1.

Abalone (OpenML): https://www.openml.org/search?type=data&sort=r
uns&id=183&status=active

2. Adult|Becker and Kohavi| (1996)
3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+d

ataset

. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/shrutime

chlearn/churn-modelling

. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+plat

es+faults

. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2

7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/

10.

11.

indian-liver-patient-records?resource=download

. Insurance (Kaggle): https://www.kaggle.com/datasets/mirichoi0218/1

nsurance

Magic (Kaggle): https://www.kaggle.com/datasets/abhinand05/magic

+-gamma-telescope—-dataset?resource=download

News (UCI): https://archive.ics.uci.edu/dataset/332/online+new
s+popularity

Nursery (Kaggle): https://www.kaggle.com/datasets/heitornunes/nu
TSEry
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12. Obesity (Kaggle): https://www.kaggle.com/datasets/tathagatbaner
ee/obesity—-dataset—-uci-ml

13. Shoppers (Kaggle): https://www.kaggle.com/datasets/henrysue/onlin
e—-shoppers—intention

14. Titanic (Kaggle): https://www.kaggle.com/c/titanic/data

15. Wilt (OpenML): https://www.openml.org/search?type=data&sort=run
s&1d=40983&status=active

D ADDITIONAL RESULTS

D.1 GEN-LRA ENCODING

As our main experiment uses Kernel Density Estimation (KDE) over (usually) heterogeneous datasets,
we present an ablation for encoding tabular data to be numeric such that KDE can converge. We
experiment with 3 common strategies used in the density estimation literature: ordinal encoding for
categorical variables, one-hot encoding categorical variables and then performing Principle Compo-
nent Analysis (PCA), and using a Variational Auto-Encoder to learn continuous latent representations
of the data.

We repeat our main experiment on TabSyn with these three encoding schemes. For PCA we use the
number of eigenvectors that explain up to 95 %variance and for the VAE encoding we use TabSyn’s
original auto-encoder with default settings. Overall, we find that there is no strictly dominant encoding
strategy that yields the best results (see Table ).

Table 4: Results of encoding ablation for Gen-LRA on datasets and seeds from TabSyn. We find that
there are is no strictly dominant encoding strategy for the attack.

Encoding AUC-ROC TPR@FPR =0.001 TPR@FPR=0.01 TPR@FPR=0.1

Ordinal .583 (0.02) 0.040 (0.01) 0.06 (0.01) 0.18 (0.04)
PCA .557 (0.02) 0.031 (0.01) 0.042 (0.03) 0.212(0.02)
VAE .577 (0.02) 0.034 (0.01) 0.052 (0.02) 0.209 (0.03)

D.2 ABLATION: DIFFERENT k SIZES

Gen-LRA targets local overfitting by utilizing the k-nearest neighbors in S to z*. Consequently, k
serves as a hyperparameter in the attack. To assess the impact of k on attack efficacy, we replicate
the benchmarking experiments from Section [5|across varying values of k. The average AUC-ROC
and corresponding standard deviations are reported in Table[5] Empirically, we observe that smaller
values of k generally enhance attack performance, though this effect varies by model. As discussed in
Section 3, a global attack encompassing the entirety of S is unlikely to yield significant membership
signals. This is corroborated by the case where £ = IV, in which the AUC-ROC remains consistently
at 0.5, underscoring that overfitting is inherently a localized phenomenon. These findings suggest
that adversarial attacks on generative models should prioritize local regions to achieve effectiveness.

Table 5: Mean AUC-ROC at different k£ values for Gen-LRA.

Model k=1 k=3 k=5 k=10 k=15 k=20 k=N

AdsGAN 0.514 (0.02) 0.518 (0.02) 0.519(0.02) 0.520(0.02) 0.521(0.02) 0.521(0.02) 0.500 (0.00)
ARF 0.532(0.02) 0.538 (0.02) 0.540(0.02) 0.540 (0.03) 0.540(0.03) 0.539 (0.03) 0.500 (0.00)
Bayesian Network  0.650 (0.07)  0.645 (0.07) 0.640 (0.07) 0.634 (0.07) 0.631(0.07) 0.629 (0.07)  0.500 (0.00)
CTGAN 0.514 (0.02) 0.516(0.02) 0.517(0.02) 0.517 (0.02) 0.518(0.02) 0.518(0.02) 0.500 (0.00)
Tab-DDPM 0.595 (0.07)  0.595 (0.07) 0.594 (0.07) 0.592 (0.06) 0.591 (0.06) 0.589 (0.06)  0.500 (0.00
Normalizing Flow  0.503 (0.02) 0.503 (0.02) 0.505 (0.02)  0.506 (0.02) 0.506 (0.02) 0.506 (0.02)  0.500 (0.00)
TVAE 0.527 (0.03)  0.531(0.03) 0.531(0.03) 0.531(0.03) 0.530(0.03) 0.529 (0.03) 0.500 (0.00)
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Table 6: Mean Accuracy for each Membership Inference Attack across model architectures and
datasets.

Model Gen-LRA (Ours) MC DCR DCR-Diff DPI DOMIAS  LOGAN 2017
AdsGAN 0.524 (0.02) 0513 (0.02) 0513(0.02) 0513(0.02) 0515(0.02) 0513(0.02) _ 0.503 (0.02)
ARF 0.539 (0.02) 0.524 (0.02) 0.524 (0.02) 0.529 (0.02) 0.526 (0.02) 0.524 (0.02)  0.503 (0.02)
Bayesian Network 0.619 (0.05) 0.629 (0.05)  0.629 (0.05) 0.621 (0.05) 0.538 (0.02)  0.599 (0.05)  0.504 (0.02)
CTGAN 0.523 (0.02) 0.509 (0.02)  0.509 (0.02) 0.511 (0.02) 0.513(0.02) 0.511(0.02)  0.504 (0.02)
Tab-DDPM 0.58 (0.04) 0.564 (0.05)  0.564 (0.05) 0.563 (0.05) 0.537 (0.02) 0.563 (0.04)  0.504 (0.02)
Normalizing Flows 0.517 (0.02) 0.504 (0.02) 0.504(0.02) 0.504(0.02) 0.505(0.02) 0.504 (0.02)  0.501 (0.02)
PATEGAN 0.514 (0.02) 0.501 (0.02) 0.501 (0.02) 0.499 (0.02) 0.499 (0.02)  0.500 (0.02)  0.501 (0.02)
TVAE 0.533 (0.02) 0.520 (0.02) 0.520(0.02) 0.522(0.02) 0.517(0.02) 0.518(0.02)  0.503 (0.02)
Rank 13 32 34 36 36 39 55

D.3 THRESHOLDING/ ACCURACY REPORTING

We report the mean accuracy of the results of our main exeriment. Here, to create a comparable
thresholding decision for each attack, we take the median of the scores across each test set. While we
do not recommend in practice considering the accuracy of the attack as it is likely to under-represent
privacy leakage, we still showcase that even with a simple threshold rule, Gen-LRA usually performs
well.
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