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ABSTRACT

Graph-based Retrieval-Augmented Generation has demonstrated strong perfor-
mance in multi-hop reasoning and cross-document evidence integration. However,
existing methods typically rely on static, one-shot retrieval strategies, lacking the
ability to assess evidence sufficiency or dynamically construct context—thereby
limiting their effectiveness in complex reasoning tasks. To address these limi-
tations, we propose Phi-agent, a brain-inspired iterative in-graph retrieval agent.
Motivated by the hippocampus–prefrontal interaction in cognitive neuroscience,
Phi-agent operates in a ”retrieve–reason–re-retrieve” loop, enabling proactive re-
finement of contextual evidence through iterative questioning and reasoning. We
further introduce a joint reward mechanism that simultaneously optimizes both
reasoning quality and retrieval trajectory. To support reinforcement learning, we
curate a high-quality dataset of 7,405 annotated samples and post-train Qwen3-
1.7B using the Group Relative Policy Optimization (GRPO) algorithm. Ex-
periments on HotpotQA, MuSiQue, and 2WikiQA show that Phi-agent signifi-
cantly outperforms existing GraphRAG baselines, achieving state-of-the-art per-
formance. Ablation studies confirm the essential role of the iterative in-graph
retrieval loop and joint reward design in enabling these improvements.

1 INTRODUCTION

In recent years, with the rapid development of large language models, Retrieval-Augmented Gen-
eration (RAG) has emerged as a key approach to mitigating hallucinations and enhancing factual
accuracy and interpretability (Arslan et al., 2024; Singh et al., 2025; Yang et al., 2025). Among
the various RAG variants, graph-based Retrieval-Augmented Generation (GraphRAG) has garnered
significant attention (Sarthi et al., 2024; Sun et al., 2023; Han et al., 2025). By representing entities,
relationships, and document passages as knowledge graphs, GraphRAG enables more efficient orga-
nization and indexing of knowledge in complex multi-hop reasoning tasks across documents. At the
same time, RAG systems are evolving toward context engineering—focusing not only on retrieval
itself but also on dynamically selecting and constructing appropriate input contexts in a task-driven
manner.

Although GraphRAG exhibits unique advantages in knowledge organization and retrieval, most ex-
isting approaches adopt a “one-shot, static” retrieval and context construction paradigm—executing
a single retrieval upon receiving a query and directly concatenating the top-K retrieved passages as
input to the model. While this approach is efficient for simple tasks, it often underperforms in com-
plex reasoning scenarios, where key pieces of evidence may be missing, leading to broken chains of
reasoning. Fundamentally, these methods lack sufficient self-assessment capabilities: they cannot
determine whether the current evidence is sufficient to answer the question, nor can they proac-
tively generate new retrieval goals when evidence is lacking. This limitation in context engineering
restricts the applicability of GraphRAG.

To address these limitations, this paper proposes Phi-agent, a graph-iterative retrieval agent equipped
with dynamic reflection and iterative retrieval capabilities. Inspired by the hippocampus–prefrontal
cortex interaction mechanism in cognitive neuroscience, as shown in Fig.1, the agent mimics the
process by which the hippocampus retrieves and activates memory, linking new input with existing
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memory fragments to support the prefrontal cortex, while the prefrontal cortex performs high-level
decision-making, planning, and logical reasoning—evaluating retrieved information and determin-
ing the next retrieval steps. This synergy enables the human brain to dynamically access memory
and reason during complex cognitive tasks. Similarly, Phi-agent implements a “retrieve–reason–re-
retrieve–re-reason” loop: each round begins with hippocampus-like rapid retrieval from the knowl-
edge graph to recall relevant subgraphs and textual information, followed by prefrontal-style rea-
soning to assess whether the retrieved content is sufficient and whether further retrieval is necessary.
Through this dynamic reflection and iterative retrieval, the agent constructs more precise and com-
plete contexts.

Furthermore, the paper introduces a joint reward mechanism guided by both reasoning content
and retrieval trajectory. A high-quality training dataset comprising 7,405 samples was constructed
through a carefully designed data generation and annotation pipeline. Based on this dataset, the
model was trained using the GRPO algorithm (Shao et al., 2024). Experimental results show that
the joint reward mechanism effectively regulates the retrieval trajectory—deciding whether to con-
tinue retrieving or proceed to answering—thereby optimizing the retrieve–reason strategy loop and
significantly enhancing robustness and generalization in complex tasks. On three multi-hop QA
and complex reasoning benchmarks—HotpotQA (Yang et al., 2018), (Trivedi et al., 2022), and
2WikiQA (Ho et al., 2020)—Phi-agent demonstrates significantly higher accuracy than existing
GraphRAG methods.

In summary, the main contributions of this paper are as follows: 1. Proposing a brain-inspired
graph-iterative retrieval agent, Phi-agent, that enables dynamic context retrieval and construction;
2. Introducing a joint reinforcement learning reward mechanism guided by reasoning content and
retrieval trajectory, along with contributing a high-quality dataset; 3. Demonstrating through exper-
iments that Phi-agent significantly improves performance across multiple datasets, achieving state-
of-the-art results.

2 RELATED WORK

2.1 PREFRONTAL–HIPPOCAMPAL INTERACTION

A substantial body of neuroscientific research has demonstrated functional coupling between the
hippocampus and the prefrontal cortex in the service of memory and planning. First, cross-regional
oscillatory interactions—such as theta–gamma coupling between the hippocampus and medial pre-
frontal cortex—are thought to coordinate the maintenance of working memory and the suppression
of interference, thereby providing a mechanistic basis for information selection and updating. Such
evidence has been consistently observed in both animal electrophysiology and human neuroimag-
ing studies(Daume et al., 2024; Benchenane et al., 2010; Jin & Maren, 2015). Second, replay or
sequential reactivation(Shin & Jadhav, 2016) has been identified as a key process linking stored
memory traces with ongoing goals. Recent theoretical models propose that prefrontal task dynamics
can trigger hippocampal replay, which in turn shapes prefrontal planning processes, thereby sup-
porting goal-directed exploration and decision-making. More recent work has situated replay within
a normative framework for near-optimal exploration. Third, beyond theta oscillations, coordina-
tion during sharp-wave ripples (SWRs) between the PFC and hippocampus has also been shown
to contribute to memory-guided behavior, providing circuit-level evidence for iterative retrieval–
evaluation–updating loopsPreston & Eichenbaum (2013); den Bakker et al. (2023); Patai & Spiers
(2021).

From a computational perspective, these findings converge on two insights: (A) the hippocampus
serves as a substrate for rapid associative retrieval and episodic fragment activation; and (B) the
prefrontal cortex supports task-level evaluation, decision-making, and subgoal generation. These
insights provide a biologically grounded analogy for the design of retrieval–reasoning systems in
artificial intelligence.

2.2 GRAPH-BASED RETRIEVAL-AUGMENTED GENERATION

Compared with vector-database-based RAG, GraphRAG explicitly models entities, relations, and
inter-fragment connections, emphasizing multi-hop retrieval across documents and structural inter-
pretability. The GraphRAG(Edge et al., 2024) pipeline introduced by Microsoft integrates document
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extraction, graph construction, and community- or subgraph-level summarization, enhancing con-
textual organization and answer quality through a community aggregation → divide-and-conquer →
synthesis process. Subsequently, multiple studies have systematized GraphRAG research, organiz-
ing its retrieval primitives, indexing strategies, alignment methods, and evaluation metrics, thereby
providing a comparative and terminological framework.

Representative approaches include HippoRAG(Jimenez Gutierrez et al., 2024), inspired by the hip-
pocampal indexing theory, which synergizes large language models, knowledge graphs, and per-
sonalized PageRank (PPR) to enhance long-range integration via fast indexing plus graph-guided
retrieval, marking a milestone in connecting neuro-inspired mechanisms with GraphRAG. Ligh-
tRAG(Guo et al., 2024) advocates for a simple yet efficient two-level retrieval scheme—combining
fine-grained fragments with higher-level structural summaries—achieving engineering efficiency
while incorporating graph-structural benefits. G-RetrieverHe et al. (2024) formalizes RAG over
graphs as a reward-regularized Steiner subtree retrieval and generation problem, yielding scalable
solutions for open-domain text-graph question answering. KGPWang et al. (2024) leverages knowl-
edge graph construction and traversal to seamlessly integrate global structural constraints with lo-
cal semantic navigation, thereby significantly enhancing prompt design and performance in multi-
document question answering. DALK(Li et al., 2024), targeting biomedical and other long-tail
knowledge domains, proposes dynamic co-enhancement between LLMs and domain knowledge
graphs, leveraging temporal graph evolution and self-aware retrieval to improve specialized QA
performance.

Despite these advances in graph modeling and graph-guided retrieval, most existing approaches rely
on static, one-shot retrieval followed by top-K concatenation. Such designs often lack mechanisms
for self-assessment of evidence sufficiency and iterative query refinement, leaving them vulnerable
to reasoning failures when critical evidence is absent or when retrieval paths are incomplete.

3 METHOD

3.1 PREFRONTAL–HIPPOCAMPAL INTERACTION INSPIRED AGENT

To address the limitations of the ”one-shot, static” retrieval strategy in traditional GraphRAG sys-
tems for multi-hop question answering and complex reasoning tasks, we design Phi-agent—a brain-
inspired agent with reflective mechanisms that supports iterative retrieval over knowledge graphs.
This design draws inspiration from the ”prefrontal–hippocampal interaction theory” in cognitive
neuroscience. The agent simulates how the human brain integrates information and makes decisions
through the synergy of memory activation and logical evaluation when faced with complex cognitive
tasks, enabling multi-round retrieval, evaluation, and dynamic context construction.

In the agent’s workflow, a graph retrieval algorithm based on Personalized PageRank (PPR) sim-
ulates the function of the hippocampus to recall relevant information Ct from the knowledge
graphJimenez Gutierrez et al. (2024). Given the current query goal, this process rapidly activates
related entity nodes and semantic paths from the knowledge graph, producing a set of semantically
related graph information:

Ct = {c1, c2, . . . , ck}

These items form part of the agent’s “working memory” for the t-th round of retrieval or reasoning
and are passed to the language model for further analysis.

The proposed Phi-agent corresponds to the prefrontal cortex (PFC), and its core task is to assess
whether the information in working memory is sufficient to answer the original query q0. If the
assessment concludes that the information is “sufficient,” the system outputs the answer â directly;
otherwise, the model identifies the missing information and generates a supplemental sub-query
qt+1 to guide the next round of graph retrieval.

The complete process of Phi-agent is as follows: in each round t, the system uses the sub-query qt
to retrieve relevant information Ct from the knowledge graph using the PPR algorithm.

To enhance cross-round semantic coherence and reduce redundancy, the system applies a seman-
tic deduplication strategy each round, comparing the current context Ct with previously retrieved
contexts C<t and retaining only novel, informative fragments. The cumulative working memory is
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Figure 1: Phi-agent operates in a ”retrieve–reason–re-retrieve” loop, enabling proactive refinement
of contextual evidence through iterative questioning and reasoning

then:
C≤t = C<t ∪ Dedup(Ct, C<t) (1)

Once the language model receives the graph information, it performs reflective reasoning based on
a structured prompt format. The model must assess whether the accumulated context is sufficient
to complete the original task q0 and output results in a structured format. As shown in Fig.1. If
sufficient, the output contains the tag ¡label¿ able ¡/label¿ and the final answer.

If the information is insufficient, it outputs ¡label¿ unable ¡/label¿ and a new sub-query ¡query¿ to
trigger the next retrieval iteration:

By simulating hippocampal memory activation and prefrontal planning, Phi-agent enables dynamic
exploration of multi-hop paths in the knowledge graph and self-driven supplementary querying. This
mechanism improves the relevance and coverage of retrieval contexts and significantly enhances
reasoning depth and logical completeness in complex, multi-turn reasoning tasks.

All prompts related to this paper are detailed in the appendix.

3.2 RL GUIDED BY RETRIEVAL TRAJECTORY AND REASONING CONTENT

3.2.1 DATASET CONSTRUCTION

To train an agent capable of dynamic retrieval and reasoning over knowledge graphs, we construct
a reinforcement learning dataset based on HotpotQA. The dataset construction process consists of
three stages: initial sample generation, llm-based label annotation, and graph structure completion.

First, we use the HippoRAG algorithm to extract entities and build relationships from the knowledge
base provided by HotpotQA, resulting in a unified knowledge graph. Next, HippoRAG is used as
the initial retriever to perform graph-guided retrieval on the original query q0, obtaining a set of
relevant passages as initial context C0 along with the gold answer. These form the initial training
triples: {original query, retrieved context, gold answer}.

To determine whether the retrieved context supports answering the question, we introduce a
multi-model voting mechanism for label annotation. Specifically, we use three large language
models(DeepSeek-V3-0324, GPT-4o, and Gemini-2.5-pro) to assess each sample. If the majority
determine that the context supports correct reasoning to the answer, the sample is labeled as label
= able, and the gold answer is retained. Otherwise, if the context is deemed insufficient, the sam-
ple is labeled as label = unable, and DeepSeek-V3-0324 is further used to generate a supplemental
sub-query q1 to guide the next retrieval step.
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Ultimately, we obtain two types of samples labeled by the voting mechanism. Sufficient information
samples: {original query, retrieved context, label=able, gold answer} and insufficient information
samples: {original query, retrieved context, label=unable, next query}

3.2.2 REWARD FUNCTION DESIGN

To improve the agent’s performance in the “”retrieve–reason–re-retrieve” loop, we design a joint
reward mechanism to guide and provide feedback on Phi-agent’s dynamic retrieval behavior from
three dimensions: reasoning content, retrieval trajectory, and output formatting.

Retrieval Trajectory Reward In each iteration, the agent must decide whether the current context
is sufficient to answer the question and whether to initiate a new query—i.e., classify between able
and unable. We use reference labels obtained via majority vote from GPT-4o, Gemini-2.5-pro,
and DeepSeek-V3-0324. If the agent’s decision matches the reference, it receives a reward rlabel;
otherwise, no reward is given. This helps optimize the retrieval trajectory.

Content Reward For samples labeled able, the final answer â generated by the agent is compared
with the gold answer using the LLaMA3.3-70B model to determine correctness. If correct, a reward
of rans = 1 is assigned; otherwise, rans = 0. For samples labeled unable, we compare the generated
sub-query q̂t+1 with a gold supplemental query qgold

t+1 from the dataset using LLaMA3.3-70B. If they
are semantically similar, a reward of 1 is given; otherwise, 0. The reasonableness of the sub-query
also contributes to optimizing retrieval trajectory. To ensure feedback efficiency, the LLaMA3.3-
70B model is restricted to output at most one token.

Formatting Reward To ensure structured and parsable reasoning outputs, we enforce output for-
matting rules that require the use of standardized tags such as <think> , <label> , and either
<answer> or <query> . If the output format is valid, an additional reward rfmt = 1 is granted;
otherwise, no formatting reward is given.

Joint Reward The final joint reward function is defined as:

R = α · rans + β · rfmt + γ · rlabel (2)

where α, β, and γ are weight coefficients balancing the contributions of different sub-goals to the
overall training objective.

3.2.3 OPTIMIZATION OBJECTIVE

Smaller LLM could offer advantages in practical retrieval tasks, including faster inference and easier
deployment on edge devices. Therefore, we adopt the GRPO algorithm to train the Qwen3-1.7B
model. GRPO compares the relative advantages among multiple candidate actions under the same
state, avoiding bias from value function estimation and making it suitable for complex strategy
optimization in natural language generation.

Let the agent policy be πθ(a | s), where s denotes the current state, including the query q0 and
retrieved information C≤t, and a is the complete structured output sequence comprising the tags
<think> , <label> , and <answer> or <query> . The training objective is to maximize the
expected reward:

J(θ) = Ea∼πθ
[R(s, a)] (3)

where R(s, a) is the joint reward function. For each state sj , we sample K candidate responses
{aj1, . . . , ajK} and compute their rewards Rjk and the average reward R̄j . The advantage function
is then:

Ajk = Rjk − R̄j , where R̄j =
1

K

K∑
k=1

Rjk (4)

The overall loss function is:

LGRPO = −
∑
j,k

Ajk · log πθ(ajk | sj)
πθold(ajk | sj)

+ δ ·KL [πθ(· | sj)∥πθold(· | sj)] (5)
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where πθold is the frozen reference policy, and β is the KL regularization coefficient to constrain
policy drift and ensure training stability.

4 EXPERIMENTS

4.1 SETUP

Dataset We evaluate our proposed method on three widely used multi-hop question answering
benchmarks: HotpotQA, MuSiQue, and 2WikiMultiHopQA. Following the experimental protocol
introduced in HippoRAG, we construct evaluation subsets by uniformly sampling 1,000 queries
from each dataset. For each subset, a corresponding passage collection is assembled, containing
both supporting and distractor evidence from the original corpus. The resulting passage corpora
contain 9,811 entries for HotpotQA, 11,656 for MuSiQue, and 6,119 for 2WikiMultiHopQA.

In addition, we construct a reinforcement learning dataset based on the full HotpotQA corpus, fol-
lowing the data generation procedure described in Section. The resulting dataset consists of 7,405
instances, with 6,405 used for training and 1,000 for testing. The test set shares the same original
query instances as the HotpotQA evaluation subset.

Each data instance includes four fields: original query, retrieved context, label (either able or un-
able), and the corresponding gold answer or next query. Within the training set, 3,496 instances
are labeled as able with fields original query, retrieved context, label=able, gold answer, while
2,909 instances are labeled as unable with fields original query, retrieved context, label=unable,
next query. The test set consists of 550 able-labeled and 450 unable-labeled instances, respectively.

Baseline We include five representative retrieval-augmented generation (RAG) methods as base-
lines in our experiments: HippoRAG, KGP, DALK, LightRAG, and G-Retriever, all originally pro-
posed within the GraphRAG framework. These methods reflect a range of structured and graph-
based retrieval strategies for multi-hop question answering.

To ensure a fair and consistent comparison, we reproduce all baselines under a unified experimental
setup and evaluate them using the same metrics. We employ Qwen-1.7B, Qwen-4B, Qwen-8B,
Qwen-14B and Qwen3-32B as the backbone language models, along with the all-MiniLM-L6-v2
embedding model for retrieval. All baseline implementations are built on top of the DIGIMON
open-source libraryZhou et al. (2025) to ensure reproducibility and implementation consistency.

Evaluation We evaluate our method along the following key dimensions:

• Accuracy(ACC): This metric measures the proportion of correctly answered questions over
the entire evaluation set, regardless of whether the agent determines the question to be
answerable.

• Reasoning Accuracy(R-ACC): For our proposed Phi-agent, we further assess its perfor-
mance on the subset of samples where the agent predicts the query to be answerable. Within
this subset, we calculate the proportion of correct answers, reflecting the agent’s conditional
accuracy when it believes it can answer—thus providing a more faithful evaluation of its
multi-hop reasoning capability.

• Response Token Cost: The average number of tokens generated per sample throughout the
entire reasoning process until a final answer is produced.

• Average Iteration Number: The average number of retrieval–reasoning iterations executed
by the agent before arriving at a final decision.

To evaluate both ACC and R-ACC, we employ multiple models for automatic answer judgment,
including GPT-4o, DeepSeek-V3-0324, and Gemini-2.5-Pro. In our experiments, we observe that
these state-of-the-art models exhibit high consistency when determining the correctness of predicted
answers given a query and its corresponding gold answer. Therefore, we report the average accuracy
obtained from the three models as the final evaluation metric.
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4.2 PERFORMANCE COMPARISON

Our method is built upon the HippoRAG framework and further incorporates the Phi-agent, com-
bined with reinforcement learning guided by retrieval trajectories and reasoning content. With this
design, we achieve significant performance improvements across three multi-hop question answer-
ing benchmarks: HotpotQA, 2Wiki, and MuSiQue. Specifically, our method achieves state-of-the-
art performance in both top-10 and top-20 accuracy. As shown in Table 1, our approach improves
the top-10 accuracy by more than 20 percentage points over HippoRAG on HotpotQA and 2Wiki,
and by over 13 percentage points on MuSiQue. These consistent gains strongly demonstrate the
effectiveness of our retrieval-aware reasoning framework in tackling complex multi-hop questions.

1.7B 4B 14B 32B
Model Size

40

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

41.1

58.7
62.2

66.0

59.9

67.9
72.4

81.6without phi-agent
with phi-agent

Figure 2: Accuracy trend with respect to model
size. HippoRAG-ϕ (4B) outperforms HippoRAG
(32B).

The superior performance stems from: (1)
the dynamic iterative retrieval strategy of Phi-
agent, which enables more comprehensive and
targeted evidence acquisition; (2) the reinforce-
ment learning guided by retrieval trajectory and
reasoning content, which effectively steers the
model toward higher-quality iterative reasoning
paths. Notably, as illustrated in Fig. 2, our
method exhibits a highly practical trend: using
only a small-scale model (HippoRAG-ϕ with
4B parameters) already surpasses the perfor-
mance of the original HippoRAG with a 32B
model. This efficiency advantage highlights
the deployment potential and practicality of our
method in real-world scenarios.

4.3 ABLATION STUDIES

Effectiveness of Phi-agent The Phi-agent is
designed as a highly modular plug-and-play
component, compatible with a wide range of
existing retrieval-augmented generation (RAG) methods. Its core objective is to enhance the rea-
soning capability and retrieval robustness of the original GraphRAG framework by introducing an
iterative retrieval mechanism, all without requiring structural modifications to the underlying mod-
els.

To comprehensively evaluate its generalizability and transferability, we integrate Phi-agent into sev-
eral representative baseline models, resulting in five composite systems: Dalk-ϕ, LightRAG-ϕ, G-
Retriever-ϕ, HippoRAG-ϕ, and KGP-ϕ. These baselines cover a diverse set of graph structures,
retrieval path designs, and control logics, enabling us to objectively assess the adaptability of Phi-
agent across different GraphRAG scenarios.

As shown in Table2, Experimental results under the retrieval parameter of top-5 and a maximum of
5 iterations demonstrate that the introduction of Phi-agent consistently improves answer accuracy
across all composite models and maintains stable performance gains on multiple datasets. Notably,
the improvement is especially prominent in small and medium-sized models (e.g., Qwen-1.7B and
Qwen-4B), where Phi-agent even enables some configurations to outperform their larger counter-
parts without Phi-agent (e.g., Qwen-32B). These findings highlight the strong structural compatibil-
ity of Phi-agent and its ability to significantly enhance the reasoning depth and decision quality of
the models it augments.

Effectiveness of Joint Reward To further verify whether our proposed joint reward mechanism
can effectively optimize the “retrieve–reason–re-retrieve” process, we conduct ablation studies using
LightRAG-ϕ as the base framework. α, β,γ are set to 1. The agent is allowed to freely perform multi-
round retrieval and reasoning without any predefined iteration limits nder the retrieval parameter of
top-10. We then analyze the number of questions correctly answered within each of the first eight
iterations.

On the untrained Qwen3-1.7B model, as shown in Fig.4 .we observe that 554 samples can be cor-
rectly answered in the first round, with the number of correctly answered questions in the 2nd to

7
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Table 1: Comparison of methods on HotpotQA, Wiki, and Musique datasets.

Method
HotpotQA Wiki Musique Avg

top-10 top-20 top-10 top-20 top-10 top-20 top-10 top-20

dalk 20.5 20.6 22.7 24.3 5.4 7.1 16.2 17.3
LightRAG 44.7 51.4 23.5 29.7 17.3 18.6 28.5 33.2
G-Retriever 11.5 10.2 6.5 6.3 3.0 3.8 7.0 6.8
KGP 34.8 41.7 15.5 20.3 12.8 13.7 21.0 25.2
HippoRAG 39.6 41.9 38.4 40.1 13.1 13.0 30.4 31.6
Ours 61.7 63.3 60.7 23.6 23.6 25.7 48.7 50.57
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Figure 3: Reward curves over training steps.
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Figure 4: R-ACC curves over retrieval itera-
tions.

8th rounds being 174, 79, 40, 28, 20, 14, and 14, respectively. However, as the number of iterations
increases, the R-ACC drops sharply. This decline occurs because the remaining questions tend to be
more challenging, requiring harder-to-retrieve evidence and longer reasoning chains.

After training Qwen3-1.7B on our carefully constructed reinforcement learning dataset, the resulting
model—Qwen3-1.7B-α—exhibits significantly improved performance across all iterations. The
reward trend is shown in Fig.3. Experimental results under the retrieval parameter of top-10 and
a maximum of 5 iterations demonstrate that The R-ACC increases substantially and remains more
stable, effectively mitigating the degradation observed in the untrained model during later iterations.

This improvement can be attributed to our proposed joint reward mechanism. On one hand, the
retrieval trajectory reward encourages the model to learn more optimal retrieval paths and enhances
its ability to judge whether the retrieved information is sufficient. On the other hand, the content
reward guides the model in generating more logical and complete answers when it believes it can
respond, and in proposing more appropriate follow-up queries when it decides it cannot answer, thus
optimizing the overall retrieval path. Additionally, as shown in Table.3. we observe increases in both
the response token cost and the average number of iterations after RL training, indicating that the
model’s reasoning depth and decision complexity have also been enhanced. Ultimately, the overall
answer accuracy of LightRAG-ϕ improves from 61.3% to 66.5%, validating the effectiveness of our
reward modeling strategy in multi-hop question answering scenarios.

5 CONCLUSION

This paper introduces a neuro-inspired framework for graph-based retrieval-augmented generation,
motivated by the functional interplay between the prefrontal cortex and the hippocampus. Drawing
on the division of labor in neural circuits—where the hippocampus supports rapid associative re-
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Table 2: Ablation of phi-agents on HotpotQA, 2Wiki, and Musique. “ϕ” indicates the use of phi-
agent.

HotpotQA 2Wiki Musique

Method 1.7B 4B 32B 1.7B 4B 32B 1.7B 4B 32B

Dalk 21.6 32.1 45.8 23.3 26.0 27.4 6.3 11.7 21.1
Dalk-ϕ 23.9 35.6 52.0 27.2 35.9 49.0 8.5 19.2 25.3
LightRAG 38.8 46.7 53.4 18.9 19.3 21.3 15.4 21.5 28.9
LightRAG-ϕ 59.5 76.0 86.3 53.3 68.0 77.8 27.8 45.4 58.0
G-Retriever 12.0 19.9 38.0 5.6 8.6 21.7 3.0 7.2 17.3
G-Retriever-ϕ 17.1 29.1 42.2 20.3 27.0 31.8 5.5 10.0 20.4
HippoRAG 41.1 58.7 66.0 40.9 55.9 60.9 13.1 23.2 31.6
HippoRAG-ϕ 59.9 67.9 81.6 57.5 74.7 80.8 23.5 41.4 52.4
KGP 31.4 39.7 51.2 17.9 23.3 31.6 9.5 13.2 24.6
KGP-ϕ 38.5 46.6 59.1 24.4 30.0 35.4 15.5 21.9 32.9

Table 3: Response token cost and average iteration numbers on HotpotQA, 2Wiki, and Musique.

Dataset Method
Response Token Cost Avg Iteration

1.7B 1.7B-α 1.7B 1.7B-α

HotpotQA

Dalk-ϕ 10563 11953 1.81 2.13
HippoRAG-ϕ 5655 8501 1.72 2.38
KGP-ϕ 6693 8249 1.61 2.21
LightRAG-ϕ 11065 12663 2.08 2.53

2Wiki

Dalk-ϕ 13298 13944 2.12 2.65
HippoRAG-ϕ 4240 8968 1.64 2.66
KGP-ϕ 7961 9357 1.68 2.39
LightRAG-ϕ 17613 23042 1.58 2.23

Musique

Dalk-ϕ 11165 13933 1.97 2.57
HippoRAG-ϕ 7608 8923 1.85 2.19
KGP-ϕ 8723 10653 1.91 2.32
LightRAG-ϕ 16805 22368 1.48 2.14

trieval and the prefrontal cortex is responsible for evaluation, planning, and subgoal generation—we
design an iterative “retrieve–reason–re-retrieve” paradigm within graphs. In addition, we incorpo-
rate joint reward signals to optimize both answer accuracy and retrieval trajectory, thereby achieving
greater robustness in multi-hop reasoning over knowledge graphs. Experimental results on bench-
mark datasets such as HotpotQA, MuSiQue, and 2WikiMultiHopQA demonstrate that our approach
consistently outperforms strong GraphRAG baselines. By integrating biologically inspired princi-
ples with graph structures, our framework highlights a promising direction for retrieval-augmented
systems, not only improving accuracy but also enabling smaller models to surpass larger ones,
thereby lowering deployment requirements. Looking ahead, we plan to further investigate context-
construction strategies in iterative retrieval paradigms and explore parameterizing knowledge to fur-
ther reduce token consumption and reasoning latency.
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were involved in this study. All datasets were obtained in strict accordance with relevant usage
guidelines, ensuring no violation of privacy regulations. We carefully avoided any potential biases
or discriminatory outcomes during the research process. No personally identifiable information was
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committed to maintaining transparency and academic integrity throughout the research process.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible.
All code and datasets have been made publicly available in an anonymous repository: https:
//anonymous.4open.science/r/Phi-agent/README.md, enabling others to replicate
and verify our findings. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. Furthermore, the three public datasets used in
this work are all openly accessible, ensuring consistency and reproducibility of evaluation results.

8 LLM USAGE STATEMENT

Large Language Models (LLMs) were employed to assist in the writing and polishing of this
manuscript. Specifically, we used an LLM to help improve language expression, enhance read-
ability, and ensure clarity across different sections of the paper. The model assisted with tasks such
as sentence rephrasing, grammar checking, and improving the overall flow of the text.

It is important to emphasize that the LLM was not involved in the research ideation, methodological
design, or experimental implementation. All research concepts, ideas, and analyses were indepen-
dently developed and conducted by the authors. The contributions of the LLM were strictly limited
to improving the linguistic quality of the paper, with no involvement in scientific content or data
analysis.

The authors take full responsibility for the entire content of the manuscript, including any text gener-
ated or refined with the assistance of the LLM. We have ensured that all LLM-generated text adheres
to ethical guidelines and does not contribute to plagiarism or scientific misconduct.
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A APPENDIX

A.1 PROMPTS

Iteration Prompt: The prompt used in our iterative retrieval reasoning process for the phi-agent.

**User query**: {query}

**Graph evidence**: {context_text}

**TASK**: You are a reasoning assistant working with information
from a knowledge graph.

Your task is to answer the user query with the provided graph
evidence and your own knowledge.

Follow this process for each query:

1. Carefully read the user query and the retrieved graph evidence.
2. Think step-by-step about what the query is asking and what the

evidence supports.
3. Use both the graph evidence and your own knowledge to reason

through the query.

- If the evidence **is sufficient**, respond in the following format
:

<think> reasoning process here. </think>
<label> able </label>
<answer> final answer here. </answer>

- If the evidence **is not sufficient**, do the following:
- Identify what key information is missing to answer the query.
- Propose a natural, specific follow-up question that would help
obtain the missing evidence.

- Respond in the following format:
<think> reasoning process here. </think>
<label> unable </label>
<query> proposed follow-up question here. </query>

Do not include any text outside the specified tags. Maintain strict
adherence to the format.

Force-answer Prompt: The prompt that forces the model to answer when the preset maximum
number of iterations is reached.

**User query**: {query}

**Graph evidence**: {context_text}

**TASK**: You are a reasoning assistant working with information
from a knowledge graph.
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Your task is to answer the user query with the provided graph
evidence and your own knowledge.

Follow this process for each query:

1. Carefully read the user query and the retrieved graph evidence.
2. Think step-by-step about what the query is asking and what the

evidence supports.
3. Use both the graph evidence and your own knowledge to reason

through the query.

- then respond in the following format:
<think> reasoning process here. </think>
<answer> final answer here. </answer>

Do not include any text outside the specified tags. Maintain strict
adherence to the format.

Evalution Prompt: The prompt used in LLM-based evalution.

Given the question and gold answer, please judge if the predicted
answer is correct. Providing additional background or
supplementary information is acceptable.

Question: {question}.

Gold Answer: {gold_answer}.

Predicted Answer: {answer}.

Please only return 1 (means correct) or 0 (means incorrect) in a
concise way.

Prompt in RL-data generation: The prompt that generates RL data.

You are an evaluation assistant for knowledge-graph question
answering.

Your task is to determine whether the gold answer can be logically
inferred **only** from the question and the retrieved context.

Follow this reasoning protocol:

1. Carefully reason step by step about what the question requires
and what information is present in the context.

2. Decide whether the context alone is sufficient to derive the gold
answer.

If it is sufficient to infer the gold answer, output:
<think> ...your reasoning... </think>
<label> able </label>

If it is **not** sufficient, output:
<think> ...your reasoning... </think>
<label> unable </label>

---
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User question:
{question}

Retrieved context:
{retrieved_context}

Gold answer:
{gold_answer}

Question: {question}
Retrieved Context: {retrieved_context}
Gold Answer: {gold_answer}
Supporting Facts: {supporting_facts}

---

You are a reasoning assistant for a knowledge-graph question
answering system.

You are given the full information for a QA task, including:

- **Question**: The original question asked by the user, which the
system is expected to answer;

- **Retrieved Context**: Relevant information retrieved from the
knowledge graph, which may contain partial facts or background
but is currently insufficient to answer the question;

- **Gold Answer**: The ground-truth answer labeled in the dataset;
- **Supporting Facts**: The original textual evidence that supports

the Gold Answer. These help you understand the reasoning target,
but you are **not allowed to directly quote or use them** in

the generated question.

### Task:

The Gold Answer **cannot** be inferred from the Question and
Retrieved Context alone.

Your job is to:

1. Carefully read the Question and Retrieved Context, and identify
what **critical information is missing** in order to correctly
answer the original question;

2. Propose a **natural and reasonable follow-up question** that
would help acquire the missing information and thus support
answering the original question.

### Constraints:
- The follow-up question must be something that can be **reasonably

proposed based only on the Question and Retrieved Context**;
- You are **not allowed to directly copy from the Gold Answer or

Supporting Facts**;
- Output should follow this format:

<think> Explain what key information is missing and how you
determined this based on the Question and Retrieved Context. </
think>

<query> Write your follow-up question here. </query>
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