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ABSTRACT

Among all data augmentation techniques proposed so far, linear interpolation of
training samples, also called Mixup, has found to be effective for a large panel of
applications. Along with improved predictive performance, Mixup is also a good
technique for improving calibration. However, mixing data carelessly can lead
to manifold mismatch, i.e., synthetic data lying outside original class manifolds,
which can deteriorate calibration. In this work, we show that the likelihood of
assigning a wrong label with mixup increases with the distance between data to
mix. To this end, we propose to dynamically change the underlying distributions
of interpolation coefficients depending on the similarity between samples to mix,
and define a flexible framework to do so without losing in diversity. We provide
extensive experiments for classification and regression tasks, showing that our
proposed method improves predictive performance and calibration of models,
while being much more efficient.

1 INTRODUCTION

The Vicinal Risk Minimization (VRM) principle (Chapelle et al., 2000) improves on the well-known
Empirical Risk Minimization (ERM) (Vapnik, 1998) for training deep neural networks by drawing
virtual samples from a vicinity around true training data. This data augmentation principle is known to
improve the generalization ability of deep neural networks when the number of observed data is small
compared to the task complexity. In practice, the method of choice to implement it relies on hand-
crafted procedures to mimic natural perturbations (Yaeger et al., 1996; Ha & Bunke, 1997; Simard
et al., 2002). However, one counterintuitive but effective and less application-specific approach for
generating synthetic data is through interpolation, or mixing, of two or more training data.

The process of interpolating between data have been discussed multiple times before (Chawla et al.,
2002; Wang et al., 2017; Inoue, 2018; Tokozume et al., 2018), but Mixup (Zhang et al., 2018)
represents the most popular implementation and continues to be studied in recent works (Pinto et al.,
2022; Liu et al., 2022b; Wang et al., 2023). Ever since its introduction, it has been a widely studied
data augmentation technique spanning applications to image classification and generation (Zhang
et al., 2018), semantic segmentation (Franchi et al., 2021; Islam et al., 2023), natural language
processing (Verma et al., 2019), speech processing (Meng et al., 2021), time series and tabular
regression (Yao et al., 2022a) or geometric deep learning (Kan et al., 2023), to that extent of
being now an integral component of competitive state-of-the-art training settings (Wightman et al.,
2021). The idea behind Mixup can be seen as an efficient approximation of VRM, by using a linear
interpolation of data points from within the same batch to reducing computation (Zhang et al., 2018).

The process of Mixup as a data augmentation during training can be roughly separated in three phases:
(i) selecting tuples (most often pairs) of points to mix together, (ii) sampling coefficients that will
govern the interpolation to generate synthetic points, (iii) applying a specific interpolation procedure
between the points weighted by the coefficients sampled. Methods in the literature have mainly
focused on the first and third phases, i.e., the process of sampling points to mix through predefined
criteria (Hwang et al., 2022; Yao et al., 2022a;b; Palakkadavath et al., 2022; Teney et al., 2023) and
on the interpolation itself, by applying sophisticated and application-specific functions (Yun et al.,
2019; Franchi et al., 2021; Venkataramanan et al., 2022; Kan et al., 2023). On the other hand, these
interpolation coefficients, when they exist, are always sampled from the same distribution throughout
training. Recent works have shown that mixing carelessly different points can result in manifold
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intrusions, i.e. mixed examples colliding with other real data manifolds (Guo et al., 2019; Baena
et al., 2022; Chidambaram et al., 2021), or label noise, i.e. mixed labels differing from ground-truth
assignments, which can hurt generalization (Yao et al., 2022a; Liu et al., 2023), while mixing similar
points helps in diversity (Chawla et al., 2002; Dablain et al., 2022). Furthermore, several previous
work have highlighted a trade-off between good predictive performance and calibration in Mixup
(Thulasidasan et al., 2019; Pinto et al., 2022; Wang et al., 2023).

In this work, we show that the distance between the data used in the mixing impacts the likelihood
of assigning a noisy label, which occurs from manifold mismatch, i.e. mixed samples lying outside
the class manifolds of the original data used in the mixing operation. Manifold mismatch can then
lead to manifold intrusion, if the mixed sample lies in a different class manifold, or label noise if
the mixed sample is closer to a different class manifold. Then, we propose an efficient and flexible
framework to take the similarity between the points into account by influencing the interpolation
coefficients. A high similarity should result in a strong interpolation, while a low similarity should
lead to small changes. Consequently, controlling the interpolation through the distance of the points
to mix improves calibration by reducing manifold mismatch. Our contributions 1 in this paper are:

• We show that the likelihood of assigning a noisy label is increasing with the distance between
points, and taking into account distance when mixing can improve calibration. Mixing only
similar data leads to better calibration than including dissimilar ones.

• We present a flexible framework to dynamically change the distributions of interpolation
coefficients. We apply a similarity kernel that takes into account the distance between
points to select a parameter for the distribution tailored to each pair to mix. The underlying
distribution of interpolation is warped to be stronger for similar points and weaker otherwise.

• We quantitatively ascertain the effectiveness of our Similarity Kernel Mixup with extensive
experiments on multiple datasets, from image classification to regression tasks, and multiple
deep neural network architectures. Our approach achieves better calibration while improving
accuracy. Additionally, we highlight the efficiency of our method, obtaining competitive
results with less computation per iteration, and reaching the best performance globally faster.

2 RELATED WORK

2.1 DATA AUGMENTATION BASED ON MIXING DATA

Non-linear interpolation Non-linear combinations are mainly studied for dealing with image
data. Instead of a naive linear interpolation between two images, the augmentation process is done
using more complex non-linear functions, such as cropping, patching and pasting images together
(Takahashi et al., 2019; Summers & Dinneen, 2019; Yun et al., 2019; Kim et al., 2020; Hendrycks
et al., 2020) or through subnetworks (Ramé et al., 2021; Liu et al., 2022b; Venkataramanan et al.,
2022). Not only are these non-linear operations focused on images, but they generally introduce a
significant computational overhead compared to the simpler linear one (Zhu et al., 2020; Li et al.,
2022). The recent R-Mixup (Kan et al., 2023), on the other hand, considers other Riemannian
geodesics rather than the Euclidean straight line for graphs, but is also computationally expensive.
Furthermore, Oh & Yun (2023) has recently shown that learning with linear mixup leads to more
meaningful decision boundaries.
Linear interpolation Mixing samples online through linear interpolation represents the most
efficient and general technique compared to the ones presented above (Zhang et al., 2018; Inoue,
2018; Tokozume et al., 2018). Among these different approaches, combining data from the same batch
also avoids additional samplings. Several follow-up works extend Mixup from different perspectives.
Manifold Mixup (Verma et al., 2019) interpolates data in the feature space, Remix (Chou et al., 2020)
separates the interpolation in the label space and the input space. Notably, AdaMixUp (Guo et al.,
2019) learns to predict a mixing policy to apply to avoid manifold intrusion using two additional
parallel models with intrusion losses. This leads to a more complex training and includes more
parameters to learn. Furthermore, the predicted range is very narrow around 0.5, reducing diversity
of the mixed samples, and the training includes non-mixed samples, making the approach similar
to the recent Regmixup (Pinto et al., 2022), described below. Local Mixup (Baena et al., 2022) is

1Code is available at https://github.com/qbouniot/sim_kernel_mixup
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another approach interested on the manifold intrusion problem, by weighting the loss function with
the distance between the points using K-nearest neighbors graphs. However, this results in completely
discarding the interpolation with points that are far away, losing potential augmentation directions
and, therefore, in diversity. Moreover, these two methods are focusing on improving generalization,
while we are interested in the more general problem of manifold mismatch to improve calibration.
Selecting points A recent family of methods applies an online linear combination on specifically
selected pairs of examples (Yao et al., 2022a;b; Hwang et al., 2022; Palakkadavath et al., 2022; Teney
et al., 2023), across classes (Yao et al., 2022b) or across domains (Yao et al., 2022b; Palakkadavath
et al., 2022; Tian et al., 2023). These methods achieve impressive results on distribution shift and
out-of-distribution generalization (Yao et al., 2022b), but recent theoretical developments have shown
that much of the improvements are linked to a resampling effect from the restrictions in the selection
process, and are unrelated to the mixing operation (Teney et al., 2023). These selective criteria also
induce high computational overhead. One related approach is C-Mixup (Yao et al., 2022a), that fits
a Gaussian kernel on the labels distance between points in regression tasks. Then points to mix
together are sampled from the full training set according to the learned Gaussian density. However,
the Gaussian kernel is computed on all the data before training, which is difficult when there is a lot
of data and no explicit distance between them. k-Mixup (Greenewald et al., 2023) selects the pairs to
mix based on Optimal Transport distance between two different batch of data.

2.2 CALIBRATION IN CLASSIFICATION AND REGRESSION

Calibration is a metric to quantify uncertainty, measuring the difference between a model’s confidence
in its predictions and the actual probability of those predictions being correct. We refer the reader to
Appendix C for a presentation of common calibration metrics used.
In classification Modern deep neural network for image classification are now known to be
overconfident leading to miscalibration (Guo et al., 2017). One can rely on temperature scaling (Guo
et al., 2017) to improve calibration post-hoc, or using different techniques during learning such as
ensembling (Lakshminarayanan et al., 2017; Wen et al., 2021; Laurent et al., 2022), explicit penalties
(Pereyra et al., 2017; Kumar et al., 2018; Moon et al., 2020; Cheng & Vasconcelos, 2022), or implicit
ones (Müller et al., 2019; Lin et al., 2017; Mukhoti et al., 2020; Liu et al., 2022a), including notably
through mixup (Thulasidasan et al., 2019; Pinto et al., 2022; Noh et al., 2023). One should note that
the ordering of calibration results can change after temperature scaling (Ashukha et al., 2020).
Calibration-driven Mixup methods The problem of the trade-off between predictive performance
and calibration with Mixup has been extensively studied in previous works (Thulasidasan et al., 2019;
Zhang et al., 2022; Pinto et al., 2022; Wang et al., 2023). Notably, Wang et al. (2023) observed that
calibration using Mixup can be degraded after temperature scaling. Therefore, they proposed another
improvement of mixup, MIT (Wang et al., 2023), by generating two sets of mixed samples and then
deriving their correct label. AugMix (Hendrycks et al., 2020), NFM (Lim et al., 2022) and NoisyMix
(Erichson et al., 2024) add data-augmentation and noise before the mixing operation to improve
robustness. RegMixup (Pinto et al., 2022) considers Mixup as a regularization term, using stronger
interpolation on every pair. Finally, RankMixup (Noh et al., 2023) uses the interpolation coefficients
from multiple mixed pairs as an additional supervisory signal for ranking of confidence. We propose
a more efficient method to achieve a good trade-off between accuracy and calibration with Mixup.
In regression The problem of calibration in deep learning has also been studied for regression
tasks (Kuleshov et al., 2018; Song et al., 2019; Laves et al., 2020; Levi et al., 2022), where it is more
complex as we lack a simple measure of predictive confidence. In this case, regression models are
usually evaluated under the variational inference framework with Monte Carlo (MC) Dropout (Gal &
Ghahramani, 2016) to quantify confidence.
In our work, we use a similarity kernel to mix more strongly similar data and avoid mixing less
similar ones, leading to preserving label quality and confidence of the network. As opposed to all
other methods discussed above, we also show the flexibility of our approach by its effectiveness on
both classification and regression tasks. We detail our framework, the similarity used and the intuition
behind below.

3 SIMILARITY KERNEL MIXUP

First, we define the notations and elaborate on the learning conditions that will be considered
throughout the paper. Let D = {(xi, yi)}Ni=1 = (X,y) ∈ XN ×YN ⊂ Rd1×N ×RN be the training
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dataset. We want to learn a model f parameterized by θ ∈ Θ ⊂ Rp, that predicts ŷ := f(x) for any
x ∈ X. For classification tasks, we have Y = {1, . . . ,M}, where M is the number of classes, and we
further assume that the model f can be separated into an encoder part h : X→ Rd2 and classification
weights w ∈ Rd2×M , with d2 the embedding dimension, such that ∀x ∈ X, f(x) = wTh(x) and
ŷ := argmaxm∈{1,...,M} softmax(f(x))m. To learn our model, we optimize the weights of the
model θ in a stochastic manner, by repeating the minimization process of the empirical risk computed
on batch of data Bt = {(xi, yi)}ni=1 sampled from the training set, for t ∈ {1, . . . , T} iterations.

With Mixup (Zhang et al., 2018), at each iteration t, the empirical risk is computed on an augmented
batch of data B̃t = {(x̃i, ỹi)}ni=1, such that x̃i := λtxi+(1−λt)xσt(i) and ỹi := λtyi+(1−λt)yσt(i),
with λt ∼ Beta(α, α) and σt ∈ Sn a random permutation of n elements sampled uniformly. Thus,
each input is mixed with another input randomly selected from the same batch, and λt represents
the strength of the interpolation between them. Besides simplicity, mixing elements within the batch
significantly reduces both memory and computation costs.

In the following parts, we introduce a more general extension of this framework using warping
functions, that spans different variants of Mixup, while preserving its efficiency. First, we show and
illustrate how Mixup can lead to manifold mismatch and its impact on confidence scores.

3.1 MANIFOLD MISMATCH

We consider the general setup of manifold learning (Vural & Guillemot, 2018). We assume X ⊂ H
with H being a Hilbert space and consider a classification problem with M > 2 classes, where
samples of each class m ∈ {1, 2, . . . ,M} are drawn from a probability measure νm such that νm has
bounded supportMm ⊂ X. We further assume that the classes are separated, such that all samples
belong to a single class and manifolds are disjoints. Then, ∀(xi, yi) ∈ D, yi ∈ {1, . . . ,M} and
xi ∼ νyi

. In this setting, we show the following results, with proof in Appendix F:
Theorem 3.1. For any pair of manifoldMi,Mj , there exists xk,xl ∈Mi∪Mj , and λ1, λ2 ∈ [0, 1],
λ1 > λ2, such that :

(i) ∀λ ∈]λ2, λ1[, x̃(λ) = λxk + (1− λ)xl does not belong to the same manifold as xk and xl.

(ii) ∥x̃(λ1)− x̃(λ2)∥H = |λ1 − λ2|∥xk − xl∥H.

In other words, for any pair of class, we can find pairs of points where their convex combination can
fall in a region of the space (in the line segment) that belongs to neither of the original manifolds.
These regions are delimited by the borders of the manifolds (x̃(λ1) and x̃(λ2)) on the line segment,
and can be seen as regions of uncertainty with respect to the true underlying manifold. In practice,
convex combinations of points that falls in such regions leads to manifold mismatch, as they could
either belong to a different class manifold or to no class manifold at all.

Now that we have shown the existence of combinations leading to manifold mismatch, we introduce
a corollary of the theorem presented in Liu et al. (2023). We consider X,X ′ random variables
associated to the inputs, and X̃ = (1 − λ)X + λX ′, for a fixed λ ∈ [0, 1]. The ground truth
conditional distribution of the labels Y is expressed as a vector-valued function g : X→ RM , such
that P (Y = m|X = x) = gm(x), for each dimension m ∈ {1, . . . ,M}. The mixup-induced label
can then be assigned based on ground truth Ỹ ∗ = argmaxm gm(X̃), or from the combination of
conditional distribution Ỹ = argmaxm[(1− λ)gm(X) + λgm(X ′)]. With that, we can say that the
mixup label is noisy when the two assignments disagree, i.e. when Ỹ ∗ ̸= Ỹ .

Theorem 3.2. For any fixed X,X ′ and X̃ related by X̃ = (1− λ)X + λX ′ for a fixed λ ∈ [0, 1],
and for samples (x, y), (x′, y′) ∈ D, with x̃ = (1− λ)x+ λx′, the probability of assigning a noisy
label is lower bounded by

P (Ỹ ∗ ̸= Ỹ |X̃ = x̃) ≥ min(λ, (1− λ))

R
W1(My,My′) (1)

where W1(·, ·) is the Wasserstein metric, and R = supx,x′∈X ∥x− x′∥H is the radius of the space
(see Appendix F.2).

This result tells us that the probability of assigning a noisy label is lower bounded by the distance
between the original manifolds. Thus, to avoid noisy labels, we want to reduce the probability that
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Figure 1: (a) Probability that predicted label of mixed samples corresponds to the label of either of
the two points used for mixing, depending on the distance between the two points. (b) Performance
(Accuracy in %, higher is better, bottom) and calibration (ECE, lower is better, top) comparison
with Resnet34 on CIFAR10 (left) and CIFAR100 (right) datasets. We compare results when mixing
only elements with distance Higher (in green) than the median, and Lower (in orange) than the
median of all pairwise distances within each batch.

λ = 0.5 when the original manifolds are far from each other. Furthermore, the distance between two
points roughly informs about the distance between the two manifolds.

From the above discussion, we assume that in practice, the higher the distance between two points,
the less likely their convex combination will fall near the original manifolds, and thus, the more likely
a model would assign a different label than the original labels of the two points. We verify this in
the following experiments presented in Figure 1a. Using a Resnet18 (He et al., 2016) trained with
ERM respectively on CIFAR10 or CIFAR100 (Krizhevsky et al., 2009), we generate 10000 mixed
samples x̃i from data of each test set. Each interpolation coefficient used to obtain x̃i is sampled
from a uniform distribution between 0 and 1. We then measure the frequency that the model assigns
the same label to x̃i than the label of either of the points in the pair used to mix (yi or yσ(i)), with
respect to the distance between the points in the pair. As can be seen, the frequency of assigning the
same label decreases with the distance. This confirms that the uncertainty on the label of the mixed
samples directly depends in practice on the distance between the two points.

Then, we conduct an empirical analysis to compare accuracy and calibration metrics using the classic
ERM, the original Mixup, and a modified version of Mixup that selects pairs to mix according to a
given quantile of the overall pairwise distances within the batch. To have equivalent proportions of
possible data to mix with (same diversity), we analyze results when mixing only pairs of points with
distances lower than a given quantile q, and higher than the quantile q′ = 1− q. More specifically,
we show in Figure 1b the results for q = 0.5 (the median) of the overall pairwise distances within
the batch, using a Resnet34 (He et al., 2016) on CIFAR10 and CIFAR100 (Krizhevsky et al., 2009)
datasets. Detailed values for this experiment with different quantiles q can be found in Appendix D,
and implementation details in Section 4. First, we observe that Mixup improves upon ERM’s accuracy,
but can degrade calibration depending on the dataset, which is consistent with findings from Wang
et al. (2023). Then, when selecting pairs according to distance, a sufficiently high proportion of data
to mix is necessary to improve accuracy (q ≥ 0.5). Finally, mixing data with lower distances achieves
a better calibration as opposed to mixing data with higher distances. These results show that there is
a trade-off between adding diversity by increasing the proportion of elements to mix, and uncertainty
by mixing elements far from each other. Furthermore, it shows that we cannot restrict pairs to mix
by selecting data solely based on distance, as it can degrade performance by reducing diversity of
synthetic samples. To better control this trade-off with Mixup, we propose to tailor interpolation
coefficients to the training data, from the distance between the points to mix, such that all points and
directions can be considered for mixing.

3.2 WARPED MIXUP

To dynamically change the interpolation depending on the similarity between points, we rely on
warping functions ωτ , to warp interpolation coefficients λt at every iteration t depending on the

5



Published as a conference paper at ICLR 2025

low avg high

Distance between xi and xσ(i)

0

0.25

0.50

0.75

1

D
en

si
ty

of
ω
τ
(λ

)

0.5

1.0

1.5

2.0

(a)

0.0 0.5 1.0 1.5 2.0
Normalized distance between xi and xσ(i)

0.0

0.2

0.4

0.6

0.8

1.0

P
[ (f

θ
(x̃

i)
=
y i

)
∪

(f
θ
(x̃

i)
=
y σ

(i
)]

Dataset

CIFAR10

CIFAR100

(b)

Figure 2: (a) Density of interpolation coefficients ωτ (λ) after warping with the similarity kernel
depending on the distance between pairs. (b) Probability that predicted label for mixed samples with
SK mixup corresponds to the label of either of the two points used for mixing.

parameter τ . These functions ωτ are bijective transformations from [0, 1] to [0, 1] defined as such:

ωτ (λt) = I−1
λt

(τ, τ) with Iλt =

∫ λt

0

uτ−1(1− u)τ−1

B(τ, τ)
du, (2)

where Iλt
is the regularized incomplete beta function, which is the cumulative distribution function

(CDF) of the Beta distribution, B(τ, τ) is a normalization constant and τ ∈ R∗
+ is the warping

parameter that governs the strength and direction of the warping. Our motivation behind such ωτ is
to preserve the same type of distribution after warping, i.e., Beta distributions with symmetry around
0.5, through Inverse Transform Sampling (see Appendix F for the proof):
Proposition 3.3. Let λ ∼ U([0, 1]). Then ωτ (λ) ∼ Beta(τ, τ) for any τ > 0.

One should note that according to Proposition 3.3, the initial interpolation parameter λ should follow
a uniform distribution for ωτ (λ) to follow a Beta(τ, τ) distribution. Thus, in the remaining of the
paper, we always draw λ according to a uniform distribution (or equivalently, a Beta(1, 1)), which
has the additional benefit of removing α as a hyperparameter. We thus extend the Mixup framework:

λt ∼ Beta(1, 1),
x̃i := ωτ (λt)xi + (1− ωτ (λt))xσt(i)

ỹi := ωτ (λt)yi + (1− ωτ (λt))yσt(i).
(3)

In addition to providing a general framework, using warping functions is more computationally
efficient in practice, which we discuss in details in Appendix G. In the following part, we present our
method to select the right τ depending on the data to mix, to dynamically change the distribution of
the interpolation coefficients.

3.3 SIMILARITY KERNEL

Recall that our main goal is to apply stronger interpolation between similar points, and reduce
interpolation otherwise. Since the behavior of Beta distributions and ωτ are logarithmic with respect
to τ , therefore, the parameter τ should be exponentially correlated with the distance, with a symmetric
behavior around 1. To this end, we define a class of similarity kernels, based on a normalized and
centered Gaussian kernel, that outputs the correct warping parameter for the given pair of points.
Given a batch of data x = {xi}ni=1 ∈ Rd×n, the index of the first element in the mix i ∈ {1, . . . , n},
along with the permutation σ ∈ Sn to obtain the index of the second element, we compute the
following similarity kernel:

τ(x, i, σ; τmax, τstd) = τmax exp

(
− d̄n(xi,xσ(i))− 1

2τ2std

)
, (4)

with d̄n(xi,xσ(i)) =
∥xi − xσ(i)∥22

1
n

∑n
j=1 ∥xj − xσ(j)∥22

, (5)
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Figure 3: Decision frontiers and data used during training (circles) and testing (stars) for (a) ERM,
(b) Mixup, and (c) our Similarity Kernel Mixup, on Moons toy dataset.

where d̄n is the squared L2 distance rescaled by the mean distance over the batch, and τmax, τstd are
respectively the amplitude and standard deviation (std) of the Gaussian, which are hyperparameters
of the similarity kernel. The amplitude τmax governs the strength of the interpolation in average,
and τstd the extent of mixing. In practice, we found that these two parameters could be tuned
separately, and that choosing a good τstd is more important than τmax for calibration. This framework
allows measuring similarity between points in any space that can represent them. More specifically,
for classification, we use the L2 distance between embeddings, i.e., d̄n(h(xi), h(xσ(i)), while for
regression, we use the distance between labels, i.e., d̄n(yi, yσ(i)), following Yao et al. (2022a).

Our motivation behind this kernel is to have τ > 1 when the two points to mix are similar, i.e., the
distance is lower than average, to increase the mixing effect, and τ < 1 otherwise, to reduce the
mixing. Figure 2a illustrates the evolution of the density of warped interpolation coefficients ωτ (λ),
depending on the distance between the points to mix. Close distances (left part of the heatmap)
induce strong interpolations, while far distances (right part of the heatmap) reduce interpolation.
Using this similarity kernel to find the correct τ to parameterize the Beta distribution defines our full
Similarity Kernel (SK) Mixup framework. A detailed algorithm of the training procedure can be found
in Appendix E, and an in-depth discussion about warping and similarity measures in Appendix K.

In Figure 2b, we reproduce the experiments presented in Figure 1a, but using our SK Mixup to
generate mixed samples, instead of a uniform distribution. We can see that governing interpolation
by the distance reduces likelihood of manifold mismatch even when the samples are far away. Then,
we also illustrate and compare behaviors of our method on the Moons toy problem in Figure 3. We
observe that a model with Mixup (middle) can lead to worst confidence and performance compared
to standard ERM (left), due to manifold mismatch. Since the moons are intertwined and non-convex,
linear interpolations from the same moon can lie in the other. Using our SK Mixup approach (right),
we recover the accuracy and achieve more meaningful confidence scores.

4 EXPERIMENTS

4.1 PROTOCOLS

Image Classification We follow experimental settings from previous works (Liu et al., 2022a; Pinto
et al., 2022; Wang et al., 2023; Noh et al., 2023) and evaluate our approach on CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), Tiny-Imagenet (Deng et al., 2009) and Imagenet (Russakovsky et al.,
2015) datasets for In-Distribution (ID) performance and calibration. We evaluate models trained
on CIFAR10 and CIFAR100 on CIFAR10-C and CIFAR100-C (Hendrycks & Dietterich, 2018)
for covariate shift robustness, and models trained on ImageNet on Imagenet-R (Hendrycks et al.,
2021a) and ImageNet-A (Hendrycks et al., 2021b) for Out-Of-Distribution (OOD) robustness, using
Resnet34, Resnet50, Resnet101 (He et al., 2016) and ViT (Dosovitskiy et al., 2021) architectures.
We evaluate calibration using ECE and AECE (Naeini et al., 2015; Guo et al., 2017), negative log
likelihood (NLL) (Hastie et al., 2009) and Brier score (Brier, 1950), and also after finding the optimal
temperature on the validation set through Temperature Scaling (TS) (Guo et al., 2017). Results are
reproduced and averaged over 4 different random runs, and we report standard deviation.
Regression Here again, we follow settings of previous work on regression (Yao et al., 2022a).
We evaluate performance on Airfoil (Kooperberg, 1997), Exchange-Rate and Electricity (Lai et al.,
2018) datasets using Mean Averaged Percentage Error (MAPE), along with Uncertainty Calibration
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Table 1: Comparison of Performance (Accuracy in %) and calibration (ECE, Brier, NLL) with
Resnet34 on CIFAR10 and CIFAR100. Best in bold, second best underlined.

Methods α τstd
CIFAR10 CIFAR100

Accuracy (↑) ECE (↓) Brier (↓) NLL (↓) Accuracy (↑) ECE (↓) Brier (↓) NLL (↓)
ERM – – 94.69 ± 0.27 3.65 ± 0.22 8.90 ± 0.40 24.57 ± 1.04 73.47 ± 1.59 13.00 ± 0.17 39.56 ± 2.19 121.06 ± 7.92

Mixup
1 – 95.97 ± 0.27 12.30 ± 0.92 8.54 ± 0.64 25.68 ± 1.53 78.11 ± 0.57 11.92 ± 0.73 32.82 ± 0.87 95.76 ± 2.43

0.5 – 95.71 ± 0.26 6.85 ± 1.42 7.46 ± 0.54 21.52 ± 1.70 77.14 ± 0.67 8.06 ± 1.19 32.78 ± 1.11 96.59 ± 3.78
0.1 – 95.37 ± 0.22 2.02 ± 0.4 7.48 ± 0.46 17.99 ± 1.21 76.01 ± 0.62 3.06 ± 0.74 33.51 ± 0.61 94.40 ± 1.69

Mixup IO
1 – 95.16 ± 0.22 1.92 ± 0.06 7.51 ± 0.33 16.80 ± 0.56 74.44 ± 0.49 9.90 ± 0.65 36.94 ± 0.40 106.38 ± 1.47

0.5 – 95.31 ± 0.17 2.19 ± 0.18 7.40 ± 0.24 17.0 ± 0.69 74.45 ± 0.6 10.51 ± 0.75 37.2 ± 0.77 108.05 ± 2.74
0.1 – 95.12 ± 0.21 2.74 ± 0.21 7.84 ± 0.32 19.04 ± 0.95 74.21 ± 0.46 8.09 ± 0.20 36.39 ± 0.53 103.08 ± 2.02

SK Mixup
(Ours) 1

0.2 96.29 ± 0.07 1.81 ± 0.24 6.48 ± 0.13 16.14 ± 0.28 78.13 ± 0.52 2.72 ± 0.73 31.33 ± 0.79 85.96 ± 2.18
0.4 96.42 ± 0.24 3.04 ± 0.26 6.24 ± 0.43 16.38 ± 1.01 78.86 ± 0.83 7.62 ± 0.82 30.87 ± 1.31 88.32 ± 3.92
0.6 96.36 ± 0.09 4.89 ± 0.56 6.55 ± 0.12 18.17 ± 0.51 78.63 ± 0.27 7.98 ± 0.97 31.21 ± 0.31 89.57 ± 0.98
0.8 96.00 ± 0.41 5.83 ± 0.31 7.15 ± 0.55 19.88 ± 1.23 79.12 ± 0.52 8.62 ± 0.78 30.68 ± 0.55 86.59 ± 4.0
1.0 96.25 ± 0.07 5.9 ± 0.8 6.89 ± 0.25 19.38 ± 0.78 78.51 ± 0.94 8.73 ± 1.41 31.45 ± 1.28 90.42 ± 4.11

Table 2: Comparison of performance (Accuracy in %) and calibration (ECE and ECE after Tem-
perature Scaling), with Resnet101 on CIFAR10, CIFAR100 and Tiny-Imagenet datasets. †: Results
reported from Noh et al. (2023). Best in bold, second best underlined, for reported results and ours
separately.

Methods CIFAR10 CIFAR100 Tiny-Imagenet
Acc. (↑) ECE (↓) TS ECE (↓) Acc. (↑) ECE (↓) TS ECE (↓) Acc. (↑) ECE (↓) TS ECE (↓)

MMCE† 94.99 3.88 1.15 77.82 13.43 3.06 66.44 3.40 3.40
ECP† 93.97 4.41 1.72 76.81 13.43 2.92 66.20 2.72 2.72
LS† 94.18 3.35 1.51 76.91 7.99 4.38 65.52 3.11 2.51
FL† 93.59 3.27 1.12 76.12 3.10 2.58 64.02 2.18 2.18
FLSD† 93.26 3.92 0.93 76.61 3.29 2.04 64.02 1.85 1.85
CRL† 95.04 3.74 1.12 77.60 7.29 3.32 65.87 3.57 1.60
CPC† 95.36 4.78 1.52 77.50 13.32 2.96 66.44 3.93 3.93
MbLS† 95.13 1.38 1.38 77.45 5.49 5.49 65.81 1.62 1.62

ERM 93.97 ± 0.03 4.30 ± 0.01 0.58 ± 0.01 74.27 ± 0.37 14.33 ± 0.17 1.82 ± 0.04 65.7 ± 0.07 4.03 ± 0.22 1.62 ± 0.19
Mixup 94.78 ± 0.13 2.20 ± 0.23 1.47 ± 0.01 77.50 ± 0.18 5.77 ± 2.81 2.58 ± 0.01 67.80 ± 0.54 5.49 ± 1.11 1.93 ± 0.02
Manifold Mixup 94.75 ± 0.03 2.13 ± 0.12 1.57 ± 0.05 77.76 ± 1.35 5.34 ± 0.04 3.07 ± 0.22 68.57 ± 0.04 6.56 ± 0.57 2.11 ± 0.01
RegMixup 95.89 ± 0.01 1.64 ± 0.01 1.27 ± 0.06 78.85 ± 0.08 6.72 ± 0.08 2.66 ± 0.08 69.76 ± 0.07 10.19 ± 0.06 0.84 ± 0.02
RankMixup 94.42 ± 0.17 2.87 ± 0.25 0.70 ± 0.11 77.27 ± 0.08 11.69 ± 0.22 2.12 ± 0.20 65.40 ± 0.01 13.85 ± 9.60 1.48 ± 0.02
MIT-A 95.27 ± 0.01 2.3 ± 0.04 0.93 ± 0.01 77.23 ± 0.56 9.55 ± 0.46 2.39 ± 0.03 68.03 ± 0.09 7.86 ± 0.09 1.52 ± 0.15

SK Mixup (Ours) 95.04 ± 0.07 2.20 ± 0.12 0.47 ± 0.01 78.20 ± 0.46 2.23 ± 0.39 1.11 ± 0.06 67.60 ± 0.01 3.04 ± 0.24 1.06 ± 0.01
SK RegMixup (Ours) 96.02 ± 0.04 2.36 ± 0.59 0.93 ± 0.02 79.57 ± 0.03 4.32 ± 1.21 1.54 ± 0.10 69.11 ± 0.06 7.19 ± 0.38 1.06 ± 0.09

Error (UCE) (Laves et al., 2020) and Expected Normalized Calibration Error (ENCE) (Levi et al.,
2022) for calibration. Results are reproduced and averaged over 10 different random runs. We
also report standard deviation between the runs. A presentation of the different calibration metrics
used can be found in Appendix C, along with a detailed description of implementation settings and
hyperparameters in Appendix H.

4.2 CLASSIFICATION

Effect of τstd We present in Table 1 the performance and calibration results on CIFAR10 and
CIFAR100 with a Resnet34, to study the effect of varying τstd. We compare the results with Mixup
(Zhang et al., 2018) and Mixup-IO (Wang et al., 2023), which mixes between Inputs Only while
keeping one-hot labels, for varying values of α. These two versions of Mixup show the trade-off
between the effect of confidence penalty (in Mixup) that can hurt calibration on the one hand, and
trivial confidence promotion (in Mixup-IO) that can hurt accuracy on the other hand. By varying
only τstd, therefore changing the extent of mixing, we can achieve a better and finer trade-off between
these two effects, and improving both calibration and accuracy. Furthermore, it shows that our SK
Mixup obtains better results than simply changing α in Mixup and Mixup-IO. For other experiments,
we first performed cross-validation to select τstd. In general, we found that τstd = 0.25 worked for all
datasets and used by default τmax = 1 (unless stated otherwise). We refer the reader to Appendix J
for more details on cross-validation.

Comparison with state of the art In Table 2, we present an extensive comparison of results on
CIFAR10, CIFAR100 and Tiny-ImageNet with a Resnet101. We compare accuracy and calibration
results reported in the same settings for various approaches from Noh et al. (2023), including implicit
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Table 3: Comparison of performance (Accuracy in %) and calibration (ECE, AECE) with Resnet101
in Covariate-Shift, on CIFAR10-C and CIFAR100-C datasets, averaged over all corruptions and
degrees of intensities. Best in bold, second best underlined.

Methods CIFAR10-C CIFAR100-C
Accuracy (↑) ECE (↓) AECE (↓) Accuracy (↑) ECE (↓) AECE (↓)

ERM 72.36 ± 1.23 21.80 ± 0.55 21.79 ± 0.55 47.96 ± 0.59 31.97 ± 0.41 31.96 ± 0.41
Mixup 77.46 ± 1.09 14.25 ± 1.03 14.22 ± 1.01 53.18 ± 0.61 17.73 ± 4.07 17.73 ± 4.07
Manifold Mixup 77.30 ± 0.45 14.14 ± 3.38 14.18 ± 3.13 53.42 ± 1.8 16.48 ± 6.88 16.48 ± 6.88
MIT-A 76.2 ± 0.31 15.46 ± 1.0 15.44 ± 0.98 53.36 ± 0.27 23.0 ± 0.74 23.0 ± 0.74
RankMixup 73.39 ± 2.44 19.16 ± 2.45 19.15 ± 2.45 47.44 ± 2.36 30.99 ± 1.14 30.99 ± 1.14
RegMixup 80.92 ± 3.43 9.9 ± 3.53 9.8 ± 3.45 55.52 ± 0.3 16.95 ± 0.37 16.95 ± 0.37

SK Mixup (Ours) 79.31 ± 0.62 6.87 ± 0.94 6.89 ± 0.94 55.04 ± 1.28 9.90 ± 0.12 9.9 ± 0.12
SK RegMixup (Ours) 81.69 ± 2.9 5.88 ± 1.53 5.9 ± 1.56 57.98 ± 0.32 6.89 ± 1.38 6.9 ± 1.37

Table 4: Comparison of In-Distribution (ID) performance (Accuracy in %) and calibration (ECE,
AECE) on Imagenet dataset, and Out-of-distribution (OOD) performance and calibration on Imagenet-
R and Imagenet-A datasets, with Resnet50 and ViT-S/16. Best in bold, second best underlined.

Arch. Methods
ID OOD

ImageNet ImageNet-R ImageNet-A
Acc. (↑) ECE (↓) AECE (↓) Acc. (↑) ECE (↓) AECE (↓) Acc. (↑) ECE (↓) AECE (↓)

RN50

ERM 76.06 4.12 4.05 22.31 24.77 24.77 0.71 43 43
Mixup 76.59 1.8 1.77 24.49 19.2 19.2 0.89 37.92 37.92
Manifold Mixup 76.61 1.77 1.77 24.43 19.68 19.68 0.85 39.05 39.05
RegMixup 77.82 2.61 2.59 25.70 22.67 22.67 2.27 40.14 40.14
RankMixup 76.33 2.07 2.1 23.33 24.81 24.81 0.85 43.81 43.81
MIT-A 76.7 1.8 1.74 24.86 17.83 17.83 0.81 37.37 37.37

SK Mixup (Ours) 76.2 1.46 1.4 24.67 19.88 19.88 0.99 36.93 36.93
SK RegMixup (Ours) 77.1 1.78 1.77 25.92 18.44 18.44 2.63 34.93 34.93

ViT-S/16

ERM 69.34 9.03 9.03 15.46 35.93 35.93 1.83 45.03 45.03
Mixup 72.0 5.81 5.8 18.21 29.29 29.29 2.47 41.07 41.07
Manifold Mixup 72.04 6.99 6.95 18.93 30.27 30.27 2.15 43.47 43.47
RegMixup 74.44 7.36 7.34 21.01 32.64 32.64 3.8 44.4 44.4
RankMixup 69.99 9.30 9.30 15.77 37.37 37.37 1.77 46.82 46.82
MIT-A 72.81 5.69 5.69 17.6 31.07 31.07 2.81 41.8 41.8

SK Mixup (Ours) 71.83 3.89 3.9 18.37 28.56 28.56 2.28 39.33 39.33
SK RegMixup (Ours) 75.11 2.0 1.98 22.06 26.23 26.23 4.44 38.25 38.25

methods such as LS (Müller et al., 2019), FL (Lin et al., 2017), FLSD (Mukhoti et al., 2020), MbLS
(Liu et al., 2022a), and explicit methods, such as ECP (Pereyra et al., 2017), MMCE (Kumar et al.,
2018), CRL (Moon et al., 2020), CPC (Cheng & Vasconcelos, 2022). We also compare results with
Mixup, Manifold Mixup (Verma et al., 2019), RegMixup (Pinto et al., 2022), RankMixup (Noh et al.,
2023) and MIT-A (Wang et al., 2023) in the same settings on multiple random seeds, using official
codes and hyperparameters provided by the authors. We can see from these results that we achieve
competitive accuracy and improves calibration compared to other Calibration-driven Mixup methods.
Note that our approach always improves accuracy and calibration over ERM. We also show that our
framework can be combined with RegMixup to further improve accuracy by about 1%. Then, we
compare results in covariate shift settings in Table 3 against other calibration-driven Mixup methods.
We observe that our SK Mixup achieves significantly better calibration results, about 3 points (of
ECE and AECE) on CIFAR10-C and 7 points on CIFAR100-C that RegMixup, and that our SK
RegMixup achieves both better accuracy and calibration than all other methods. In Table 4, we also
evaluate the scalability of our method on ImageNet dataset, both for ID and OOD performance with
ResNet and ViT models. While we achieve slightly lower ID accuracy than other method with our SK
Mixup, we significantly improve ID calibration. Then, with SK RegMixup, we improve calibration
over original RegMixup, with similar ID accuracy, and we achieve both better OOD accuracy and
calibration than other methods.
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Table 5: Performance (RMSE, MAPE) and calibration (UCE, ENCE) comparison on regression tasks.
Best in bold, second best underlined.

Methods Airfoil Exchange Rate Electricity
MAPE (↓) UCE (↓) ENCE (↓) MAPE (↓) UCE (↓) ENCE (↓) MAPE (↓) UCE (↓) ENCE (↓)

ERM 1.720 ± 0.219 107.6 ± 19.2 2.10% ± 0.78 1.924 ± 0.287 0.82% ± 0.28 3.64% ± 0.74 15.263 ± 0.383 0.76% ± 0.08 22.07% ± 1.27
Mixup 2.003 ± 0.126 147.1 ± 34.0 2.12% ± 0.63 1.926 ± 0.284 0.74% ± 0.22 3.52% ± 0.59 14.944 ± 0.386 0.62% ± 0.07 24.28% ± 2.47
Manifold Mixup 1.964 ± 0.111 126.0 ± 15.8 2.06% ± 0.64 2.006 ± 0.346 0.86% ± 0.29 3.82% ± 0.85 14.872 ± 0.409 0.69% ± 0.05 24.53% ± 1.44
RegMixup 1.725 ± 0.092 105.0 ± 23.1 1.92% ± 0.73 1.918 ± 0.290 0.80% ± 0.24 3.66% ± 0.73 14.790 ± 0.395 0.66% ± 0.12 23.68% ± 2.53
C-Mixup 1.706 ± 0.104 111.2 ± 32.6 1.90% ± 0.75 1.893 ± 0.222 0.78% ± 0.20 3.60% ± 0.64 15.085 ± 0.533 0.69% ± 0.11 23.54% ± 1.90
SK Mixup (Ours) 1.609 ± 0.137 93.8 ± 25.5 1.85% ± 0.84 1.814 ± 0.241 0.76% ± 0.21 3.40% ± 0.56 14.649 ± 0.191 0.61% ± 0.05 23.93% ± 2.05

Table 6: Efficiency comparison between Mixup methods. We report the number of batch of data in
memory at each iteration, the best epoch measured on validation data, time per epoch (in seconds)
and total training time to reach the best epoch (in seconds), for Image classification on CIFAR10,
CIFAR100 and Tiny-imagenet datasets, with a Resnet50.

Method Batch CIFAR10 CIFAR100 Tiny-Imagenet
in memory Best Epoch Time Total Time Best Epoch Time Total Time Best Epoch Time Total Time

Mixup 1 186 17 3162 181 17 3077 89 125 11125
RankMixup 4 147 78 11485 177 78 13806 80 540 43380
MIT-A 2 189 46 8694 167 46 7659 82 305 24908
RegMixup 2 173 32 5536 177 32 5664 94 240 22560

SK Mixup 1 183 28 5138 160 28 4480 69 189 13104
SK RegMixup 2 175 39 6825 179 39 6981 75 316 23700

4.3 REGRESSION

To demonstrate the flexibility of our framework regarding different tasks, we provide experiments on
regression for tabular data and time series. Regression tasks have the advantage of having an obvious
meaningful distance between points, which is distance between labels. Therefore, following Yao
et al. (2022a), we directly measure the similarity between two points by the distance between their
labels, i.e., d̄n(yi, yσ(i)). This avoids the computation of distance on embeddings and makes our
method as fast as the original Mixup. In Table 5, we compare our SK Mixup with Mixup (Zhang
et al., 2018), Manifold Mixup (Verma et al., 2019), RegMixup (Pinto et al., 2022), and C-Mixup
(Yao et al., 2022a). We can see that our approach achieves competitive results with state-of-the-art
C-Mixup, in both performance (MAPE) and calibration metrics.

4.4 EFFICIENCY COMPARISON

Our method achieves competitive results while being much more efficient than other state-of-the-art
approaches. Indeed, as can be seen in Table 6, our SK Mixup is about 1.5× faster than MIT-A,
about 3× faster than RankMixup while using a single batch of data like Mixup. We present a full
comparison in Appendix N.

5 CONCLUSION

Motivated by calibration in both classification and regression tasks, we present Similarity Kernel
Mixup, a flexible framework to take into account distance between data for linearly interpolation
during training, based on a similarity kernel. The coefficients governing the interpolation are warped
to change their underlying distribution depending on the similarity between the points to mix, such
that similar data are mixed more strongly than less similar ones, preserving calibration by avoiding
manifold mismatch, as we prove that likelihood of assigning noisy label when mixing increases with
distance. This provides a more efficient data augmentation approach than Calibration-driven Mixup
methods, both in terms of time and memory, improving both accuracy and calibration, even more
out-of-distribution. We illustrate through extensive experiments the effectiveness of the approach
in classification as well as in regression, spanning multiple neural network architectures including
CNNs, ViTs, MLPs and RNNs. We also show that our proposed framework can be combined with
RegMixup (Pinto et al., 2022) to further boost performance. Future works include applications to
more complex tasks such as semantic segmentation, depth estimation, or structured data.
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A BROADER IMPACT

This paper presents work whose goal is to improve the calibration of machine learning models.
Calibration is the process of improving the reliability of the confidence score associated with
predictions. This is an important step towards the development of trustworthy models. Having
better calibrated models can also help in the detection of biases, overfitting or out-of-distribution data,
which can prevent models from being misused in practice.

B LIMITATIONS

The majority of theoretical analysis around mixup have been focused on generalization, while we are
interested on calibration. Analyzing the impact on calibration is very difficult, as we also need to take
into account the effect of Temperature Scaling (TS) (Guo et al., 2017) on a validation set. Indeed,
TS can change ordering of results (Ashukha et al., 2020), and, more importantly, Wang et al. (2023)
observed that calibration using Mixup can be worse than ERM after TS. This is an observation that
we also confirm in our experiments (e.g. in Table 1). Thus, an analysis including temperature scaling
would be required first for vanilla Mixup before analyzing our proposed method. This would be a
significant contribution on its own, and our future works include exploring this direction.

Our approach also introduces two additional hyperparameters. However, since in our case we always
draw initial parameters λ from Beta(1, 1), α is not a hyperparameter anymore. Then, τmax and τstd
can be tuned separately, and, as mentioned in Section 4.2, we found that impact on calibration was
mainly controlled by τstd. Furthermore, one should note that we always used τstd = 0.25 in image
classification experiments, showing our approach is not sensitive to hyperparameter choice between
datasets. We discuss selection of hyperparameters with cross-validation in Appendix J.
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C INTRODUCTION TO CALIBRATION METRICS

As discussed in Section 2.2, calibration measures the difference between predictive confidence and
actual probability. More formally, with ŷ and y ∈ Y, respectively the model’s prediction and target
label, and p̂ its predicted confidence, a perfectly calibrated model should satisfy P (ŷ = y|p̂ = p) = p,
for p ∈ [0, 1].

We use several metrics for calibration in the paper, namely, ECE, AECE, Brier score and NLL for
classification tasks, and UCE and ENCE for regression tasks. We formally introduce all of them here.

C.1 METRICS FOR CLASSIFICATION TASKS

NLL The negative log-likelihood (NLL) is a common metric for a model’s prediction quality
(Hastie et al., 2009). It is equivalent to cross-entropy in multi-class classification. NLL is defined as:

NLL(x,y) = − 1

N

N∑

i=1

log(p̂(yi|xi)), (6)

where p̂(yi|xi) represents the confidence of the model in the output associated to xi for the target
class yi.

Brier score The Brier score (Brier, 1950) for multi-class classification is defined as

Brier(x,y) = − 1

N

N∑

i=1

c∑

j=1

(p̂(y(i,j)|xi)− y(i,j))
2, (7)

where we assume that the target label yi is represented as a one-hot vector over the c possible class,
i.e., yi ∈ Rc. Brier score is the mean square error (MSE) between predicted confidence and target.

ECE Expected Calibration Error (ECE) is a popular metric for calibration performance for clas-
sification tasks in practice. It approximates the difference between accuracy and confidence in
expectation by first grouping all the samples into M equally spaced bins {Bm}Mm=1 with respect
to their confidence scores, then taking a weighted average of the difference between accuracy and
confidence for each bin. Formally, ECE is defined as (Guo et al., 2017):

ECE :=

M∑

m=1

|Bm|
N
|acc(Bm)− conf(Bm)|, (8)

with acc(Bm) = 1
|Bm|

∑
i∈Bm

1ŷi=yi
the accuracy of bin Bm, and conf(Bm) =

1
|Bm|

∑
i∈Bm

p̂(yi|xi) the average confidence within bin Bm.

AECE The Adaptive ECE (AECE) is computed similarly to ECE, with the difference that bin sizes
are calculated to evenly distribute samples across the bins.

C.2 METRICS FOR REGRESSION TASKS

A probabilistic regression model takes x ∈ X as input and outputs a mean µy(x) and a variance
σ2
y(x) targeting the ground-truth y ∈ Y. The UCE and ENCE calibration metrics are both extension

of ECE for regression tasks to evaluate variance calibration. They both apply a binning scheme with
M bins over the predicted variance.

UCE Uncertainty Calibration Error (UCE) (Laves et al., 2020) measures the average of the absolute
difference between mean squared error (MSE) and mean variance (MV) within each bin. It is formally
defined by
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UCE :=

M∑

m=1

|Bm|
N
|MSE(Bm)−MV(Bm)|, (9)

with MSE(Bm) = 1
|Bm|

∑
i∈Bm

(µyi
(xi)− yi)

2 and MV(Bm) = 1
|Bm|

∑
i∈Bm

σ2
yi
(xi)

2.

ENCE Expected Normalized Calibration Error (ENCE) (Levi et al., 2022) measures the absolute
normalized difference, between root mean squared error (RMSE) and root mean variance (RMV)
within each bin. It is formally defined by

ENCE :=
1

M

M∑

m=1

|RMSE(Bm)− RMV(Bm)|
RMV(Bm)

, (10)

with RMSE(Bm) =
√

1
|Bm|

∑
i∈Bm

(µyi
(xi)− yi)2 and RMV(Bm) =

√
1

|Bm|
∑

i∈Bm
σ2
yi
(xi)2.
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Table 7: Performance (Accuracy in %) and calibration (ECE, Brier, NLL) before and after Tempera-
ture Scaling (TS) (Guo et al., 2017) with Resnet34 when mixing only elements higher or lower than a
quantile q. Best in bold, second best underlined.

Dataset Quantile of Distance Accuracy (↑) ECE (↓) Brier (↓) NLL (↓) TS ECE (↓) TS Brier (↓) TS NLL (↓)

C10

Lower 0.0 / Higher 1.0 (ERM) 94.69 ± 0.27 3.65 ± 0.22 8.90 ± 0.4 24.57 ± 1.04 0.82 ± 0.11 8.07 ± 0.31 17.50 ± 0.61
Lower 1.0 / Higher 0.0 (Mixup) 95.97 ± 0.27 12.3 ± 0.92 8.54 ± 0.64 25.68 ± 1.53 1.36 ± 0.13 6.53 ± 0.36 16.35 ± 0.72

Lower 0.1 95.70 ± 0.24 1.58 ± 0.3 7.12 ± 0.36 17.9 ± 1.01 0.99 ± 0.3 7.08 ± 0.37 16.1 ± 0.85
Lower 0.25 95.73 ± 0.18 2.42 ± 0.55 7.12 ± 0.25 19.54 ± 1.1 1.74 ± 0.45 7.07 ± 0.26 19.39 ± 1.11
Lower 0.5 95.88 ± 0.28 3.04 ± 0.4 6.67 ± 0.34 16.68 ± 0.84 1.56 ± 0.28 6.68 ± 0.34 15.86 ± 0.71
Lower 0.75 96.16 ± 0.09 3.63 ± 0.32 6.33 ± 0.14 16.55 ± 0.59 1.12 ± 0.16 6.35 ± 0.15 15.20 ± 0.44
Lower 0.9 96.31 ± 0.08 3.71 ± 0.34 6.20 ± 0.24 16.65 ± 0.41 1.10 ± 0.05 6.14 ± 0.11 15.16 ± 0.29
Higher 0.9 95.58 ± 0.34 2.72 ± 0.2 7.39 ± 0.49 20.54 ± 1.31 1.86 ± 0.25 7.4 ± 0.48 20.32 ± 1.25
Higher 0.75 95.91 ± 0.14 3.68 ± 0.19 6.86 ± 0.21 20.7 ± 0.88 1.85 ± 0.17 6.84 ± 0.22 20.06 ± 1.12
Higher 0.5 95.58 ± 0.28 4.55 ± 0.63 7.28 ± 0.38 20.71 ± 1.14 1.67 ± 0.13 7.23 ± 0.37 19.12 ± 0.74
Higher 0.25 95.98 ± 0.3 4.28 ± 0.32 6.66 ± 0.49 18.73 ± 0.97 1.24 ± 0.18 6.65 ± 0.51 17.06 ± 0.99
Higher 0.1 96.28 ± 0.03 4.38 ± 0.16 6.15 ± 0.05 17.18 ± 0.28 1.13 ± 0.11 6.14 ± 0.04 15.24 ± 0.37

C100

Lower 0.0 / Higher 1.0 (ERM) 73.47 ± 1.59 13.0 ± 0.75 39.56 ± 2.19 121.06 ± 7.92 2.54 ± 0.15 36.47 ± 2.05 100.82 ± 6.93
Lower 1.0 / Higher 0.0 (Mixup) 78.11 ± 0.57 11.92 ± 0.73 32.82 ± 0.87 95.76 ± 2.43 2.49 ± 0.19 31.06 ± 0.69 87.94 ± 1.98

Lower 0.1 75.40 ± 0.53 4.72 ± 0.32 35.87 ± 0.52 108.38 ± 1.12 3.48 ± 0.24 35.92 ± 0.5 105.87 ± 1.41
Lower 0.25 77.14 ± 0.51 2.56 ± 0.17 32.93 ± 0.64 95.47 ± 1.75 2.54 ± 0.22 32.95 ± 0.62 95.42 ± 1.78
Lower 0.5 77.66 ± 0.15 3.40 ± 1.17 32.10 ± 0.41 90.75 ± 2.02 1.85 ± 0.43 31.94 ± 0.28 89.97 ± 1.53
Lower 0.75 78.43 ± 0.62 4.38 ± 1.58 30.85 ± 0.65 86.83 ± 1.81 1.95 ± 0.6 30.64 ± 0.7 85.06 ± 1.89
Lower 0.9 79.24 ± 0.7 6.02 ± 1.02 30.11 ± 1.05 85.53 ± 3.32 1.99 ± 0.03 29.72 ± 0.94 82.54 ± 2.82

Higher 0.9 77.3 ± 0.43 3.55 ± 1.66 32.19 ± 0.78 90.54 ± 2.56 1.92 ± 0.22 32.0 ± 0.59 88.69 ± 1.67
Higher 0.75 77.8 ± 1.05 3.77 ± 1.14 31.56 ± 1.23 90.16 ± 4.16 2.29 ± 0.24 31.48 ± 1.18 88.16 ± 3.86
Higher 0.5 78.74 ± 0.43 4.32 ± 0.96 30.47 ± 0.54 86.96 ± 1.87 2.52 ± 0.22 30.37 ± 0.56 84.64 ± 1.63
Higher 0.25 78.51 ± 0.47 3.35 ± 1.19 30.13 ± 0.6 85.49 ± 2.6 2.34 ± 0.26 30.42 ± 0.59 84.64 ± 2.23
Higher 0.1 79.14 ± 0.53 5.32 ± 2.15 29.94 ± 0.76 85.09 ± 2.53 2.23 ± 0.34 29.62 ± 0.51 82.22 ± 1.28

D EFFECT OF DISTANCE ON CALIBRATION

In Table 7, we show the exact results for the plot presented in Section 3.1, along with results obtained
for different quantiles q. One should compare results of "Lower q" with "Higher 1 − q" to have
equivalent numbers of possible element to mix with (diversity). We repeat our observations here
for ease of reading. First, we observe that Mixup improves upon ERM’s accuracy, but can degrade
calibration depending on the dataset, which is consistent with findings from Wang et al. (2023). Then,
when selecting pairs according to distance, a sufficiently high proportion of data to mix is necessary
to preserve accuracy (q > 0.5). Finally, mixing data with lower distances achieves a better calibration
as opposed to mixing data with higher distances.

E DETAILED ALGORITHM

Algorithm 1 Similarity Kernel Mixup training procedure

Input: Batch of data B = {(xi, yi)}ni=1, similarity parameters (τmax, τstd), model parameters at
the current iteration θt
B̃ ← ∅
σt ∼ Sn {Sample random permutation}
for ∀i ∈ {1, . . . , n} do
λi ∼ Beta(1, 1)
τi := τ(x, i, σ; τmax, τstd) {Compute warping parameters through Equations (4) and (5)}
x̃i := ωτi(λi)xi + (1− ωτi(λi))xσ(i) {Generate new data}
ỹi := ωτi(λi)yi + (1− ωτi(λi))yσ(i) {Generate new labels}
B̃ ← B̃ ∪ (x̃i, ỹi) {Aggregate new batch}

end for
Compute and optimize loss over B̃
Output: updated parameters of the model θt+1

We present a pseudocode of our Similarity Kernel Mixup procedure for a single training iteration in
Algorithm 1. The generation of new data is explained in the pseudocode as a sequential process for
simplicity and ease of understanding, but the actual implementation is optimized to work in parallel
on GPU through vectorized operations.
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F PROOFS

F.1 THEOREM 3.1

We give the full proof of Theorem 3.1 below.

F.1.1 PROOF OF THE FIRST PART

Proof. For (i), we will separate the cases in two depending on the intersection of the convex hulls of
the two manifolds M̄i ∩ M̄j being empty or not.

Intersection not empty Let us first suppose that M̄i ∩ M̄j ̸= ∅ and take z from M̄i ∩ M̄j . Then,
since the manifolds are disjoint, z belongs either toMi,Mj or none of the two.

Suppose that z ∈Mi. Since we also have z ∈ M̄j , there exists xk,xl ∈Mj and λ0 ∈ [0, 1], such
that z = λ0xk + (1− λ0)xl, thanks to convexity. On the line segment [xk,xl], since z ∈ Mi and
manifolds are disjoint , ∃(λ1, λ2) ∈ [0, 1]2, λ1 > λ2 such that ∀λ ∈]λ2, λ1[, x̃(λ) = λxk + (1 −
λ)xl /∈Mj . Then, λ0 ∈]λ2, λ1[.

With the same reasoning, if z ∈Mj , we can find xk,xl ∈Mi. Finally, if z belongs neither inMi

norMj , then we can find xk,xl both in either manifold since z ∈ M̄i ∩ M̄j and obtain the same
result.

Empty intersection Now, suppose that M̄i ∩M̄j = ∅. Without loss of generality, we can consider
xk ∈ Mi and xl ∈ Mj . Then, ∀λ ∈ [0, 1], we define x̃(λ) = λxk + (1− λ)xj , the linear convex
combination of the two points weighted by λ. Then, since the convex hulls of the manifolds are
disjoints, there exists λ1 ∈ [0, 1], such that ∀λ ≥ λ1, x̃(λ) ∈ M̄i and ∀λ < λ1, x̃(λ) /∈ M̄i.
Symmetrically, there exists λ2 ∈ [0, 1], such that ∀λ ≤ λ2, x̃(λ) ∈ M̄j , and ∀λ > λ2, x̃(λ) /∈ M̄j .
The convex hulls of the manifolds being disjoints, we have that λ1 > λ2.

F.1.2 PROOF OF THE SECOND PART

Proof. Result (ii) is obtained directly by rewriting:

∥x̃(λ1)− x̃(λ2)∥H = ∥λ1xk + (1− λ1)xl − (λ2xk + (1− λ2)xl)∥H (11)
= ∥xl + λ1(xk − xl)− xl − λ2(xk − xl)∥H (12)
= |λ1 − λ2|∥xk − xl∥H (13)

F.2 THEOREM 3.2

We start by defining the Total Variation and the Wasserstein metric, and necessary lemmas.

Definition F.1. (Total Variation) The total variation between two probability measures µ and ν on X
is

TV (µ, ν) := sup
E⊂X
|µ(E)− ν(E)|, (14)

where the supremum is taken over all measurable sets E ⊂ X.

Lemma F.2. (Levin & Peres (2017), Proposition 4.2) Let µ and ν be two probability measures on X.
If X is countable, then

TV (µ, ν) =
1

2

∑

x∈X
|µ(x)− ν(x)|. (15)

Lemma F.3. (Coupling Inequality, Levin & Peres (2017), Proposition 4.7) Let µ and ν be two
probability measures on X. Then any coupling of random variables (X,Y ) with respective marginals
µ and ν satisfies

TV (µ, ν) ≤ P (X ̸= Y ). (16)
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Definition F.4. (Wasserstein metric) The Wasserstein metric between two probability measures µ
and ν on X is

W1(µ, ν) := inf
π∈Π(µ,ν)

∫

X×X
∥x− x′∥Hdπ(x,x′), (17)

where the infimum is taken over Π(µ, ν), defined as the set of all probability measures π on X× X
with respective marginals µ and ν.

Lemma F.5. (Gibbs & Su (2002), Theorem 4) Let µ and ν be two probability measures on X. Then,
the Wasserstein metric and the Total Variation distance satisfy the following relation,

W1(µ, ν) ≤ R · TV (µ, ν), (18)

where R = supx,x′∈X ∥x− x′∥H is the radius of the space.

We can now prove Theorem 3.2:

Proof. By Lemma F.3, we have

P (Ỹ ∗ ̸= Ỹ |X̃) ≥ TV (P (Ỹ |X̃), P (Ỹ ∗|X̃))

However, we also have

TV (P (Ỹ |X̃), P (Ỹ ∗|X̃)) = TV (P (Ỹ |X̃), P (Y |X)) = TV (P (Ỹ |X̃), P (Y ′|X ′)).

Then, from Lemma F.2, we obtain

TV (P (Ỹ |X̃), P (Y |X)) =
1

2

M∑

m=1

|P (Y = m|X)− P (Ỹ = m|X̃)|

=
1

2

M∑

m=1

|fm(X)− ((1− λ)fm(X) + λfm(X ′))|

= λTV (P (Y |X), P (Y ′|X ′)).

And symmetrically,

TV (P (Ỹ |X̃), P (Y ′|X ′)) =
1

2

M∑

m=1

|P (Y ′ = m|X ′)− P (Ỹ = m|X̃)|

=
1

2

M∑

m=1

|fm(X ′)− ((1− λ)fm(X) + λfm(X ′))|

= (1− λ)TV (P (Y |X), P (Y ′|X ′)),

which both gives us our first inequality:

P (Ỹ ∗ ̸= Ỹ |X̃) ≥ min(λ, (1− λ))TV (P (Y |X), P (Y ′|X ′)).

Now, we come back to our classification problem with M classes, where samples (x, y) ∈
X× {1, . . . ,M} are drawn from probability measures νy respectively supported on the class man-
ifoldsMy. Then, TV (P (Y |X = x), P (Y ′|X ′ = x′)) = TV (My,My′), and using Lemma F.5
concludes the proof.

F.3 PROPOSITION 3.2

We give the proof of Proposition 3.3 below:
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Proof. Let τ > 0 and Fτ (x) = Ix(τ, τ), then Fτ is the cumulative distribution function (CDF) of a
Beta distribution with parameters (τ, τ). ∀x ∈ [0, 1], we have:

P (ωτ (λ) ≤ x) = P (I−1
λ (τ, τ) ≤ x) (19)

= P (λ ≤ Ix(τ, τ)) (20)
= Ix(τ, τ), (21)

where Equation (20) is obtained since Fτ is continuous and monotonically increasing on [0, 1],
and Equation (21) because λ follows a uniform distribution on [0, 1]. It follows that ωτ (λ) ∼
Beta(τ, τ).

23



Published as a conference paper at ICLR 2025

Table 8: Comparison of performance (Accuracy in %), calibration (ECE, AECE) after Temperature
Scaling, and total training time (in min), with three different variants. All experiments are using a
ResNet34 on CIFAR10 on a single A100 GPU and reproduced on 4 different random seeds.

Method Accuracy (↑) ECE (↓) AECE (↓) Total training time (in min) (↓)
Warping 96.42 ± 0.24 0.53 ± 0.06 0.71 ± 0.05 57.36 ± 0.31
Warping w/ lookup 96.04 ± 0.2 0.57 ± 0.1 0.70 ± 0.12 55.59 ± 0.4
No warping 96.3 ± 0.1 0.55 ± 0.07 0.76 ± 0.16 56.88 ± 1.03

G BENEFITS OF WARPING

G.1 DISENTANGLING INPUTS AND TARGETS

Using such warping functions presents the advantage of being able to easily separate the mixing of
inputs and targets, by defining different warping parameters τ (i) and τ (t):

λt ∼ Beta(1, 1),
x̃i := ωτ(i)(λt)xi + (1− ωτ(i)(λt))xσt(i)

ỹi := ωτ(t)(λt)yi + (1− ωτ(t)(λt))yσt(i).
(22)

Disentangling inputs and targets can be interesting when working in the imbalanced setting (Chou
et al., 2020). Notably, with τ (i) = 1, τ (t) ≈ 0, we recover the Mixup Input-Only (IO) variant
(Wang et al., 2023) where only inputs are mixed, used in the experiments in Table 1, and with
τ (i) ≈ 0, τ (t) = 1, the Mixup Target-Only (TO) variant (Wang et al., 2023), where only labels are
mixed. It can also reveal interesting for structured prediction, where targets are structured objects
such as graph prediction or depth estimation.

G.2 COMPUTATIONAL EFFICIENCY

On a more practical side, although the Beta CDF and its inverse have no closed form solutions for
non-integer values of its parameters α and β, accurate approximations are implemented in many
statistical software packages. Then, sampling from Beta distributions with different parameters for
each pair of points cannot be done directly on GPU. Coefficients sampled for each pair need to be
sent to GPU at each batch, slowing the training because of CPU-GPU synchronizations. An efficient
implementation is to define a single torch.distributions.Beta with parameters α = β = 1
(or Uniform) on GPU, and then compute a linear approximation of the inverse Beta CDF from
precomputed lookup tables, which is common when using inverse transform sampling. We present a
comparison in Table 8, in terms of performance (accuracy and calibration) and computation time, of
the three different variants of implementation discussed when training a ResNet34 on CIFAR10 on a
single A100 GPU (τmax = 1, τstd = 0.4). The three variants achieve comparable performance, and
the time difference is in favour of using warping functions and lookup tables.
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H DETAILED EXPERIMENTAL SETTINGS

Image Classification On CIFAR10 and CIFAR100, we use SGD as the optimizer with a momentum
of 0.9 and weight decay of 10−4, a batch size of 128, and the standard augmentations random
crop, horizontal flip and normalization. Models are trained for 200 epochs, with an
initial learning rate of 0.1 divided by a factor 10 after 80 and 120 epochs. On Tiny-ImageNet, models
are trained for 100 epochs using SGD with an initial learning rate of 0.1 divided by a factor of 10 after
40 and 60 epochs, a momentum of 0.9 and weight decay of 10−4. We use a batch size of 64 and the
same standard augmentations. On Imagenet, ResNet-50 (RN50) models are trained for 100 epochs
using SGD with an initial learning rate of 0.1, a cosine annealing scheduler, a momentum of 0.9 and
weight decay of 10−4. We use a total batch of 256 split over 3 GPUs and standard augmentations.
For ViT models, we train them for 300 epochs using AdamW optimizer, an initial learning rate of
0.01 divided by a factor 10 after 100 and 200 epochs, with a total batch size of 128 split over 3 GPUs.
Regression Following Yao et al. (2022a), we train a three-layer fully connected network augmented
with Dropout (Srivastava et al., 2014) on Airfoil, and LST-Attn (Lai et al., 2018) on Exchange-Rate
and Electricity. All models are trained for 100 epochs with the Adam optimizer (Kingma & Ba, 2014),
with a batch size of 16 and learning rate of 0.01 on Airfoil, and a batch size of 128 and learning
rate of 0.001 on Exchange-Rate and Electricity. To estimate variance for calibration, we rely on MC
Dropout (Gal & Ghahramani, 2016) with a dropout of 0.2 and 50 samples.
Method-specific hyperparameters On classification datasets, we used τmax = 1 and τstd = 0.25
unless stated otherwise. We used the hyperparameters provided by the authors to reproduce state-
of-the-art methods, namely, α = 1 and ∆λ > 0.5 for MIT-A (Wang et al., 2023), and w = 0.1,
α = 2.0 and α = 1.0 for CIFAR10/100 and Tiny-ImageNet respectively, and Q = 4, for RankMixup
(M-NDCG) (Noh et al., 2023). To compare with Mixup, we use α = 0.2, the best performing one
found in Thulasidasan et al. (2019), and the same value for Manifold Mixup (Verma et al., 2019).
On Imagenet, we set τmax = 0.1 and τstd = 0.25, and α = 0.1. When using SK Mixup as a
regularization term (in SK RegMixup), we set τmax = 10 and keep the same τstd. On regression
datasets, we used (τmax, τstd) = (0.0001, 0.5) on Airfoil, (τmax, τstd) = (5, 1) on Exchange Rate,
and (τmax, τstd) = (2, 0.2) on Electricity. We followed results from Yao et al. (2022a), and fixed
α = 0.5 on Airfoil, α = 1.5 on Exchange Rate and α = 2 on Electricity, for Mixup, Manifold
Mixup and C-Mixup. Additionally, we searched for the best bandwidth parameter for C-Mixup with
cross-validation, and found 0.01 on Airfoil, 0.05 on Exchange Rate, and 0.5 on Electricity. Likewise,
we searched for the best α for RegMixup, and found α = 0.5 on Airfoil, α = 10 on Exchange-Rate
and α = 10 on Electricity.
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(c) Similarity Kernel Mixup (Ours)

Figure 4: Decision frontiers and data used during training (circles) and testing (stars) for (a) ERM,
(b) Mixup, and (c) our Similarity Kernel Mixup, on Circles toy dataset.

Table 9: Comparison of Performance (Accuracy in %) and calibration (ECE, Brier, NLL) after
Temperature Scaling (TS) with Resnet34 on CIFAR10 and CIFAR100. Best in bold, second best
underlined.

Methods α τstd
CIFAR10 CIFAR100

Accuracy (↑) TS ECE (↓) TS Brier (↓) TS NLL (↓) Accuracy (↑) TS ECE (↓) TS Brier (↓) TS NLL (↓)
ERM – – 94.69 ± 0.27 0.82 ± 0.11 8.07 ± 0.31 17.50 ± 0.61 73.47 ± 1.59 2.54 ± 0.15 36.47 ± 2.05 100.82 ± 6.93

Mixup
1 – 95.97 ± 0.27 1.36 ± 0.13 6.53 ± 0.36 16.35 ± 0.72 78.11 ± 0.57 2.49 ± 0.19 31.06 ± 0.69 87.94 ± 1.98

0.5 – 95.71 ± 0.26 1.33 ± 0.08 7.03 ± 0.46 17.47 ± 1.18 77.14 ± 0.67 2.7 ± 0.36 32.01 ± 0.93 91.22 ± 3.05
0.1 – 95.37 ± 0.22 1.13 ± 0.11 7.37 ± 0.36 17.43 ± 0.79 76.01 ± 0.62 2.54 ± 0.24 33.41 ± 0.57 93.96 ± 1.76

Mixup IO
1 – 95.16 ± 0.22 0.6 ± 0.11 7.3 ± 0.33 15.56 ± 0.67 74.44 ± 0.49 2.02 ± 0.14 35.25 ± 0.43 96.5 ± 1.62

0.5 – 95.31 ± 0.17 0.58 ± 0.06 7.12 ± 0.21 15.09 ± 0.45 74.45 ± 0.6 1.94 ± 0.09 35.2 ± 0.58 96.75 ± 1.89
0.1 – 95.12 ± 0.21 0.7 ± 0.09 7.38 ± 0.27 15.76 ± 0.55 74.21 ± 0.46 2.39 ± 0.11 35.38 ± 0.48 98.24 ± 1.81

SK Mixup
(Ours) 1

0.2 96.29 ± 0.07 1.35 ± 0.14 6.37 ± 0.11 15.97 ± 0.22 78.13 ± 0.52 1.31 ± 0.23 31.18 ± 0.72 85.38 ± 1.92
0.4 96.42 ± 0.24 0.53 ± 0.06 6.02 ± 0.41 15.28 ± 0.92 78.86 ± 0.83 1.42 ± 0.19 30.1 ± 1.17 84.22 ± 3.35
0.6 96.36 ± 0.09 0.52 ± 0.08 6.12 ± 0.09 15.7 ± 0.29 78.63 ± 0.27 1.74 ± 0.30 30.41 ± 0.30 84.97 ± 1.12
0.8 96.00 ± 0.41 0.56 ± 0.05 6.63 ± 0.58 16.64 ± 1.27 79.12 ± 0.52 1.66 ± 0.16 29.75 ± 0.57 82.82 ± 1.62
1.0 96.25 ± 0.07 0.55 ± 0.12 6.31 ± 0.18 16.14 ± 0.55 78.51 ± 0.94 1.49 ± 0.03 30.46 ± 1.04 85.06 ± 3.18

I ADDITIONAL RESULTS

I.1 VISUALIZATION

We provide another visualization in Figure 4 on the Circles toy dataset. As interpolations of data
from the external circle can fall into the inner one, training with Mixup lead to worst confidence and
performance compared to standard ERM, but our SK Mixup recover the accuracy while achieving
more meaningful decision boundaries and confidence scores.

I.2 EFFECT OF τSTD

We present in Table 9 results associated to Table 1 in the main text, but after temperature scaling. We
have similar observations than discussed in Section 4.2.

I.3 COMPARISON WITH STATE OF THE ART

We show in Table 10 calibration and predictive performance results associated to Table 2, using the
AECE calibration metric, before and after temperature scaling.
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Table 10: Comparison of performance (Accuracy in %) and calibration (AECE and AECE after
Temperature Scaling), with Resnet101 on CIFAR10, CIFAR100 and Tiny-Imagenet datasets. †:
Results reported from Noh et al. (2023). Best in bold, second best underlined, for reported results
and ours separately.

Methods CIFAR10 CIFAR100 Tiny-Imagenet
Acc. (↑) AECE (↓) TS AECE (↓) Acc. (↑) AECE (↓) TS AECE (↓) Acc. (↑) AECE (↓) TS AECE (↓)

MMCE† 94.99 3.88 12.9 77.82 13.42 2.8 66.44 3.38 3.38
ECP† 93.97 4.40 1.70 76.81 13.42 3.04 66.20 2.70 2.70
LS† 94.18 3.85 3.10 76.91 7.87 4.55 65.52 2.92 2.72
FL† 93.59 3.23 1.37 76.12 3.22 2.51 64.02 2.09 2.09
FLSD† 93.26 3.67 0.94 76.61 3.29 2.04 64.02 1.81 1.81
CRL† 95.04 3.73 2.03 77.60 7.14 3.31 65.87 3.56 1.52
CPC† 95.36 4.77 2.37 77.50 13.28 3.23 66.44 3.74 3.74
MbLS† 95.13 3.25 3.25 77.45 6.52 6.52 65.81 1.68 1.68

ERM 93.97 ± 0.03 4.30 ± 0.01 0.63 ± 0.01 74.27 ± 0.37 14.32 ± 0.17 1.82 ± 0.05 65.7 ± 0.07 4.00 ± 0.24 1.57 ± 0.20
Mixup 94.78 ± 0.13 2.73 ± 0.02 2.59 ± 0.02 77.50 ± 0.18 5.77 ± 2.78 2.67 ± 0.02 67.80 ± 0.54 5.45 ± 1.15 1.68 ± 0.01
Manifold Mixup 94.75 ± 0.03 2.62 ± 0.02 2.61 ± 0.03 77.76 ± 1.35 5.32 ± 0.04 3.16 ± 0.17 68.57 ± 0.04 6.55 ± 0.58 2.06 ± 0.01
RegMixup 95.89 ± 0.01 1.55 ± 0.02 1.30 ± 0.06 78.85 ± 0.08 6.70 ± 0.09 2.67 ± 0.08 69.76 ± 0.07 10.19 ± 0.06 1.0 ± 0.03
RankMixup 94.42 ± 0.17 2.82 ± 0.22 0.63 ± 0.14 77.27 ± 0.08 11.69 ± 0.22 2.04 ± 0.19 65.40 ± 0.01 13.85 ± 9.60 1.44 ± 0.06
MIT-A 95.27 ± 0.01 2.37 ± 0.02 1.59 ± 0.01 77.23 ± 0.56 9.54 ± 0.48 2.32 ± 0.05 68.03 ± 0.09 7.84 ± 0.10 1.57 ± 0.05

SK Mixup (Ours) 95.04 ± 0.07 2.38 ± 0.05 0.98 ± 0.05 78.20 ± 0.46 2.37 ± 0.34 1.38 ± 0.11 67.60 ± 0.01 3.17 ± 0.22 1.19 ± 0.02
SK RegMixup (Ours) 96.02 ± 0.04 2.40 ± 0.50 1.05 ± 0.03 79.57 ± 0.03 4.34 ± 1.0 1.66 ± 0.11 69.11 ± 0.06 7.17 ± 0.42 1.06 ± 0.10

Table 11: Comparison of Accuracy and ECE, before and after Temperature Scaling (TS), with
cross-validation when varying τstd. Results are obtained with a Resnet50 and averaged over 4 splits.

Dataset τstd Accuracy ECE (↓) TS ECE (↓)

CIFAR10

0.25 95.18 2.87 0.97
0.4 95.23 3.31 1.42
0.5 95.37 2.7 2.08
0.6 95.45 3.15 1.99

0.75 95.57 3.44 2.05
0.8 95.44 3.28 2.07
1 95.57 3.44 2.05

1.25 95.46 2.71 2.25
1.5 95.29 3.42 2.36
2 94.93 3.24 2.43

CIFAR100

0.25 77.74 3.98 1.77
0.4 78.26 4.24 2.4
0.5 78.37 3.45 3.61
0.6 78.29 2.9 4.08

0.75 78 3.65 3.91
0.8 78.03 3.33 4.27
1 77.35 4.82 3.4

1.25 77.31 3.98 3.88
1.5 77.92 4.19 4.06

J ON THE SELECTION AND SENSITIVITY TO HYPERPARAMETERS

As discussed in Section 3.2, we always draw initial interpolation parameters λ from Beta(1,1),
removing α as a hyperparameter. Then, τmax and τstd can be tuned separately, and, as mentioned
in Section 4.2, we found that impact on calibration was mainly controlled by τstd. We selected
the values giving the best trade-off between accuracy and calibration using cross-validation, with a
stratified sampling on a 90/10 split of the training set, similarly to Pinto et al. (2022), and average the
results across 4 different splits. We detail in Table 11 cross-validation results (Accuracy and ECE)
showing sensitivity to τstd on CIFAR10 and CIFAR100 datasets, using a ResNet50. These results
lead us to using τstd = 0.25 for all image classification experiments, and show that our approach is
not that sensitive to hyperparameter choice between datasets. For Imagenet, we set τmax = 0.1 to
follow the commonly used value of α = 0.1 in Mixup for this dataset.
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Table 12: Performance (RMSE, MAPE) and calibration (UCE, ENCE) comparison for different
warping functions on Airfoil dataset. Averaged over 10 random seeds.

Warping RMSE (↓) MAPE (↓) UCE (↓) ENCE (↓)
Sigmoid 2.892 ± 0.343 1.733 ± 0.229 117.95 ± 45.26 0.018 ± 0.008
Beta CDF 2.807 ± 0.261 1.694 ± 0.176 126.02 ± 23.32 0.018 ± 0.005
Inverse Beta CDF 2.707 ± 0.199 1.609 ± 0.137 93.79 ± 25.46 0.019 ± 0.008

Table 13: Performance (RMSE, MAPE) and calibration (UCE, ENCE) comparison for different
similarity distance on Airfoil dataset. Averaged over 10 random seeds.

Warping RMSE (↓) MAPE (↓) UCE (↓) ENCE (↓)
Input distance 2.848 ± 0.355 1.706 ± 0.215 105.23 ± 26.32 0.018 ± 0.008
Embedding distance 2.737 ± 0.205 1.636 ± 0.142 101.62 ± 21.94 0.016 ± 0.005
Label distance 2.707 ± 0.199 1.609 ± 0.137 93.79 ± 25.46 0.019 ± 0.008

K ON THE CHOICE OF SIMILARITY KERNEL

K.1 ON WARPING FUNCTIONS

As discussed in Section 3.3, the choice of the similarity kernel is highly dependent on the warping
function, and more specifically to the correlation between the warping parameter and the shape of
the warping function. Given our choice of using the inverse of the Beta CDF as ωτ , and that its
shape is logarithmically correlated to τ , the choice of a Gaussian kernel seems natural to have an
exponential correlation with the distance. Then, the normalization and centering avoid dealing with
different range of embedding values between datasets and architectures when choosing a correct
value of τstd. Regarding the choice of warping function, as mentioned in Section 3.2, any bijection
with a sigmoidal shape could be considered. Besides the inverse of Beta CDF, we also tried the
Beta CDF and the Sigmoid (λ 7→ 1

1+eλ/τ ). As they all have logarithmic correlations wrt τ , we used
our Gaussian similarity kernel for the three of them. We compare performance on Airfoil dataset
after finding the best parameters in each case in Table 12. The inverse of Beta CDF have both the
advantage of better results, while preserving the underlying Beta distribution by inverse transform
sampling, as we show in Proposition 3.3.

K.2 ON EMBEDDING SPACES AND DISTANCES

K.2.1 REGRESSION TASKS

As discussed in Section 3.3, in regression tasks, we considered either input, embedding or label
distance:

• Input distance: d̄n(xi,xσ(i)),

• Embedding distance: d̄n(h(xi), h(xσ(i)),

• Label distance: d̄n(yi, yσ(i)).

Input and label distances both have the advantages of inducing almost no computational overhead, as
opposed to embedding distance that requires an additional forward pass in the network. We report
results comparing the three options on Airfoil dataset in Table 13. We found that label distance was
the best performing one, which is in line with results from Yao et al. (2022a), and what we use in the
experiments in Section 4.3.

K.2.2 CLASSIFICATION TASKS

In classification tasks, as we lack a meaningful distance between label, we restricted our choice
between input and embedding distance. Even though computing distances directly in the input
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Table 14: Comparison of performance (Accuracy in %), calibration (ECE) after Temperature Scaling,
for two different similarity distance. All experiments are using a ResNet34 on CIFAR10 and
CIFAR100 datasets and averaged over 4 different random seeds.

Dataset Distance τstd Accuracy (↑) ECE (↓)

CIFAR10

Input distance

0.2 95.82 ± 0.19 0.41 ± 0.13
0.4 96.10 ± 0.17 0.46 ± 0.06
0.6 95.87 ± 0.47 0.6 ± 0.13
0.8 96.12 ± 0.15 0.70 ± 0.08
1.0 96.01 ± 0.27 0.74 ± 0.19

Embedding distance

0.2 96.29 ± 0.07 1.35 ± 0.14
0.4 96.42 ± 0.24 0.53 ± 0.06
0.6 96.36 ± 0.09 0.52 ± 0.08
0.8 96.0 ± 0.41 0.56 ± 0.05
1.0 96.25 ± 0.07 0.55 ± 0.12

CIFAR100

Input distance

0.2 78.43 ± 0.52 1.51 ± 0.10
0.4 78.24 ± 0.35 1.35 ± 0.22
0.6 78.36 ± 0.97 1.5 ± 0.20
0.8 78.50 ± 0.41 1.5 ± 0.16
1.0 78.50 ± 0.83 1.53 ± 0.08

Embedding distance

0.2 78.13 ± 0.52 1.31 ± 0.23
0.4 78.86 ± 0.83 1.42 ± 0.19
0.6 78.63 ± 0.27 1.74 ± 0.30
0.8 79.12 ± 0.52 1.66 ± 0.16
1.0 78.51 ± 0.94 1.49 ± 0.03

space is faster than relying on embeddings, the latter achieves a better trade-off between accuracy
and calibration improvements, which motivated us to use embedding distances as similarity in our
experiments in Section 4.2. We compare in Table 14 the two distances, for the different value of τstd,
using a Resnet34 on CIFAR10 and CIFAR100 datasets.
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Table 15: Comparison of performance (Accuracy in %) and calibration (ECE and ECE after Tempera-
ture Scaling), using a simple baseline with Resnet101 on CIFAR10, CIFAR100 and Tiny-Imagenet
datasets.

αlow αhigh
CIFAR10 CIFAR100 Tiny-Imagenet

Acc. (↑) ECE (↓) TS ECE (↓) Acc. (↑) ECE (↓) TS ECE (↓) Acc. (↑) ECE (↓) TS ECE (↓)
5 0.1 95.55 1.32 0.69 79.35 5.13 1.55 66.46 1.85 1.52
5 0.5 95.40 6.68 0.56 76.95 6.18 1.51 67.15 7.15 1.37

10 0.1 93.43 2.92 1.12 75.90 1.15 1.12 67.65 1.59 1.18
10 0.5 95.15 5.71 0.59 76.63 6.48 1.65 67.83 6.49 1.16

Table 16: Comparison of performance (Accuracy in %) and calibration (ECE and ECE after Tempera-
ture Scaling), using non-linear mixing with Resnet101 on CIFAR10, CIFAR100 and Tiny-Imagenet
datasets.

Methods CIFAR10 CIFAR100 Tiny-Imagenet
Acc. (↑) ECE (↓) TS ECE (↓) Acc. (↑) ECE (↓) TS ECE (↓) Acc. (↑) ECE (↓) TS ECE (↓)

CutMix 95.89 2.14 0.84 78.58 9.49 2.99 67.79 6.25 1.62
SK CutMix 95.25 1.96 0.5 78.65 6.70 2.21 67.86 2.94 1.98

L COMPARISON WITH A SIMPLER BASELINE

By defining fixed Beta distributions depending on the distance, we can have a more efficient (in
terms of computation time) implementation. However, we also expect worse results as it will lack
granularity in the behavior wrt to the distance. We experimented with defining two separate Beta
distributions, one with parameter αlow, for pairs with distance lower than average, and the other with
parameter αhigh, for pairs with distance higher than average. We present in Table 15, results with the
same settings as Table 2. We can see that using lower αhigh improves calibration, which confirms
the high level idea of reducing interpolation for high-distance pairs. However, finding a good pair of
parameters (αlow, αhigh) is more dataset-dependent than relying on our similarity kernel approach.

M COMBINATION WITH NON-LINEAR MIXING

Combining our method (or other calibration-driven method) with non-linear mixup for images, like
CutMix (Yun et al., 2019), can be done, since the changes are in different parts to each other. However,
extensive experiments in Pinto et al. (2022) (in their Appendix H) have shown that combining their
RegMixup with CutMix is not trivial as it does not always improve predictive performance and
robustness. We also expect that introducing a non-linear mixing operation will not always lead to the
same improvements of calibration with our method, since theoretical groundings are always based on
the linear mixing operation. Recent results from Oh & Yun (2023) has also shown that the distortion
of the training loss induced by non-linear mixup methods, like CutMix, leads to different and less
optimal decision boundaries than the loss obtained with linear mixup. We leave for future work the
theoretical derivations of using the non-linear mixing operation with the aim to improve calibration
and robustness. Nonetheless, we present in Table 16 first results with CutMix and SK CutMix, in
which we apply our similarity kernel to change dynamically the Beta distribution in CutMix, with the
same settings as Table 2. We can see that SK CutMix can improve accuracy over CutMix. Although
SK CutMix can also improve calibration over CutMix, since CutMix does not improve calibration
over Mixup, SK CutMix does not lead to better calibration than SK Mixup.

30



Published as a conference paper at ICLR 2025

Table 17: Efficiency comparison between Mixup methods. We report the number of batch of data in
memory at each iteration, the best epoch measured on validation data, time per epoch (in seconds)
and total training time to reach the best epoch (in seconds).

(a) Image classification on CIFAR10, CIFAR100 and Tiny-imagenet datasets, with a Resnet50.

Method Batch CIFAR10 CIFAR100 Tiny-Imagenet
in memory Best Epoch Time Total Time Best Epoch Time Total Time Best Epoch Time Total Time

Mixup 1 186 17 3162 181 17 3077 89 125 11125

CutMix 1 176 24 4224 148 24 3552 69 143 9867
RankMixup 4 147 78 11485 177 78 13806 80 540 43380
MIT-A 2 189 46 8694 167 46 7659 82 305 24908
RegMixup 2 173 32 5536 177 32 5664 94 240 22560

SK Mixup 1 183 28 5138 160 28 4480 69 189 13104
SK CutMix 1 196 30 5880 124 30 3720 71 185 13135
SK RegMixup 2 175 39 6825 179 39 6981 75 316 23700

(b) Time series regression on Electricity dataset.

Methods Batch in memory Best Epoch Time Total Time

C-Mixup 2 87 46.51 4046
RegMixup 2 85 11.46 975

SK Mixup (Ours) 1 78 11.16 867

N FULL COMPUTATIONAL EFFICIENCY COMPARISON

We present in Table 17 the full comparison of efficiency with all baselines. As can be seen, our
SK Mixup is about 1.5× faster than MIT-A, about 3× faster than RankMixup, and about 4× faster
than C-Mixup. Additionally, we use a single batch of data for each iteration, while MIT-A requires
training on twice the amount of data per batch, and four times the amount of data per batch for
RankMixup. This adds significant memory constraints, which limits the maximum batch size possible
in practice. Unlike C-Mixup, our approach does not rely on sampling rates calculated before training,
which add a lot of computational overhead and are difficult to obtain for large datasets.
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