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Abstract

As Large Multimodal Models (LMMs) be-
come more capable, there is growing interest
in evaluating their reasoning processes along-
side their final outputs. However, most bench-
marks remain focused on English, overlook-
ing languages with rich linguistic and cultural
contexts, such as Arabic. To address this gap,
we introduce the Comprehensive Arabic Multi-
modal Reasoning Benchmark (ARB), the first
benchmark designed to evaluate step-by-step
reasoning in Arabic across both textual and
visual modalities. ARB spans 11 diverse do-
mains, including visual reasoning, document
understanding, OCR, scientific analysis, and
cultural interpretation. It comprises 1,356 mul-
timodal samples paired with 5,119 human-
curated reasoning steps and corresponding ac-
tions. We evaluated 12 state-of-the-art open-
and closed-source LMMs and found persis-
tent challenges in coherence, faithfulness, and
cultural grounding. ARB offers a structured
framework for diagnosing multimodal reason-
ing in underrepresented languages and marks a
critical step toward inclusive, transparent, and
culturally aware Al systems. We release the
benchmark, rubric, and code to support future
research and reproducibility.

1 Introduction

Arabic, spoken by more than 400 million people
worldwide, embodies significant linguistic diver-
sity and a profound cultural heritage. Despite its
widespread usage, Arabic remains notably under-
represented in advanced Al systems, particularly
those that involve multimodal reasoning, simultane-
ous interpretation, and logical processing of textual
and visual data crucial for fields such as education,
healthcare, and cultural preservation. This scarcity
limits the deployment and inclusion of multimodal
Al in Arabic-speaking communities.

Recent developments in LMMs reflect a grow-
ing emphasis on transparency and interpretability,

achieved through explicit reasoning steps. Tech-
niques such as chain-of-thought (CoT) prompting,
initially introduced by Wei et al. (2022), encourage
models to systematically articulate intermediate
reasoning steps, significantly improving both per-
formance and explainability. This paradigm has
gained traction in English-based language models
and has been effectively extended to multimodal
settings in models such as LLaVA-CoT (Xu et al.,
2025), VisCoT (Shao et al., 2024), and the recent
LLamaV-ol (Thawakar et al., 2025).

Current step-by-step reasoning benchmarks
largely focus on English, overlooking the linguis-
tic nuances and cultural contexts essential to Ara-
bic. Recent work on cross-lingual reasoning (Yong
et al., 2025) shows that English-trained models can
generalize to other languages via test-time scaling;
however, Arabic was not explicitly evaluated, and
performance often falters in the presence of linguis-
tic complexity and cultural commonsense. Exist-
ing Arabic multimodal data sets, such as CAMEL-
Bench (Ghaboura et al., 2025a), Henna (Alwajih
et al., 2024), and JEEM (Kadaoui et al., 2025), pri-
oritize final answer accuracy with limited attention
to intermediate reasoning. Meanwhile, benchmarks
like AraDiCE (Mousi et al., 2024) and ArabCul-
ture (Sadallah et al., 2025) remain confined to tex-
tual modalities. Together, these limitations signal
the need for Arabic-specific multimodal reasoning
benchmarks that reflect the linguistic and cultural
demands of the target language.

To bridge this critical chasm, we introduce
the Comprehensive Arabic Multimodal Reasoning
Benchmark (ARB), the first explicitly designed
benchmark for evaluating detailed step-by-step rea-
soning in Arabic multimodal contexts (Table 1).
ARB comprises 1,356 multimodal samples in 11
domains, including visual reasoning, document un-
derstanding, optical character recognition (OCR),
cultural interpretation, medical imaging, and re-
mote sensing (Figure 1). Each sample includes
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Figure 1: ARB Dataset Diversity. ARB comprises a wide array of multimodal reasoning samples, each combining a
visual input with an Arabic question and detailed step-by-step reasoning with actions taken by step. The dataset spans
11 distinct domains, including visual reasoning, OCR and document understanding, chart and diagram interpretation,
mathematical and logical inference, scientific and medical analysis, cultural and historical interpretation, remote
sensing, agricultural image analysis, and complex visual perception—capturing the linguistic richness, cultural
depth, and cross-domain complexity essential for evaluating reasoning in Arabic.
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verified by native speakers through a human-in- itations in coherence, faithfulness, and reasoning



Data Collection Data Generation

e

%% Arabic
.’,\» RS &Medical Category 1: Data From English Reasoning L}E\
o—o

o ——é Category 2: Data From Arabic Q&A

% - O
’ Category 3: Data From English Captions %
Agri Agricultural *:.
CLP | "
@ g Category 4: Synthetic Data |
erated & Create =T

Taxonomy
A

Web Scrapped 8

@Calegary 5: Tool-Augmented Generated Data

Data Processing Evaluation & Analysis

Filtering & (-\
Steps Quality Check 4
Generation
. Evaluate on Open- &
09000 \ Closed-source LMMs
C
) 7 ) (&) oy
0 )

==

N—

1] |od

Analysis

Gpt-4o0

ARB
Step-by-Step
Arabic Reasoning
Dataset

Iterative Human-in-Loop
Feedback

Figure 2: The ARB Dataset Pipeline. The figure illustrates the ARB pipeline for evaluating Arabic multimodal
reasoning in LMMs. It begins with data collection across 11 domains—such as medical imaging, historical
interpretation, visual reasoning, and agriculture—sourced from curated datasets (e.g., VRC-Bench, CAMEL-Bench),
synthetic content, tool-augmented outputs, and web scraping. Data is generated across five categories: English
reasoning chains, Arabic Q&A, English captions, synthetic samples, and tool-enhanced content. Reasoning steps are
refined via human-in-the-loop feedback and filtered for logical consistency and cultural alignment. The benchmark
supports fine-grained evaluation of open- and closed-source models on Arabic step-by-step reasoning.

quality in Arabic; (3) we integrate a human-in-the-
loop pipeline with manual verification by native
speakers and domain experts to ensure annotation
accuracy; and (4) we perform human evaluations
to validate reasoning correctness and assess the
effectiveness of LLM-as-a-judge scoring.

2 Step-by-Step Arabic Reasoning
Benchmark: ARB

Figure 2 presents an overview of the ARB data
construction pipeline, which we describe in detail
through the following subsections.

2.1 Data Collection

We adopt a domain-guided approach to curate data
across a broad spectrum of categories relevant to
Arabic multimodal reasoning. This ensures diver-
sity in both content and modality, encompassing
textual and visual tasks. The selected domains (Fig-
ure 1)—from visual perception to historical and an-
thropological interpretation—are sourced from ex-
isting benchmarks, human-authored questions, and
synthetic content (Table 2). These sources were se-
lected to capture diverse reasoning challenges and
promote linguistic, cognitive, and cultural variety
across the dataset.

2.2 Data Generation and Data Processing

We generated the dataset content in five main cat-
egories, each targeting a different source or cre-
ation method (Figure 3). For each category, we
employed a strategically selected prompting tech-
nique and engaged human experts to iteratively
review and refine the resulting reasoning steps.

Category 1: English Reasoning Benchmarks

We adapted the English step-by-step reasoning
dataset VRC-Bench (Thawakar et al., 2025) by

English Arabic Human
Bench Bench Created
Visual Reasoning v

OCR & Docs Anal. 4 v
CDT v v v
Math &logic

Social & Cult.
Comp. Vis. Percept.
Medica Img. Anal.
Scientific Reasoning
Agricultural Interp.
Remote Sensing Und. v

Histo. & Anthro. 4 v v

Domains Synthetic

AN N NN

4 4

Table 2: Source Types Across ARB Domains. We
show the sources for each of the 11 domains, indicating
whether data originated from Arabic or English bench-
marks, human-written questions, or synthetic content,
highlighting the dataset’s linguistic and cognitive di-

VeI‘SIty. CDT: Chart, Diagrams, & Table Understanding; Social & Cult.: Social &
Cultural Reasoning; Complex Vis. Percept.: Complex Visual Perception; Agricultural
Interp.: Agricultural Image Interpretation; Histo. & Anthro.: Historical & Anthropological
Understanding.

excluding domains with limited Arabic relevance
(e.g., OCR, Charts, Diagrams & Tables). The re-
maining content was translated into Arabic using
GPT-40 and reviewed by native speakers for step-
level accuracy, coherence, and fluency. Particular
attention was given to resolving translation chal-
lenges such as singular—plural and subject—verb
agreement, sentence structure differences, and non-
literal expressions. Figurative language and cul-
tural references were carefully localized to preserve
contextual relevance, meaning complexity, and nat-
uralness in Arabic.

Category 2: Arabic QA Benchmarks

To further enrich the ARB collection, we incorpo-
rate two specialized domains, medical image anal-
ysis and remote sensing understanding, sourced
from the CAMEL-Bench (Ghaboura et al., 2025a).
For each QA pair, we generated detailed step-by-
step reasoning traces to support interpretability and
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Figure 3: Overview of the ARB Data Collection, Generation and Verification Framework. The ARB benchmark
is constructed from five primary data sources: (1) English reasoning benchmarks, (2) Arabic question—answer
benchmarks, (3) English-captioned datasets, (4) Synthetic data, and (5) Tool-augmented data. All data undergoes
iterative refinement through human-in-the-loop feedback and validation by native Arabic speakers to ensure cultural

and linguistic fidelity.

structured inference using GPT-40. For the medical
domain, we employed a few-shot CoT prompt-
ing strategy to produce coherent reasoning chains.
However, this approach proved insufficient for the
remote sensing domain, where questions often re-
quire spatial decomposition and complex visual in-
ference. To address this, we adopted the plan-and-
solve prompting framework (Wang et al., 2023),
guiding the model to divide images into segments
(e.g., quadrants or longitudinal zones) and apply a
structured, divide-and-conquer reasoning approach.
This significantly improved the fidelity and com-
pleteness of reasoning in the remote sensing do-
main.

Category 3: English Caption Benchmarks
As an additional expansion of the ARB, we
integrated two new domains—agricultural image
interpretation and historical & archaeological
understanding—using visual content and captions
sourced from AgriCLIP (Nawaz et al., 2025) and
TimeTravel (Ghaboura et al., 2025b), respectively.
To generate Arabic reasoning questions with
corresponding step-by-step answers, we adopted
the synthetic prompting like framework inspired
by (Shao et al., 2023) implemented using GPT-4o0.
This approach followed a backward—forward
generation strategy; the model first synthesized a
plausible reasoning chain (backward step), then
generated a question that would logically yield
that reasoning. In the forward step, the model
refined the reasoning trace to ensure alignment and

internal consistency. To ensure data quality and
reasoning diversity, we applied a complexity-based
selection criterion that prioritized samples involv-
ing multi-step inference or higher-order reasoning.
This pipeline enabled scalable generation of
rich, inference-oriented Arabic QA pairs without
requiring exhaustive manual annotation.

Category 4: Synthetic Data

For the OCR and Document Analysis domain,
we curated a set of web-sourced images con-
taining textual content from publicly available
sources (Pinterest, 2025). Each image was
processed using GPT-40, which was prompted
to generate Arabic QA pairs along with corre-
sponding step-by-step reasoning. To guide the
generation process, we employed a few-shot
CoT prompting strategy, encouraging the model
to produce inference-driven reasoning chains
grounded in both visual and textual cues present in
the images.

Category 5: Tool-augmented Generated Data

In this category, we constructed the domain of
Charts, Diagrams, and Tables by integrating
external tools to create visual samples. For the
charts subdomain, data was derived from both
human-curated topics and synthetic scenarios
using GPT-40 under human guidance, with
visualizations produced via Python and Matplotlib
(Bisong and Bisong, 2019). The tables subdomain
involved generating structured data using GPT-40



and Claude-3.5 (Anthropic, 20254), based on
human-defined themes, and visualized in Excel
to simulate realistic interpretation tasks. For
diagrams, we adapted a subset of the AI2D
dataset (Kembhavi et al., 2016), translating and
extensively editing the content into Arabic. Human
annotators refined the corresponding questions to
prioritize reasoning over factual recall. Across
all subdomains, GPT-40 was prompted using a
few-shot CoT strategy to generate Arabic QA
pairs with explicit step-by-step reasoning.

2.3 Data Filtering and Verification Process

To ensure the integrity and quality of ARB, we
implemented a multi-stage filtering and verification
pipeline (Figure 3). This process combined manual
correction, semi-automated AI-human refinement,
and native speaker validation, each tailored to the
complexity and origin of the data.

Manual Review and Targeted Corrections:

In the initial review phase, human annota-
tors—primarily native Arabic speakers—directly
corrected minor issues such as typos, grammar
errors, or subtle translation inconsistencies. This
approach was especially effective for Category 1,
where translated content from English required
adjustments rather than full regeneration. To
support this workflow, we developed a custom
annotation interface for efficient review (see
Figure 7a in Appendix C).

Iterative Human-AI Refinement:

For all other categories, we adopted a semi-
automated human-in-the-loop framework. GPT-40
generated step-by-step reasoning, which was then
reviewed by native speakers and domain experts
for logical consistency, linguistic clarity, and
cultural alignment. When errors were found, such
as unclear steps or reasoning gaps, the annotators
provided targeted feedback, prompting partial
regeneration or manual edits. This loop continued
until each item met the desired quality standard.
A second interface (see Figure 7b, Appendix C)
allowed annotators to check, rate, flag, and finalize
items efficiently.

Quality Filtering and Cultural Alignment:

Post-refinement, all question—answer-reasoning
samples were evaluated against strict quality crite-
ria: accuracy, coherence, reasoning completeness,
and Arabic fluency. We applied both automated
checks (e.g., verifying the answer aligns with

the reasoning steps) and manual review. Over
200 samples were discarded at this stage due to
cultural misalignment or insufficient reasoning
depth. This filtering step ensured only high-quality,
culturally appropriate, and challenging samples
were retained.

Final Approval and Integration:

Items that passed all prior checks were subjected
to a final review to ensure proper formatting, log-
ical coherence, and internal consistency. Upon
approval by native Arabic reviewers, the data was
standardized and formally integrated into the ARB
benchmark. This final validation step ensured that
each entry was complete, well-structured, and suit-
able for robust evaluation of Arabic multimodal
reasoning. Further details on the filtering, verifi-
cation procedures, and annotation interfaces are
provided in the Appendix C.

2.4 ARB Data Statistics

The ARB benchmark consists of 1,356 multimodal
samples distributed across 11 domains (Figure 19),
with Math & Logic comprising the largest share,
followed by Charts, Diagrams, & Tables. Each sam-
ple includes an image, an Arabic question, and a
set of step—action pairs leading to a final answer. In
total, ARB contains 5,119 reasoning steps, with no
fixed limit imposed during generation to preserve
flexibility based on task complexity. Most samples
include 2-6 steps, with an average of 3.78 and a
median of 4. The number of steps ranges from 1
to 16, with Math & Logic exhibiting the highest
reasoning depth. Further statistics are presented in
Appendix H Figure 20.

3 Evaluation Framework

3.1 Model and Prompt Selection

We selected GPT-40 and GPT-40-mini as candidate
models due to their demonstrated efficiency and ef-
fectiveness in multimodal tasks, referring to (Heakl
et al., 2025). Recognizing the sensitivity of reason-
ing performance to prompt language, we evaluated
both models using prompts in English and Arabic.
A diverse set of 40 samples spanning multiple do-
mains was assessed by three native Arabic speakers.
To further support the evaluation of translated out-
puts, we employed LaBSE (Feng et al., 2020) to
measure semantic similarity between English and
Arabic responses.

Human evaluations consistently favored GPT-
40 in both prompt settings. When incorporating
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Figure 4: ARB Evaluation Prompt. The standardized
Arabic prompt used across all ARB domains to elicit
structured, curriculum-based reasoning steps from eval-
uated models during inference. The English version is
provided in Appendix E.

LaBSE, GPT-40 with Arabic prompts achieved
the highest similarity scores. However, across all
settings, automated scores remained lower than
human judgments, reflecting the models’ diffi-
culty in capturing acceptable variations in structure
and order. To mitigate this, we adopted a few-
shot prompting strategy, which improved similarity
scores by 20-30%, while preserving GPT-40 with
Arabic prompts as the best performer. Thus, we
finalize GPT-40 with Arabic prompts for the gener-
ation of reasoning steps (Figure 4).

3.2 Evaluation Methodology and Metrics

Lexical and Semantic Similarity Metrics.

To assess similarity between predicted reasoning
steps and human-curated references, we employed
standard metrics (Table 4). BLEU (Papineni
et al,, 2002) showed weak n-gram alignment,
while ROUGE variants (Lin, 2004) yielded mixed
results with a sharp drop in ROUGE-2, indicating
limited fluency. For semantic similarity, we used
BERTScore (Zhang et al., 2019), which captures
token-level alignment but lacks cross-lingual
robustness, reducing its reliability for Arabic eval-
uation. To address this, we adopted LaBSE (Feng

et al., 2020), a multilingual sentence-level model
that provided more stable results, averaging
81.5%=2 for closed-weight models and 71.5%=+5
for open-weight ones. Despite their utility, these
metrics fall short in capturing logical structure,
coherence, and factual grounding in multi-step
reasoning.

Stepwise Evaluation Using LLM-as-Judge

To address the limitations of traditional evalu-
ation metrics, we adopted a structured LLM-as-
Judge framework, along with a reference-based pro-
tocol and Arabic prompt, adapted from (Thawakar
et al., 2025) evaluation suite. Unlike reference-free
metrics (Golovneva et al., 2022), this set-up enables
a fine-grained, interpretable evaluation aligned with
Arabic linguistic and contextual nuances. GPT-4o,
used as LL.M-as-Judge, is instructed to assess rea-
soning outputs across several dimensions, includ-
ing faithfulness, informativeness, redundancy, hal-
lucination, semantic coverage, and commonsense
reasoning. Each attribute is rated on a scale from
1 to 10 (see Figure 15 and Figure 16), and the fi-
nal score for reasoning steps is computed as the
average across all dimensions (Table 3). The full
evaluation prompt is provided in Appendix D.
Inter-Annotator Agreement: Krippendorff’s Al-
pha. To ensure data quality and validate the ef-
ficiency of our LLM-as-Judge selection, we con-
ducted an inter-annotator agreement analysis over
5% of the dataset. Three human annotators were
provided with a user-friendly interface (Figure 8) to
rate samples on a scale from 1 (lowest) to 5 (high-
est). Most samples received scores of 4 or higher,
confirming the effectiveness of our earlier verifica-
tion steps and reflecting strong agreement among
annotators. We measured Krippendorff’s Alpha
(Krippendorft, 2018), achieving a score of 83.56%
among human annotators. To further assess the reli-
ability of GPT-40 as an LLM-as-Judge, we repeated
the evaluation by including the model’s judgments,
resulting in an even higher Krippendorff’s Alpha
of 87.62%. These results demonstrate high con-
sistency between human and LLM assessments,
supporting the robustness of our evaluation frame-
work.

4 Results and Analysis

Reasoning-Answer Performance Gap.
The ARB evaluation (Table 3) reveals a
consistent gap between models’ ability to generate



Closed-source GPT-40 GPT-40 GPT-4.1 o4 Gemini 1.5 Gemini 2.0
Models -mini -mini Pro Flash
Final Answer (%) 60.22 52.22 59.43 58.93 56.70 57.80
Reasoning Steps (%) 64.29 61.02 80.41 80.75 64.34 64.09
Open-source Qwen2.5 Llama-3.2 AIN Llama-4 Aya- InternVL3
Model VL-7B 11B-Vis-Inst. Scout (17Bx16E) vision-8B -8B
Final Answer (%) 37.02 25.58 27.35 48.52 28.81 31.04
Reasoning Steps (%) 64.03 53.20 52.77 77.70 63.64 54.50

Table 3: Stepwise Evaluation Using LLM-as-Judge. Comparison of closed- and open-weight models based
on final answer accuracy and aggregated quality scores of reasoning steps, using our LLM-as-Judge framework
with Arabic prompts and evaluation metrics. The evaluation follows a reference-based, attribute-level protocol for
assessing reasoning quality. The best model in each category (closed- and open-source) is shown in bold.

Model | BLEU | ROUGE-1 ROUGE-2 ROUGE-L | BERTScore | LaBSE
N GPT-4o 6.21 63.61 4271 58.70 76.33 82.82
g GPT-40-mini 530 61.86 41.18 56.73 76.23 81.56
2 GPT-4.1 6.35 7113 48.83 65.33 77.32 84.40
2 o4-mini 538 65.22 45.94 59.45 76.33 82.57
2 Gemini 1.5 Pro 5.49 62.71 45.90 58.34 76.05 79.81
“ Gemini 2.0 Flash 8.27 7091 54.81 65.95 78.56 83.77

Qwen2.5-VL-7B 321 4851 31.19 45.97 73.03 73.67
8 Llama-3.2-11B 175 2283 1120 19.63 66.89 65.41
2 AIN 3.16 59.18 43.54 55.41 73.26 72.25
& Liama-4 Scout 4.32 47.74 27.52 41.07 73.06 77.51
& Aya-Vision-8B 339 59.64 38.98 53.80 72.54 76.84

IntenVL3-8B 293 50.78 29.96 46.35 72.52 77.28

Table 4: Lexical and Semantic Similarity Scores. Evaluation of generated reasoning steps using classical metrics,
including BLEU, ROUGE, BERTScore, and LaBSE. These metrics reflect surface-level lexical overlap and overall
semantic similarity but fall short in capturing stepwise logical coherence. The best model in each category (closed-

and open-source) is shown in bold.
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Figure 5: Arabic Reasoning Evaluation Metrics. We assess step-by-step reasoning using five core Arabic-
specific dimensions: Faithfulness (At-Tatabuq), Informativeness (Al-Ithra’ Al-Ma’lamati), Coherence (At-Tawafuq),
Commonsense (Al-Mantiq Al-’Amm), and Reasoning Alignment (At-Tawafuq Al-Istidlali). Auxiliary checks cover
hallucinations, redundancy, semantic gaps, and missing steps. Metrics are defined at the step and/or token level. The

full evaluation rubric is provided in English in Appendix E.

coherent reasoning steps and their success in
reaching correct final answers. For example,
models like GPT-4.1 and o4-mini achieve rea-
soning coherence scores above 80%, while their
final answer accuracy hovers around 58-60%.
This pattern is even more pronounced in open
models such as Qwen2.5-VL and Aya-vision,
where reasoning steps are moderately strong

(above 50-60%) but final answer correctness
remains below 40%. These results demonstrate
that well-structured reasoning does not guarantee
correct conclusions—underscoring the need for
step-level evaluation to accurately assess a model’s
reasoning capabilities.

Closed vs. Open-Source Model Performance.

Quantitative Evaluation. Closed-source
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Figure 6: Cross-Lingual Reasoning Comparison (Arabic vs. English). This figure compares LMMs (GPT-40)
reasoning steps in Arabic and English for the same visual task. In the Arabic version, the model misinterprets

structural constraints,

yellow highlights incorrect assumptions about equal line counts across boxes,

green

emphasizes miscounted lines within the boxes, and cyan marks an irrelevant search for a box with exactly 4 lines.
These reasoning flaws lead to the wrong answer (C). In contrast, the English reasoning is structured, accurate, and
constraint-aware, correctly identifying the answer (A), highlighting the performance gap in Arabic.

models consistently outperform open-source
ones in both reasoning and final answer accuracy.
GPT-4.1 and o4-mini lead the closed category,
with strong logical consistency and relatively high
correctness. Among open models, LLaMA-4 Scout
performs best, scoring 77.7% in reasoning steps
and 48.5% in final answers—narrowing the gap
with closed models but still trailing. Other open
models such as LLaMA-3.2, AIN, Aya Vision,
and InternVL3 demonstrate coherent reasoning
but struggle with accurate conclusions, reflecting
limitations in cross-lingual understanding and
cultural grounding.

Qualitative Evaluation. To investigate reason-
ing gaps in Arabic, we conducted a qualitative com-
parison between model outputs and human-curated
ARB references. Selected examples illustrate com-
mon pitfalls in both open- and closed-source mod-
els, including incomplete or incoherent step transi-
tions, hallucinations, and shallow logical progres-
sion in Arabic responses (Figures 17 and 18).

We further examine the impact of language by
comparing Arabic and English reasoning steps
generated by the same model on identical visual
inputs (Figure 6). This side-by-side analysis re-
veals notable inconsistencies in reasoning quality
across languages, emphasizing the need for Arabic-
specific benchmarks.

These findings underscore the importance of
evaluating and improving Arabic multimodal rea-
soning, directly supporting ARB’s core motivation.

Domain-Level Trends. Figures 13 and 14
(Appendix F) show a domain-level breakdown,
illustrating the persistent reasoning-answer gap
across task categories. Figures 15 and 16 offer

fine-grained step-by-step scores, revealing domain-
specific model behavior. These results underscore
ARB’s value in exposing nuanced reasoning pat-
terns and highlighting the strengths and weaknesses
of both closed- and open-source models across do-
mains.

5 Conclusion

In this work, we presented ARB, the first bench-
mark designed to evaluate step-by-step multimodal
reasoning in Arabic across 11 diverse domains.
With 1.35K high-quality samples and over 5K
human-curated reasoning steps, it was built through
a hybrid pipeline combining prompting strategies,
tool-assisted generation, and native-speaker vali-
dation. Our evaluation of 12 state-of-the-art open-
and closed-weight models revealed persistent gaps
in reasoning quality, coherence, and cultural align-
ment when operating in Arabic, despite their strong
performance in English-centric settings. These
findings underscore the need for step-level, cultur-
ally aware evaluation strategies tailored to under-
represented languages. Beyond benchmarking, the
open-source ARB offers tools, protocols, and inter-
faces to support reproducibility and future research.
It sets the foundation for training and evaluating
Arabic-native LMMs and contributes toward build-
ing more inclusive, interpretable, and linguistically
grounded Al systems.

6 Limitations and Societal Impact

While ARB provides a valuable resource for evalu-
ating Arabic multimodal reasoning, it has certain
limitations. First, although it spans 11 diverse do-
mains, the benchmark may still not fully capture
the full linguistic, dialectal, or cultural variabil-
ity present across the Arabic-speaking world. Ad-



ditionally, reasoning evaluations rely on human
judgment and model-specific prompts, which may
introduce subjectivity or prompt-induced biases.
The benchmark also focuses on Arabic exclusively,
and does not offer multilingual alignment or cross-
lingual transfer assessments, which could be valu-
able for comparative studies.

From a societal perspective, ARB promotes
more inclusive and culturally aware Al by centering
Arabic, an underrepresented yet widely spoken lan-
guage. Its focus on interpretable, step-by-step rea-
soning supports broader goals of Al transparency
and accountability. Nonetheless, ethical considera-
tions remain important, particularly to prevent the
misuse or misinterpretation of culturally sensitive
content in applications where Al decisions may
have real-world consequences.
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A Appendix

This appendix provides supplementary material
supporting our contributions. It includes: (1) a
brief overview of related work situating our ap-
proach within broader research on Arabic reason-
ing and multimodal data generation; (2) details
of the filtering and verification pipeline, including
interface designs used for human-in-the-loop vali-
dation and the inter-annotator agreement study; (3)
additional details on the prompts used for model
reasoning generation and evaluation; (4) English
translations of the Arabic generation prompt and
evaluation metrics; and (5) extended data statistics,
such as domain and steps by domain distributions,
token length distributions in questions and reason-
ing steps, as well as their ratios. These additions
enhance transparency and offer deeper insight into
the construction and quality control of the ARB
benchmark.

B Related Work

Chain-of-Thought Reasoning in LL.Ms

CoT prompting was introduced by (Wei et al.,
2022) to improve LLMSs’ logical reasoning, inspir-
ing extensions like self-consistency (Wang et al.,
2022), tree-of-thoughts (Yao et al., 2023), and in-
struction tuning for reasoning (Vaillancourt and
Thompson, 2024; Ranaldi and Freitas, 2024). Re-
cent work has also explored structural aspects of
reasoning, including the impact of step length (Jin
et al., 2024) and counterfactual prompting to re-
duce bias (Moore et al., 2024).

Building on these developments, state-of-the-art
LLMs have adopted advanced post-training strate-
gies to strengthen reasoning. Kumar et al. (Kumar
et al., 2025) survey techniques such as fine-tuning,
reinforcement learning, and test-time scaling.
OpenAl’s 01 model (Jaech et al., 2024) leverages
reinforcement learning and inference-time scaling
to improve reasoning fidelity. DeepSeek R1 (Guo
et al.,, 2025) enhances CoT performance using
reward models that prioritize logical soundness
over natural phrasing.

Multimodal Reasoning in VLMs

Extending CoT reasoning to multimodal tasks
has proven both challenging and rewarding. Mod-
els like LLaVA-CoT (Xu et al., 2025) explicitly
incorporate structured visual reasoning steps into
their outputs, enabling multi-stage perception and
interpretation of images. Trained on a dataset
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of 100k CoT-annotated visual QA pairs, LLaVA-
CoT achieves notable gains on reasoning bench-
marks. Similarly, LlamaV-ol (Thawakar et al.,
2025) introduces a curriculum-based framework
and benchmark for multi-step visual reasoning,
demonstrating improvements in both accuracy and
interpretability.

Recent studies have proposed methods to further
enhance reasoning coherence and alignment. Chen
et al. (Chen et al., 2024a) present metrics and a
two-stage training strategy to improve consistency
in vision-language reasoning. Zhang et al. (Zhang
et al., 2024) enrich training data with rationales
distilled from GPT-40 and apply Direct Preference
Optimization (DPO) to guide models toward more
faithful and coherent CoT outputs.

These developments reflect a growing consensus
that multimodal models must reason systematically
across modalities—not merely generate final an-
swers—to ensure robustness and interoperability.

Arabic and Multilingual Reasoning Resources

Despite increasing multilingual training in
LLMs, Arabic remains underrepresented in
reasoning-focused benchmarks. Several datasets
have emerged to address this gap. ArabicSense
(Lamsiyah et al., 2025) evaluates commonsense
reasoning in Arabic, while AraSTEM (Mustapha
et al., 2024) offers over 11,000 science-focused
multiple-choice questions in Arabic. ArabLegalE-
val (Hijazi et al., 2024) benchmarks Arabic legal
reasoning using real-world legal documents and
synthetic questions. ArabCulture (Sadallah et al.,
2025) focuses on MSA commonsense reasoning
across 13 Arab countries using culturally grounded,
native-authored questions. AraDiCE (Mousi et al.,
2024) evaluates dialectal and cultural reasoning
across Arabic varieties using post-edited synthetic
data.

These resources reveal substantial performance
disparities between Arabic and English, partic-
ularly in reasoning-heavy tasks; however, they
remain limited to the text modality and focus
primarily on LLMs rather than LMMs.

Arabic-Native Reasoning Models

Recent efforts have introduced Arabic-native
LLMs with enhanced reasoning capabilities.
ALLaM-Thinking (Research, 2025) is a fine-tuned
model specifically optimized for stepwise logic
and arithmetic problem-solving, demonstrating
improved chain-of-thought performance in math



tasks through Unsloth and Grouped Policy
Optimization. Fanar (Team et al., 2025), a broader
Arabic LLM, recently introduced the “Think
Before Responding” feature, enabling intermediate
reasoning traces during decoding and improving
interpretability and alignment with structured
reasoning. In contrast, models like AIN (Heakl
et al., 2025) and Jais (Sengupta et al., 2023) offer
general Arabic capabilities but lack fine-grained
reasoning alignment.

ARB complements these resources by providing
the first multimodal step-by-step reasoning bench-
mark in Arabic, creating a unified framework for
evaluating reasoning transparency across vision-
language tasks.

C VFiltering and Verification Pipeline and
Interface

To ensure quality and consistency across all sam-
ples, we developed a streamlined and user-friendly
annotation interface to support manual verification
and scoring. Given the scale of data and multiple
annotators involved, the interface was designed to
simplify inspection and accelerate review.

For translation tasks (see Figure 7a), the inter-
face displays the original English text alongside the
Arabic translation, allowing annotators to directly
edit only the translated portion. For synthetic sam-
ples (see Figure 7b), the interface presents the im-
age, Arabic question, step-by-step reasoning, pre-
dicted answer, and reference answer. Annotators
assess the sample based on accuracy, clarity, cul-
tural alignment, and faithful delivery of meaning,
with an emphasis on conceptual correctness rather
than word-for-word translation.

Each sample is rated on a 6-point scale, as shown
below.

Rate Description
0 Reject: Culturally inappropriate/ Irrelevant content
1 Requires full regeneration by the model
2 Major edits needed to fix reasoning or clarity
3 Moderate edits required
4 Minor edits needed
5 Excellent: No edits needed; ready for inclusion

Table 5: Filtering and Verification Rating Scale. A
standardized scoring scheme used by annotators to as-
sess the quality of translations and reasoning steps. The
scale guides decisions on whether a sample should be
accepted, revised, or regenerated based on linguistic ac-
curacy, reasoning clarity, and cultural appropriateness.

Each sample was independently reviewed by two

13

™ ALM_107

English Arabic
Which sport in the image involves rding a bicycle? choices : A) Cycling , (B ol 58 (AL Sl 5 pm  xpll 3210 plo
58 (D 00 5,81 (C ol 55

8) Football, C) Volleyball, D) Basketball

Steps.

Rate | swe | Next>>

<<Previous

(a) Example of ARB translation verification user interface.
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(b) Example of ARB generated data verification user interface.

Figure 7: Filtering and Verification User Interface.
The interface enables annotators to manually edit con-
tent when applicable and assign quality ratings to guide
subsequent controller review and final approval.
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Figure §: Inter-Annotator Agreement Interface. The
interface allows annotators to evaluate each sample by
assessing the compatibility of the model’s step/action
chain with the provided image, question, and choices
(when applicable). Annotators assign a score by compar-
ing the model’s reasoning process to their own human
reasoning approach for solving the question.

annotators and then passed to a controller, with in-
dividual scores combined for a total of 10. If either
annotator assigned a score of 0, the sample was
immediately discarded due to cultural or contex-
tual inappropriateness. Samples scoring 8—10 were
approved without further review, while those scor-
ing 2—4 were sent back for regeneration. Samples
with intermediate scores (5—7) were escalated to a
controller, who conducted a final review, resolved
discrepancies, and made any necessary corrections.
This multi-tiered evaluation process ensured both
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Figure 9: Arabic Evaluation Prompt for LLM-as-
Judge. This prompt was used to evaluate reasoning
steps across all models in Arabic. It guides models to
assess reasoning quality using a set of structured criteria

defined in the ARB framework.

the consistency and quality of the final dataset.

D Models’ Evaluation Prompts

This section presents the evaluation prompts used
to assess the step-by-step reasoning quality of
LMMs in our study. The prompt was adapted from
the LLamaV-ol evaluation protocol (Thawakar
et al., 2025) and tailored to the Arabic multimodal
reasoning context of ARB (Figure 9). To ensure
consistency between the generation and evaluation
phases, all assessments were performed using Ara-
bic prompts exclusively in open-source and closed-
source models. This design choice maintained lin-
guistic alignment with model outputs and mini-
mized potential cross-lingual biases during judg-

ment.

An English translation of the prompt is provided
(Figure 10) to assist non-Arabic readers and en-

hance accessibility.
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Evaluation Prompt

You are a reasoning evaluator designed to assess the
alignment, coherence, and quality of reasoning steps
in text responses. Your task is to evaluate reasoning
steps between the *ground truth* and the *LLM
response* using the following metrics:

1. Faithfulness-Step: Measure how well the reasoning
steps align with the source sentences.

2. Faithfulness-Token: Extend Faithfulness-Step by
token-level alignment within reasoning steps.

3. Informativeness-Step (Info-Step): Evaluate how
well the reasoning steps extract relevant
information from the source.

4. Repetition-Token: Identify repeated or paraphrased
reasoning steps within the hypothesis.

5. Hallucination: Detect irrelevant reasoning steps
not aligned with the source or reference chain.

6. Redundancy: Identify redundant reasoning steps
that are unnecessary for solving the problem.

7. Semantic Coverage-Step: Evaluate how well the
hypothesis captures essential elements from the
source.

8. Reasoning Alignment: Assess overall overlap and
alignment between the hypothesis and reference
chain.

9. Commonsense: Detect missing commonsense reasoning
required to solve the problem.

10.Missing Step: Identify missing reasoning steps
necessary to solve the problem.

Must give score between (1-10)

Output Format:
Provide your evaluation as follows (only give scores
not explanation.):

- Metric Scores:

- **Overall Score:

. J

Figure 10: English Translation of the Arabic Evalua-
tion Prompt. A translated version of the prompt used
to evaluate reasoning steps in ARB (see Figure 9) to aid
non-Arabic readers.

E English Translation of Generation
Prompt and Evaluation Metrics

This section presents the English translations of
two core components used in ARB: (1) the prompt
for the generation of reasoning steps, originally
designed in Arabic (see the Arabic version in Fig-
ure 4, the English translation in Figure 12); and (2)
the evaluation metrics used to assess the quality of
these reasoning steps (see original in Figure 5, the
English translation in Figure 11). These metrics
were also used in the evaluation prompt provided
in Appendix D.

F Domain-Level Analysis of Reasoning
and Final Answers

To gain deeper insight into model performance
across various task categories, we present a domain-
level analysis of ARB results for both closed- and
open-source models. These visualizations illustrate
how models perform in terms of both final answer
accuracy and reasoning step quality across the 11
benchmark domains.

To support clarity and consistency across the fol-
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Faithfulness Step . X . L. [ Gms Uai S |
Measures the degree of alignment, consistency, accuracy, reliability, and coherence
of the reasoning steps with the reference sentences.
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Extends the Faithfulness-Step metric (alignment at the step level) by verifying Eate =
alignment, accuracy, reliability, and coherence at the token level within the
reasoning steps.
Cotaedl G ddall o103 Slaglaall gl ghGwl s JYWSwY ) O sl 5,48 s paaEs
- . 1530
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P Evaluates the extent to which the reasoning steps successfully extract relevant PETIPPNY
information from the source.
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Repetition Token o . . . SOpuT] 1555
P Identifies repeated or unnecessarily paraphrased reasoning steps in the reasoning > 2
chain.
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Detects irrelevant or fabricated reasoning steps not aligned with the source.
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Identifies redundant reasoning steps that do not add value.
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Alignment Measures the overall alignment and consistency between the hypothesis and the BEREo
reference reasoning chain.
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Identifies if any necessary reasoning steps are missing.

Figure 11: English Translation of ARB Evaluation Metrics. An English version of the Arabic reasoning
evaluation rubric used in ARB (see Figure 5), detailing the definitions of all step-level and overall reasoning quality
metrics. These include measures for faithfulness, informativeness, repetition, hallucination, redundancy, semantic
coverage, reasoning alignment, commonsense reasoning, and missing steps. This translation supports cross-lingual
reproducibility and interpretability of the evaluation framework.

Reasoning Steps Generation Prompt

You are a professional expert specialized in the field
of ({Domain}. Your task is to generate step-by-step
logical analysis and reasoning for textual and visual
questions, including the necessary action at each step
to arrive at the correct answer. Your reasoning should

lowing visual analyses, we adopt the following stan-
dardized abbreviations for the 11 ARB domains:

Abb Description

be grounded in visual evidence from the image, the . A
information provided in the question, and the VR Visual Reasoning;
available answer choices. Use the provided {example} .
as a structural template for formatting the reasoning OCR OCR and Document AnalySIS,
steps and corresponding actions. Please follow the CDT Charts Diagrams and Tables:
instructions below: ’ ’ ’
o Readftllli question and available answer choices M&L Mathematical and Logical Reasoning;
carefully.
2. Identify the core concepts, required skills, and Soc.Cult.  Social and Cultural Understanding;

domain-specific knowledge relevant to {Domain}. § .

3. Questions span multiple formats, and you must Cvp Complex Visual Perceptlon;

follow a curriculum-based approach specified by . .

the {Curriculum} associated with each {Domain}. MED h46dlcallnlage }\naly51$

4. The curricula are categorized into four types: Sci . . .
; ; ci.R Scientific Reasoning;

* First Category - {Curriculum} = ’
I BeerEes en e aEiEebie Hist. Historical & Archaeological Interpretation;
operations, comparative reasoning, and
mathematical logic. RS Remote Sensing Analysis;

¢ Second Category - {Curriculum} = . .
"Scientific/Medical": Involves scientific Agro Agricultural Image Understanding.

reasoning and domain-specific evidence-based
analysis.

Third Category - {Curriculum} =
"Descriptive/Inference": Emphasizes segmenting
and analyzing the visual content to extract
meaningful insights.

Fourth Category - {Curriculum} = "General":
Relies on comparison, contrast, and what the
question logically requires to reach the
correct answer.

Please format your output according to the structure
shown in {example}, and conclude with the phrase:
"The correct answer is: Wy

The bar charts (Figures 13 and 14) provide an
overview of the aggregated scores, while the heat
maps (Figures 15 and 16) offer a more granular
perspective on domain-level performance across in-
dividual evaluation metrics. Together, these figures
reveal consistent discrepancies between reasoning
coherence and final answer correctness, and high-

- J

Figure 12: English Version of the ARB Prompt. This
figure presents the English translation of the original

Arabic prompt (see Figure 4) used to guide reasoning
step generation across domains.
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light domain-specific strengths and weaknesses
across model types.
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Figure 13: Domain-Level Performance of Closed-Source Models. Bar charts comparing final answer accuracy
and average reasoning step quality across ARB domains for each closed-source model. GPT-4.1 and 04-mini show
strong reasoning in domains like Sci.R, CDT, and Hist., while notable gaps appear in CVP and RS. All models
consistently score higher on reasoning than final answers, underscoring the importance of step-level evaluation. The
figure highlights both strengths and limits of closed models in Arabic multimodal reasoning.
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Figure 14: Domain-Level Performance of Open-Source Models. Comparison of final answer accuracy and
reasoning step scores across ARB domains for six open-source models. LLaMA-4 and AIN perform well in Sci.R
and OCR but struggle in RS and VR. Qwen2.5-VL and LLaMA-3.2 show large gaps between reasoning and answers,
especially in culturally grounded domains (e.g., Hist., Soc.Cult.). The figure illustrates challenges open models face
in Arabic cross-modal reasoning.
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Figure 15: Stepwise Attribute-Level Evaluation of Closed-Source Models. Heatmaps illustrating the average
scores (1-10 scale) across key reasoning attributes—faithfulness, coherence, informativeness, and other diagnostic
criteria—within each ARB domain for six closed-source models, based on the LLM-as-Judge framework using
Arabic prompts. Models such as GPT-4.1 and o4-mini consistently achieve high scores across most attributes and
domains, particularly in Sci.R, CDT, and Hist., indicating strong reasoning reliability. In contrast, performance
degrades in perceptual-heavy domains like CVP and RS, where scores drop across multiple attributes. The heatmaps
also expose granular inconsistencies—e.g., faithfulness gaps in MED or informativeness variability in Agro—that
would be obscured by aggregate metrics. These results emphasize the value of attribute-level evaluation in diagnosing

model reasoning quality in Arabic multimodal tasks.
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Figure 16: Stepwise Attribute-Level Evaluation of Open-Source Models. Heatmaps visualizing average attribute-
level scores (1-10 scale) across ARB domains for six open-source models, based on the LLM-as-Judge framework
using Arabic prompts. Each cell reflects the model’s performance across core reasoning dimensions—faithfulness,
coherence, informativeness, and error-related factors—per domain. Models such as LLaMA-4 and AIN demonstrate
consistent stepwise quality across scientific and OCR tasks, while others like Qwen2.5-VL and LLaMA-3.2 struggle
in culturally sensitive or perception-heavy domains (e.g., Hist., Soc.Cult., RS). These results offer fine-grained
insight into open-model weaknesses and underscore the importance of domain- and attribute-aware evaluation in
Arabic multimodal reasoning tasks.
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Figure 17: Qualitative Errors in Open-Source Models. This figure showcases common reasoning flaws in
open-source LMMs across diverse Arabic multimodal tasks. Errors include incomplete reasoning steps, inconsistent
logic, and hallucinated interpretations not grounded in the input. These issues often result in incorrect answers or

unreliable outputs, reflecting the challenges open models face in structured Arabic reasoning.
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Figure 18: Qualitative Errors in Closed-Source Models. This figure highlights reasoning failures by closed-source
LMMs across various Arabic multimodal tasks. Common issues include incorrect numerical comparisons, invalid
assumptions, misinterpreted constraints, and logically inconsistent step sequences. These errors often lead to
incorrect conclusions despite the appearance of structured reasoning, underscoring the limitations of current closed
models when operating in Arabic.
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G Qualitative Examples

As a further illustration of the quantitative trends
discussed in section 4, we present qualitative exam-
ples of reasoning failures in both open- and closed-
source models (Figures 17 and 18). These exam-
ples reveal persistent issues such as incomplete rea-
soning chains, hallucinated content, and misapplied
constraints across a range of Arabic multimodal
tasks. While some outputs appear structurally co-
herent, they often fail to adhere to task-specific
logic or factual correctness. These qualitative in-
sights reinforce the need for Arabic-centric bench-
marks like ARB to diagnose and improve model
behavior in complex reasoning scenarios.

H Data Statistics

H.1 Distribution of Reasoning Steps per
Sample

To examine the structure of the ARB benchmark
across domains, we report key statistical findings.
Figure 20 illustrates the distribution of step counts
in all ARB entries over their domains, revealing the
frequency and variance of the step depth required
for the completion of the task.

H.2 Token Count by Domain

Figure 21a shows the distribution of question to-
ken lengths across domains. Most questions are
relatively concise, but domains such as Medical
Reasoning (MED) and Historical and Archaeologi-
cal Understanding (Hist.) exhibit higher variabil-
ity and longer lengths. This reflects the inherent
complexity and information density required in spe-
cialized domains. Similarly, Figure 21b presents
the token length distribution of the reasoning steps.
These are often longer in domains like Medical
Reasoning, Math and Logic (M&L), and Historical
and Archaeological Understanding, indicating the
need for more elaborate multi-step reasoning in
knowledge-intensive tasks.

H.3 Question-to-Reasoning Token Ratio

Figure 22 depicts the average ratio of question
tokens to reasoning step tokens across domains.
Generally, reasoning steps are significantly longer
than the original questions, with ratios exceeding
30% in most cases. Notably, the Medical Reason-
ing (MED) and Agricultural Image Interpretation
(Argo) domains show the highest ratios, suggest-
ing that these tasks demand extensive inferential
elaboration beyond the surface-level query.
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H.4 Performance Correlation with Length

Preliminary analysis indicates that longer reason-
ing chains are modestly correlated with improved
performance in complex domains such as Medical
and Scientific Reasoning. However, excessive ver-
bosity does not consistently yield higher accuracy,
highlighting the importance of targeted, efficient
reasoning over mere length.

M&L
41%

CDT
24%

Figure 19: Domain Distribution in ARB. The figure
shows the distribution of ARB samples across 11 do-
mains. Math & Logic (41%) and Charts, Diagrams, &
Tables (24%) dominate, reflecting the dataset’s empha-
sis on structured reasoning. Other domains, including
Social & Cultural, Scientific, and Medical, add thematic
diversity.

H.5 Average Number of Steps and Domain
Effects

On average, domains such as Medical, Scientific
Reasoning, and Historical and Archaeological Un-
derstanding require a greater number of reasoning
steps per question, compared to more straightfor-
ward domains like OCR or Remote Sensing (RS).
This suggests that scientifically and historically
grounded tasks inherently involve deeper multi-
hop reasoning, presenting greater challenges for
both human annotators and models.
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Figure 20: Step Count Distribution by Domain. This figure shows the frequency distribution of reasoning steps
per sample across the 11 ARB domains. Most domains exhibit a concentration between 2 and 6 steps, with Math &
Logic, History, and Remote Sensing containing a larger share of samples requiring extended reasoning chains.
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(a) Question Token Length Distribution by Domain. The figure shows the distribution of token counts for questions across
different domains in ARB. Domains such as Medical Reasoning (MED) and Historical and Archeological Understanding (Hist.)

exhibit higher variability and longer questions, reflecting their inherent complexity.
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(b) Reasoning Steps Token Length Distribution by Domain. The figure presents the distribution of token counts for the
generated reasoning steps across domains. Reasoning steps tend to be longer in complex domains such as Medical, Math &
Logic, and Historical & Archaeological Understanding (Hist.), highlighting the need for extended multi-hop reasoning.

Figure 21: Question token analysis in ARB: (a) token length by domain, and (b) [describe the second figure].
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Figure 22: Question-to-Reasoning Token Ratio by Domain. The figure illustrates the average ratio between
question token lengths and reasoning step token lengths across domains. Higher ratios in domains like Argo

and MED indicate that these tasks require significantly more elaborate reasoning chains compared to the original
question length.
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