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Abstract

Cognitive research indicates that abstraction001
ability is essential in human intelligence, which002
remains under-explored in language models. In003
this paper, we present ABSPYRAMID, a unified004
entailment graph of 221K textual descriptions005
of abstraction knowledge. While existing re-006
sources only touch nouns or verbs within sim-007
plified events or specific domains, ABSPYRA-008
MID collects abstract knowledge for three com-009
ponents of diverse events to comprehensively010
evaluate the abstraction ability of language011
models in the open domain. Experimental re-012
sults demonstrate that current LLMs face chal-013
lenges comprehending abstraction knowledge014
in zero-shot and few-shot settings. By train-015
ing on our rich abstraction knowledge, we find016
LLMs can acquire basic abstraction abilities017
and generalize to unseen events. In the mean-018
time, we empirically show that our benchmark019
is comprehensive to enhance LLMs across two020
previous abstraction tasks.021

1 Introduction022

Abstraction is about finding common properties023

among different things and forming a broader con-024

cept, like the concept “furniture” subsuming “sofa”025

and “table,” a key dimension of human cogni-026

tion (Colung and Smith, 2003; Russell and Norvig,027

2010). With this ability, we can smoothly handle028

daily situations by learning from past experiences029

and generalizing to new circumstances (Saitta and030

Zucker, 2013). Substantively, Minsky (1980), in031

his K-Theory, suggested that our minds organize032

past experiences in a hierarchical pyramid, with033

higher parts corresponding to greater abstraction.034

The NLP community has recently explored di-035

verse, impressive abilities of LLMs, such as in-036

context learning (Brown et al., 2020), multi-step037

reasoning (Wei et al., 2022b), and instruction fol-038

lowing (Sanh et al., 2022). Meanwhile, the ability039

to abstract, a core dimension of human cognition,040

has received less attention in the studies of LLMs.041
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Figure 1: An illustration of our ABSPYRAMID bench-
mark. We identify three components of events (i.e.,
Noun, Verb, and Event as a whole) and collect abstract
concepts entailed by them.

Although sporadic works about abstraction knowl- 042

edge exist, they focus solely on nouns or verbs 043

within simplified events or specific domains, failing 044

to consider a broader picture of abstraction. One 045

category of works is building an entailment graph 046

of verbs, first proposed by Berant et al. (2011) with 047

several techniques to enhance it in the following 048

works (Hosseini et al., 2018; McKenna et al., 2023). 049

Those works consider events as a verb with two 050

arguments (i.e., subject and object) and limit argu- 051

ments to dozens of entity types to alleviate their 052

graphs’ sparsity issue. However, those simplifica- 053

tions considerably sacrifice the precise semantics 054

of events. For example, the event “a cat chased 055

a mouse into its burrow” in Figure 1 will be sim- 056

plified into a tuple (animal, chase, animal), losing 057

track of specific details of animals and location. 058

Other than verbs, He et al. (2022) annotated an 059

abstraction dataset, AbstractATOMIC, about enti- 060

ties and events using the Probase taxonomy (Wu 061
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et al., 2012). While their work curated thousands062

of abstract concepts, it is limited to the social com-063

monsense domain as base events are sampled from064

ATOMIC (Sap et al., 2019).065

Inspired by the cognitive study of abstraction066

in the pyramid-like hierarchy of human experi-067

ences (Minsky, 1980), we present ABSPYRAMID,068

a unified entailment graph to comprehensively eval-069

uate language models’ abstraction ability. We cu-070

rated abstract concepts entailed by each of the three071

components of an event: nouns, verbs, and the072

event as a whole, unifying scopes and domains073

of all prior datasets. Specifically, we sample base074

events in textual descriptions from ASER (Zhang075

et al., 2020, 2022), an open-domain large-scale076

eventuality graph. We design heuristic rules to077

identify nouns and verbs from events and collect078

abstract concepts with WordNet (Miller, 1995) and079

LLMs prompting. Those concept candidates are080

then crowdsourced for validity, resulting in a graph081

of 221K examples. Compared with verb entailment082

graphs (Berant et al., 2011), ABSPYRAMID retains083

specific and accurate semantics of base events. Our084

benchmark features a diverse array of syntactic085

roles for real arguments instead of relying on (sub-086

ject, verb, object) tuples with entity types. In con-087

trast to AbstractATOMIC (He et al., 2022), our088

benchmark covers abstraction knowledge beyond089

the social commonsense thanks to the open do-090

main corpora used in ASER. Also, we use LLMs to091

broaden collected abstract concepts, complement-092

ing the coverage of taxonomies.093

On the ABSPYRAMID benchmark, we investi-094

gate whether LLMs can (1) identify valid abstract095

concepts and (2) generate abstract concepts. The096

evaluation results on 26 popular language mod-097

els reveal that: (1) LLMs encounter difficulties098

understanding abstraction knowledge under both099

zero-shot and in-context learning settings. (2) In100

contrast, fine-tuned language models perform bet-101

ter at comprehending abstraction knowledge, espe-102

cially for nouns. (3) Our benchmark incorporates103

comprehensive abstraction knowledge, which can104

improve LLMs’ performance significantly across105

verb entailment graphs and AbstractATOMIC. To106

the best of our knowledge, ABSPYRAMID presents107

the first comprehensive evaluation of LLMs’ ab-108

straction ability. Our benchmark and experiment109

results provide valuable insights into the abstrac-110

tion ability of language models and the progress of111

artificial intelligence within LLM.112

2 Related Work 113

While the NLP community has studied various abil- 114

ities of LLMs (Wei et al., 2022a; Chowdhery et al., 115

2023; Ouyang et al., 2022; Chung et al., 2022; Zhou 116

et al., 2023), the abstraction ability of LLMs re- 117

mains insufficiently studied. Unlike existing works 118

that focus on entity-level abstraction (Clark et al., 119

2000; Van Durme et al., 2009; Song et al., 2011, 120

2015; Gong et al., 2016), our research delves into 121

event-level abstraction with only a few works in- 122

vestigating some restricted aspects: 123

Verb Entailment Graph: Berant et al. (2011) 124

first proposed the task of entailment graph con- 125

struction of verbs. Following their work, various 126

methods have been proposed to build better verb en- 127

tailment graphs (Hosseini et al., 2018, 2019, 2021; 128

Guillou et al., 2020; Chen et al., 2022; Li et al., 129

2022; McKenna et al., 2021, 2023). Nonetheless, 130

those works consider verbs as binary relations with 131

two arguments from a small set of entity types (e.g., 132

49 types in FIGER (Hosseini et al., 2018)), distort- 133

ing the original semantics. 134

AbstractATOMIC: He et al. (2022) presented 135

an annotated abstraction dataset. They recognized 136

entities in head events from ATOMIC (Sap et al., 137

2019) and crowdsourced abstract concepts from the 138

Probase taxonomy (Wu et al., 2012) for recognized 139

entities and head events. Even though they com- 140

piled a dataset comprising thousands of examples, 141

it is specific to the social commonsense domain 142

due to the base events sampled from ATOMIC. 143

Textual and Linguistic Entailment: Besides the 144

entailment between verbs, recognizing textual en- 145

tailment has long been a vital task in the realm of 146

NLP (Cooper et al., 1996; Dagan et al., 2005), also 147

known as natural language inference (NLI). Re- 148

searchers have built many large-scale datasets of 149

NLI (Conneau et al., 2018; Williams et al., 2018; 150

Nie et al., 2020) and its variants (Wang et al., 2019; 151

Dalvi et al., 2021; Chen et al., 2023). 152

While similar to our task, textual entailment 153

employs a relaxed definition of whether a human 154

reader would typically infer a hypothesis from a 155

given premise (MacCartney et al., 2007; Korman 156

et al., 2018) instead of abstraction of the premise. 157

For example, in SNLI (Bowman et al., 2015), we 158

can infer a boy is holding his arms out from the 159

premise a boy looks down and spreads his arms 160

wide without any abstraction involved. In contrast, 161
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Head Event: Max is a playful puppy.

Instance: playful puppy Abstract Concept: dog

Tail Event: Max is a dog.

Noun-
Entail

Figure 2: An illustration of the structure of abstraction
knowledge, where entailment relation is Noun-Entail.

our work follows the definition of linguistic entail-162

ment (Beth, 1955), which arises from the semantics163

of linguistic expressions and is enforced by lexical164

meanings plus the laws of logic (Murphy, 2010;165

Sauerland and Stateva, 2007). For instance, Max166

is a playful puppy entails Max is a dog since one167

cannot be a playful puppy without being a dog.168

3 Abstraction Knowledge Structure169

ABSPYRAMID represents a large-scale abstrac-170

tion repository of events in textual descriptions.171

This unified entailment graph contains 221K five-172

element tuples with the format of (head event, en-173

tailment relation, tail event, instance, abstract174

concept). In each tuple, we identify an instance175

in the head event and collect an abstract concept176

for it. Particularly, instances are identified from177

three components of the head event: nouns, verbs,178

and head event as a whole. Then, we replace the179

instance with its abstract concept to construct the180

tail event, resulting in the tail event being linguis-181

tically entailed by the head event. According to182

three kinds of instances, we define three types of183

entailment relation: Noun-Entail, Verb-Entail, and184

Event-Entail. We elaborate on each tuple element185

with a concrete example in Figure 2.186

4 Data Curation Pipeline187

To build ABSPYRAMID, we create a crowdsourc-188

ing framework that allows for a scalable, broad189

collection of abstraction knowledge in the above-190

mentioned format.191

4.1 Compiling Head Events192

We randomly sample 17K base eventualities from193

ASER as head events. Since ASER is an auto-194

matically extracted graph, some noisy extraction195

results may affect the quality of our benchmark.196

Thus, we design elaborate rules to clean ASER197

using lexical and dependency parsing features (De-198

tails in Appendix A.1). Meanwhile, ASER is ex-199

tracted from six open domain corpora spanning200

Wikipedia1, NYT (Sandhaus, 2008), Yelp2, Red- 201

dit3, etc. We only sample eventualities from NYT 202

and Wikipedia due to the less formal nature of 203

other corpora, such as diverse styles of comments 204

on Yelp. To collect more general events, we replace 205

tokens referring to people with a Person variable 206

(e.g., replace I/we/she/... with PersonX/Y/Z), fol- 207

lowing previous work (Sap et al., 2019). 208

4.2 Identifying Instances 209

As mentioned earlier, our benchmark defines three 210

entailment relations. For Event-Entail, we can di- 211

rectly use head events as identified instances. More 212

intricately, we need to identify nouns and verbs 213

as instances within head events when dealing with 214

Noun-Entail and Verb-Entail. We design an al- 215

gorithm to heuristically match nouns and verbs 216

based on parsing results (e.g., POS-tags) provided 217

by ASER (Details in Appendix A.2). 218

4.3 Collecting Abstract Concepts 219

Then, we collect abstract concepts for those identi- 220

fied instances through two methods: (1) retrieving 221

from non-contextualized taxonomy and (2) prompt- 222

ing LLMs to generate candidates in free form. 223

Pilot Study: There are two taxonomies of words 224

containing abstract concepts: WordNet (Miller, 225

1995) and Probase (Wu et al., 2012). WordNet 226

contains hypernym relations, words with a broad 227

meaning that more specific words (i.e., hyponyms) 228

fall under. Probase automatically extracts instance- 229

concept relations of nouns from corpora. Both 230

aggregate all senses of each word without context. 231

Our pilot study reveals that WordNet effectively 232

covers more than 90% of verbs within head events. 233

Nonetheless, the coverage of nouns is unsatisfac- 234

tory, as we can build a gigantic space of nominal 235

phrases by adding modifiers. For example, we can 236

easily form numerous phrases of “dog” by adding 237

“guard,” “hunting,” or “white,” etc. Our pilot study 238

finds that only 6.3% of nominal phrases in head 239

events are covered by WordNet. Likewise, the cov- 240

erage of Probase is also unacceptable (29.6%). 241

Abstract Concepts for Nouns: Due to the lim- 242

ited coverage of nouns in taxonomies, we collect 243

hypernyms for nouns by prompting an LLM. In 244

detail, we prompt ChatGPT under the in-context 245

1https://dumps.wikimedia.org/enwiki
2https://www.yelp.com/dataset/challenge
3https://www.reddit.com/r/datasets/comments/3bxlg7
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learning setting with the standard task-instruction-246

then-exemplar prompts (West et al., 2022):247

<INSTRUCTION>

<EX1-IN><EX
(1)
1 -OUT> . . . <EX

(K)
1 -OUT>

. . .
<EXN-IN><EX

(1)
N -OUT> . . . <EX

(K)
N -OUT>

<EXN+1-IN>

248

where <INSTRUCTION> describes the task of find-249

ing abstract concepts of a noun in our case. The250

input <EXi-IN> is a head event with an identified251

noun, with output <EX(k)i -OUT> being an abstract252

concept. Given such a prompt, ChatGPT compactly253

generates K abstract concepts for each testing in-254

put. In the meantime, we design another prompt to255

elicit challenging negative examples that are highly256

related but not abstract concepts, such as “stream257

course” for “stream” in “the stream creates a peace-258

ful ambiance.” Prompts are shown in Appendix A.3259

concretely, with N and K equal to 10.260

Abstract Concepts for Verbs: We collect ab-261

stract concepts for verbs using hypernyms from262

WordNet, as verbs are well covered. We link verbs263

into WordNet and employ GlossBERT (Huang264

et al., 2019), a word-sense disambiguation (WSD)265

model, to select each verb’s correct (at least most266

probable) word sense. Then, hypernyms of the cor-267

rect word sense are collected as abstract concepts.268

Abstract Concepts for Events: Events are more269

complex than nouns and verbs without relevant270

taxonomy. Thus, we again prompt ChatGPT to271

collect phrasal abstract concepts of each head event.272

We use the prompts similar to nouns with slight273

changes in verbalizing input tuples (More details274

in Appendix A.3). N and K are equal to 10.275

4.4 Dataset Annotation276

The last step of our data curation pipeline is to277

verify the validity of automatically collected ab-278

stract concepts. We create an annotation task for279

each entailment relation on Amazon Mechanical280

Turk (MTurk). In those tasks, we first give an-281

notators detailed instructions about the validity of282

abstract concepts, like explanations of hypernyms.283

We provide annotators with five-element tuples, as284

mentioned in Section 3, asking them whether each285

abstract concept is valid. For Verb-Entail, we also286

provided meanings of each verb from WordNet for287

better understanding. Meanwhile, to ensure anno-288

tation quality, we introduce two qualification tests289

and two rounds of annotation refinement. Details290

REL. # Total # Train # Valid # Test % Pos

NOUN 98,783 79,034 9,874 9,875 58.98
VERB 59,542 47,669 5,939 5,934 52.29
EVENT 62,472 49,988 6,237 6,247 64.77
ALL 220,797 176,691 22,050 22,056 58.82

Table 1: Statistics of ABSPYRAMID. Pos denotes posi-
tive rates. REL. indicates entailment relations. We split
data into training, validation, and test sets (80:10:10).

of quality control and annotation agreements are 291

shown in Appendix A.4. 292

5 ABSPYRAMID Overview 293

In this section, we carry out a thorough analysis of 294

our benchmark ABSPYRAMID. 295

5.1 Benchmark Statistics 296

ABSPYRAMID is a large-scale benchmark com- 297

prising about 221K abstraction examples. Specific 298

details are shown in Table 1. For breakdown details, 299

we collected more than 98K, 59K, and 62K tuples 300

for Noun-Entail, Verb-Entail, and Event-Entail. To 301

better understand our benchmark, We compare it 302

with the Levy/Holt dataset (Levy and Dagan, 2016; 303

Holt, 2018), a dataset heavily used to evaluate verb 304

entailment graphs, and AbstractATOMIC (He et al., 305

2022). Four statistical metrics are computed for 306

multi-dimensional comparison, including data size, 307

vocabulary size, percentage of unique abstract con- 308

cepts, and social domain proportions, with results 309

as follows. 310

Previous studies show that content generated 311

by LMs, ChatGPT in our case, might lack diver- 312

sity (Welleck et al., 2019). From Table 2, we can 313

find that our benchmark has a much larger data 314

size and vocabulary size than previous resources, 315

showing the lexical diversity of our benchmark. In 316

particular, the vocabulary size is more than three 317

times that of prior resources. 318

We also compute the percentage of unique 319

abstract concepts based on BLEU soft unique- 320

ness (Zhu et al., 2018; West et al., 2022). An ab- 321

stract concept x is unique if BLEU1(C, x) ≤ 0.5, 322

where C is all concepts that share the same head 323

event and identified instance with x, and 0.5 is an 324

empirical threshold. Our benchmark has a percent- 325

age on par with other datasets, showing the efficacy 326

of our data curation pipeline. Last, we also report 327

the social domain proportions, where we count 328

head events with Person variables. As shown in 329

Table 2, all head events in AbstractATOMIC con- 330
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Dataset Data (K) Vocab. (K) Unique Social

NOUN 98.78 20.95 93.57 19.88
VERB 59.54 11.86 95.74 40.02
EVENT 62.47 19.04 73.43 36.15
ALL 220.80 29.42 88.26 32.19

AbsAtomic 92.23 8.99 89.42 100.00
Levy/Holt 18.41 5.62 87.85 38.17

Table 2: Dataset comparison. Data size, vocabulary
size, percentage of unique abstract concepts, and social
domain proportion are listed.

tain Person variables since they are sampled from331

ATOMIC. In contrast, 32.19% of head events in332

ABSPYRAMID pertain to daily life experiences.333

5.2 Evaluation Tasks334

We study two tasks on our benchmark, abstrac-335

tion detection and generation, to evaluate whether336

LLMs can detect and generate abstraction knowl-337

edge. In the detection task, models are given a five-338

element tuple (in Section 3) and are asked to decide339

if the abstract concept is valid. We split collected340

abstraction knowledge into training, validation, and341

test sets (80:10:10) to form the ABSPYRAMID[DET]342

dataset (in Table 1). In the generation task, mod-343

els are requested to generate abstract concepts for344

a given tuple. We remove tuples with invalid345

abstract concepts and form ABSPYRAMID[GEN]346

dataset in Table 3. We ensure that tuples sharing347

the same head event and identified instances are in348

the same set for both datasets.349

6 Abstraction Detection Experiment350

In this section, we conduct extensive experiments351

on the ABSPYRAMID[DET] dataset to evaluate an352

abundance of language models and provide com-353

prehensive analyses.354

6.1 Experiment Setup355

Evaluation Metric: We calculate Accuracy,356

Macro F1-score, and ROC-AUC between predicted357

and ground truth labels to evaluate all models.358

Models We evaluate four categories of LMs.359

(1) PLM + FT: We fine-tune pre-trained LMs:360

BERT (Devlin et al., 2019), RoBERTa (Liu et al.,361

2019), and DeBERTa (He et al., 2020), in the base362

and large sizes. (2) NLI + Zero&FT: We include363

four models fine-tuned on NLI data: BART-large-364

mnli (Lewis et al., 2020a), RoBERTa-base/large-365

mnli (Liu et al., 2019), and DeBERTa-large-366

REL. # Total # Train # Valid # Test Avg-Ref

NOUN 58,266 52,440 2,910 2,916 5.58
VERB 31,132 28,018 1,556 1,558 2.90
EVENT 40,466 36,446 2,006 2,014 4.57
ALL 129,864 116,904 6,472 6,488 4.33

Table 3: The statistics of generation data. Avg-Ref
means the average references per identified instance.
REL. stands for entailment relations. Tuples are split
into training, validation, and test sets (90:5:5).

mnli (He et al., 2020). We assess the zero-shot ca- 367

pability of those models and fine-tune them on our 368

dataset. (3) LLM + LoRA: We fine-tune represen- 369

tative LLMs with LoRA (Hu et al., 2021): Llama2 370

(7B, 13B) and Llama2-Chat (7B, 13B) (Touvron 371

et al., 2023), Falcon (7B) and Falcon-Instruct 372

(7B) (Penedo et al., 2023), and Mistral (7B) and 373

Mistral-Instruct (7B) (Jiang et al., 2023). (4) LLM 374

API: We assess a series of closed-source LLMs 375

under the zero-shot and in-context learning se- 376

tups, covering GPT3.5 (Ouyang et al., 2022), Chat- 377

GPT (OpenAI, 2022), and GPT4 (OpenAI, 2023). 378

We use a standard and a CoT prompt (Kojima et al., 379

2022). See implementation details in Appendix B. 380

6.2 Main Evaluation 381

We train LMs on each entailment relation sepa- 382

rately and present results on ABSPYRAMID[DET] 383

in Table 4. We observe that fine-tuned LMs can 384

detect abstraction knowledge of Noun-Entail with 385

impressive performance. For example, Llama2- 386

Chat (13B) correctly classifies 88.20% of the test 387

data. Meanwhile, models struggle to achieve simi- 388

lar scores on Verb-Entail relation. The difficulty of 389

Verb-Entail might come from the diversity of word 390

senses we collected from WordNet. 391

NLI models show some zero-shot ability, espe- 392

cially on Noun-Entail and Event-Entail. For in- 393

stance, DeBERTa-large-mnli achieves an accuracy 394

of 73.18% on Noun-Entail higher than that of “ran- 395

dom” and “majority vote.” This finding might be 396

due to some similarity between NLI and our task. 397

Moreover, fine-tuning NLI models cannot improve 398

performance compared with LMs in PLM + FT. 399

Besides, fine-tuned LLMs can obtain scores com- 400

parable to or even higher than fully fine-tuned mod- 401

els, whilst we only tuned 0.3-0.5% parameters with 402

LoRA. The performance only improves marginally 403

when we increase the parameters, such as Llama2 404

(7B) to Llama2 (13B). Meanwhile, the instruction- 405

tuned counterparts cannot lead to distinct increases 406
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Methods Backbone Noun Verb Event
Acc Ma-F1 AUC Acc Ma-F1 AUC Acc Ma-F1 AUC

Random - 50.00 49.56 50.00 50.00 49.95 50.00 50.00 48.98 50.00
Majority Vote - 59.30 - 50.00 53.15 - 50.00 64.14 - 50.00

NLI + Zero

BART-large-mnli 71.24 68.13 75.67 56.25 47.17 62.33 70.69 65.81 69.33
RoBERTa-large-mnli 68.66 63.18 75.42 55.73 45.54 61.27 70.47 63.07 68.60
DeBERTa-base-mnli 68.77 65.81 72.79 56.42 48.08 61.55 66.30 62.88 66.40
DeBERTa-large-mnli 73.18 71.08 78.12 56.93 49.28 63.16 66.82 64.03 68.27

NLI + FT

BART-large-mnli 85.75 85.12 90.80 64.96 64.96 68.60 74.61 69.75 77.71
RoBERTa-large-mnli 86.15 85.34 90.87 64.61 64.26 69.46 76.88 70.73 77.94
DeBERTa-base-mnli 85.59 84.61 90.43 65.50 65.47 69.87 76.98 70.12 77.90
DeBERTa-large-mnli 86.62 85.83 91.00 66.04 65.96 70.51 76.48 69.96 77.42

PLM + FT

BERT-base 85.09 84.14 89.94 64.26 64.20 68.06 76.45 69.94 78.22
BERT-large 85.94 85.12 90.37 63.58 63.58 68.03 75.27 69.61 77.57
RoBERTa-base 84.23 83.25 89.58 63.55 63.53 68.12 76.53 70.41 77.62
RoBERTa-large 85.27 84.44 90.59 64.98 64.98 69.23 77.09 70.56 78.07
DeBERTa-base 84.09 83.03 89.74 63.50 63.45 68.03 75.75 69.57 77.30
DeBERTa-large 86.89 86.11 90.98 65.54 65.52 69.11 76.69 70.31 78.06

LLM + LoRA

Falcon (7B) 87.06 86.36 91.42 63.92 63.79 68.06 75.83 70.51 77.77
Falcon-Ins (7B) 86.04 85.43 91.10 64.00 63.96 68.53 76.50 70.72 77.50
Mistral (7B) 87.62 87.05 91.53 65.08 64.66 69.58 77.24 70.57 77.97
Mistral-Ins (7B) 87.59 86.99 91.42 64.81 64.78 69.51 77.22 70.69 78.52
Llama2 (7B) 87.56 86.82 91.52 65.07 64.79 69.27 76.45 70.53 78.28
Llama2-Chat (7B) 86.71 86.17 91.79 64.96 64.54 68.95 76.80 70.15 77.92
Llama2 (13B) 88.03 87.40 92.31 65.13 64.64 69.50 76.87 70.83 79.34
Llama2-Chat (13B) 88.20 87.49 92.05 65.07 65.00 69.74 77.27 70.82 78.60

LLM API

GPT 4 80.50 78.70 - 56.30 53.84 - 71.30 66.89 -
GPT 3.5 67.00 62.45 - 56.30 55.90 - 65.60 58.23 -
ChatGPT 74.00 72.27 - 56.30 55.71 - 68.20 63.22 -
ChatGPT (CoT) 62.90 62.88 - 56.20 53.89 - 67.30 61.47 -
ChatGPT (10-shot ICL) 76.10 74.60 - 58.60 58.51 - 68.90 60.51 -
ChatGPT (CoT + 10-shot) 75.40 74.08 - 59.20 58.91 - 68.20 62.70 -

Table 4: Performance on the test set of ABSPYRAMID[DET]. We trained models on three entailment relations
separately. We bold the best score and underline the second-best score. Acc, Ma-F1, and AUC denote Accuracy,
Macro F1-score, and ROC-AUC. See the performance on the validation set in Appendix C.1.

but some fluctuations as they learned more about407

the instruction following and conversations, which408

are irrelevant to our task.409

6.3 Analysis of ChatGPT Series Models410

We can see that ChatGPT and GPT3.5 obtain ac-411

ceptable performance on ABSPYRAMID[DET] in412

the zero-shot scenario (Table 4), such as accu-413

racy scores of 74.00% and 67.00% on Noun-Entail.414

However, the ChatGPT series models still lag be-415

hind fine-tuned LMs by a large margin, although416

GPT4 performs better than ChatGPT. Meanwhile,417

we tested the performance of ChatGPT with ten418

exemplars under the in-context learning setup, de-419

noted as “ChatGPT (10-shot ICL).” With exem-420

plars, the scores of ChatGPT are raised by 2-3421

points but not a substantial improvement since the422

answer format (i.e., “Yes” or “No”) is simple to423

understand without exemplars.424

To explore if the ChatGPT can explain its own425

decisions, we examine ChatGPT with zero-shot 426

chain-of-thought prompting signified as “ChatGPT 427

(CoT),” where it is asked to explain given words 428

first and then give the answer. Each metric exhibits 429

varying levels of decline, with particular emphasis 430

on Noun-Entail. This indicates that ChatGPT can- 431

not explain and provide an answer simultaneously. 432

We conduct an error analysis, as illustrated in Fig- 433

ure 3, to unravel why. The examples show that 434

ChatGPT can explain the meanings of given words 435

but yields hallucinations (Ji et al., 2023; Huang 436

et al., 2023) when concluding. We discover that 437

providing a few exemplars can assist, indicated as 438

“ChatGPT (CoT + 10-shot)” in Table 4. We present 439

all prompts and verify the robustness of zero-shot 440

and CoT prompts in Appendix C.2. 441

6.4 Multi-Relation Learning 442

While prior experiments treated each relation sep- 443

arately, we train all entailment relations jointly in 444
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LLM + LoRA Noun Verb Event All
Acc Ma-F1 AUC Acc Ma-F1 AUC Acc Ma-F1 AUC Acc Ma-F1 AUC

Falcon (7B) 87.11 86.31 91.26 64.68 64.34 69.50 76.55 70.47 78.52 78.15 76.53 84.78
Falcon-Ins (7B) 87.07 86.30 90.91 64.71 64.70 69.16 77.22 70.95 78.26 78.28 76.92 84.64
Mistral (7B) 87.77 87.01 91.68 65.96 65.60 70.34 76.61 70.91 78.88 78.71 77.15 85.40
Mistral-Ins (7B) 87.80 87.09 91.47 65.44 65.35 69.94 77.08 71.08 79.50 78.75 77.37 85.38
Llama2 (7B) 87.92 87.09 91.80 64.95 64.47 69.59 77.16 71.05 78.75 78.69 76.95 85.39
Llama2-Chat (7B) 87.56 86.79 91.79 64.11 63.98 69.48 76.55 70.53 77.84 78.09 76.98 85.00
Llama2 (13B) 88.02 87.41 91.73 65.84 65.84 70.16 77.11 71.13 78.93 78.99 77.83 85.73
Llama2-Chat (13B) 87.76 87.00 91.59 65.08 64.87 70.02 76.98 71.16 79.39 78.67 77.17 85.49

Table 5: The performance of LLMs on the test set of ABSPYRAMID[DET] under the multi-relation setting. We bold
the best score and underline the second-best score. See Appendix C.1 for performance on validation sets.

Models Acc Ma-F1 AUC APS

Aug MC - - - 18.70
CNCE MC - - - 19.50
EGT2 - - - 31.90

Falcon (7B) 67.55 63.82 80.06 39.97↑8.07
Mistral (7B) 79.32 72.66 81.42 53.25↑21.35
Llama2 (7B) 78.69 71.07 79.51 44.25↑12.35
Llama2 (13B) 82.11 71.25 79.84 45.11↑13.21

Table 6: Zero-shot performance on Levy/Holt dataset
with LLMs fine-tuned on our dataset. APS is average
precision score when precision > 0.5 and shows im-
provements compared with EGT2.

this section. The results in Table 5 show that LLMs445

can learn abstraction knowledge of multiple rela-446

tions, with performance comparable to that of train-447

ing on each relation separately (Table 4). Generally,448

Llama2 (13B) performs best on the merged test set,449

while varying models get higher performance on450

each entailment relation. Comparing Llama2 (7B)451

with Llama2 (13B), we again affirm that scaling up452

models only leads to marginal improvements.453

6.5 Transferring to Other Sources454

This section investigates whether the abstraction455

knowledge from our benchmark can be transferred456

to other tasks that require the abstraction knowl-457

edge (Berant et al., 2011; He et al., 2022).458

Verb Entailment Graph: In this task, we eval-459

uate models on the primarily used Levy/Holt460

dataset (Levy and Dagan, 2016; Holt, 2018), whose461

statistics are shown in Table 2. We directly experi-462

ment with the LLMs fine-tuned on our data (under463

the multi-relation setting in Section 6.4) to test the464

zero-shot transferring ability. Following previous465

works (Hosseini et al., 2021), we also compute the466

metric “average precision score” when precision is467

higher than 50%. As shown in Table 6, LLMs fine-468

tuned on our dataset surpass previous works a lot,469

Head Event: The oil futures began trading on exchange. 
Abstract Concept: Derivatives

ChatGPT CoT:
 1. Oil futures: contracts to buy or sell a specified 

quantity of oil at a future date...
 2. Derivatives: financial contracts whose value is 

derived from an underlying asset...
 3. Answer: No, “derivatives” is not broader.

Head Event: PersonX always slept sitting up. 
Abstract Concept: Sleeping style

ChatGPT CoT:
 1. PersonX always slept sitting up: describes the 

sleeping habit of PersonX... 
 2. Sleeping style: a way or pattern in which a 

person sleeps...
 3. Answer: No.

Figure 3: Error Analysis. We find hallucinations within
zero-shot CoT of ChatGPT with correct explanations
but wrong conclusions.

including Aug MC (Hosseini et al., 2018), CNCE 470

MC (Hosseini et al., 2019), and EGT2 (Chen et al., 471

2022). For example, Mistral (7B) achieves the best 472

APS of 53.25, higher than the strongest baseline, 473

EGT2, by over 20 points. 474

We further test whether knowledge can be trans- 475

ferred in the fine-tuning setup. We continually 476

fine-tune with LoRA LLMs that are first trained on 477

our dataset. They are compared with LLMs fine- 478

tuned from pre-trained configurations. Since the 479

Levy/Holt dataset does not own a training set, we 480

treat the validation set as the training set and do not 481

tune hyperparameters. From Figure 4, the results 482

show that training on our benchmark significantly 483

boosts the performance of LLMs on all metrics. 484

Particularly, the average precision score of Llama2 485

(7B) rises from 61.0 to 75.8 if we first fine-tune it 486

on our benchmark. These experiments demonstrate 487

that our benchmark is comprehensive to boost per- 488

formance in both zero-shot and fine-tuning setups. 489
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Figure 4: The fine-tuning performance on the Levy/Holt
dataset. CF stands for continually fine-tuning.
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Figure 5: Few-shot performance on AbstractATOMIC.
CF stands for continually fine-tuning.

AbstractATOMIC To further verify the com-490

prehensiveness of our benchmark, we fine-tuned491

LLMs under the few-shot setting on the Abstrac-492

tATOMIC dataset, where we start from 20% of493

training data and increase the proportion by 20%494

each time. Similarly, we fine-tuned two categories495

of LLMs: pre-trained models and models initially496

trained on our dataset. While only a modest frac-497

tion of our dataset falls under the social domain498

(in Table 2), we discover that our dataset still499

can significantly enhance performance on Abstrac-500

tATOMIC, as displayed in Figure 5. The results501

show that our dataset contains comprehensive ab-502

stract knowledge, which can help models general-503

ize to a specific domain. We include full results504

of more LLMs on both Levy/Holt and Abstrac-505

tATOMIC datasets in Appendix C.3.506

7 Abstraction Generation Experiment507

In this section, we evaluate representative LMs on508

the ABSPYRAMID[GEN].509

7.1 Experiment Setup510

Evaluation Metric BLEU-1, BLEU-2 (Papineni511

et al., 2002), ROUGE-2, ROUGE-L (Lin, 2004),512

and Meteor (Banerjee and Lavie, 2005) are com-513

puted to automatically evaluate all models.514

Language Models We evaluated representative515

LMs, including GPT-J (6B) (Wang and Komat-516

Models B-1 B-2 R-2 R-L Meteor

GPT2 27.42 10.56 4.34 25.03 21.72
GPT2-medium 33.86 15.52 6.64 31.37 25.30
GPT2-large 49.23 29.64 16.80 48.36 35.44
GPT2-XL 53.90 32.39 18.54 53.73 38.45

GPT-J (6B) 55.65 31.19 15.20 54.42 36.70
Falcon (7B) 54.63 30.64 14.46 54.15 36.36
Falcon-Ins (7B) 53.18 30.15 14.96 51.90 35.17
Llama2 (7B) 56.56 33.03 16.48 56.37 37.67
Llama2-Chat (7B) 57.11 34.42 16.31 54.87 37.34
Llama2 (13B) 58.73 36.28 17.63 57.45 39.47
Llama2-Chat (13B) 58.46 34.54 16.39 56.47 37.95

Table 7: Results on the test set of ABSPYRAMID[GEN].
B-1/2, R-2/L denote BLEU-1/2, ROUGE-2/L.

suzaki, 2021), Falcon (7B) and Falcon-Instruct 517

(7B) (Penedo et al., 2023), Llama2 (7B, 13B) and 518

Llama2-Chat (7B, 13B) (Touvron et al., 2023), 519

GPT2, and GPT2-medium/large/XL (Radford et al., 520

2019). See implementation details in Appendix B. 521

7.2 Main Evaluation 522

We present the overall performance of all language 523

models in Table 7. We ascertain that fine-tuned 524

language models can perform fairly well on our 525

generation dataset. For example, Llama2 (13B) 526

achieves the best BLEU-2 score, where 36.28% 527

of generated bi-grams are covered by the refer- 528

ences. Unlike abstraction detection, increasing 529

the number of parameters exerts a more signifi- 530

cant effect on abstraction generation. For exam- 531

ple, GPT2-XL (1.56B) gets the highest ROUGE-2 532

score, which is times higher than GPT2 (117M) 533

and GPT2-medium (345M). Also, the performance 534

of Llama2 (13B) is 1-3 points higher on all metrics 535

than Llama2 (7B). Another noteworthy point is that 536

instruction tuning does not help abstraction genera- 537

tion, exemplified by Llama2 (13B) getting higher 538

metrics scores than Llama2-Chat (13B). We also 539

include the performance on data of each entailment 540

relation in Appendix C.4. Similar to abstraction 541

detection, we can find that models perform better 542

on Noun-Entail than other relations. 543

8 Conclusion 544

In this paper, we introduce ABSPYRAMID to eval- 545

uate LLMs’ abstraction ability. A scalable pipeline 546

is designed to curate abstraction knowledge for 547

three components of events. We carry out extensive 548

experiments to demonstrate the comprehensiveness 549

of our benchmark and provide valuable insights 550

into the abstraction abilities of LLMs. 551
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Limitations552

Our ABSPYRAMID incorporates extensive abstrac-553

tion knowledge of events from ASER for nouns,554

verbs, and events. An open question is how to555

interleave the abstraction knowledge into the even-556

tuality knowledge represented as explicit discourse557

relations in ASER. For the same event, we can have558

different levels of abstraction depending on the cur-559

rent context provided by eventuality knowledge. In560

the event “I drink milk,” “milk” can be abstracted561

as “beverage” under the situation that “I am thirsty.”562

In contrast, “milk” is better to be considered a kind563

of “dairy product” if “I want to get more nutrition.”564

Other knowledge can also be considered, such as565

factual knowledge (Sun et al., 2023) and common-566

sense knowledge (Sap et al., 2019; Hwang et al.,567

2021; West et al., 2022).568

Representative LLMs are evaluated in our exper-569

iments. We leave for future work about building570

models with stronger abstraction abilities, includ-571

ing some sophisticated prompting methods (Yao572

et al., 2023; Long, 2023; Besta et al., 2023), com-573

bining LLMs with smaller LMs (Xu et al., 2023),574

semi-supervised learning (Wang et al., 2023), re-575

trieval augmented generation (Lewis et al., 2020b).576

Ethics Statement577

When constructing ABSPYRAMID, we sample head578

events from ASER (Zhang et al., 2020, 2022), an579

open-sourced eventuality graph. We only sampled580

eventualities extracted from Wikipedia and NYT,581

which are open-access. We carried out human an-582

notation on Amazon Mechanical Turk (MTurk).583

Our payment rate is 1.2 USD for each HIT, which584

fulfills the minimum wage requirement and shows585

that annotators are fairly paid.586
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A Data Curation Details 1016

A.1 ASER Cleaning 1017

Since ASER is an eventuality graph automatically 1018

extracted from diverse corpora, some noisy extrac- 1019

tion results exist. Thus, we design a few rules to 1020

clean some frequent noise categories in ASER. 1021

First, we found that many eventualities are noisy 1022

due to incompleteness. For example, “the norman 1023

army weakened,” an eventuality extracted from 1024

Wikipedia, misses the linking verb “was” in the 1025

passive voice. To solve this, we re-parse each even- 1026

tuality and remove eventualities whose dependency 1027

graph changes in the re-parsing stage. With this 1028

rule, we remove a lot of incomplete eventualities. 1029

Then, we design four lexical rules for noisy even- 1030

tualities: (1) We find that many eventualities with 1031

the s-v pattern (see (Zhang et al., 2022) for defini- 1032

tion) contain light verbs. We remove those eventu- 1033

alities since they lack semantic meanings, such as 1034

“they do.” (2) We find that the parsing algorithm of 1035

ASER can extract eventualities from subordinate 1036

clauses but cannot link relatives to antecedents. For 1037

example, “who won the competition” is extracted 1038

from the sentence “Bob is a painter who won the 1039

competition” without replacing “who” with “Bob.” 1040

We remove all eventualities starting with relatives. 1041

(3) ASER also contains some eventualities that are 1042

totally composed of stopwords. We remove them 1043

since they also do not have too many semantic 1044

meanings, such as “She just won.” (4) We remove 1045

eventualities containing URLs and HTML tags. 1046

In detail, the light verbs we use are do, give, 1047

have, make, get, and take, as well as their inflec- 1048

tions, such as doing and has. The relatives we 1049

use are how, what, when, where, which, who, why, 1050

whatever, whose, whom, and if. The stopword list 1051

is accessed by NLTK (Bird et al., 2009). 1052

A.2 Matching Nouns and Verbs 1053

In our benchmark, the abstraction knowledge of 1054

Noun-Entail and Verb-Entail involves identifying 1055

nouns and verbs from events. In ASER, each word 1056

in the syntactic pattern is classified into word types 1057

according to their POS tags, including noun, verb, 1058

be, and preposition. We use those word types to 1059

identify the nouns and verbs. For example, the pat- 1060

tern subject-verb-object has word types noun, 1061

verb, and noun for each word. Also, we identify 1062

modifiers to complete each noun by collecting all 1063

words dependent on the noun in the dependency 1064

parsing graph, such as “fluffy” in “fluffy cat.” 1065
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Task Instruction: In this task, you need to list the hyper-
nyms of an instance. Hypernyms are words that represent
broader categories or concepts.

Exemplar Input: 1. Given the sentence “the clinic
had resumed its work,” what is the list of hypernyms
of “clinic?”
Exemplar Output: (1) medical facility, (2) healthcare
center, . . . , (10) diagnostic center.

Following Exemplars: Exemplar 2, Exemplar 3, . . . ,
Exemplar 10

Testing Input: 11. Given the sentence [HEAD], what is
the list of hypernyms of [INSTANCE]?

(a) Noun-Entail

Task Instruction: In this task, you need to list some
abstract descriptions of an event.

Exemplar Input: 1. Which abstract descriptions can the
event “PersonX surfs the web” be summarized as?
Exemplar Output: (1) surfing, (2) surfing the internet,
. . . , (10) browsing the internet.

Following Exemplars: Exemplar 2, Exemplar 3, ..., Ex-
emplar 10

Testing Input: 11. Which abstract descriptions can the
event [HEAD] be summarized as?

(b) Event-Entail

Table 8: The prompt we used to collect abstract con-
cepts from ChatGPT for Noun-Entail and Event-Entail
relations. Two placeholders [HEAD] and [ISNTANCE]
will be replaced with real head events and instances. We
present the prompt in the dialogue format. Please con-
catenate all utterances to form the prompt of GPT3.5.

We also take care of some special cases where1066

eventualities contain some transparent nouns (Mey-1067

ers), such as “I have a lot of food.” In this case,1068

we identify “food” as an instance instead of “lot.”1069

Verbs also have similar constructions, such as “I1070

am going to sleep.” In this example, we identify1071

“sleep” as an instance instead of “going.”1072

A.3 Prompts for Collecting Data1073

We provide the prompt template used in collect-1074

ing abstract concepts in Table 8 and the prompt1075

template used in collecting negative examples in1076

Table 9.1077

A.4 Annotation Details1078

There are two qualification tests to choose workers1079

to maintain rigorous quality control. First, we in-1080

vited annotators who meet the following conditions1081

to take our qualification examinations: 1) an ap-1082

proval rate of above 95% and 2) at least a thousand1083

approved HITs. In the second round, qualification1084

questions, including effortless and tricky examples,1085

Task Instruction: In this task, you need to list some
related nouns but not hypernyms. Hypernyms are words
that represent broader categories or concepts.

Exemplar Input: 1. Given the sentence “the clinic had
resumed its work,” please list related nouns of “clinic”
but not hypernyms.
Exemplar Output: (1) patients, (2) doctors, . . . , (10)
mask.

Following Exemplars: Exemplar 2, Exemplar 3, ...,
Exmplar 10

Testing Input: 11. Given the sentence [HEAD], please
list related nouns of [INSTANCE] but not hypernyms.

(a) Noun-Entail

Task Instruction: In this task, you need to list some
related phrases but not abstract descriptions of an event.

Exemplar Input: 1. Please list related phrases of the
event “PersonX surfs the web” but not abstract descrip-
tions of it.
Exemplar Output: (1) typing a URL, (2) website, . . . ,
(10) bandwidth.

Following Exemplars: Exemplar 2, Exemplar 3, ..., Ex-
emplar 10

Testing Input: 11. Please list related phrases of the event
[HEAD] but not abstract descriptions of it.

(b) Event-Entail

Table 9: The prompt we used to collect challenging
negative examples from ChatGPT for Noun-Entail and
Event-Entail relations.

are collected by this paper’s authors, who clearly 1086

understand abstract tuples. The experts annotate 1087

200 tuples for each relation. An annotator should 1088

correctly answer 18 of 20 questions to pass the 1089

second round test. 1090

In our main annotation, we assign each tuple to 1091

5 annotators in the first round of annotations. We 1092

manually inspect their annotation quality and dis- 1093

qualify those annotators who cannot continue to 1094

annotate with high accuracy. The annotations from 1095

those disqualified annotators are then discarded for 1096

quality control. For higher quality, we also intro- 1097

duce two rounds of refinement. We reannotate the 1098

discarded votes in the first round of refinement. In 1099

the second round, we request annotators to reanno- 1100

tate the tuples that do not reach an agreement (i.e., 1101

2 or 3 out of 5 annotators vote for valid). After 1102

this, we discard examples that annotators still do 1103

not agree on. We show the full text of instructions 1104

provided to annotators in Figure 6. 1105

During our massive annotation process, 5153 1106

annotators participated in qualification tests, with 1107

551 (10.7%) annotators passing them. The IAA 1108

score of pairwise agreement proportion is 77.62%, 1109
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LLMs Noun Verb Event

Acc Ma-F1 Acc Ma-F1 Acc Ma-F1

GPT 4 62.70 62.47 57.70 57.54 66.20 64.06
GPT 3.5 66.10 62.72 54.10 53.94 67.40 59.57

ChatGPT 67.40 66.04 55.20 55.04 67.60 63.36
+ CoT 56.70 56.67 54.00 52.39 61.30 60.13

Table 10: Results of NLI prompt on ABSPYRAMID[DET].
We mark scores higher than scores of Abs. prompt in
Table 4 with red color. We can see that most scores are
inferior.

Noun-Entail, Verb-Entail and Event-Entail: Identify
entailment and provide a “Yes” or “No” response. Entail-
ment is about determining whether a “hypothesis” is true
given a “premise.” Given the premise [HEAD], can we
know the hypothesis [TAIL]?

(a) Zero-Shot Prompt

Noun-Entail, Verb-Entail and Event-Entail: Identify
entailment, which is about determining whether a “hy-
pothesis” is true given a “premise.” Given the premise
[HEAD], can we know the hypothesis [TAIL]? Step 1:
Let’s think about meanings of those sentences. Step 2:
Provide a “Yes” or “No” response.

(b) CoT Prompt

Table 11: The NLI-format prompt. Results of this
prompt is shown in Table 10. Placeholders [HEAD]
and [TAIL] will be replaced with real head events and
tail events.

and Fleiss’s κ is 0.54.1110

B Implementation Details1111

First, we discuss details shared in both abstrac-1112

tion detection and abstraction generation experi-1113

ments. We access open-source language models1114

using Transformers (Wolf et al., 2020) and fine-1115

tune them on 8 NVIDIA A100 (80G) GPUs. LLMs1116

with 7B and 13B parameters are loaded with BF16.1117

The best checkpoint is selected according to the1118

sum of all metrics on the validation set. When1119

fine-tuning LLMs with LoRA, we only add new1120

parameters to attention layers with the rank and α1121

equal to 64 and 128. We grid search the learning1122

rate of 5e-6, 1e-5, 5e-5, and batch sizes of 64 and1123

128.1124

Here are some details specific to abstraction1125

detection experiments. When fine-tuning NLI1126

models, we re-use the classification layer with1127

“Entailment” and “Neutral” for valid and invalid,1128

respectively. We access ChatGPT, GPT4, and1129

Noun-Entail: Identify the hypernym of a specific noun
and provide a “Yes” or “No” response. Hypernyms are
words with a broad meaning, which more specific words
fall under. In the sentence [HEAD], does the meaning of
[CONCEPT] encompass [INSTANCE]?

Verb-Entail: Identify the hypernym of a specific verb
and provide a “Yes” or “No” response. Hypernyms are
words with a broad meaning, which more specific words
fall under. In the sentence [HEAD], does the meaning of
[CONCEPT] encompass [INSTANCE]?

Event-Entail: Identify abstract descriptions of specific
sentences, and provide a “Yes” or “No” response. Can
we consider [CONCEPT] as an abstract description of
the sentence [HEAD]?

(a) Zero-Shot Prompt

Noun-Entail: Identify the hypernym of a specific noun.
Hypernyms are words with a broad meaning, which more
specific words fall under. In the sentence [HEAD], does
the meaning of [CONCEPT] encompass [INSTANCE]?
Step 1: Let’s think about the meanings of those words.
Step 2: Provide a “Yes” or “No” response.

Verb-Entail: Identify the hypernym of a specific verb.
Hypernyms are words with a broad meaning, which more
specific words fall under. In the sentence [HEAD], does
the meaning of [CONCEPT] encompass [INSTANCE]?
Step 1: Let’s think about the meanings of those words.
Step 2: Provide a “Yes” or “No” response.

Event-Entail: Identify abstract descriptions of specific
sentences. Can we consider [CONCEPT] as an abstract
description of the sentence [HEAD]? Step 1: Let’s think
about the meanings of the sentence and the abstract de-
scription. Step 2: Provide a “Yes” or “No” response.

(b) CoT Prompt

Table 12: The default prompt we used (i.e., Abs. prompt)
to test GPT3.5, ChatGPT, and GPT4. The results of this
prompt are shown in Table 4. Placeholders [HEAD],
[INSTANCE], and [CONCEPT] will be replaced with
real head events, instances, and abstract concepts.

GPT3.5 via OpenAI API4, with specific versions 1130

being gpt-3.5-turbo-0613, gpt-4-0613, and 1131

gpt-3.5-turbo-instruct-0914. They are evalu- 1132

ated on one thousand examples that we randomly 1133

sampled from the testing set of each relation due to 1134

the trade-off between API expenses and our evalua- 1135

tion’s precision. In addition, we provide ChatGPT 1136

with ten exemplars for in-context learning. 1137

C Experimental Results 1138

In this appendix, we collect supplementary abstrac- 1139

tion detection and generation results. 1140

4https://platform.openai.com/docs/ api-reference
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Models Acc Ma-F1 AUC APS

Falcon (7B) 82.93 74.57 86.55 57.46
Mistral (7B) 84.56 76.67 88.60 62.78
Llama2 (7B) 84.20 74.81 87.75 60.98
Llama2 (13B) 84.47 76.28 86.27 58.69

CF-Falcon (7B) 87.19 80.52 91.21 71.21
CF-Mistral (7B) 88.28 82.14 92.64 77.78
CF-Llama2 (7B) 88.55 83.04 92.83 75.83
CF-Llama2 (13B) 87.70 81.48 92.33 74.51

Table 13: The fine-tuning performance of LLMs on
the Levy/Holt dataset. CF stands for continually fine-
tuning.

C.1 Validation Results on Abstraction1141

Detection1142

We collect the performance of LMs trained on each1143

entailment relation separately on the validation set1144

of the ABSPYRAMID[DET] in Table 20. Then, we1145

present the performance of LMs trained on merged1146

data of all entailment relations on the validation set1147

in Table 19.1148

C.2 ChatGPT Prompt Robustness1149

First, we ask GPT3.5, ChatGPT, and GPT4 whether1150

an abstract concept is valid as the default prompt1151

(denoted as Abs. prompt). The prompt is pre-1152

sented in Table 12, and its results are shown in1153

Table 4. Meanwhile, we design another prompt in1154

NLI format, treating the head and tail events as the1155

premise and hypothesis (denoted as NLI prompt).1156

This prompt is presented in Table 11. As shown in1157

Table 10, the performance of the NLI prompt is in-1158

ferior to the Abs. prompt on most metrics, showing1159

the robustness of the Abs. prompt.1160

C.3 Full Results of Transferring to Other1161

Sources1162

Here, the full fine-tuning performance of all LLMs1163

on the Levy/Holt dataset is shown in Table 13.1164

Also, we provide the full results of all pre-trained1165

LLMs on AbstractATOMIC in Table 14 and results1166

of LLMs that initially fine-tuned on our dataset in1167

Table 15.1168

Models Shot Acc Ma-F1 AUC

Falcon (7B)

0% 59.39 41.01 61.18
20% 73.41 72.36 80.20
40% 81.17 80.36 88.73
60% 82.37 81.76 89.73
80% 83.13 82.71 91.20

Mistral (7B)

0% 41.88 31.44 53.71
20% 83.14 82.64 90.56
40% 84.12 83.90 92.57
60% 85.66 85.30 92.98
80% 85.72 85.42 93.66

Llama2 (7B)

0% 59.39 41.01 61.18
20% 80.28 79.61 87.89
40% 82.93 82.33 90.96
60% 83.12 82.76 91.41
80% 85.67 85.19 92.97

Llama2 (13B)

0% 55.94 38.81 43.41
20% 75.59 74.56 82.19
40% 81.87 81.30 89.71
60% 82.98 82.28 90.44
80% 84.93 84.31 92.39

Table 14: The few-shot performance on the test set of
AbstractATOMIC dataset. LLMs are loaded from pre-
trained configurations.

Models Shot Acc Ma-F1 AUC

Falcon (7B)

0% 64.22 64.22 72.80
20% 81.11 80.54 89.01
40% 83.49 82.98 91.11
60% 83.95 83.45 91.66
80% 84.67 84.22 92.24

Mistral (7B)

0% 64.81 64.78 73.60
20% 84.43 84.03 91.73
40% 85.85 85.40 92.88
60% 86.24 85.75 93.23
80% 86.61 86.20 93.71

Llama2 (7B)

0% 62.40 62.13 71.65
20% 82.70 82.32 90.43
40% 84.51 84.06 91.90
60% 84.91 84.50 92.26
80% 85.97 85.59 93.13

Llama2 (13B)

0% 64.28 64.25 71.35
20% 82.76 82.30 90.23
40% 84.50 84.00 91.88
60% 84.91 84.48 92.22
80% 85.87 85.46 93.01

Table 15: The few-shot performance on the test set of
AbstractATOMIC dataset. LLMs are initially trained on
ABSPYRAMID[DET].

C.4 Generation Results by Relation 1169

To carry out a more thorough evaluation of LMs’ 1170

ability to generate abstraction knowledge, we also 1171

provide performance by entailment relations Noun- 1172

Entail, Verb-Entail, and Event-Entail in Tables 16 1173

to 18, respectively. 1174
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Models B-1 B-2 R-2 R-L Meteor

GPT2 33.67 11.63 3.35 30.75 20.04
GPT2-medium 39.15 15.64 6.09 39.43 24.82
GPT2-large 55.79 30.16 15.18 57.31 37.93
GPT2-XL 62.47 33.94 18.70 64.67 42.30

GPT-J (6B) 67.47 35.65 15.47 67.17 41.32
Falcon (7B) 68.67 36.48 16.25 71.62 43.63
Falcon-Ins (7B) 63.92 32.08 13.51 65.31 39.49
Llama2 (7B) 65.80 33.73 17.28 70.29 43.47
Llama2-Chat (7B) 70.07 39.08 18.12 71.51 45.00
Llama2 (13B) 68.81 34.91 18.02 71.04 45.17
Llama2-Chat (13B) 68.71 33.60 16.67 70.54 43.79

Table 16: Generation results on data of Noun-Entail in
the test set of ABSPYRAMID[GEN]. B-1/2, R-2/L denote
BLEU-1/2, ROUGE-2/L, respectively.

Models B-1 B-2 R-2 R-L Meteor

GPT2 5.44 0.00 0.00 5.79 18.21
GPT2-medium 11.46 1.25 0.18 11.77 21.00
GPT2-large 40.34 44.37 12.23 36.98 30.58
GPT2-XL 44.14 39.47 10.77 42.62 31.99

GPT-J (6B) 40.82 31.46 5.11 40.33 27.66
Falcon (7B) 36.88 28.77 3.83 37.01 26.06
Falcon-Ins (7B) 38.49 38.38 6.93 36.68 26.30
Llama2 (7B) 43.92 36.47 5.29 41.94 27.45
Llama2-Chat (7B) 36.68 26.58 3.83 36.79 24.32
Llama2 (13B) 45.18 43.53 6.75 43.90 29.85
Llama2-Chat (13B) 42.25 35.16 5.84 41.94 27.76

Table 17: Generation results on data of Verb-Entail in
the test set of ABSPYRAMID[GEN]. B-1/2, R-2/L denote
BLEU-1/2, ROUGE-2/L, respectively.

Models B-1 B-2 R-2 R-L Meteor

GPT2 35.24 10.93 10.86 42.19 28.06
GPT2-medium 44.12 17.54 15.28 46.23 31.19
GPT2-large 50.39 25.52 24.38 52.01 38.57
GPT2-XL 53.92 29.73 27.98 54.69 41.96

GPT-J (6B) 56.28 29.24 27.38 56.96 42.51
Falcon (7B) 55.15 28.24 25.53 54.96 40.63
Falcon-Ins (7B) 54.90 27.88 26.63 55.10 41.10
Llama2 (7B) 57.48 32.16 29.40 58.00 43.56
Llama2-Chat (7B) 60.18 33.52 29.66 57.84 44.51
Llama2 (13B) 59.34 35.82 30.66 58.36 44.74
Llama2-Chat (13B) 61.06 34.88 29.13 58.04 43.74

Table 18: Generation results on data of Event-Entail in
the test set of ABSPYRAMID[GEN]. B-1/2, R-2/L denote
BLEU-1/2, ROUGE-2/L, respectively.
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LLM + LoRA Noun Verb Event All
Acc Ma-F1 AUC Acc Ma-F1 AUC Acc Ma-F1 AUC Acc Ma-F1 AUC

Falcon (7B) 88.12 87.55 92.60 64.42 64.15 68.92 77.54 71.84 80.38 78.76 77.38 85.95
Falcon-Ins (7B) 87.62 87.09 92.44 64.61 64.59 69.23 77.39 71.44 80.29 78.52 77.37 85.88
Mistral (7B) 88.90 88.38 92.86 64.61 64.30 69.75 77.95 72.56 81.07 79.28 77.96 86.73
Mistral-Ins (7B) 88.57 88.09 92.77 64.49 64.40 68.76 77.78 72.10 81.02 79.04 77.86 86.50
Llama2 (7B) 88.85 88.29 92.97 64.17 63.84 68.95 77.97 71.95 80.97 79.15 77.71 86.59
Llama2-Chat (7B) 88.37 87.82 92.86 64.07 63.94 68.93 77.39 71.53 79.68 78.78 77.82 86.04
Llama2 (13B) 88.26 87.83 92.85 65.20 65.20 69.48 77.65 71.95 80.57 79.06 78.08 86.57
Llama2-Chat (13B) 88.62 88.09 92.77 65.47 65.31 69.71 77.65 72.11 81.31 79.25 78.01 86.60

Table 19: The performance of LLMs on the validation set of ABSPYRAMID[DET] under the multi-relation setting.

Methods Backbone Noun Verb Event
Acc Ma-F1 AUC Acc Ma-F1 AUC Acc Ma-F1 AUC

Random - 50.00 49.67 50.00 50.00 49.97 50.00 50.00 49.01 50.00
Majority Vote - 58.11 - 50.00 52.40 - 50.00 63.94 - 50.00

NLI + Zero

BART-large-mnli 70.44 67.65 75.47 54.84 45.89 62.54 71.32 66.65 71.06
RoBERTa-large-mnli 67.76 62.61 74.70 54.10 43.55 61.51 70.40 62.65 70.62
DeBERTa-base-mnli 67.77 65.05 72.35 54.72 46.35 61.34 66.14 62.52 67.21
DeBERTa-large-mnli 72.85 70.95 78.23 55.68 48.23 62.34 68.35 65.30 70.55

NLI + FT

BART-large-mnli 86.47 86.03 91.92 64.47 64.47 68.53 75.58 71.02 79.63
RoBERTa-large-mnli 86.93 86.35 91.92 65.16 64.83 69.06 77.75 71.42 80.25
DeBERTa-base-mnli 86.17 85.42 91.24 64.64 64.61 68.96 77.36 70.66 79.50
DeBERTa-large-mnli 86.92 86.30 91.78 64.15 64.08 69.30 77.47 71.07 79.65

PLM + FT

BERT-base 85.47 84.78 91.02 63.38 63.32 68.35 77.33 71.06 80.27
BERT-large 86.65 86.03 91.37 62.96 62.95 67.02 76.16 70.84 79.73
RoBERTa-base 85.01 84.31 90.76 62.62 62.61 67.04 77.25 71.37 79.75
RoBERTa-large 86.35 85.80 91.29 62.91 62.91 67.64 77.86 71.53 79.89
DeBERTa-base 85.22 84.51 90.31 62.28 61.89 67.34 76.85 71.25 79.55
DeBERTa-large 87.77 87.23 91.91 64.79 64.79 68.49 77.75 71.58 80.05

LLM + LoRA

Falcon (7B) 87.49 86.97 92.33 63.56 63.43 68.13 76.45 71.49 79.50
Falcon-Ins (7B) 86.57 86.11 92.07 64.15 64.09 68.46 76.17 70.53 78.89
Mistral (7B) 88.50 88.08 92.63 63.29 62.90 68.16 77.91 71.52 80.58
Mistral-Ins (7B) 88.31 87.90 92.60 63.71 63.65 68.77 77.91 72.00 80.72
Llama2 (7B) 88.57 88.06 92.84 63.71 63.32 68.75 76.91 71.36 80.18
Llama2-Chat (7B) 87.87 87.48 92.92 63.53 63.09 67.79 77.91 71.58 79.79
Llama2 (13B) 88.64 88.16 93.09 64.08 63.57 69.03 77.43 71.68 80.61
Llama2-Chat (13B) 88.59 88.03 92.89 64.32 64.23 68.89 77.89 71.62 80.70

Table 20: Performance on the validation set of our ABSPYRAMID[DET]. We trained models on the three entailment
relations separately.
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Survey Instructions (Click to Collapse)

Noun/Noun Phrase Substitution
Welcome to this project! This is an easy annotation project with ~50k HITs to be released while only requires you to read and answer a few questions
according to the instructions described below.
Please don't hesitate to give us advice on the instructions and the questions. Bonus will be given if your advice is helpful.

Task Objective
 In this task, we will give you a base sentence with a highlighted part and then a noun or noun phrase (i.e., a concept). Your job is to determine if

the given noun or noun phrase is a more general concept that encompasses the meaning of the highlighted part in the base sentence.
Note that: The given sentences, nouns, and noun phrases are case-insensitive and involve some people or certain groups of people, denoted as
PersonX, PersonY, PersonZ, etc.

Valid Concept Example
For example, given a base sentence:
PersonX buys a hot dog
and the concept of the yellow part: "food." You are required to choose it as correct because PersonX indeed buys food, so the concept correctly
describes the meaning of the highlighted part of the base sentence, though more precisely, PersonX buys a hot dog. Therefore, the original meaning is

encompassed by the meaning of the given concept. We call this a valid concept.
Similarly, concepts such as "street food," "meat product," "sausage," or even "hot dog" itself encompass the original meaning, and we consider them
valid.

Invalid Concepts
There are many possible reasons that make a concept invalid. For example:
(1) "dog" is an invalid concept: as its meaning has nothing to do with the original sentence: PersonX buys a hot dog.

(2)"spicy hot dog" is an invalid concept: a non-spicy hot dog is common, so this concept doesn't cover the original meaning.
To conclude, the meaning of the given concept should be typical.

A concept can be the same as or more general than the original part in the base sentence, but should not be more specific than or
totally different from the original one.

Context Matters!
Whether a concept is valid depends on the context. In PersonX eats an apple, there are several possible concepts:
(1) "fruit". Correct: because apple is a kind of fruit, and fruit is more general.
(2) "Company" (Apple is a company of iPhone, iPad). In this case, it's wrong. Apple here is not standing as the Apple company. However, "company" is
a good concept for "apple" in PersonX buys stocks of apple.

Hypernyms! Not hyponyms:
We found that some workers mixed up hypernyms and hyponyms. Hypernym refers to a generic word encompassing the original word's meaning, which
can be a more general category or the original word itself. Hyponym refers to a more specific word. For example, in the sentence many analysts were
disappointed by earnings, "financial analyst" is a hyponym of "analyst," and hypernyms of "analyst" can be "specialist" and "expert." Our annotation is
about identifying hypernyms, not hyponyms. Please keep this in mind.

Other Reminders
The given concept may have absent or incorrect determiners (a, the, some, one's, etc.) and the number of the noun (singular or plural).
We care about the general meaning of the given concept but not the form of the concept itself. Therefore, in the above eat-an-apple example, concepts
such as "a fruit," "fruits," and "kind of fruits" are ALL considered VALID.
You may try to consider different modifiers: the, a, some, the event of, the action of ...

Pair 1: ${q1_id}

Base Sentence: ${q1_instance_sentence}

Given Noun (Phrase): ${q1_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 2: ${q2_id}

Base Sentence: ${q2_instance_sentence}

Given Noun (Phrase): ${q2_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 3: ${q3_id}

Base Sentence: ${q3_instance_sentence}

Given Noun (Phrase): ${q3_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 4: ${q4_id}

Base Sentence: ${q4_instance_sentence}

Given Noun (Phrase): ${q4_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 5: ${q5_id}

Base Sentence: ${q5_instance_sentence}

Given Noun (Phrase): ${q5_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 6: ${q6_id}

Base Sentence: ${q6_instance_sentence}

Given Noun (Phrase): ${q6_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 7: ${q7_id}

Base Sentence: ${q7_instance_sentence}

Given Noun (Phrase): ${q7_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 8: ${q8_id}

Base Sentence: ${q8_instance_sentence}

Given Noun (Phrase): ${q8_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 9: ${q9_id}

Base Sentence: ${q9_instance_sentence}

Given Noun (Phrase): ${q9_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

Pair 10: ${q10_id}

Base Sentence: ${q10_instance_sentence}

Given Noun (Phrase): ${q10_concept}

Is the given noun (phrase) the same as or a more general concept encompassing the
highlighted part?

Yes

No

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

The base sentence is ungrammatical or meaningless. It is of low quality and hard for me to understand.

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Submit

Figure 6: The full text of instructions provided to annotators on Amazon Mechanical Turk (MTurk). There are ten
questions in a Human Intelligence Task (HIT), and we only display one here for brevity.
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