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ABSTRACT

LoRA has become the prevailing technique for finetuning large neural networks
with limited computational resources. Historically, activations have been regarded
as small and computationally inexpensive to manipulate—a view reflected by
LoRA, which leverages this assumption and adds a low-rank term to intermediate
activations. However, in the era of modern large language models (LLMs) and dif-
fusion models, this notion has been challenged by the desire for increasing context
lengths and smaller models, a trend which inevitably leads activations to consume
more memory than the model weights themselves. Surprisingly, when finetuning
a 1B model with a context length greater than 2048, we find that LoRA finetun-
ing uses more memory than full-parameter finetuning. This study demonstrates
that manipulating additional model weight representations within the computation
graph in parameter-efficient finetuning techniques can often be more memory-
efficient than operating on the activations. We provide a semantically-equivalent
computation graph reformulation for LoRA, and other popular PeFT techniques,
which saves memory and trains faster, advancing the Pareto-frontier for finetun-
ing tasks that can be achieved on consumer hardware. Under practical conditions,
this reformulation provides up to a 1.4x reduction in max memory usage and
latency for LoRA finetuning across various language and diffusion transformers
without affecting the predictive performance of the technique.

1 INTRODUCTION

The release of the transformer architecture (Vaswani et al., 2017) inspired the widespread scaling
of language models with billions or trillions of parameters. This unprecedented scale ushered in a
fundamental paradigm shift in language modeling: it was no longer necessary to train models from
scratch when generalist pre-trained models could be finetuned for higher performance on down-
stream tasks. It is no coincidence that as these models continued to scale, the field has taken a
significant effort to understand how to finetune them efficiently, as doing so otherwise often meant
consuming hundreds of gigabytes of GPU memory.

The existence of pretrained LLMs led to the creation of LoRA (Hu et al., 2021), a finetuning tech-
nique that focuses not on optimizing the parameters of the target model but instead on a small set
of new parameters that can be merged into the original model without extra cost during inference.
LoRA has now become a bedrock technique for efficiently finetuning LLMs. It introduces a pair of
low-rank matrices that are forward-passed in parallel to a given model layer; these activations are
summed and passed forward to the rest of the network. This approach can offer a significant mem-
ory saving over full-parameter finetuning, in which all original network parameters are optimized, as
well as regularizes the model to forget less pre-training information (Biderman et al., 2024). LoRA
achieves memory savings by eliminating the need to store the optimizer’s state, including the first-
order and second-order moments required by optimizers like ADAM. LoRA achieves 3x memory
saving when fine-tuned on GPT-3 with 175B parameters (Hu et al., 2021).

The field of language modeling has seen substantial growth in recent years. New architectures,
larger corpuses of multimodal data, and increased FLOP scaling have led to smarter, more capable
models. Irrespective of these trends, the use of LoRA has largely persisted, and it continues to be a
popular technique for finetuning the latest available models.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

LLaMA3-8B LLaMA3-3B LLaMA3-1B
model

0

10

20

30

40

m
em

or
y 

us
ag

e 
(G

iB
)

full fine-tuning
LoRA

128 512 2048 8192
context length

0

10

20

30

40

m
em

or
y 

us
ag

e 
(G

iB
)

full fine-tuning
LoRA

Figure 1: LoRA saves less GPU memory. In comparison to full-parameter finetuning, LoRA ex-
hibits less memory savings on smaller models. Furthermore, LoRA incurs higher memory consump-
tion than full finetuning when applied to longer context lengths.

However, the memory saving of LoRA might not persist as there are two emergent trends in the de-
velopment of LLMs: smaller models and longer context length. These two trends are characterized
by the creation of LLaMA-3.2-1B (Dubey et al., 2024), which is, at the time of writing, the smallest
model in LLaMA series and supports a 128K context length. As LoRA’s memory savings come from
not storing weight-sized tensors in optimizer states, a smaller model would necessarily mean less
memory saving. Furthermore, since LoRA induces additional activations, when activations are large
due to long context length, this overhead may dominate the memory saving of LoRA. As shown in
figure 1, LoRA saves less (or even increases) the memory usage compared to full finetuning when
applied on smaller models.

One may ask the question: why use LoRA in these scenarios at all when full-parameter finetuning
is possible? Critically, LoRA acts as a regularizer – it mitigates forgetting (Biderman et al., 2024).
Where low-memory devices are used, compression techniques such as NF4 (Dettmers et al., 2024)
can make the original weights non-differentiable, preventing full-parameter finetuning. Addition-
ally, as we show is the case in Table 5 for diffusion models, full-parameter finetuning can have
larger latency than LoRA. Also, LoRA adapters are lightweight and preferable when it is necessary
to quickly swap them in and out of memory.

While larger models continue to scale, efforts have been made to develop small models based on
large models. For example, Phi (Gunasekar et al., 2023), a lightweight model, is trained using
synthetic data from GPT-3.5, and LLaMA-3.2-1B is developed using both pruning and distillation
from larger LLaMA variants. Methods are developed to efficiently use both weights and outputs of
pretrained large models to develop smaller models (Xia et al., 2024; Xu et al., 2024). In fact, context
length supported by pretrained LLMs has indeed grown larger over years as shown in figure 2.
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Figure 2: Longer context lengths. As time has progressed, the maximum context lengths, in terms
of tokens, has trended upwards. This trend has serious implications for the amount of memory it
takes to finetune transformers moving forward.

With these trends in mind, techniques like LoRA and its variants lose their memory efficiency as
they produce and store even larger intermediate activations for backpropagation. It may soon be-
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come evident that activation-based parameter efficient finetuning approaches, once champions for
accessibility, might be too memory-intense for current and future models.

Will LoRA and other activation-based approaches still be usable at the current trend rate? In this
study, we establish a semantically equivalent computation graph for LoRA and other PEFT tech-
niques that depends less on these trends and drastically decreases their memory and latency overhead
without affecting performance or changing their meaning. We begin by establishing a memory com-
plexity analysis of activations versus weights, which leads us to a key observation that modifying
weight representations requires less memory than modifying activations.

Leveraging this insight, we reformulate these techniques using simple, few-line changes to their
definitions. We test our weight-based reformulation across a suite of popular modern LLMs, such as
LLaMA 3.2, as well as diffusion transformers (Peebles & Xie, 2023), and observe a 1.4x reduction
in memory and latency.

This reformulation is widely applicable and effective at saving memory and reducing latency. Its
implementation pushes forward the Pareto-frontier of what can be achieved on consumer GPUs
without sacrificing accuracy. We hope that these insights can offer a new theoretical perspective on
designing future parameter-efficient finetuning techniques while practically enabling broader access
to LLM finetuning.

2 MOTIVATION

2.1 PRELIMINARIES

Low-rank adaptation (LoRA). LoRA (Hu et al., 2021) inserts two trainable low-rank matrices
A ∈ Rm×r and B ∈ Rr×n for every targeted weight W ∈ Rm×n in a pretrained model. During
a forward pass of the model, they are used to construct an additional projection that is added to the
hidden state in the form:

y = Wx+BAx

where BAx term would be scaled by a constant factor c before added to Wx. During finetuning,
only the parameters A and B are updated, while all weights from the pretrained model are frozen.
During inference, A and B’s product is merged back to W , and thus does not increase the inference
latency.

(IA)3. (IA)3 (Liu et al., 2022) is a PEFT method that learns rescaling factors for activations in the
network. Given a frozen weight W ∈ Rm×n, bias b ∈ Rm×n, input x ∈ Rn×1, (IA)3 would insert
a trainable vector l ∈ Rm×1 to directly rescale the activations:

y = (Wx+ b)⊙ l

where ⊙ means the hadamard product which performs column-wise scaling.

2.2 ACTIVATIONS

Activations are the tensors passed forward between layers in a neural network. They are retained
during training for backpropagation. In a transformer-based (Vaswani et al., 2017) model, an inter-
mediate activation is typically a three-dimensional tensor of shape (B, S, D), where B is batch size,
S is sequence length, and D is hidden size.

Size of Activation = B × S ×D (1)

D would remain fixed for the same pretrained model. In contrast, batch size and sequence length
could differ for different training runs.

Batch size. Larger batch size produces comparatively more reliable gradient direction, providing a
more accurate approximation for the whole-dataset gradient (Liu et al., 2023). The linear-scaling
rule (Goyal et al., 2017) between batch size and learning rate also suggests that larger batch size
allows for larger steps in training and stabilizes training. In the context of LLM training and fine-
tuning, a common practice is to use the maximum batch size that GPU memory allows.

Sequence length. Pretrained LLM’s context length grows over time. For example, LLaMA (Tou-
vron et al., 2023a) is pretrained using a context length of 2048, and LLaMA2 (Touvron et al., 2023b)
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4096. LLaMA3 series (Dubey et al., 2024) progressively increases the context length from 8K to
128K during pretraining. With pretrained models supporting longer context length, long context
finetuning is playing an increased role in adapting pretrained LLMs; for example with datasets
related to instruction finetuning and chain-of-thought. Furthermore, finetuning models are not
bounded by their pretrained context lengths. Works have been done to adapt a pretrained LLM
to a context length longer than that of the pretraining stage (Jin et al., 2024).

Transformer-based diffusion models also benefit from longer sequence lengths. DiT (Peebles & Xie,
2023) demonstrated that reducing the patch size, thereby increasing the sequence length of patches,
leads to a significant improvement in image generation quality.

Growth of activations. With both batch size B and sequence length S being pushed up by the
current trend, from formula 1 it is immediately clear that the size of activations would continue to
grow over time.

2.3 ACTIVATIONS V.S. WEIGHTS

Activation-to-weight ratio. Unlike activations, the dimension D of a model’s weights remains fixed
across different finetuning runs. This static nature of weights contrasts with the dynamic growth of
activations, which scale with batch size B and sequence length S.

Consider the size of the intermediate activations, which can be represented as B × S × D. For
simplicity, suppose this corresponds to a linear layer of size D × D producing these activations.
Then the ratio between the size of the activations and the size of its corresponding weights can be
expressed as:

B × S ×D

D ×D
=

B × S

D
(2)

As illustrated in the previous section, batch size B and sequence length S would continue to be
scaled up in the forseeable future. Thus for any existing model, future finetuning runs would possibly
have a larger activation-to-weight ratio.

Smaller models. Smaller models have been designed to handle increasingly longer context lengths.
For example, models like LLaMA-3.2-1B are capable of handling sequence lengths of 128K tokens,
far longer than its larger predecessors. This trend demonstrates that improvements in model archi-
tecture and training techniques have allowed for smaller models (and thus smaller D) to manage
longer contexts, further driving up the activation-to-weight ratio in formula 2.

2.4 OPERATING ON WEIGHTS INSTEAD OF ACTIVATIONS

Activation-based paradigm. Currently, PyTorch is based on activations. Weights are implemented
as functions that operates on activations. The implementation paradigm of a neural network in
PyTorch is to iteratively apply different operations to the intermediate activation x.

Activation-based PEFT implementation. The current PEFT implementation follows the
activation-based paradigm during training. For example, in the standard LoRA implementation,
LoRA operates at the level of the activations as it injects a low-rank update into the activation flow
rather than directly manipulating the weight matrices. This LoRA implementation falls into the
category where a reformulation to weights is possible, which will be illustrated in the next section.

Weight-based operations. During the forward pass during training, if an operation on activations
could be reformulated to an operation on its corresponding weights, then the intermediate represen-
tation that needs to be stored shifts from an activation to the weight. The size of the intermediate
representation would decrease when activations are larger than weights.

3 METHOD

3.1 LORA REFORMULATION

Consider a standard LoRA training setting given the pretrained weights W ∈ RD′×D. The input
tensor x is a three-dimensional tensor x of shape (B,S,D), where B is the batch size, S is the

4
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Figure 3: Weight-based LoRA reformulation. The left figure illustrates the weight-based reformu-
lation of LoRA during training, while the right figure presents the activation-based reformulation.

sequence length, and D is the hidden size. In our approach, instead of computing activations for the
lora branch and the main path separately, we reformulate it into merging the product of BA into W .

Wx+BAx ⇒ (W +BA)x

Note that this is different from original LoRA setting, where merging only happens for inference.
As shown in Figure 3, in our formulation, (W + BA) gets calculated first, and the multiplication
with the input tensor only happens once, in contrast to twice (Wx and BAx) in the original setting.

The key difference lies in the intermediate tensors created: the weight-based method primarily gen-
erates BA and W +BA, while the activation-based approach produces Wx, Ax, B(Ax). As batch
size and sequence length increase, the dimensions of these activation tensors grow proportionally,
leading to significantly higher memory consumption in the activation-based method compared to the
weight-based approach, where the size of W +BA remains constant regardless of input dimensions.
This provides compelling motivation for the weight-based method’s improved performance which
we further analyze empirically.

3.2 REFORMULATION FOR OTHER METHODS

Method Original Formulation Weight-based reformulation

Format y = Wx+ b y = W ′x+ b′

LoRA⋆ y = Wx+ b+BAx y = (W +BA)x+ b
(IA)3† y = (Wx+ b)⊙ l y = (Wdiag(l))x+ (b⊙ l)
VeRA⋄ y = Wx+ b+ ΛAAΛBBx y = (W + ΛAAΛBB)x+ b
LoReFT△ y = h+RT

L(WLh+ bL −RLh) y = (RT
LWLW )x+

h = Wx+ b (RT
LWLb+RT

LbL)
DiReFT‡ y = h+WT

D,2(WD,1h+ bD) y = ((I+WT
2 W1)W )x+

h = Wx+ b ((I+WT
2 W1)b+WT

2 bD)

Table 1: Weight-based reformulation. Many PEFT techniques can be reformulated to be weight-
based. ⋆(Hu et al., 2021), †(Liu et al., 2022), ⋄(Kopiczko et al., 2024), △(Zhengxuan Wu, 2024),
‡(Zhengxuan Wu, 2024).

The weight-based reformulation principle we’ve introduced extends beyond LoRA-based tech-
niques, encompassing a diverse range of Parameter-Efficient finetuning (PEFT) methods. Table
1 summarizes the original formulations and their corresponding weight-based reformulations for
various PEFT techniques. Notably, this reformulation strategy applies not only to additive methods
like LoRA (Hu et al., 2021) and VeRA (Kopiczko et al., 2024), but also to IA3 (Liu et al., 2022),
which was originally designed to scale activations element-wise. Our reformulation incorporates
this scaling directly into the weight matrix using a diagonal matrix multiplication. Furthermore, we
show that even more complex methods like LoReFT and DiReFT (Zhengxuan Wu, 2024), which
weren’t originally designed to be merged into the base model and instead manipulate activations of
representation layers, can be reformulated in this way. Our weight-based reformulation encompasses
a wide spectrum of PEFT techniques while maintaining their semantic equivalence.
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In the following section, we present results comparing our weight-based reformulation to the original
formulation for both IA³ and LoRA. These two PEFT techniques were chosen because of their
popularity and compatiblity with Huggingface’s PEFT library.

4 EXPERIMENTS

We conduct evaluations to understand the empirical effects of our reformulation on popular bench-
marks and LLMs.

4.1 EXPERIMENTAL SETUP

Language modeling. To understand our weight-based reformulation’s practical impact, we choose
popular models paired with established datasets. Specifically, we employ the models LLaMA-3.2-
1B and LLaMA-3.2-3B. These models have hidden dimensions of 2048 and 3072, respectively.
For datasets, we use the MATH (Hendrycks et al., 2021), wikitext (Merity et al., 2016), and CNN-
DailyMail (Nallapati et al., 2016) datasets. The maximum sequence lengths, in number of tokens,
for these datasets vary per model tokenizer and are provided with the results. The tokenization of
these datasets create sequences whose length closely mirror the sequence lengths of data that the
model may encounter in practical scenarious.

Diffusion models. Diffusion finetuning using LoRA is actively supported in huggingface diffusers
library (von Platen et al.). We study our reformulation on diffusion transformers (DiT) (Peebles &
Xie, 2023). Transformer-based diffusion models has been shown to have good scaling performance
on FLOPs, which relies heavily on sequence length. A smaller patch size directly translates to
slicing images into more patches, resulting in a larger sequence length for diffusion transformers.
We conduct experiments on DiT-S/2, DiT-B/2, DiT-L/2, DiT-XL/2, whose parameter counts range
from 33M to 675M. The embedding dimensions range from 384 to 1152.

Baselines and measurements. We apply our reformulation to the PEFT methods IA3 and LoRA
(r = 8, applied to all linear layers). We compare our reformulation to the traditional weight-based
approach as well as full-parameter finetuning. We use the Huggingface peft (Mangrulkar et al.,
2022) library for our LLM activation-based PEFT implementations and a custom PEFT implementa-
tion for diffusion transformers. For memory measurements, we record the maximum memory usage
across all CUDA GPUs. For latency measurements, we measure the time, in seconds, per batch,
averaged over twenty batches.

4.2 DOES THE WEIGHT-BASED REFORMULATION SAVE MEMORY?

The memory savings of our weight-based reformulation of two PEFT techniques on LLMs are pre-
sented in Table 2, which shows the peak required GPU memory for a particular model, dataset,
and batch size combination. This reformulation saves memory as compared to the activation-based
baseline in every combination. As hypothesized, the savings of the weight-base reformulation over
the activation-based approach increase proportionally as batch size and sequence length increase.
Simultaneously, it also benefits from the smaller hidden dimension of the smaller models. For exam-
ple, when finetuning LLaMA-3.2-3B on the MATH dataset with a batch size of 16, the activation-
based approach uses 1.4x more memory than our reformulation. These savings are important;
with them, one could elect to increase their batch size, train on longer sequences, or even opt for a
larger model.

Furthermore, with this reformulation, LoRA and IA3 now match or even beat the memory usage of
full finetuning. This is to be expected: the memory that would be used by the Adam optimizer (2x
the size of the model weights) for finetuning all parameters is compensated for by the introduction
of the intermediate tensors BA and (W + BA) on the computation graph, each of which is 1x the
size of the model weights.

We seek to see if these results hold for diffusion transformers. As shown in Table 3, across DiT vari-
ants of different sizes, there is consistent memory savings by our weight-based reformulation. For
these models, We see that the activation-based approach consumes, at minimum, 1.24x more mem-
ory for IA3 and 1.13x more memory for LoRA than our weight-based reformulation for diffusion

6
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Batch Size PeFT LLaMA-3.2-1B LLaMA-3.2-3B
wikitext MATH CNN/DM wikitext MATH CNN/DM

Maximum Sequence Length 865 2566 4185 865 2566 4185

8

full fine-tuning 24.9 68.2 110.8 42.2 114.5 185.5
IA3 (original) 27.9 79.8 131.7 49.0 136.9 228.0

IA3 (ours) 25.3 67.3 108.1 45.1 112.8 179.4
Memory Efficiency (x) 1.10 1.19 1.22 1.09 1.21 1.27

LoRA (original) 29.3 83.5 136.2 54.3 151.2 237.2
LoRA (ours) 25.4 67.3 110.2 45.2 112.9 179.5

Memory Efficiency (x) 1.15 1.24 1.26 1.20 1.34 1.32

16

full fine-tuning 46.5 157.5 - 78.4 226.0 -
IA3 (original) 53.5 188.5 - 91.9 278.3 -

IA3 (ours) 46.4 153.6 - 79.0 217.4 -
Memory Efficiency (x) 1.15 1.23 - 1.16 1.28 -

LoRA (original) 56.5 189.9 - 102.3 303.9 -
LoRA (ours) 46.5 153.7 - 79.1 217.5 -

Memory Efficiency (x) 1.22 1.24 - 1.29 1.40 -

Table 2: We record the maximum memory usage (GiB) of running finetuning on a given batch size,
model, and dataset combination. We do this for two techniques, IA3 and LoRA. We then calculate
how much worse the original formulation performs as a multiple of our weight-based-formulation’s
performance in the Memory Efficiency (x) rows. Out of memory errors are denoted with a dash.

PeFT Method DiT-S/2 (33M) DiT-B/2 (130M) DiT-L/2 (458M) DiT-XL/2 (675M)
full fine-tuning 4.4 9.6 26.6 36.0

LoRA (original) 4.6 9.6 25.8 34.3
LoRA (ours) 4.1 8.5 22.8 30.3

Memory Efficiency (x) 1.14 1.14 1.13 1.13
IA3 (original) 5.1 10.5 28.1 37.3

IA3 (ours) 4.0 8.5 22.7 30.2
Memory Efficiency (x) 1.26 1.25 1.24 1.24

Table 3: Maximum memory usage (GiB) of Diffusion Transformers finetuned with a fixed batch
size of 1. The input resolution given to all models is of the same size 256× 256.

models. Additionally, whereas the activation-based approach for IA3 was more memory expensive
than full-finetuning, with the weight-based reformulation it is now more memory-efficient.

Finally, we noticed that, empirically, these results have some deviation. This behavior is primarily
due to the CUDA backend of PyTorch, whose kernels have been optimized to speed up computation
at the expense of allocating additional memory in certain programs. While out of scope for this
work, these features explain marginal additional memory allocations.

4.3 DOES THE WEIGHT-BASED REFORMULATION IMPROVE LATENCY?

Transferring data between the global memory and the tensor cores can induce a significant latency
overhead. Additionally, smaller tensors mean fewer FLOPs during matrix multiplication. Given that
our approach is more memory efficient, we hypothesize that, for this reason, it could induce lower
latency as well.

Table 4 shows the second per batch for our weight-based reformulation versus the activation-based
approach on LoRA and IA3. The results in this table empirically confirm this hypothesis, show-
ing that our reformulation is consistently faster than the activation-based approach. Specifically,
for finetuning LLaMA-3.2-1B on wikitext, the activation-based approach can take as much as
1.4x longer to complete a batch than our weight-based reformulation. This conclusion is fur-
ther compounded by the latency improvements on diffusion models as presented in Table 5, where
similarly the activation-based approach can take as much as 1.39x longer to complete a batch than

7
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Batch Size PeFT LLaMA-3.2-1B LLaMA-3.2-3B
wikitext MATH CNN/DM wikitext MATH CNN/DM

Maximum Sequence Length 865 2566 4185 865 2566 4185

8

full fine-tuning 0.73 2.17 3.51 1.71 5.74 9.27
IA3 (original) 0.73 2.56 3.89 1.52 5.24 8.05

IA3 (ours) 0.65 2.06 3.30 1.42 4.71 7.40
Latency Speedup (x) 1.13 1.24 1.18 1.07 1.11 1.09

LoRA (original) 0.89 3.12 4.48 1.89 6.20 9.22
LoRA (ours) 0.68 2.44 3.57 1.49 4.82 7.69

Latency Speedup (x) 1.30 1.28 1.26 1.33 1.29 1.20

16

full fine-tuning 1.26 5.12 - 2.86 9.90 -
IA3 (original) 1.31 5.15 - 2.84 9.83 -

IA3 (ours) 1.16 4.48 - 2.60 9.28 -
Latency Speedup (x) 1.13 1.15 - 1.09 1.06 -

LoRA (original) 1.58 6.00 - 3.76 11.69 -
LoRA (ours) 1.19 4.65 - 2.70 9.18 -

Latency Speedup (x) 1.33 1.29 - 1.40 1.27 -

Table 4: We record the latency in terms of seconds per batch of running LoRA and IA3 finetuning
on a given batch size, model, and dataset combination on. We then calculate how much worse the
original formulation performs as a multiple of our weight-based-formulation’s performance in the
Latency Speedup (x) rows. Out of memory errors are denoted with a dash.

PeFT Method DiT-S/2 (33M) DiT-B/2 (130M) DiT-L/2 (458M) DiT-XL/2 (675M)
full fine-tuning 0.66 0.99 1.15 1.94

LoRA (original) 0.31 0.73 1.64 2.26
LoRA (ours) 0.28 0.56 1.18 1.79

Latency Speedup (x) 1.12 1.29 1.39 1.25
IA3 (original) 0.36 0.73 1.26 1.86

IA3 (ours) 0.36 0.73 1.34 1.90
Latency Speedup (x) 1.06 1.17 1.07 1.02

Table 5: We record the latency in terms of seconds per batch of running LoRA and IA3 finetuning
on a given model. We calculate how much worse the original formulation performs as a multiple
of our weight-based-formulation’s performance in the Latency Speedup (x) rows. Out of memory
errors are denoted with a dash.

the weight-based reformulation, particularly on DiT-L/2. Given that access to training hardware can
be limited, this impact is important for minimizing training time.

5 ANALYSIS

To better characterize the nature of the relationship between the weight-based reformulation versus
the activation-based approach, we conduct ablation studies across rank, batch size, and sequence
length.

5.1 LORA RANK

Figure 4 shows the changes in memory consumption in our weight-based reformulation versus the
activation-based approach as r is varied. The results in this table show that the rank of LoRA
matrices does not contribute significantly to the overall memory consumption for values of r less
than or equal to 128. We also observed that as the rank increases, the original implementation
increases more rapidly than our reformulation. This trend is due to the intermediate tensor generated
by the Ax multiplication in Wx+BAx, in which one of the dimensions is of size r in the activation
based formulation of LoRA. We note that both methods see in increase in memory consumption as r

8
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Figure 4: LoRA rank. The weight-based reformulation prevents the need to save the activation
produced after the down projection Ax. Thus, when using higher LoRA rank, our reformulation
saves additional memory.

increases due to the optimizer states accounting for more trainable parameters. From this experiment
it is clear that the weight-based formulation is not significantly dependent on the rank used by LoRA,
offering an avenue to explore higher values of r without trading off memory.

5.2 BATCH-SIZE

Batch Size 1 2 4 8 16 32
LoRA (ours) 19.0 20.5 23.4 29.4 54.5 104.9

LoRA (original) 19.0 20.3 24.9 34.1 65.6 128.8

Memory Savings (x) 1.00 0.99 1.06 1.16 1.20 1.23

Table 6: Maximum memory usage (GiB) for training LLaMA-3.2-1B with varying batch sizes.

Table 6 illustrates the memory usage as we vary the batch size when training on LLaMA 3.2 1B
on wikitext, comparing our LoRA reformulation to the original method. At smaller batch sizes,
the memory savings from our approach are modest, nearly identical to the original. However, as
the batch size increases, our weight-based reformulation demonstrates significant improvements in
memory efficiency. These trends suggest that our reformulation is particularly well-suited for larger
batch sizes which is crucial for faster and more stable training.

5.3 SEQUENCE LENGTH

Sequence Length 256 512 1024 2048 4096
LoRA (original) 11.79 21.13 39.83 77.22 152

LoRA (ours) 11.69 19.05 33.97 63.8 123.46
Memory Savings (x) 1.01 1.11 1.17 1.21 1.23

Table 7: Maximum memory usage (GiB) for training LLaMA-3.2-1B with varying sequence lengths.

Table 7 demonstrates how memory is affected as we increase the sequence length of the data that we
finetune on using our weight-based reformulation versus the activation-based approach. We created
a fake dataset with randomly sampled tokens of a specified sequence length. The trend supports
the hypothesis: as we increase the sequence length, we see increasing gains from our reformulation
in memory savings. We only go up to a sequence length of 4096, but LLaMA-3.2-1B’s maximum
sequence length is 128,000. As inputs to these models trend larger, particularly in the age of chain-
of-thought reasoning and agents, being able to effectively manage the memory for finetuning on
these longer sequences becomes even more important.

9
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6 RELATED WORKS

PEFT + Compression. Methods such as QLoRA Dettmers et al. (2024) and LoftQ (Li et al., 2024)
reduce model size in memory through low-bit quantization of model parameters, while reducing
information with LoRA. Similarly, Wanda (Sun et al., 2024) uses pruning to reduce the number
of active weights in the model and uses LoRA to regain lost model performance. While these
techniques reduce memory footprints via model compression, our approach further complements
these by decreasing the memory consumption during post-compression training. Our contribution
furthers the memory efficiency of finetuning with compression without sacrificing performance.

Finetuning Frameworks. Finetuning frameworks like DeepSpeed (Rasley et al., 2020) and ZeRO
(Rajbhandari et al., 2020) focus on infrastructure-level optimizations to improve parallelism and
latency efficiency by sharding optimizer states across accelerators. Our method is designed to inte-
grate with these frameworks. These frameworks take a fixed computation graph and optimize the
training system over this graph. Our technique aims to build on top of these methods by providing a
more efficient computation graph to the frameworks.

Compilers. Other methods have approached efficient training through compilation. PyTorch2
(Ansel et al., 2024) introduced TorchDynamo, a just-in-time compiler for computation graphs.
While these works focus on speeding up training time, our work complements it by addressing
memory consumption. As a byproduct of our work, we also improve on latency, as shown in 4.3.

7 LIMITATIONS AND CONCLUSION

We acknowledge that our work is not without its limitations. It is important to recognize that the
benefits of our reformulation can diminish, particularly in situations where the batch size and se-
quence length is small or when the hidden dimension size is large. We believe the field is moving
away from this paradigm as smaller models become more capable and contexts become longer. Ad-
ditionally, although not being actively used, the current dropout implementation in LoRA is only
applied to activations that pass through the LoRA branch, while not being applied to the input to the
frozen weight. Therefore, the activation-based LoRA dropout implementation would make weight-
based reformulation not exactly equivalent to the LoRA when using dropout. Nonetheless, Lin et al.
(2024) proposes to apply dropout to LoRA weights, which is compatible with our weight-based
reformulation.

Parameter-efficient finetuning techniques have prevailed for their ability to reduce memory usage
during finetuning as well as overfitting (Biderman et al., 2024). In this study, we offer an equivalent
reformulation for these these techniques that further reduces their memory usage and latency. Our
main insight is the trend that capable, state-of-the-art models are getting smaller while their con-
text lengths are getting larger. This insight means that activations are trending towards becoming
larger than the size of the weights of the model. We leverage this information to have these PEFT
techniques not produce activations, but rather a delta to the weights they are being applied to. Our
experiments demonstrate that this leads to memory and latency savings as sequence lengths and
batch sizes increase. We hope that that this research provides greater accessibility to finetuning and
inspires future research in optimizing PEFT methods.

Reproducibility Statement: Our code could be found in the anonymous GitHub repository:
https://anonymous.4open.science/r/slimscale-19B6. It is also included in the supplementary ma-
terial.
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A APPENDIX

A.1 FIGURE 1 SET UP

In figure 1, the plot on the left illustrates the maximum memory usage during fine-tuning on a
synthetic dataset with a sequence length of 512 and a batch size of 1, across LLaMA models of
varying sizes: 8B, 3B, and 1B. The right plot displays the maximum GPU memory usage as context
length varies, also on a synthetic dataset, for the LLaMA 3.2 1B model with a batch size of 1.
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A.2 SINGLE-LAYER ANALYSIS

Settings. We study the memory usage when applying LoRA finetuning on a linear layer with
W ∈ R2048×2048, which is of the same dimension as the query projection layer Wq in LLaMA-
3.2-1B. We also used a LoRA rank of 8, batch size of 32, and sequence length of 1024. This setup
allowed us to isolate the memory behaviors of the two LoRA variants while running on a CPU to
avoid GPU-specific optimizations. We use the PyTorch profiler to track peak memory usage during
forward and backward passes, and the script can be found in our anonymous repo in a file called
single layer analysis.py.

Memory Profile. In the weight-based formulation, the extra operations primarily involve matrix
multiplication BA and addition W + BA, which each consume 16 Mb. Additionally, the linear
transformation (W + AB)x takes 64 Mb of memory. In contrast, the activation-based formulation
introduces additional activations of much larger size, including Wx of size 64 mb, and B(Ax) and
the subsequent addition Wx+B(Ax), each of size 128 Mb.

There is a significant difference in peak memory consumption between the two formulations: the
weight-based approach reaches a maximum of 160.125 Mb, while the activation-based method peaks
at 256.63 Mb of CPU memory. This 60% increase in memory usage for the activation-based ap-
proach can be primarily attributed to the storage requirements for intermediate activations such as
Wx and B(Ax).

It is worth noting, however, that the practical implementation of these approaches may be influenced
by CUDA optimizations and PyTorch optimizations, which can introduce additional nuances to the
memory usage patterns. Nonetheless, this simplified single-layer analysis motivates the potential
benefits of the weight-based LoRA formulation.


