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ABSTRACT

Large Language Models (LLMs) have demonstrated strong performance in rank-
ing small candidate sets. However, when used without any task-specific train-
ing, they still fall short compared to well-trained conventional recommender mod-
els (CRMs) and fine-tuned LLM variants. We propose SCSRec (Semantic and
Collaborative Signal-enhanced Recommendation), a training-free framework that
bridges this performance gap through three key components: (1) an off-the-shelf
LLM that transforms item features and user behaviors into rich textual repre-
sentations; (2) a multi-view semantic retriever (user–user, item–item, user–item)
that assembles a diverse and relevant candidate pool; and (3) a heuristic ranking
prompt that incorporates CRM predictions, allowing the LLM to combine col-
laborative priors with semantic reasoning. Extensive experiments on three pub-
lic benchmarks and an industrial dataset show that SCSRec consistently outper-
forms both established prompting baselines and fine-tuned LLM recommenders,
all without any additional training overhead. Our results demonstrate that prompt
engineering, when enhanced with semantics and collaborative signals, provides
a competitive and cost-effective alternative to model fine-tuning for real-world
recommendation tasks.

1 INTRODUCTION

Large Language Models (LLMs) have recently attracted significant attention in the field of recom-
mender systems (RS). While LLMs excel at understanding and generating natural language, they
are inherently optimized for text generation rather than recommendation tasks. As a result, directly
prompting an LLM to produce recommendations is often: (i) computationally prohibitive, especially
for large-scale datasets; (ii) susceptible to hallucination (Huang et al., 2025), i.e., recommending
non-existent items; and (iii) constrained by the limited length of the prompt context.

To address these challenges, most contemporary studies (Ma et al., 2023; Fan, 2024; Wu et al., 2024;
Lin et al., 2025; Liu et al., 2025) adopt a two-stage architecture: (1) a matching or pre-ranking stage,
where a retriever model selects a subset of potentially relevant items, followed by (2) a ranking stage,
in which LLMs reorder these candidates to better fit user intent (Li et al., 2019; Covington et al.,
2016). The advanced semantic understanding and contextual reasoning capabilities of LLMs have
shown considerable promise in improving the accuracy of ranking stage (Hou et al., 2024).

However, LLMs inherently lack domain-specific collaborative knowledge, as their pre-training cor-
pora do not include user-item interaction data. Recent research has explored prompt engineering
techniques, such as in-context learning (ICL) and chain-of-thought (CoT), to guide LLMs in rec-
ommendation tasks, resulting in improvements over weak baselines (Yang et al., 2024; Yue et al.,
2025; Li et al., 2024). Nevertheless, empirical evidence indicates that these methods still fall short
of matching the performance of state-of-the-art conventional recommender models (CRMs) such as
SASRec (Kang & McAuley, 2018) on public recommendation benchmarks (Liu et al., 2023; Wang
& Lim, 2024; Hou et al., 2024; Lin et al., 2025). To address this performance gap, researchers have
explored fine-tuning strategies: Luo et al. (Luo et al., 2024) introduced RecRanker, which applies
instruction tuning to LLMs for diverse ranking tasks, while Bao et al. (Bao et al., 2023) proposed
TALLRec, employing parameter-efficient adaptation techniques such as LoRA (Hu et al., 2022)
for point-wise ranking. Although these fine-tuning approaches yield promising results (Luo et al.,
2024; Bao et al., 2023; Hu et al., 2022; Yang et al., 2023; Lai et al., 2024), they introduce significant
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Figure 1: Overview of the proposed SCSRec framework.

training overhead and typically necessitate periodic retraining after deployment to accommodate
evolving user preferences and newly introduced items. ously

In this paper, we propose SCSRec (Semantic and Collaborative Signal-enhanced Recommendation),
a training-free framework that augments the two-stage recommendation pipeline with semantics and
collaborative signals. As illustrated in Figure 1, SCSRec consists of three primary stages. For the in-
dexing stage, we leverage LLMs to generate comprehensive item profiles based on their pre-trained
knowledge and available item features. We then adaptively construct user profiles that distinguish
between short-term and long-term interests by analyzing temporal interactions. These textual pro-
files are mapped to dense vector representations using embedding models and stored in a vector
database. During the matching stage, we implement a multi-view retrieval strategy: user-user view
to retrieve items consumed by similar users, item-item view to find items related to recent interac-
tions, and user-item view to match items to the overall user profile. In the final ranking stage, we
employ a CRM to produce a preliminary ranked list with associated predicted scores, which serve as
collaborative signals to guide LLMs in reranking these candidates. This methodology harnesses both
the commonsense knowledge and contextual understanding capabilities of LLMs, while simultane-
ously incorporating collaborative information derived from user behaviors—all without requiring
LLM fine-tuning.

Experiments on three public benchmarks and one industrial dataset demonstrate that SCSRec
achieves competitive or superior performance compared to both state-of-the-art CRMs and exist-
ing LLM-based recommenders, validating the effectiveness of prompting paradigm for LLM-based
recommendation.

The main contributions of this work are as follows:

• We propose a training-free framework that seamlessly integrates LLM-based semantic
understanding with CRM-derived collaborative signals, eliminating fine-tuning require-
ments while maintaining adaptability to new users, items, and even domains.

• We introduce a multi-view semantic retrieval strategy that enhances candidate recall by
leveraging user-user, item-item, and user-item similarities. To further enhance user model-
ing, we employ adaptive user indexing to construct more expressive user profiles.

• We design a heuristic ranking prompt that explicitly incorporates CRM-predicted scores,
enabling the LLM to reason jointly over richer textual content and collaborative priors.

• We conduct extensive experiments demonstrating that SCSRec outperforms strong base-
lines on both public and industrial datasets.

2 RELATED WORK

Recent research has explored various approaches to adapt LLMs for recommendation tasks. To
tackle LLMs’ context limitation and the “Lost in the Middle” problem (Liu et al., 2024), researchers
employ pre-filtering modules to narrow down candidate items before leveraging LLMs for rank-
ing. Based on whether LLMs undergo parameter updates, these approaches can be categorized into
tuning and non-tuning paradigms.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 TUNING PARADIGM

To achieve superior performance when bridging the gap between LLMs’ content generation capabil-
ities and recommendation tasks, researchers have developed various parameter-tuning approaches.
GPT4Rec (Li et al., 2023) employs a fine-tuned GPT-2 model to generate queries from user inter-
action sequences, facilitating BM25-based item retrieval. LlamaRec (Yue et al., 2023) first utilizing
LRURec (Yue et al., 2024) to retrieve top-k recommendations, then applying an instruction-tuned
Llama2-7B to compute ranking scores via logit extraction for listwise ranking. InstructRec (Zhang
et al., 2025a) introduces a unified instruction format and leverages GPT-3.5 to generate millions
of instructional examples to train Flan-T5-XL, which subsequently reranks candidates identified by
the matching module during inference. RecRanker (Luo et al., 2024) develops a hybrid ranking
methodology using instruction-tuned LLMs that integrates pointwise, pairwise, and listwise ranking
approaches. LLaRA (Liao et al., 2024) designs an innovative curriculum prompt tuning scheme that
enables Llama2-7B to comprehend item representations for listwise ranking, strategically incorpo-
rating positive items with randomly sampled negative instances in candidate pools. TransRec (Lin
et al., 2024) proposes a sophisticated three-facets identifier for item representation and reconstructs
instruction data for LLM tuning, generating identifiers through beam search for candidate rerank-
ing. CoLLM (Zhang et al., 2025b) presents a hybrid encoding approach that integrates collaborative
information from traditional collaborative models with textual information from LLMs, utilizing
LoRA for parameter-efficient fine-tuning of Vicuna-7B specifically for recommendation prediction
tasks.

2.2 NON-TUNING PARADIGM

Other researchers have explored the zero-shot (without additional training) ranking capabilities of
LLMs. Dai et al. (Dai et al., 2023) conducted pioneering research that methodically evaluated Chat-
GPT across pointwise, pairwise, and listwise paradigms, showing that LLMs demonstrate superior
performance particularly in the latter two approaches. Liu et al. (Liu et al., 2023) employed GPT-
3.5-turbo for candidate ranking through sophisticated prompt engineering while utilizing BERT em-
beddings to map outputs to ground-truth items, concluding that exclusive reliance on ChatGPT for
sequential recommendation yields suboptimal performance. Wang et al. introduced NIR (Wang &
Lim, 2023) which implements user-based or item-based filtering for candidate generation, followed
by a three-step prompting strategy: capturing user preferences, selecting representative interactions,
and performing listwise ranking. Chat-REC (Gao et al., 2023) employs traditional recommender
systems for candidate generation, then utilizes ChatGPT for reranking based on user profiles and
queries. LLMRank (Hou et al., 2024) investigated how ground-truth item positioning affects ranking
performance, strategically combining content-based models (BM25, BERT) with interaction-based
models (BPR, GRU4Rec, SASRec) for candidate generation. LLMSRec-Syn (Wang & Lim, 2024)
constructs candidate pools by aggregating ground truth items with randomly selected items and ex-
plores similar users as demonstrations for ranking. Zhuang et al. (Zhuang et al., 2024) propose a
Setwise approach that improves zero-shot ranking efficiency while reducing token costs compared
to pairwise ranking. ToolRec (Zhao et al., 2024) fine-tunes attribute-oriented retrieval tools based on
pre-trained sequential models, leveraging LLM-determined key attributes for matching and ranking.

While the tuning paradigm offers competitive performance against CRMs compared to non-tuning
paradigm, it incurs substantial computational costs for parameter updates, which may present chal-
lenges in practical deployment. Moreover, current research has not thoroughly investigated the
performance degradation that may occur when fine-tuned LLM parameters become outdated over
time.

3 METHODOLOGY

The overall architecture of SCSRec is illustrated in Figure 1. In this section, we provide a detailed
exposition of the three principal stages, demonstrating how semantic knowledge integration and
traditional collaborative signals collectively enhance the performance of LLM-based recommender
systems.

3
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3.1 INDEX PROFILE

As depicted in stage 1 of Figure 1, the foundational step of our framework is profile indexing, where
we systematically represent discrete user and item features as rich textual profiles using LLMs.
These textual profiles are subsequently mapped into dense vector representations via embedding
models, enabling efficient retrieval in vector databases later.

Item Indexing We treat item profiles as objective entities, leveraging the extensive pre-training
of LLMs on large-scale, diverse corpora (e.g., movies, products, games). To fully exploit the la-
tent knowledge of LLMs, we design domain-specific prompts tailored for each domain, allowing
the model to interpret item metadata such as titles, release years, or product categories without fur-
ther fine-tuning. This approach enables zero-shot item profile generation that is both flexible and
generalizable across domains.

Formally, for an item i with metadata Mi, we generate a textual profile Ti via a prompt function
fprompt(·):

Ti = fprompt(Mi) (1)
The textual profile Ti is then encoded into a dense vector representation vi using an embedding
model g(·):

vi = g(Ti) ∈ Rd (2)

User Indexing Unlike items, user profiles are inherently subjective and predominately constructed
from historical user-item interactions. Previous studies (Wang & Lim, 2023; Gao et al., 2023; Hou
et al., 2024; Wang & Lim, 2024; Zhao et al., 2024) often represent user preferences using the latest
H interactions, forming an implicit short-term profile. Building on this, Liu et al. (Liu et al., 2025)
further aggregate such slices to approximate long-term preferences.

However, these approaches often neglect absolute temporal information, focusing mainly on interac-
tion sequences. Empirical evidence suggests that recent activities (e.g., purchases within the past 24
hours) are more predictive of current user intent than older actions. To address this, we propose an
adaptive user indexing strategy to explicitly capture short-term interests or long-term preferences.

Let Iu = [i1, i2, . . . , iN ] denote the chronological interaction history of user u, where each ij is an
interaction record ordered by time.

Short-term interests: If user u has at least one interaction within the past 7 days, i.e.,
Su = {ij | tj ≥ ttarget − 7 days} (3)

and |Su| > 0, we construct the short-term profile using the most recent 5 interactions (as identified
by Hou et al. (Hou et al., 2024) to be optimal) from Su:

Hshort
u = Top-5(Su) (4)

The textual profile and its embedding are then generated as:
Tu = fprompt(Hshort

u ) (5)

vu = g(Tu) ∈ Rd (6)

Long-term preferences: If |Su| = 0, indicating no recent activity, we then construct the long-term
user profile by iteratively aggregating over the entire interaction history Iu in chunks of size 10.
Specifically, we partition Iu into M = ⌈N/10⌉ consecutive chunks:

C(m)
u = [i10(m−1)+1, . . . , imin(10m,N)], m = 1, . . . ,M (7)

We initialize the user profile as None:
T (0)
u = None (8)

For each chunk m = 1 to M , we update the user profile iteratively:
T (m)
u = fprompt(T

(m−1)
u , C(m)

u ) (9)

v(m)
u = g(T (m)

u ) ∈ Rd (10)

The final long-term user profile is given by T
(M)
u and its embedding v

(M)
u .

This adaptive, iterative procedure allows LLM to flexibly compress and summarize user interaction
histories, yielding robust representations even for users with sparse or irregular activities.

4
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3.2 SEMANTIC RETRIEVAL

Existing studies (Yue et al., 2023; Gao et al., 2023; Luo et al., 2024; Hou et al., 2024) utilize CRMs
for candidate generation, which effectively leverage user-item interaction signals but insufficiently
address semantic relationships between users and items. Inspired by the Retrieval-Augmented Gen-
eration (RAG) (Lewis et al., 2020), we propose a multi-view retrieval which augments candidate
sets with semantically retrieved items, enhancing diversity and relevance.

As illustrated in stage 2 of Figure 1, SCSRec employs three complementary semantic retrieval views:

User–User View We identify the k most similar users to the target user u by computing the cosine
similarity between their embeddings:

Sim(u, u′) =
vu · vu′

∥vu∥∥vu′∥
(11)

For each similar user u′, we select up to r of their most recent interacted items (excluding those
already interacted with by u) to expand the candidate pool. Here, r is determined dynamically based
on user temporal activity:

r =

{
min (rmax, n7-day) if n7-day > 0

rmax otherwise
(12)

where rmax is a predefined maximum (e.g., 5), and n7-day denotes the number of interactions within
the past 7 days.

Item–Item View For the target user’s recent interaction history, we consider the most recent r
items, denoted as {i1, . . . , ir}, where r is dynamically set as described above. For each item ij , we
retrieve the k most similar items based on cosine similarity between item embeddings:

Sim(i, i′) =
vi · vi′

∥vi∥∥vi′∥
(13)

This view enriches the candidate set with items semantically close to the user’s most recent interests,
promoting timely and relevant recommendations.

User–Item View In addition to user-user and item-item matches, we further compute similarity
between the user’s profile embedding vu and all item embeddings vi, retrieving the top-k most
similar items:

Sim(u, i) =
vu · vi

∥vu∥∥vi∥
(14)

This view ensures that items highly aligned with the user’s overall profile are included in the candi-
date set.

The multi-view semantic retrieval process merges the results via Reciprocal Rank Fusion (RRF). The
overall computational complexity is O(kr), since the first two views each require at most k simi-
larity computations over r recent interactions, while the latter view introduces only O(k) additional
computations.

3.3 HEURISTIC RANKING

Recent findings by Hou et al. (Hou et al., 2024) reveal that the positional ordering of candidates
can significantly impact the zero-shot ranking capabilities of LLMs. While the common practice
is to simply pass the retrieval order to the LLM for re-ranking, this procedure discards the rich
collaborative information already captured by CRMs.

Motivated by Prophet (Shao et al., 2023), we further refine the ranking stage by explicitly incorporat-
ing CRM-predicted scores and the ordered candidate set to prompt LLM. This integration introduces
informative auxiliary signals that substantially improve the LLM ranking accuracy.

5
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Candidate Construction Given a user u, let C denote the semantically retrieved candidates and
T = CRM(u, k) denote the top-k items recalled by the CRM from the entire item corpus. The
unified candidate pool is then

Cu = C ∪ T . (15)

Incorporating Collaborative Signals A CRM trained for click-through rate (CTR) prediction
yield probability scores pu,i ∈ [0, 1] for each user-item pair (u, i), indicating the predicted likelihood
of user u interacting with item i:

pu,i = CRM(u, i) (16)

Each candidate item i ∈ Cu is assigned its corresponding predicted score pu,i. The scored candidate
set can thus be represented as:

Cscored
u = {(i, pu,i) | i ∈ Cu} , (17)

LLM-based Ranking To provide richer context, we segment each user’s most recent r interac-
tions into temporal bins (e.g., past 24h, 7d, 1M, earlier), denoted as Htemporal

u = {B(m)
u }Mm=1.

This allows the LLM to distinguish between recent and distant behaviors when reranking. Given
the scored candidate set Cscored

u and temporal history Htemporal
u , the LLM is prompted to generate a

ranked list πu:
πu = LLM

(
Htemporal

u , Cscored
u

)
. (18)

4 EXPERIMENT

In this section, we present a comprehensive set of experiments designed to address the following
research questions:

• RQ1: Does the proposed SCSRec outperform existing baseline models in terms of recom-
mendation performance?

• RQ2: How does varying the length of recent user interaction history (r) affect ranking
performance?

• RQ3: How does the choice of LLM impact the final performance of the proposed ap-
proach?

• RQ4: What is the effect of key components on the overall recommendation effectiveness?

4.1 SETTINGS

Datasets. We evaluate SCSRec on four datasets from different domains: Movielens-100k (Harper
& Konstan, 2015), Amazon Beauty and Digital Music (He & McAuley, 2016; McAuley et al.,
2015), and a real-world industrial dataset SAP Learning (LSC). For all datasets, we apply 20-core
filtering to retain active users. Detailed statistics are provided in Appendix B.1.

Metrics. We adopt standard metrics in recommender systems: Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG), both at cutoff k = 3, which balances efficiency and com-
parability with prior LLM-based recommendation work. Formal definitions are deferred to Ap-
pendix B.2.

Baseline Models. We compare SCSRec with three conventional recommenders (NCF (He et al.,
2017), LightGCN (He et al., 2020), SASRec (Kang & McAuley, 2018)) and two representative
LLM-based methods (P5 (Geng et al., 2022; Xu et al., 2024) and LLMRank (Hou et al., 2024)).
Model details and training configurations are summarized in Appendix B.3.

Implementation. We follow leave-one-out evaluation (Kang & McAuley, 2018; Hou et al., 2024)
with all-item ranking. For LLM inference, we fix randomness (temperature = 0, top p = 1, seed
= 2025) and use GPT-4o-mini with text-embedding-3-large. Other hyperparameters (e.g.,
history length r = 5) and training setups for P5 and LLMRank are described in Appendix B.4.
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4.2 MAIN RESULTS (RQ1)

Table 1 compares SCSRec with baselines across four datasets. Several key observations emerge.

First, SCSRec achieves consistent improvements over both base CRMs (NCF, LightGCN, SAS-
Rec) and prompting-based LLMRank. For example, SCSRecLightGCN attains the best HR@3 and
NDCG@3 on ML-100K, while SCSRecSASRec leads on Beauty, Music, and LSC. These gains high-
light the method’s effectiveness and generalizability across domains and model architectures.

Second, base CRMs generally outperform LLMRank. On ML-100K, for instance, NCF, LightGCN,
and SASRec all exceed their LLMRank counterparts, reflecting prior findings that prompting-based
re-ranking lags behind well-trained CRMs.

Notably, the performance of prompting based zero-shot recommendation approaches is highly con-
tingent on the strength of the underlying CRM. When paired with a powerful base model, SCSRec
consistently outperforms the fine-tuning based OpenP5 across most datasets. Moreover, in certain
cases, even LLMRank surpasses OpenP5 (e.g., on ML-100K and Music), indicating that prompting-
based LLM-RS can be competitive with, and even superior to, fine-tuning-based solutions when sup-
ported by a robust CRM. These results suggest that the prompting based recommendation paradigm
is also worthy of in-depth investigation, despite approaches such as LLM fine-tuning.

Table 1: Performance comparison of different methods on four datasets. Bold indicates the best
performance and underline indicates the second-best.

Method ML-100K Beauty Music LSC

HR@3 NDCG@3 HR@3 NDCG@3 HR@3 NDCG@3 HR@3 NDCG@3

OpenP5 0.0467 0.0343 0.0400 0.0307 0.0208 0.0150 0.1153 0.0901

NCF 0.0435 0.0336 0.0178 0.0147 0.0208 0.0165 0.0438 0.0325
LLMRankNCF 0.0392 0.0291 0.0133 0.0108 0.0243 0.0157 0.0570 0.0452
SCSRecNCF 0.0562 0.0425 0.0555 0.0391 0.0243 0.0191 0.0879 0.0666

LightGCN 0.0838 0.0661 0.0200 0.0121 0.0312 0.0205 0.1098 0.0824
LLMRankLightGCN 0.0530 0.0383 0.0100 0.0064 0.0278 0.0202 0.0922 0.0675
SCSRecLightGCN 0.1007 0.0789 0.0555 0.0391 0.0365 0.0250 0.1338 0.1031

SASRec 0.0785 0.0599 0.0466 0.0368 0.0451 0.0354 0.1603 0.1271
LLMRankSASRec 0.0583 0.0407 0.0411 0.0320 0.0330 0.0274 0.0903 0.0668
SCSRecSASRec 0.0848 0.0651 0.0777 0.0613 0.0521 0.0409 0.1730 0.1369

4.3 IMPACT OF RECENT INTERACTION HISTORY LENGTH (RQ2)

As mentioned in previous experiment settings, we set the recent interaction history length r to 5
which follows established findings from prior research (Hou et al., 2024). However, the choice
of history length may significantly influence the performance of SCSRec, as it not only impacts
the semantically retrieved candidate set but also shapes how the LLM interprets user behavior. To
explore this aspect, we conduct a series of experiments varying the recent interaction history length
to assess its impact on the effectiveness of SCSRec. Specifically, we evaluate SCSRec with different
history lengths (e.g., 5, 10, 15, 20) on benchmark datasets, the experimental results can be found in
Figure 2.

For ML-100K and Beauty, performance consistently declines as r increases beyond 5. For instance,
on ML-100K with NCF, HR@3 decreases from 0.0562 at r = 5 to 0.0477 at r = 20, while on
Beauty the drop exceeds 37%. These results suggest that longer histories may introduce noise and
dilute recent preferences in sparse domains.

In contrast, Music and LSC show stable performance across different r values. For example, NCF
on LSC remains nearly unchanged (HR@3: 0.0879 at r = 5 vs. 0.0876 at r = 20), with similar
stability observed for other models. This indicates that in denser or semantically richer domains,
SCSRec is less sensitive to history length.
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Figure 2: Absolute improvements for different r over base CRMs on four datasets.

4.4 EFFECT OF LARGE LANGUAGE MODEL SELECTION (RQ3)

To examine whether the choice of backbone LLM affects SCSRec, we evaluated six representative
models during the ranking stage: two commercial LLMs (GPT-4o-mini and Qwen-turbo) and four
open-source models (Llama-3.1-8B and Qwen2.5 series: 3B, 7B, 14B). Figure 3 reports HR@3
improvements across four datasets (ML-100K, Beauty, Music, and LSC) with three baseline CRMs
(NCF, LightGCN, SASRec). Several key observations emerge from our analysis:

Commercial LLMs perform best overall. GPT-4o-mini achieves consistently strong results, while
Qwen-turbo is highly competitive and occasionally surpasses GPT-4o-mini, indicating domain-
specific advantages.

Open-source LLMs improve performance but remain less stable. Models such as Llama-3.1-8B
and Qwen2.5-7B generally enhance base CRMs, though their gains are smaller and more variable.
In some cases, they match or exceed commercial models, but performance can also degrade relative
to baselines.

Scaling effects are evident. Among Qwen2.5 series, those with more parameters generally achieve
superior performance. Notably, Qwen2.5-3B sometimes performs worse than the base models, high-
lighting that scale is a critical factor for effectiveness in recommendation tasks.

NCF LightGCN SASRec

0

1

2
·10−2

(a) ML-100K Dataset

NCF LightGCN SASRec
0

1

2

3

4
·10−2

(b) Beauty Dataset

NCF LightGCN SASRec

0

1

2
·10−2

(c) Music Dataset

NCF LightGCN SASRec

0

2

4

·10−2

(d) LSC Dataset

GPT-4o-mini Qwen-turbo Qwen2.5:3b Qwen2.5:7b Qwen2.5:14b Llama3.1:8b

Figure 3: HR@3 absolute improvements for different LLMs over base models among four datasets.
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4.5 ABLATION STUDY (RQ4)

We conducted ablation experiments on SCSRec using the best-performing base CRM for each
dataset (LightGCN for ML-100K; SASRec for Beauty, Music, and LSC). Three variants were con-
sidered: (1) w/o SR, which removes the semantic retrieval module and relies solely on candidate
items generated by the CRM; (2) w/o CS, which omits the collaborative signals, directly feeding
candidates into the LLM without scoring; and (3) w/o SR+CS, which eliminates both SR and CS
modules, aligning with the setup of most prior prompting-based studies. Results are summarized in
Table 2.

Semantic Retrieval (SR) SR notably improves performance, particularly on datasets with rich
semantics or sparse interactions. Its removal causes a large drop on Beauty, moderate drops on
ML-100K and LSC, and only minor decreases on Music, indicating its impact depends on dataset
characteristics.

Collaborative Signal (CS) The collaborative signal, derived from CRM scores, is vital for guiding
LLM reranking, with its removal causing notable drops on LSC, ML-100K, and Music. In Beauty,
however, omitting CS slightly improves results, suggesting semantics dominate there. Overall, CS
is generally essential except in strongly semantic domains.

Combination of SR and CS The variant without both SR and CS modules (w/o SR+CS) shows
the lowest or second-lowest performance across all datasets. This highlights the complementary
nature of semantic retrieval and collaborative signals: integrating both is essential for maximizing
recommendation accuracy in diverse scenarios.

Table 2: Ablation Study Results across four datasets with their best-performing base CRM.

Method
ML-100K Beauty Music LSC

HR@3 NDCG@3 HR@3 NDCG@3 HR@3 NDCG@3 HR@3 NDCG@3

SCSRec 0.1007 0.0789 0.0777 0.0613 0.0521 0.0409 0.1730 0.1369
w/o SR 0.0930 0.0752 0.0451 0.0373 0.0515 0.0391 0.1638 0.1317
w/o CS 0.0870 0.0719 0.0829 0.0694 0.0498 0.0391 0.1350 0.1100
w/o SR+CS 0.0855 0.0720 0.0440 0.0363 0.0440 0.0352 0.1517 0.1232

5 CONCLUSION

In this paper, we proposed SCSRec, a prompt-based framework that unifies the semantic reasoning
abilities of large language models (LLMs) with the collaborative knowledge of conventional recom-
mender models (CRMs). By incorporating semantic representations and integrating collaborative
signals into the prompting process, SCSRec enhances candidate diversity and overall recommenda-
tion quality. Experiments show that SCSRec delivers competitive performance without parameter
tuning of the LLM, highlighting the practicality of prompt-based approaches for modern recom-
mender systems and motivating further research in this direction.

DISCLOSURE OF LLM USAGE

We used ChatGPT as an assistive tool during this research. The LLM was employed for the fol-
lowing purposes: (1) refining the clarity and conciseness of paper writing (e.g., grammar, style, and
wording suggestions); (2) assisting in LaTeX formatting and visualization adjustments.

The LLM was not used for research ideation, experimental design, or generating results. All LLM-
generated content was carefully reviewed and verified by the authors.
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A SUPPLEMENTARY MATERIALS

A.1 CODE REPOSITORY

To facilitate reproducibility and further research, we provide the source code associated with this
paper at the following repository:

https://anonymous.4open.science/r/SCSRec-5176/README.md

The repository contains:

• Implementation of our proposed SCSRec framework.
• Scripts for preprocessing datasets and running experiments.
• Instructions for reproducing the results reported in the paper.
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B EXPERIMENTAL DETAILS

B.1 DATASETS

We evaluate SCSRec on four datasets:

• Movielens-100k (Harper & Konstan, 2015): contains users who each provided at least 20
ratings.

• Amazon Beauty and Amazon Digital Music (He & McAuley, 2016; McAuley et al.,
2015): we apply 20-core filtering to retain users with at least 20 interactions, ensuring
consistency with Movielens-100k.

• SAP Learning (LSC): a real-world industrial dataset of user learning activities between
2023/01/01 and 2025/01/01. We apply the same 20-core filtering, retaining only users who
have initiated at least 20 distinct courses.

The detailed statistics of all datasets are listed in Table 3.

Table 3: Dataset Statistics
Dataset User Item Interactions Sparsity

ML-100K 943 1,682 100,000 93.70%
Beauty 901 7,555 29,731 99.56%
Music 576 4,507 25,120 99.03%
LSC 3,243 1,073 98,697 97.16%

B.2 EVALUATION METRICS

We adopt two widely used metrics:

• Hit Ratio (HR@k): measures whether the ground-truth item appears in the top-k recom-
mendations.

• NDCG@k: assigns higher rewards when the ground-truth item appears closer to the top of
the ranking.

Formally, for a test instance with ground-truth item i∗, HR@k is defined as:
HR@k = I[i∗ ∈ Top-k],

and NDCG@k is defined as:

NDCG@k =
1

log2(p+ 1)
if i∗ is ranked at position p ≤ k, 0 otherwise.

We set k = 3 throughout all experiments.

B.3 BASELINE MODELS

We compare SCSRec against both conventional and LLM-based baselines:

• NCF (He et al., 2017): Neural Collaborative Filtering, which leverages a multi-layer per-
ceptron to model user-item interactions.

• LightGCN (He et al., 2020): A simplified graph convolutional network that learns user
and item embeddings via linear propagation on the interaction graph.

• SASRec (Kang & McAuley, 2018): A sequential recommender based on a unidirectional
Transformer to capture user behavior patterns.

• P5 (Geng et al., 2022; Xu et al., 2024): A fine-tuning paradigm for LLM-based recom-
mendation, where a pretrained language model is adapted to the recommendation domain
through supervised training.

• LLMRank (Hou et al., 2024): A prompt-based recommendation method leveraging zero-
shot ranking capabilities of LLMs to re-rank candidates retrieved by CRMs.
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B.4 IMPLEMENTATION DETAILS

We follow established protocols (Kang & McAuley, 2018; Hou et al., 2022; 2024; Liu et al., 2025):

• Evaluation protocol: leave-one-out strategy, where the most recent interaction is used for
testing and the penultimate for validation. Recommendations are generated from the full
set of items unseen by the user (all-item evaluation).

• LLM settings: GPT-4o-mini (2024-07-18) as the primary LLM, with
text-embedding-3-large for embeddings. Randomness eliminated by setting
temperature = 0, top p = 1.0, and random seed = 2025.

• Hyperparameters: user history length r = 5 for all datasets, following prior studies (Hou
et al., 2024).

• P5 training: implemented via OpenP5 (Xu et al., 2024) with T5 backbone, sequential task
formulation, sequential item indexing, and seen template setting (seen:0). Other parameters
follow OpenP5 defaults.

• LLMRank: tested with three CRMs (NCF, LightGCN, SASRec) as retrieval models. In the
ranking stage, GPT-4o-mini is used with a recency-focused prompting strategy as described
in the original paper.
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