Enhancing Protein Function Prediction: Integrating
Pretraining and Fine-Tuning within Geometric-Aware
Graph Neural Networks

Chenxi Hu Fei Long
Tsinghua University Tsinghua University
2024310688 2024316091
hucx24@mails.tsinghua.edu.cn longf240mails.tsinghua.edu.cn

Renrui Tian
Tsinghua University
2024310636
trr24@mails.tsinghua.edu.cn

Abstract

Proteins are essential to biological processes, and accurate function prediction is
vital for advancing molecular biology and therapeutic development. Traditional
methods often face challenges with low-similarity proteins and novel families,
while recent deep learning approaches leveraging sequence and structural data have
shown promise. To address limitations in existing methods, we propose a geometric-
aware graph neural network (GNN) framework that explicitly models protein
structures through node and edge features, incorporating radial basis functions
and Fourier encoding to capture spatial relationships. Combined with a self-
supervised pretraining task on large-scale, unlabeled structural datasets, our method
demonstrates competitive performance across benchmarks, suggesting its potential
to enhance protein function prediction and contribute to further progress in the
field.

1 Introduction

Proteins are fundamental biomolecules responsible for a wide array of essential tasks in living
organisms, ranging from catalyzing biochemical reactions to maintaining cellular structure. Their
unique amino acid sequences determine their three-dimensional structures, which in turn dictate their
biological functions. Protein functions are remarkably diverse, encompassing enzymatic activity,
structural support, molecular transport, cell signaling, and immune response. Accurate prediction of
protein function is crucial not only for advancing our understanding of molecular biology but also for
driving innovations in drug discovery and disease treatment [[1].

The advent of high-throughput sequencing technologies has led to an exponential increase in the num-
ber of protein sequences in databases. However, the majority of these sequences remain unannotated
due to the high costs and labor-intensive nature of experimental methods. This challenge has created
a pressing need for efficient and accurate computational approaches for protein function prediction.
Traditional methods, such as sequence homology alignment, transfer functional annotations from
known to unknown proteins using tools like BLAST [2], Position-Specific Scoring Matrices (PSSM)
[3]], and Multiple Sequence Alignment [4]. While effective for proteins with high sequence similarity,
these methods struggle to capture functional relationships for proteins with low sequence identity or
novel families, limiting their applicability across diverse proteomes.
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Recent advances in deep learning have ushered in a new era of protein function prediction methods,
which can be broadly categorized into sequence-based and structure-based approaches. Sequence-
based methods leverage 1D convolutional neural networks (CNNs) or Transformer architectures
to generate task-specific representations from protein sequences [5, 6l]. Later developments have
incorporated homology information alongside sequence data, yielding significant improvements [7, 8]].
Meanwhile, breakthroughs in protein structure prediction, such as AlphaFold2 [9]] and RoseTTAFold
[1O], have enabled researchers to obtain highly accurate three-dimensional structures from protein
sequences. These advancements have paved the way for structure-based methods, which often
employ graph neural networks (GNNs) to extract features from protein structures [[11} 12} [13]]. In
these approaches, residues are represented as nodes, and signals are propagated across geometric
neighborhoods via message passing, with graph pooling layers aggregating the information into
protein-level representations for classification.

Despite these developments, several limitations in GNN-based protein function prediction remain
unresolved:

1. Existing methods, such as HEAL [13], primarily focus on learning node information and
updating it based on simple connectivity. However, they often overlook crucial factors like
distance and orientation, which are essential for accurately modeling protein structures [9].
This simplistic treatment of edges limits the expressiveness of the learned representations.

2. The emergence of advanced structural prediction tools like AlphaFold [9,|14]] has introduced
a wealth of novel protein structures that could significantly enhance function prediction.
However, many of these structures lack labels due to their sequence novelty and low
similarity to known proteins. While current methods like HEAL attempt to transfer labels
via sequence homology alignment, such approaches fail to fully utilize the large volume of
unlabeled and novel structures, posing challenges for accurate function prediction.

To address these challenges, we propose a novel framework for protein function prediction. Inspired
by the application of GNNs in materials science [15}[16] and building on HEAL [13]], we developed
a geometric-aware GNN that explicitly models protein structures through both nodes and edges.
This model incorporates radial basis functions (RBFs) [[17] and Fourier feature encoding [18] to
account for the varying distances and orientations of edges. By sequentially updating edge and node
information during message passing, our approach enables the GNN to capture the intricate structural
properties of proteins more effectively.

Additionally, inspired by methods like GearNet-Edge [19], we designed a self-supervised pretraining
task to further enhance the geometric-aware GNN. This pretraining task allows the model to learn
generalizable representations from large-scale, unlabeled protein structural datasets, equipping it with
universal knowledge about protein structures that can be leveraged for downstream tasks, including
function prediction.

We evaluated our framework against a range of baseline methods, including BLAST [2]], DeepGO [3]],
DeepFRI [[L1], DeepGO-Plus [7], DeepGO-SE [20]], and HEAL [13]]. On most evaluation metrics,
our method consistently outperformed state-of-the-art approaches. This highlights the effectiveness
of explicitly modeling protein structures and leveraging large-scale structural datasets for pretraining
in improving protein function prediction accuracy.

2 Problem Definition

Protein. Proteins are intricate macromolecules composed of sequences of amino acid residues that
fold into unique three-dimensional structures through various non-covalent interactions, such as
hydrogen bonds, hydrophobic interactions, and van der Waals forces. The primary structure of a
protein is determined by its amino acid sequence, with each amino acid possessing distinct chemical
properties that influence the protein’s final conformation. This sequence can be represented as
S = [s1, 82,...,Sn], where each s; is an integer from the set 0,1, ..., 19, corresponding to one
of the 20 standard amino acids. The three-dimensional structure, which plays a crucial role in
determining the protein’s function, is denoted as X = [x1, 2, ..., Zy,]. Each x; € RE*3 represents
the 3D coordinates of the atoms within the ¢-th amino acid residue, where L is the number of atoms
in that residue. Both the sequence and structure are essential for characterizing protein function, as
they directly influence how the protein performs its specific biological roles within the cell.



Protein Function. Various standards exist for classifying protein functions, including the Gene
Ontology (GO) [21], Enzyme Commission (EC) [22f], Kyoto Encyclopedia of Genes and Genomes
(KEGQG) [23]], and Pfam [24]]. In this work, we adopt the GO database to describe protein functions,
as it is one of the most widely used and successful ontologies in biology [21]. GO annotations classify
protein functions into three main categories: Molecular Function (MF), Biological Process (BP),
and Cellular Component (CC). Within each category, GO employs a Directed Acyclic Graph (DAG)
structure to represent the hierarchical relationships between protein functions. Terms within the DAG
are connected through “is-a” or “part-of” relationships, linking specific, lower-level terms to broader,
higher-level categories. This structure effectively represents protein functions in a hierarchical manner.
Notably, when a protein is assigned a specific GO term, it is automatically associated with all its
ancestor terms, ensuring comprehensive and consistent functional annotation.

Protein Function Prediction. Protein function prediction is commonly formulated as a classification
problem, where the objective is to determine the functional annotations of a protein based on its
sequence S and three-dimensional structure X'.

3 Methodology

3.1 Overview
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Figure 1: Overview of our method

Our method overview is illustrated in Figure [} which presents a neural network framework for
protein function prediction by integrating sequence and structural information. Protein sequences
are processed using pre-trained models (ESM-1b [25]] and ESM-C [26]]) to generate node features,
while geometric encoders (distance, orientation, relative position, and amino acid pair encoders)
encode protein structures to produce edge features. These features are input to a Geometric-Aware
GNN, which iteratively updates them using gated MLPs and batch normalization (details in Section
[3.2). The updated graph features are pooled and passed through an MLP for downstream predictions,
supervised by a CrossEntropy loss. To enhance representation learning, a contrastive learning task
with InfoNCE loss is applied by introducing noise to the graph features (details in Section [3.3).

3.2 Geometric-Aware Graph Neural Network

To more effectively capture the structural properties of proteins during message passing, we propose
a geometric-aware graph neural network (GNN) that incorporates both node and edge features.



Graph Featurizer The graph features for protein structures consist of nodes representing individual
amino acid residues, and edges capturing interactions between residues within a cutoff distance (i.e.,
1nm).

For node features, we utilize pre-trained models ESM-1b[25]] and ESM-C[26], which encode protein
sequence information. ESM-1b is a deep learning model developed for protein sequence analysis,
trained on a large dataset of protein sequences using a transformer-based architecture. It learns rich
feature representations that capture both local and global sequence patterns, which are critical for
understanding protein structure and function. ESM-C is an enhanced version of ESM-1b that scales
up both the data and training compute. These models generate embeddings that capture intricate
sequence-level relationships and contribute to a deeper understanding of the protein’s structural and
functional properties.

For edge features, we consider four key attributes: sequence distance, spatial distance, orientation
angle, and amino acid pair type. Sequence distance and amino acid pair type are encoded using an
embedding layer, transforming categorical features into continuous representations. Spatial distance
is modeled using a Gaussian basis function with a specified maximum radius and a set number of
basis functions, enabling the capture of spatial proximity and its influence on residue interactions.
Orientation angles, which represent the relative rotation between residue pairs in three-dimensional
space, are encoded with a sinusoidal function, using Fourier feature encoding to map angular values
into a higher-dimensional space.

Message Passing The message passing mechanism updates both node and edge features at each layer.
For the edge feature update, the node features from both ends of the edge, together with the current
edge feature, are concatenated and passed through a GatedMLP[27]]. This is followed by a weighted
update, where a learned weight is applied to the edge features, guided by an initial edge feature, eg.
The formula for updating the edge features is as follows:

€; = €; + GatedMLPcge ([hy,, hy,, €;]) - Weqge (eii“n)
Here, e; represents the current edge feature for edge ¢, and h,,, and h,, are the node features of the
two nodes, u; and v;, connected by edge 7. The multi-layer perceptron GatedMLP,qe. processes the
concatenated node and edge features, and the initial edge feature e™* guides the update with a learned
weight Wegge.

Similarly, node features are updated by aggregating the node features from neighboring nodes, along
with the edge features. The aggregated features are passed through a separate GatedMLP for nodes,
and the updated node features are aggregated using a scatter operation, ensuring that information
from all neighbors is properly integrated. The formula for updating the node features is as follows:

h), =h, + Z GatedMLP,o4. ([hy, by, €;]) - Wioge (€I™)

By directly integrating geometric information into the GNN, our approach captures the complex
structural relationships within proteins, significantly enhancing the prediction of protein functions
based on both sequence and structure.

3.3 Contrastive Learning

Following HEAL[13], we apply graph contrastive learning to regularize and improve the quality of
graph representations in our model. By adding random noise to both the node and edge features in the
latent space, we generate multiple augmented views of the same protein graph, ensuring that crucial
residues and interactions are retained. This approach enables us to introduce diverse yet meaningful
perspectives of the graph without losing essential structural information.

To achieve this, we perturb the node and edge features of each protein graph and aim to maximize the
similarity between the graph-level representations of two augmented views of the same graph, while
minimizing their similarity to representations from other graphs. We optimize this objective using the
InfoNCE loss function[28]], which encourages the model to learn discriminative graph representations.
The InfoNCE loss is formally defined as:



M exp(sim(z;, Z;)/T)

= N exp(sim(zi, %) /7)

1
LinfoNCE = i

Here, sim(x,y) denotes the cosine similarity between two graph features x and y, and 7 is a
temperature parameter that controls the sharpness of the softmax function, typically set to 0.5 as
recommended in prior work[29].

3.4 Pretraining and Fine-Tuning Framework

To bolster the ability of Geometric-Aware GNNs to capture protein structures and provide more robust
representations, we employ a large-scale pre-training dataset to conduct self-supervised pre-training
on our GNNs. This approach allows our model to learn intricate patterns and features from the data
without the need for manual labeling, which is a significant step towards enhancing the model’s
capacity to understand and predict complex protein structures.

The pre-training task is inspired by the Residue Type Prediction task in GearNet[19]], which adopts
a training strategy akin to masked language models[30]]. Specifically, we introduce a masking
mechanism to the dataset that has been pre-processed by ESM-1b and ESM-C. This mechanism
obscures the original types of amino acid sequences and their corresponding node features in the
feature sequence. Subsequently, we utilize our Geometric-Aware GNN coupled with a MLP to output
logits for the masked positions, predicting the amino acid types at these locations. To elevate the
difficulty of the pre-training task, we opt to mask 70% of the data, challenging the model to make
predictions based on the limited remaining visible information.

3.5 Model Training

During the pre-training phase, we train our model for 50,000 iterations on the pre-training dataset
with a learning rate of 1 x 10~%. The entire training process is conducted in parallel across 8
NVIDIA A100 GPUs to ensure computational efficiency and expedite the training speed. Through
this pre-training approach, our model is able to learn deeper protein structural features, laying a solid
foundation for subsequent downstream tasks.

For both training from scratch and fine-tuning tasks, we utilize the Adam optimizer[31] with a
learning rate of 1 x 10~* and a batch size of 32 to train our Geometric-aware GNN. All models
are implemented using PyTorch and the PyTorch Geometric library[32, 33]]. The experiments are
conducted on a single NVIDIA A100 GPU with 80 GB of memory.

4 Experiments

4.1 Datasets

For pre-training, we utilized a subset of the AlphaFold protein structure database [9], which consists
of 400,000 proteome-wide predictions generated by AlphaFold2. For model training, we selected
a subset of the dataset employed by HEAL [13], containing 36,404 protein structures from the
Protein Data Bank (PDB). This subset includes representative PDB chains with at least one functional
annotation and high-resolution structures. The dataset was divided into training, validation, and
test sets, with an 8:1:1 ratio. Protein graphs were constructed for each sequence, with functional
annotations derived from SIFTS [34]] and UniProtKB [35]]. Each sequence was annotated with 489
molecular function (MF), 1,943 biological process (BP), and 320 cellular component (CC) terms.
The sequences in the test set were grouped based on sequence homology, and experiments were
conducted at a sequence identity threshold of 95%.

4.2 Baselines

We compared our approach with several baseline methods, including Blast [36]], DeepGO [3],
DeepFRI [11], DeepGO-SE [20], and HEAL [13]. We replicated the experimental setup used in
the HEAL study, while reusing the evaluation results of the other baseline methods as reported in
TAWEN [37].



4.3 Metrics

To evaluate the performance of our method, we employed AUPR (Area Under the Precision-Recall
Curve) [38]]. AUPR measures the area under the precision-recall curve, reflecting the model’s
performance across varying prediction thresholds. Higher AUPR values indicate better overall
performance, as the metric accounts for both precision and recall, particularly in imbalanced datasets.

4.4 Results

Method MF BP CC
BLAST 0.136 0.067 0.096
DeepGO 0.391 0.189 0.258
DeepFRI 0.495 0.265 0.274
DeepGO-SE 0.495 0.233 0.423
HEAL 0.604 0.296 0.401
GACNN(scratch) 0.615 0.309 0.414
GACNN(pretrained) 0.621 0.314 0.415

Table 1: Comparison of different methods in terms of AUPR.

We evaluate the performance of our model on three gene ontology domains (MF, BP, CC) individually.
As shown in Table[T] our Geometric-Aware GNN (GAGNN) achieves AUPR scores of 0.621, 0.314,
and 0.415 for the MF, BP, and CC tasks, respectively. GAGNN outperforms BLAST, DeepGO,
DeepFRI, and HEAL in all three domains, and achieves comparable results to DeepGO-SE on the
CC task. These results highlight our method’s ability to effectively capture the complex structural
features of proteins, leading to a noticeable improvement in protein function prediction across various
gene ontology domains.

5 Conclusion

Accurate protein function prediction is critical for understanding molecular biology and driving
innovations in drug discovery. To address challenges posed by the abundance of unannotated protein
sequences and structures, we propose a geometric-aware GNN framework that explicitly models
both nodes and edges in protein structures. By incorporating edge-to-edge interactions alongside
traditional node and edge modeling, the framework captures crucial geometric properties such as
distances and orientations using RBFs and Fourier feature encoding. Furthermore, we introduce
a pretraining strategy, which is a self-supervised task that leverages large-scale unlabeled protein
datasets to learn universal structural representations. These enhancements enable our model to better
generalize across diverse proteins and improve function prediction accuracy. Looking ahead, this
framework provides a foundation for more robust protein modeling. Future efforts may explore
integrating additional biochemical properties and refining pretraining strategies to further enhance its
predictive power.
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