
Under review as a conference paper at ICLR 2024

GRAPHECL: TOWARDS EFFICIENT CONTRASTIVE
LEARNING FOR GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the inherent label scarcity, learning useful representations on graphs with
no supervision is of great benefit. Yet, existing graph self-supervised learning
methods overlook the scalability challenge and fail to conduct fast inference of
representations in latency-constrained applications due to the intensive message
passing of graph neural networks. In this paper, we present GraphECL, a simple
and efficient contrastive learning paradigm for graphs. To achieve inference acceler-
ation, GraphECL does not rely on graph augmentations but introduces cross-model
contrastive learning, where positive samples are obtained through MLP and GNN
representations from the central node and its neighbors. We provide theoretical anal-
ysis on the design of this cross-model framework and discuss why our MLP can still
capture structure information and enjoys better downstream performance as GNN.
Extensive experiments on common real-world tasks verify the superior performance
of GraphECL compared to state-of-the-art methods, highlighting its intriguing prop-
erties, including better inference efficiency and generalization to both homophilous
and heterophilous graphs. On large-scale datasets such as Snap-patents, the MLP
learned by GraphECL is 286.82x faster than GCL methods with the same number
of GNN layers. Code and data are available at: https://github.com/GraphECL.

1 INTRODUCTION

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Inference Time (ms)

72

74

76

78

80

82

Ac
cu

ra
cy

 (%
)

CCA-SSG

GCA
SUGRL

BGRL

DGI

CCA-SSG

GCA

SUGRL

BGRL

DGI

Graph-MLP

Ours

MLP
GNN

Figure 1: Inference latency v.s Accuracy. All
methods are trained on Pubmed. For GCL base-
lines, we test them on both MLP and GNN back-
bones. We can observe that current SOTA meth-
ods require GNN as the encoder to achieve good
performance, which is computation-intensive dur-
ing inference. Our GraphECL is 20× faster than
SOTA methods with even higher accuracy.

Representation learning on graphs has been at the cen-
ter of various real-world applications, such as drug dis-
covery (Bongini et al., 2021), social analysis (Sankar
et al., 2021) and anomaly detection (Zhao et al., 2021).
In recent years, graph neural networks (GNNs) (Hamil-
ton et al., 2017a; Kipf & Welling, 2017; Velickovic
et al., 2018) have shown great power in node represen-
tation learning, and achieved remarkable performance
on numerous node-related tasks. While learning repre-
sentations on graphs is important, labeling graph data
is challenging and resource intensive especially for
those requiring domain knowledge, such as medicine
and chemistry (Zitnik et al., 2018; Hu et al., 2020).

Fortunately, with the large amount of unlabeled graph
data, self-supervised learning have shown promising
results in representation learning without label infor-
mation. Recently, graph contrastive learning (GCL),
a popular self-supervised learning approach, is intro-
duced to graph data due to the lack of task-specific la-
bels (Veličković et al., 2018; Zhu et al., 2021; Thakoor
et al., 2021; Zhang et al., 2021a). GCL has achieved
competitive (or even better) generalization performance on many graph benchmarks compared to
counterparts trained with ground-truth labels (Zhu et al., 2021; Thakoor et al., 2021).

Yet, it is challenging to scale GCL methods to large-scale applications which are constrained by
latency and require fast inference, since the message passing of the GNN encoder involves fetching

1

https://github.com/GraphECL

Under review as a conference paper at ICLR 2024

topology and features from numerous neighboring nodes to perform inference on a target node, which
is time-consuming and computation-intensive. In particular, we observe that utilizing a GNN encoder
is the core recipe for existing GCL methods to achieve notable performance, as illustrated in Figure 1.
As a result, the stronger performance of current GCL methods often comes at the cost of increased
inference scalability. Nevertheless, less attention has been paid to designing GCL algorithms that
have strong inference scalability, although it is important especially for the practical inductive setting
where we need to conduct fast inference of representations for unseen test nodes.

To tackle the inference latency of GNN, recently, many efforts (Zheng et al., 2021; Zhang et al.,
2021b; Tian et al., 2022; Wu et al., 2023) have been made on developing knowledge distillation
(KD) (Hinton et al., 2015) to learn computationally-efficient student MLP by mimicking the logits
outputted by the teacher GNN. However, these methods require task-specific labels to firstly train a
good teacher GNN, making it infeasible to be adopted for GCL in practice. Prior works have (to be
best of our knowledge) not addressed the scalability problem for GCL, which is crucial for real-time
deployment of real-world graph applications. Consequently, the fundamental question that relates
to the applicability of GCL remains unanswered, i.e., How to design a graph contrastive learning
algorithm such that strong inference scalability and generalization are simultaneously achieved?

To answer this question, we present GraphECL, a simple, effective, and efficient contrastive regime
for node representation learning. Specifically, to capture the neighborhood structure of nodes and
maintain strong inference scalability, GraphECL introduces a cross-model contrastive architecture in
which positive pairs consist of cross-model pairs (e.g., MLP-GNN) directly derived from neighborhood
relations. These positive samples are obtained from the MLP and GNN representations of central nodes
and their neighbors, respectively. This simple architecture allows GraphECL to benefit from graph
context-awareness during training via GNN while having no graph dependency in inference through
the MLP. Based on this cross-model architecture, we further propose a generalized contrastive loss,
which facilitates the learning of a significantly faster MLP encoder, allowing it to effectively capture
graph structural information and achieve impressive performance on downstream tasks.

To support practical evaluation, we benchmark GraphECL against state-of-the-art (SOTA) GCL
schemes on various diverse 11 datasets. Rigorous experiments confirm the effectiveness and efficiency
of GraphECL in learning structural information in graphs. Notably, GraphECL demonstrates strong
generalization capabilities across diverse graph types, encompassing both homophilic and heterophilic
graphs. GraphECL achieves significantly faster inference speeds than state-of-the-art GCL methods.

Our major contributions are: (i) We identify the limitation of current GCL methods and uncover
that they are not effective or efficient. Thus, we study a novel problem of achieving satisfactory
efficiency and accuracy simultaneously in GCL. (ii) We design GraphECL, a simple framework that
can effectively learn graph structural information and conduct fast inference with a simple MLP. (iii)
We theoretically characterize how GraphECL gradually captures structural information with MLP and
prove that GraphECL can achieve provably generalization performance in downstream tasks. (iv) We
demonstrate through extensive experiments that GraphECL can achieve ultra fast inference speed and
superior performance at the same time. Our simple GraphECL has great potential to serve as a strong
baseline and inspire followup works in designing efficient contrastive learning algorithms on graphs.

2 RELATED WORK

Graph Contrastive Learning. GCL has gained popularity in representation learning, which aims to
learn useful representations from fully unlabeled graph data (Veličković et al., 2018; Zhu et al., 2021;
You et al., 2020; Suresh et al., 2021; Zhang et al., 2021a). The basic idea is to maximize the similarity
between views augmented from the same instances and optionally minimize the similarity between
views augmented from different instances. Recently, advanced methods are proposed to free GCL
from negative samples (Thakoor et al., 2021; Zhang et al., 2021a) or even graph augmentations (Xia
et al., 2022a; Lee et al., 2022; Zhang et al., 2022). Some approaches accelerate GCL training (Mo
et al., 2022; Zheng et al., 2022) to a certain extent. Despite this progress, current methods has
high neighbor-fetching latency, i.e., the message passing to aggregate information from neighbors,
limiting their scalability during inference (Zhang et al., 2021b). In contrast, we aim to enhance
inference efficiency while maintaining the effectiveness of GCL. Our work enjoys the benefits of
graph context-awareness but has no graph dependency during the inference process.

2

Under review as a conference paper at ICLR 2024

Learning MLPs on Graphs. Recent works (Yang et al., 2022a; Han et al., 2022) find that using MLPs
in training and GNNs in inference can significantly accelerate training. They primarily focus on semi-
supervised settings with task-specific labels and still require time-consuming neighbor retrieval during
inference. Our work is also related to graph-regularized MLP (Yang et al., 2016; Hu et al., 2021; Yang
et al., 2021b; Liu et al., 2020), which incorporates graph structure into MLPs through various auxiliary
regularization terms inspired by traditional network embedding methods (Hamilton et al., 2017b;
Grover & Leskovec, 2016; Tang et al., 2015). By implicitly encoding structural information into
MLPs, one can enhance the representational power of MLP encoders while maintaining fast inference.
However, a significant performance gap exists between these graph regularized terms and GCL in
unsupervised settings (Veličković et al., 2018; You et al., 2020). Moreover, it’s worth noting that these
methods, despite their minor variations, are all based on the homophily assumption (McPherson et al.,
2001), which posits that connected one-hop neighbors should exhibit similar latent representations.
However, recent studies (Zhu et al., 2020a; Lim et al., 2021; Chien et al., 2020) have demonstrated
that real-world heterophilic graphs violate this assumption, leading these methods to potentially
struggle with generalization. In contrast to these past work, we aim to achieve both strong inference
scalability and generalization on both homophilous and heterophilous graphs for the first time.

Knowledge Distillation on Graphs. Knowledge distillation on graphs, which aims to distill pre-
trained teacher GNNs into smaller student GNNs, has recently garnered significant attention (Yang
et al., 2020; 2022b; Yan et al., 2020; Yang et al., 2021a; Joshi et al., 2022). Since student GNNs still
require time-consuming message passing in the inference, recent studies (Yang et al., 2023; Zhang
et al., 2021b; Zheng et al., 2021; Tian et al., 2022; Wu et al., 2023) have shifted their focus towards
GNN-MLP distillation. This involves learning a computationally-efficient student MLPs by distilling
knowledge from teacher GNNs. However, these methods typically rely on task-specific labels to
train the teacher GNN, which can be challenging in real-world scenarios where labels are often
inaccessible. In contrast, our work focuses on graph contrastive learning, with the aim of developing
a computationally-efficient and structure-aware MLP that does not require labels.

3 PRELIMINARIES

Problem Setup. The input graph is denoted as G = (V, E), where V = {v1, . . . , v|V|} is a set of |V|
nodes and E denotes the set of edges. Each edge ei,j ∈ E denotes a link between nodes vi and vj .
We use X ∈ R|V|×D to denote the node attribute matrix, where i-th row of X, i.e., xi, is the attribute
vector of node vi. The graph structure can be characterized by its adjacency matrix A ∈ [0, 1]|V|×|V|,
where Ai,j = 1 if there exists an edge ei,j ∈ E , and Ai,j = 0 otherwise. Then, the graph G can
be also denoted as a tuple of matrices: G = (X,A). Given G, our goal is to learn an efficient MLP
encoder denoted by fM with only attributes X as the input, such that the inferred representation for
node v: v = fM (X)[v] ∈ RK is useful and generalized for various downstream tasks. For brevity,
we omit the input X and use fM (v) to denote v’s representation from MLP in the paper.

Graph Contrastive Learning (GCL) with Augmentations. GCL aims to learn representations
(Trivedi et al., 2022; Veličković et al., 2018; Zhu et al., 2021; You et al., 2020; Suresh et al., 2021)
through the contrast of augmented views as presented in Figure 2 (a). Specifically, for a given node v,
its representation in one augmented view is trained to be similar to the representation of the same
node v from another augmented view, while being distinct from the representations of other nodes
serving as negative samples. Given two views G1 and G2, one widely-used contrastive objective is:

LGCL = −
1

|V|

∑
v∈V

log
exp(fG(v1)⊤fG(v2)/τ)

exp
(
fG(v1)⊤fG(v2)/τ

)
+
∑

v−∈V− exp
(
fG(v1)⊤fG(v−)/τ

) . (1)

Here fG(v
1) = fG(G1)[v] and fG(v

2) = fG(G2)[v] are GNN representations of the same node v
from two views, where fG denote the GNN encoder. V− is the set of negative samples from inter- or
intra- augmented view (Zhu et al., 2020b). τ is the temperature hyper-parameter. Although GCL
with augmentations has achieved remarkable success, we identify that methods developed under
this framework predominantly rely on GNN encoder to capture structural invariances across varied
augmented views of the graph. This reliance is further discussed in Section 4.1 and leads to a
comparative reduction in inference speeds against MLP, as depicted in Figure 1.

Graph-regularized MLP. Graph-MLP (Yang et al., 2016; Hu et al., 2021; Yang et al., 2021b; Liu
et al., 2020) proposes to bypass GNN neighbor fetching by learning a computationally-efficient MLP

3

Under review as a conference paper at ICLR 2024

(b) Graph-MLP

<latexit sha1_base64="Wk3jdEVmdRog994GCyWrmKFKVsg=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CqGXAxjIB8wHJEfY2c8mavb1jdy8QjoC9jYUitv4kO/+Nm49CEx8MPN6bYWZekAiujet+O7mNza3tnfxuYW//4PCoeHzS1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WDmSToR3QgecgZNVaqj3vFklt25yDrxFuSEixR6xW/uv2YpRFKwwTVuuO5ifEzqgxnAqeFbqoxoWxEB9ixVNIItZ/ND52SC6v0SRgrW9KQufp7IqOR1pMosJ0RNUO96s3E/7xOasJbP+MySQ1KtlgUpoKYmMy+Jn2ukBkxsYQyxe2thA2poszYbAo2BG/15XXSrJS963KlflWq1p8WceThDM7hEjy4gSrcQw0awADhGV7hzXl0Xpx352PRmnOWEZ7CHzifPxANjZA=</latexit>v

<latexit sha1_base64="kD6O7FE7JB8hS9yv9bSttNhfMR8=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRnxtSy4cdmCfWA7lEx6pw3NZIYkI5Sh4Ee4caGIW//GnX9jpu1CWw8EDufccM89QSK4Nq777aysrq1vbBa2its7u3v7pYPDpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGt7nfekSleSzvzThBP6IDyUPOqLHSQzeiZhiEWTrplcpuxZ2CLBNvTsowR61X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Nk08IadW6ZMwVvZJQ6bq7x8ZjbQeR4GdzBPqRS8X//M6qQlv/IzLJDUo2WxRmApiYpKfT/pcITNibAllitushA2poszYkoq2BG/x5GXSPK94V5XL+kW5Wn+a1VGAYziBM/DgGqpwBzVoAAMJz/AKb452Xpx352M2uuLMKzyCP3A+fwAmfJGy</latexit>u

<latexit sha1_base64="f05wIu/9TnXTptVmUhdEwTPtSi0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswUUZcFNy5bsA9sS8mkmTY0kxmSO4UyFPwINy4UcevfuPNvzLRdaOuBwOGcG+65x4+lMOi6305uY3Nreye/W9jbPzg8Kh6fNE2UaMYbLJKRbvvUcCkUb6BAydux5jT0JW/547vMb024NiJSDziNeS+kQyUCwSha6bEbUhz5QTqZ9Yslt+zOQdaJtyQlWKLWL351BxFLQq6QSWpMx3Nj7KVUo2CSzwrdxPCYsjEd8o6liobc9NJ54hm5sMqABJG2TyGZq79/pDQ0Zhr6djJLaFa9TPzP6yQY3PZSoeIEuWKLRUEiCUYkO58MhOYM5dQSyrSwWQkbUU0Z2pIKtgRv9eR10qyUvetypX5VqtafFnXk4QzO4RI8uIEq3EMNGsBAwTO8wptjnBfn3flYjOacZYWn8AfO5w8nC5Gw</latexit>v

<latexit sha1_base64="bRb97+E0vR9JGEU6eX0fVG9oq5Y=">AAACxHicjVLLSsNAFD2Nr1pfVZdugkVwVRLxtSwI4rIF+4BaJEmndXDyIDMRSlHcu9VvE/9A/8I70xTUIjohyZlz7zkzd+74ieBSOc5bwZqbX1hcKi6XVlbX1jfKm1stGWdpwJpBLOK043uSCR6xpuJKsE6SMi/0BWv7t2c63r5jqeRxdKlGCeuF3jDiAx54iqhGdl2uOFXHDHsWuDmoIB/1uPyKK/QRI0CGEAwRFGEBD5KeLlw4SIjrYUxcSoibOMM9SqTNKItRhkfsLX2HNOvmbERz7SmNOqBVBL0pKW3skSamvJSwXs028cw4a/Y377Hx1Hsb0d/PvUJiFW6I/Us3zfyvTteiMMCpqYFTTYlhdHVB7pKZU9E7t79UpcghIU7jPsVTwoFRTs/ZNhppatdn65n4u8nUrJ4HeW6GD71LarD7s52zoHVQdY+rR43DSq3xOGl1ETvYxT718wQ1XKCOpvF+wjNerHNLWNLKJqlWIb8e2/g2rIdPkb+QEw==</latexit>u

<latexit sha1_base64="Y+8goGxeA2fXdYlhSNaxJtSKpwo=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVVLxtSy4caHSgn1AWyRJp3UwL5KJWkrFrT/gVv9K/AP9C++MU1CL6IQkZ86958zce53I44mwrNeMMTU9MzuXnc8tLC4tr+RX1+pJmMYuq7mhF8ZNx06YxwNWE1x4rBnFzPYdjzWcqyMZb1yzOOFhcC4GEev4dj/gPe7agqh2W7BbIcTw9KQyusgXrKKlljkJShoUoFclzL+gjS5CuEjhgyGAIOzBRkJPCyVYiIjrYEhcTIirOMMIOdKmlMUowyb2ir592rU0G9BeeiZK7dIpHr0xKU1skSakvJiwPM1U8VQ5S/Y376HylHcb0N/RXj6xApfE/qUbZ/5XJ2sR6OFQ1cCppkgxsjpXu6SqK/Lm5peqBDlExEncpXhM2FXKcZ9NpUlU7bK3toq/qUzJyr2rc1O8y1vSgEs/xzkJ6jvF0n5xr7pbKJ/pUWexgU1s0zwPUMYxKqiRd4RHPOHZqBo3xp1x/5lqZLRmHd+W8fABvMaUcw==</latexit>

MLP

GNN<latexit sha1_base64="fmAlA/HoGIu3on9AlcYNl84zKxo=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIf6LLgQlelBfuAtkiSTuvQNAnJRC2l4tYfcKt/Jf6B/oV3xhHUIjohyZlz7zkz91438nkiLOslY8zMzs0vZBdzS8srq2v59Y16Eqaxx2pe6Idx03US5vOA1QQXPmtGMXOGrs8a7uBExhtXLE54GJyLUcQ6Q6cf8B73HEFUuy3YjRBifFouTy7yBatoqWVOA1uDAvSqhPlntNFFCA8phmAIIAj7cJDQ04INCxFxHYyJiwlxFWeYIEfalLIYZTjEDujbp11LswHtpWei1B6d4tMbk9LEDmlCyosJy9NMFU+Vs2R/8x4rT3m3Ef1d7TUkVuCS2L90n5n/1claBHo4VjVwqilSjKzO0y6p6oq8ufmlKkEOEXESdykeE/aU8rPPptIkqnbZW0fFX1WmZOXe07kp3uQtacD2z3FOg/pe0d4vHlYPCqWyHnUWW9jGLs3zCCWcoYIaeUd4wCOejKpxbdwadx+pRkZrNvFtGffvrXqUag==</latexit>

<latexit sha1_base64="Wk3jdEVmdRog994GCyWrmKFKVsg=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CqGXAxjIB8wHJEfY2c8mavb1jdy8QjoC9jYUitv4kO/+Nm49CEx8MPN6bYWZekAiujet+O7mNza3tnfxuYW//4PCoeHzS1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WDmSToR3QgecgZNVaqj3vFklt25yDrxFuSEixR6xW/uv2YpRFKwwTVuuO5ifEzqgxnAqeFbqoxoWxEB9ixVNIItZ/ND52SC6v0SRgrW9KQufp7IqOR1pMosJ0RNUO96s3E/7xOasJbP+MySQ1KtlgUpoKYmMy+Jn2ukBkxsYQyxe2thA2poszYbAo2BG/15XXSrJS963KlflWq1p8WceThDM7hEjy4gSrcQw0awADhGV7hzXl0Xpx352PRmnOWEZ7CHzifPxANjZA=</latexit>v

<latexit sha1_base64="Y+8goGxeA2fXdYlhSNaxJtSKpwo=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVVLxtSy4caHSgn1AWyRJp3UwL5KJWkrFrT/gVv9K/AP9C++MU1CL6IQkZ86958zce53I44mwrNeMMTU9MzuXnc8tLC4tr+RX1+pJmMYuq7mhF8ZNx06YxwNWE1x4rBnFzPYdjzWcqyMZb1yzOOFhcC4GEev4dj/gPe7agqh2W7BbIcTw9KQyusgXrKKlljkJShoUoFclzL+gjS5CuEjhgyGAIOzBRkJPCyVYiIjrYEhcTIirOMMIOdKmlMUowyb2ir592rU0G9BeeiZK7dIpHr0xKU1skSakvJiwPM1U8VQ5S/Y376HylHcb0N/RXj6xApfE/qUbZ/5XJ2sR6OFQ1cCppkgxsjpXu6SqK/Lm5peqBDlExEncpXhM2FXKcZ9NpUlU7bK3toq/qUzJyr2rc1O8y1vSgEs/xzkJ6jvF0n5xr7pbKJ/pUWexgU1s0zwPUMYxKqiRd4RHPOHZqBo3xp1x/5lqZLRmHd+W8fABvMaUcw==</latexit>

MLP

GNN<latexit sha1_base64="fmAlA/HoGIu3on9AlcYNl84zKxo=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIf6LLgQlelBfuAtkiSTuvQNAnJRC2l4tYfcKt/Jf6B/oV3xhHUIjohyZlz7zkz91438nkiLOslY8zMzs0vZBdzS8srq2v59Y16Eqaxx2pe6Idx03US5vOA1QQXPmtGMXOGrs8a7uBExhtXLE54GJyLUcQ6Q6cf8B73HEFUuy3YjRBifFouTy7yBatoqWVOA1uDAvSqhPlntNFFCA8phmAIIAj7cJDQ04INCxFxHYyJiwlxFWeYIEfalLIYZTjEDujbp11LswHtpWei1B6d4tMbk9LEDmlCyosJy9NMFU+Vs2R/8x4rT3m3Ef1d7TUkVuCS2L90n5n/1claBHo4VjVwqilSjKzO0y6p6oq8ufmlKkEOEXESdykeE/aU8rPPptIkqnbZW0fFX1WmZOXe07kp3uQtacD2z3FOg/pe0d4vHlYPCqWyHnUWW9jGLs3zCCWcoYIaeUd4wCOejKpxbdwadx+pRkZrNvFtGffvrXqUag==</latexit>

<latexit sha1_base64="geFR0EWGFckxfFjEKuvzxV3cdWU=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiRF1GXBjcsW7APatEymk3boZBJmJpUSAn6GGxeKuPVf3Pk3TtIutPXAhcM59zJnjhdxprRtf1uFjc2t7Z3ibmlv/+DwqHx80lZhLAltkZCHsuthRTkTtKWZ5rQbSYoDj9OON73L/M6MSsVC8aDnEXUDPBbMZwRrIw36AdYTz09m6SBx0mG5YlftHGidOEtSgSUaw/JXfxSSOKBCE46V6jl2pN0ES80Ip2mpHysaYTLFY9ozVOCAKjfJU6fowigj5IfSjNAoV39fJDhQah54ZjNLqVa9TPzP68Xav3UTJqJYU0EWD/kxRzpEWQVoxCQlms8NwUQykxWRCZaYaFNUyZTgrH55nbRrVee6WmteVerNp0UdRTiDc7gEB26gDvfQgBYQkPAMr/BmPVov1rv1sVgtWMsKT+EPrM8fHumTXw==</latexit>

v1

<latexit sha1_base64="tn9iigbw+iFUBZznF5X9ohJiRBo=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiRF1GXBjcsW7APatEymk3boZBJmJpUSAn6GGxeKuPVf3Pk3TtIutPXAhcM59zJnjhdxprRtf1uFjc2t7Z3ibmlv/+DwqHx80lZhLAltkZCHsuthRTkTtKWZ5rQbSYoDj9OON73L/M6MSsVC8aDnEXUDPBbMZwRrIw36AdYTz09m6SCppcNyxa7aOdA6cZakAks0huWv/igkcUCFJhwr1XPsSLsJlpoRTtNSP1Y0wmSKx7RnqMABVW6Sp07RhVFGyA+lGaFRrv6+SHCg1DzwzGaWUq16mfif14u1f+smTESxpoIsHvJjjnSIsgrQiElKNJ8bgolkJisiEywx0aaokinBWf3yOmnXqs51tda8qtSbT4s6inAG53AJDtxAHe6hAS0gIOEZXuHNerRerHfrY7FasJYVnsIfWJ8/IG6TYA==</latexit>

v2

<latexit sha1_base64="Wk3jdEVmdRog994GCyWrmKFKVsg=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CqGXAxjIB8wHJEfY2c8mavb1jdy8QjoC9jYUitv4kO/+Nm49CEx8MPN6bYWZekAiujet+O7mNza3tnfxuYW//4PCoeHzS1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WDmSToR3QgecgZNVaqj3vFklt25yDrxFuSEixR6xW/uv2YpRFKwwTVuuO5ifEzqgxnAqeFbqoxoWxEB9ixVNIItZ/ND52SC6v0SRgrW9KQufp7IqOR1pMosJ0RNUO96s3E/7xOasJbP+MySQ1KtlgUpoKYmMy+Jn2ukBkxsYQyxe2thA2poszYbAo2BG/15XXSrJS963KlflWq1p8WceThDM7hEjy4gSrcQw0awADhGV7hzXl0Xpx352PRmnOWEZ7CHzifPxANjZA=</latexit>v
GNN<latexit sha1_base64="fmAlA/HoGIu3on9AlcYNl84zKxo=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIf6LLgQlelBfuAtkiSTuvQNAnJRC2l4tYfcKt/Jf6B/oV3xhHUIjohyZlz7zkz91438nkiLOslY8zMzs0vZBdzS8srq2v59Y16Eqaxx2pe6Idx03US5vOA1QQXPmtGMXOGrs8a7uBExhtXLE54GJyLUcQ6Q6cf8B73HEFUuy3YjRBifFouTy7yBatoqWVOA1uDAvSqhPlntNFFCA8phmAIIAj7cJDQ04INCxFxHYyJiwlxFWeYIEfalLIYZTjEDujbp11LswHtpWei1B6d4tMbk9LEDmlCyosJy9NMFU+Vs2R/8x4rT3m3Ef1d7TUkVuCS2L90n5n/1claBHo4VjVwqilSjKzO0y6p6oq8ufmlKkEOEXESdykeE/aU8rPPptIkqnbZW0fFX1WmZOXe07kp3uQtacD2z3FOg/pe0d4vHlYPCqWyHnUWW9jGLs3zCCWcoYIaeUd4wCOejKpxbdwadx+pRkZrNvFtGffvrXqUag==</latexit>

<latexit sha1_base64="geFR0EWGFckxfFjEKuvzxV3cdWU=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiRF1GXBjcsW7APatEymk3boZBJmJpUSAn6GGxeKuPVf3Pk3TtIutPXAhcM59zJnjhdxprRtf1uFjc2t7Z3ibmlv/+DwqHx80lZhLAltkZCHsuthRTkTtKWZ5rQbSYoDj9OON73L/M6MSsVC8aDnEXUDPBbMZwRrIw36AdYTz09m6SBx0mG5YlftHGidOEtSgSUaw/JXfxSSOKBCE46V6jl2pN0ES80Ip2mpHysaYTLFY9ozVOCAKjfJU6fowigj5IfSjNAoV39fJDhQah54ZjNLqVa9TPzP68Xav3UTJqJYU0EWD/kxRzpEWQVoxCQlms8NwUQykxWRCZaYaFNUyZTgrH55nbRrVee6WmteVerNp0UdRTiDc7gEB26gDvfQgBYQkPAMr/BmPVov1rv1sVgtWMsKT+EPrM8fHumTXw==</latexit>

v1

<latexit sha1_base64="tn9iigbw+iFUBZznF5X9ohJiRBo=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiRF1GXBjcsW7APatEymk3boZBJmJpUSAn6GGxeKuPVf3Pk3TtIutPXAhcM59zJnjhdxprRtf1uFjc2t7Z3ibmlv/+DwqHx80lZhLAltkZCHsuthRTkTtKWZ5rQbSYoDj9OON73L/M6MSsVC8aDnEXUDPBbMZwRrIw36AdYTz09m6SCppcNyxa7aOdA6cZakAks0huWv/igkcUCFJhwr1XPsSLsJlpoRTtNSP1Y0wmSKx7RnqMABVW6Sp07RhVFGyA+lGaFRrv6+SHCg1DzwzGaWUq16mfif14u1f+smTESxpoIsHvJjjnSIsgrQiElKNJ8bgolkJisiEywx0aaokinBWf3yOmnXqs51tda8qtSbT4s6inAG53AJDtxAHe6hAS0gIOEZXuHNerRerHfrY7FasJYVnsIfWJ8/IG6TYA==</latexit>

v2
GNN<latexit sha1_base64="fmAlA/HoGIu3on9AlcYNl84zKxo=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIf6LLgQlelBfuAtkiSTuvQNAnJRC2l4tYfcKt/Jf6B/oV3xhHUIjohyZlz7zkz91438nkiLOslY8zMzs0vZBdzS8srq2v59Y16Eqaxx2pe6Idx03US5vOA1QQXPmtGMXOGrs8a7uBExhtXLE54GJyLUcQ6Q6cf8B73HEFUuy3YjRBifFouTy7yBatoqWVOA1uDAvSqhPlntNFFCA8phmAIIAj7cJDQ04INCxFxHYyJiwlxFWeYIEfalLIYZTjEDujbp11LswHtpWei1B6d4tMbk9LEDmlCyosJy9NMFU+Vs2R/8x4rT3m3Ef1d7TUkVuCS2L90n5n/1claBHo4VjVwqilSjKzO0y6p6oq8ufmlKkEOEXESdykeE/aU8rPPptIkqnbZW0fFX1WmZOXe07kp3uQtacD2z3FOg/pe0d4vHlYPCqWyHnUWW9jGLs3zCCWcoYIaeUd4wCOejKpxbdwadx+pRkZrNvFtGffvrXqUag==</latexit>

<latexit sha1_base64="Wk3jdEVmdRog994GCyWrmKFKVsg=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CqGXAxjIB8wHJEfY2c8mavb1jdy8QjoC9jYUitv4kO/+Nm49CEx8MPN6bYWZekAiujet+O7mNza3tnfxuYW//4PCoeHzS1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WDmSToR3QgecgZNVaqj3vFklt25yDrxFuSEixR6xW/uv2YpRFKwwTVuuO5ifEzqgxnAqeFbqoxoWxEB9ixVNIItZ/ND52SC6v0SRgrW9KQufp7IqOR1pMosJ0RNUO96s3E/7xOasJbP+MySQ1KtlgUpoKYmMy+Jn2ukBkxsYQyxe2thA2poszYbAo2BG/15XXSrJS963KlflWq1p8WceThDM7hEjy4gSrcQw0awADhGV7hzXl0Xpx352PRmnOWEZ7CHzifPxANjZA=</latexit>v

<latexit sha1_base64="kD6O7FE7JB8hS9yv9bSttNhfMR8=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRnxtSy4cdmCfWA7lEx6pw3NZIYkI5Sh4Ee4caGIW//GnX9jpu1CWw8EDufccM89QSK4Nq777aysrq1vbBa2its7u3v7pYPDpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGt7nfekSleSzvzThBP6IDyUPOqLHSQzeiZhiEWTrplcpuxZ2CLBNvTsowR61X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Nk08IadW6ZMwVvZJQ6bq7x8ZjbQeR4GdzBPqRS8X//M6qQlv/IzLJDUo2WxRmApiYpKfT/pcITNibAllitushA2poszYkoq2BG/x5GXSPK94V5XL+kW5Wn+a1VGAYziBM/DgGqpwBzVoAAMJz/AKb452Xpx352M2uuLMKzyCP3A+fwAmfJGy</latexit>u

<latexit sha1_base64="f05wIu/9TnXTptVmUhdEwTPtSi0=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswUUZcFNy5bsA9sS8mkmTY0kxmSO4UyFPwINy4UcevfuPNvzLRdaOuBwOGcG+65x4+lMOi6305uY3Nreye/W9jbPzg8Kh6fNE2UaMYbLJKRbvvUcCkUb6BAydux5jT0JW/547vMb024NiJSDziNeS+kQyUCwSha6bEbUhz5QTqZ9Yslt+zOQdaJtyQlWKLWL351BxFLQq6QSWpMx3Nj7KVUo2CSzwrdxPCYsjEd8o6liobc9NJ54hm5sMqABJG2TyGZq79/pDQ0Zhr6djJLaFa9TPzP6yQY3PZSoeIEuWKLRUEiCUYkO58MhOYM5dQSyrSwWQkbUU0Z2pIKtgRv9eR10qyUvetypX5VqtafFnXk4QzO4RI8uIEq3EMNGsBAwTO8wptjnBfn3flYjOacZYWn8AfO5w8nC5Gw</latexit>v

<latexit sha1_base64="bRb97+E0vR9JGEU6eX0fVG9oq5Y=">AAACxHicjVLLSsNAFD2Nr1pfVZdugkVwVRLxtSwI4rIF+4BaJEmndXDyIDMRSlHcu9VvE/9A/8I70xTUIjohyZlz7zkzd+74ieBSOc5bwZqbX1hcKi6XVlbX1jfKm1stGWdpwJpBLOK043uSCR6xpuJKsE6SMi/0BWv7t2c63r5jqeRxdKlGCeuF3jDiAx54iqhGdl2uOFXHDHsWuDmoIB/1uPyKK/QRI0CGEAwRFGEBD5KeLlw4SIjrYUxcSoibOMM9SqTNKItRhkfsLX2HNOvmbERz7SmNOqBVBL0pKW3skSamvJSwXs028cw4a/Y377Hx1Hsb0d/PvUJiFW6I/Us3zfyvTteiMMCpqYFTTYlhdHVB7pKZU9E7t79UpcghIU7jPsVTwoFRTs/ZNhppatdn65n4u8nUrJ4HeW6GD71LarD7s52zoHVQdY+rR43DSq3xOGl1ETvYxT718wQ1XKCOpvF+wjNerHNLWNLKJqlWIb8e2/g2rIdPkb+QEw==</latexit>u

<latexit sha1_base64="Y+8goGxeA2fXdYlhSNaxJtSKpwo=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVVLxtSy4caHSgn1AWyRJp3UwL5KJWkrFrT/gVv9K/AP9C++MU1CL6IQkZ86958zce53I44mwrNeMMTU9MzuXnc8tLC4tr+RX1+pJmMYuq7mhF8ZNx06YxwNWE1x4rBnFzPYdjzWcqyMZb1yzOOFhcC4GEev4dj/gPe7agqh2W7BbIcTw9KQyusgXrKKlljkJShoUoFclzL+gjS5CuEjhgyGAIOzBRkJPCyVYiIjrYEhcTIirOMMIOdKmlMUowyb2ir592rU0G9BeeiZK7dIpHr0xKU1skSakvJiwPM1U8VQ5S/Y376HylHcb0N/RXj6xApfE/qUbZ/5XJ2sR6OFQ1cCppkgxsjpXu6SqK/Lm5peqBDlExEncpXhM2FXKcZ9NpUlU7bK3toq/qUzJyr2rc1O8y1vSgEs/xzkJ6jvF0n5xr7pbKJ/pUWexgU1s0zwPUMYxKqiRd4RHPOHZqBo3xp1x/5lqZLRmHd+W8fABvMaUcw==</latexit>

MLP

<latexit sha1_base64="Y+8goGxeA2fXdYlhSNaxJtSKpwo=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVVLxtSy4caHSgn1AWyRJp3UwL5KJWkrFrT/gVv9K/AP9C++MU1CL6IQkZ86958zce53I44mwrNeMMTU9MzuXnc8tLC4tr+RX1+pJmMYuq7mhF8ZNx06YxwNWE1x4rBnFzPYdjzWcqyMZb1yzOOFhcC4GEev4dj/gPe7agqh2W7BbIcTw9KQyusgXrKKlljkJShoUoFclzL+gjS5CuEjhgyGAIOzBRkJPCyVYiIjrYEhcTIirOMMIOdKmlMUowyb2ir592rU0G9BeeiZK7dIpHr0xKU1skSakvJiwPM1U8VQ5S/Y376HylHcb0N/RXj6xApfE/qUbZ/5XJ2sR6OFQ1cCppkgxsjpXu6SqK/Lm5peqBDlExEncpXhM2FXKcZ9NpUlU7bK3toq/qUzJyr2rc1O8y1vSgEs/xzkJ6jvF0n5xr7pbKJ/pUWexgU1s0zwPUMYxKqiRd4RHPOHZqBo3xp1x/5lqZLRmHd+W8fABvMaUcw==</latexit>

MLP

<latexit sha1_base64="Wk3jdEVmdRog994GCyWrmKFKVsg=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CqGXAxjIB8wHJEfY2c8mavb1jdy8QjoC9jYUitv4kO/+Nm49CEx8MPN6bYWZekAiujet+O7mNza3tnfxuYW//4PCoeHzS1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WDmSToR3QgecgZNVaqj3vFklt25yDrxFuSEixR6xW/uv2YpRFKwwTVuuO5ifEzqgxnAqeFbqoxoWxEB9ixVNIItZ/ND52SC6v0SRgrW9KQufp7IqOR1pMosJ0RNUO96s3E/7xOasJbP+MySQ1KtlgUpoKYmMy+Jn2ukBkxsYQyxe2thA2poszYbAo2BG/15XXSrJS963KlflWq1p8WceThDM7hEjy4gSrcQw0awADhGV7hzXl0Xpx352PRmnOWEZ7CHzifPxANjZA=</latexit>v
<latexit sha1_base64="Wk3jdEVmdRog994GCyWrmKFKVsg=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe6CqGXAxjIB8wHJEfY2c8mavb1jdy8QjoC9jYUitv4kO/+Nm49CEx8MPN6bYWZekAiujet+O7mNza3tnfxuYW//4PCoeHzS1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WDmSToR3QgecgZNVaqj3vFklt25yDrxFuSEixR6xW/uv2YpRFKwwTVuuO5ifEzqgxnAqeFbqoxoWxEB9ixVNIItZ/ND52SC6v0SRgrW9KQufp7IqOR1pMosJ0RNUO96s3E/7xOasJbP+MySQ1KtlgUpoKYmMy+Jn2ukBkxsYQyxe2thA2poszYbAo2BG/15XXSrJS963KlflWq1p8WceThDM7hEjy4gSrcQw0awADhGV7hzXl0Xpx352PRmnOWEZ7CHzifPxANjZA=</latexit>v

<latexit sha1_base64="74Nv1EFbkU4uASX1w9JatEaHowk=">AAACCHicbVDLSsNAFJ3UV62vqCtxEyyCq5AUX8uCCxUUKlhbaEKYTCft0MmDmRuxhODGX3HjQpfi1k9w5984abvQ1gMXDufcy733+AlnEizrWyvNzS8sLpWXKyura+sb+ubWnYxTQWiTxDwWbR9LyllEm8CA03YiKA59Tlv+4KzwW/dUSBZHtzBMqBviXsQCRjAoydN3nBBDn2CeXeVe5gB9AD/Izq/z3NOrlmmNYMwSe0KqaIKGp3853ZikIY2AcCxlx7YScDMsgBFO84qTSppgMsA92lE0wiGVbjZ6ITf2ldI1glioisAYqb8nMhxKOQx91VkcLKe9QvzP66QQnLoZi5IUaETGi4KUGxAbRR5GlwlKgA8VwUQwdatB+lhgAiq1igrBnn55ljg10z42j0zbsszazWG1fjkJpYx20R46QDY6QXV0gRqoiQh6RM/oFb1pT9qL9q59jFtL2mRmG/2B9vkD7WyZMw==</latexit>LGM
<latexit sha1_base64="iAJomH+uEJPjeeOE2LS/bE1gmPs=">AAAC33icjVHLSsNAFD2Nr1pfVXe6CRbBVUnF17LgQoUuKtgq2FIm41RD8yKZiBIK7tyJW3/Arf6N+Af6F94ZU1CL6IQkZ86958zce+3QdWJpWa85Y2R0bHwiP1mYmp6ZnSvOLzTjIIm4aPDADaITm8XCdXzRkI50xUkYCebZrji2e7sqfnwpotgJ/CN5HYq2x859p+twJonqFJdaHpMXnLlprd9JW1JcSbub7u3W+v1OsWSVLb3MYVDJQAnZqgfFF7RwhgAcCTwI+JCEXTDE9JyiAgshcW2kxEWEHB0X6KNA2oSyBGUwYnv0Pafdacb6tFeesVZzOsWlNyKliVXSBJQXEVanmTqeaGfF/uadak91t2v625mXR6zEBbF/6QaZ/9WpWiS62NE1OFRTqBlVHc9cEt0VdXPzS1WSHELiFD6jeESYa+Wgz6bWxLp21Vum4286U7Fqz7PcBO/qljTgys9xDoPmermyVd483ChVD7JR57GMFazRPLdRxT7qaJD3DR7xhGeDGbfGnXH/mWrkMs0ivi3j4QMiGprJ</latexit>LGCL

(a) GCL with Augmentations (c) MLP-Augmented GCL (d) Our GraphECL

<latexit sha1_base64="KFO799wO4uiN/I9B83/RKv3GJ6U=">AAAC5HicjVHLSsNAFD3G97vqStwEi+AqJOJrWXGjoKBgrWClTsaphuZFMhFLKO78AXHrzq1+jvgH+hfeGVPwgeiEJGfOvefM3Hvd2PdSadsvPUZvX//A4NDwyOjY+MRkaWr6MI2yhIsqj/woOXJZKnwvFFXpSV8cxYlggeuLmtvaVPHapUhSLwoPZDsWJwE7D72mx5kkqlGarQdMXnDm5zudRl6X4kq6zXx3o9NplMq2Zetl/gROAcoo1l5UekYdZ4jAkSGAQAhJ2AdDSs8xHNiIiTtBTlxCyNNxgQ5GSJtRlqAMRmyLvue0Oy7YkPbKM9VqTqf49CakNLFAmojyEsLqNFPHM+2s2N+8c+2p7tamv1t4BcRKXBD7l66b+V+dqkWiiXVdg0c1xZpR1fHCJdNdUTc3P1UlySEmTuEziieEuVZ2+2xqTaprV71lOv6qMxWr9rzIzfCmbkkDdr6P8yeoL1nOqrViObZtLe0vlyvbxcCHMId5LNJU11DBFvZQpROu8YBHPBmnxo1xa9x9pBo9hWYGX5Zx/w4T2Juu</latexit>LMA

<latexit sha1_base64="3dj9fydEBL+z1Jz/bBXwHawTUCg=">AAAC33icjVHLSsNAFD2Nr1pfVXe6CRbBVUnF17IggkIXFWwVbCmTcaqheZFMRAkFd+7ErT/gVv9G/AP9C++MKahFdEKSM+fec2buvXboOrG0rNecMTI6Nj6RnyxMTc/MzhXnF5pxkERcNHjgBtGJzWLhOr5oSEe64iSMBPNsVxzbvV0VP74UUewE/pG8DkXbY+e+03U4k0R1ikstj8kLzty01u+kLSmupN1N93Zr/X6nWLLKll7mMKhkoIRs1YPiC1o4QwCOBB4EfEjCLhhiek5RgYWQuDZS4iJCjo4L9FEgbUJZgjIYsT36ntPuNGN92ivPWKs5neLSG5HSxCppAsqLCKvTTB1PtLNif/NOtae62zX97czLI1bigti/dIPM/+pULRJd7OgaHKop1Iyqjmcuie6Kurn5pSpJDiFxCp9RPCLMtXLQZ1NrYl276i3T8TedqVi151lugnd1Sxpw5ec4h0FzvVzZKm8ebpSqB9mo81jGCtZontuoYh91NMj7Bo94wrPBjFvjzrj/TDVymWYR35bx8AEdUprH</latexit>LECL

Figure 2: Simple illustration of existing contrastive schemes and GraphECL. (a) and (c) rely on invariant
assumptions, aiming to learn augment-invariant representations of the same node. (b) is based on homophily as-
sumptions, forcing neighboring nodes to exhibit same representations. In contrast, (d) showcases our GraphECL,
which achieves inference efficiency using MLP and does not depend on invariant or homophily assumptions.

model with a neighbor contrastive loss inspired by traditional network embedding methods (Hamilton
et al., 2017b; Grover & Leskovec, 2016; Tang et al., 2015). Despite the minor differences, they
minimize the following unsupervised contrastive loss over neighbors in the graph:

LGM = −
1

|V|

∑
v∈V

1

|N (v)|

∑
u∈N (v)

log
exp(fM (v)⊤fM (u)/τ)

exp
(
fM (v)⊤fM (u)/τ

)
+
∑

v−∈V− exp
(
fM (v)⊤fM (v−)/τ

) , (2)

where fM (v), fM (u) and fM (v−) are projected representations by MLP of nodes v, u and v−,
respectively. N (v) is the positive sample set containing local neighborhoods of central node v and
V− is the set of negative sample which can be randomly sampled from V . This paradigm is illustrated
in Figure 2 (b). Despite its inference efficiency due to the exclusive use of MLP, this approach exhibits
significantly lower performance compared to GCL with augmentations, as depicted in Figure 1.
Moreover, this scheme over-emphasizes homophily, assuming that connected nodes should have
similar representations in the latent space, at the expense of structural information (You et al., 2020;
Xiao et al., 2022), making it difficult to generalize to graphs with heterophily (Lim et al., 2021).

Table 5 in Appendix A summarizes the detailed comparisons between current contrastive schemes on
graphs and our GraphECL in terms of design assumptions, effectiveness and inference efficiency.

4 DESIGNING EFFICIENT CONTRASTIVE LEARNING FOR GRAPHS

BGRL CCA-SSG GCA SUGRL DGI55

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

74.4 74.3
70.5

65.4
62.8

79.6 81.0 80.8 81.9

76.8

GNN-MLP
GNN-GNN

Figure 3: Current GCL methods that employ
a GNN-MLP architecture (where MLP is used for
inference) exhibit a significant performance
decay compared to those using a GNN-GNN ar-
chitecture (where GNN is used for inference).
We illustrate Pubmed as an example, though
we observe the similar trend in other datasets.

In this section, we introduce GraphECL, a unified GCL
framework that effectively addresses the efficiency limita-
tions of inference while maintaining strong generalization
capabilities. GraphECL adopts a cross-model contrastive
architecture, wherein we design an asymmetric GNN-MLP
architecture for central nodes and their neighbors to cre-
ate effective positive and negative pairs in the context of
contrastive learning (Section 4.1). In order to exploit the
structural information in the graph, we propose general-
ized contrastive loss that extends the classic InfoNCE loss
from independent instance discrimination over augmen-
tations to non-independent neighborhood contrast over
graph structures, which takes into account the meaningful
distance between neighboring nodes. Finally, we provide
a theoretical analysis to justify that GraphECL can still
capture structural information and enjoys the better down-
stream performance with the simple MLP (Section 4.2).

4.1 SIMPLE CROSS-MODEL CONTRASTIVE LEARNING FRAMEWORK

As motivated and shown in Figure 1, current state-of-the-art GCL methods suffer from inference
latency due to the layer-wise message passing of GNN encoders. A straightforward idea is to instead
utilize MLP as the encoder for those methods, allowing for fast inference. However, as seen in Figure 1,
the performance of current GCL methods with MLP as the backbone is significantly worse than its
GNN counterpart. Intuitively, these results align with our expectations that discarding message passing
degrades them to a situation without using graph augmentations, making it impossible for them to

4

Under review as a conference paper at ICLR 2024

learn structural invariances in the augmented graph as originally designed. Thus, the architecture
with encoder GNN is very important for GCL methods based on graph augmentations.

Cross-Model Contrastive Architecture. To address this limitation, we first introduce a simple
cross-model architecture within GraphECL. As shown in Figure 1, using MLP as the encoder for GCL
is computationally efficient during inference but yields suboptimal performance. Conversely, utilizing
GNN yields superior results but necessitates time-consuming neighbor retrieval during inference.
Our idea for this challenge is elegantly simple, yet, as we will demonstrate, remarkably effective.
Specifically, we employ a cross-model architecture, wherein we utilize two encoders: one being a
GNN, and the other an MLP. In contrast to past work (Mo et al., 2022; Zhu et al., 2021), GNN in this
architecture is exclusively engaged in the learning process to capture structural information, while
MLP is employed during the inference process to eliminate graph dependencies. One straightforward
question is whether we can directly apply this architecture to current GCL methods. For instance, we
can minimize the following loss, referred to as MLP-Augmented GCL as shown in Figure 2 (c):

LMA = −
1

|V|

∑
v∈V

log
exp(fG(v1)⊤fM (v2)/τ)

exp
(
fG(v1)⊤fM (v2)/τ

)
+
∑

v−∈V− exp
(
fG(v1)⊤fM (v−)/τ

) . (3)

Unfortunately, the answer is negative. As depicted in Figure 3, even with cross-model architecture,
current GCL methods suffer from a remarkably performance decay compared to exclusively utilizing
GNN encoders in Equation (3). These results show that MLP with the invariant assumption of graph
augmentations struggles to capture useful structural information with this cross-model architecture.

Generalized Contrastive Learning Loss. Therefore, we are naturally inspired to propose a new
contrastive learning objective function. Figure 2 highlights the properties and differences between
other paradigms and our GraphECL. Specifically, existing GCL methods adopt graph augmentations
that emphasize strict “invariances” of the same node in two augmented views, and highly rely on
GNN as the encoder. In contrast, GraphECL does not rely on any graph augmentations, but learns
MLP representation of node by capturing its one-hop neighborhood signal from GNN. In particular,
positive pairs in GCL are generated by random graph augmentations of the same node. In contrast,
positive pairs in GraphECL are cross-model pairs (e.g., MLP-GNN) directly provided by neighborhood
relations. These positive samples are obtained through MLP and GNN representations from central
nodes and their neighbors, respectively. GraphECL aims to push the MLP representation of the central
node closer to the GNN representations of its neighbors by minimizing the following loss:

Lpos =
1

|V|

∑
v∈V

1

|N (v)|

∑
u∈N (v)

∥∥fM (v)− fG(u)
∥∥2

2
, (4)

where fM (v) and fG(u) are the L2-normalized representations obtained from the MLP and GNN
encoders, respectively, of node v and its neighbor u. We highlight the benefits of using this simple
alignment loss. First, the MLP encoder fM can effectively preserve the local neighborhood distribution
captured by GNN encoder fG without requiring graph augmentation. Additionally, as demonstrated in
Section 5, when MLP fM is used for downstream tasks, GraphECL continues to perform exceptionally
well, offering fast inference and significantly outperforming GCL counterparts with GNN. Second,
in contrast to the GR-MLP model depicted in Figure 2 (b), GraphECL aims to push cross-modal
neighboring node representations closed, i.e.,

(
fM (v) , fG(u)

)
. Thus, it’s crucial to emphasize that

GraphECL doesn’t necessarily imply the learned MLP representations
(
fM (v) , fM (u)

)
become

identical. Consider a pair of 2-hop neighbors, v and v′, both neighboring the same node u. Intuitively,
by enforcing fM (v) and fM (v′) to reconstruct (not align) the context representation of the same
neighborhood fG(u), we implicitly make their representations similar. Thus, the 2-hop neighbors
(fM (v) and fM (v′)) with the same neighborhood context serve as positive pairs that will be implicitly
aligned. This alignment is supported by our Theorem 4. Additionally, as depicted in Figure 9,
GraphECL is not based on the one-hop homophily assumption but automatically captures graph
structures based on different graphs beyond homophily. Consequently, GraphECL exhibits robustness
and generalizability, effectively accommodating both homophilic and heterophilic graphs (Section 5).

While the alignment loss in Equation (4) effectively captures structural information, it is widely
recognized that in contrastive learning, merely aligning positive pairs can lead to dimensional
collapse (Hua et al., 2021; Jing et al., 2022), limiting their representational capacity. To address this
problem, we introduce cross-model negative pairs, resulting the final objective of GraphECL:

LECL = −
1

|V|

∑
v∈V

1

|N (v)|

∑
u∈N (v)

log
exp(fM (v)⊤fG(u)/τ)∑

v−∈V exp(fG(u)⊤fG(v−)/τ) + λ exp(fM (v)⊤ fG(v−)/τ)
, (5)

5

Under review as a conference paper at ICLR 2024

where the numerator term has the same effect as Equation (4) since the representations are normalized.
Here, (fG(u), fG(v−)) and (fM (v), fG(v−)) represent intra-model and inter-model negative pairs,
respectively. v− is independently sampled as a negative example, and λ serves as a hyperparameter
to control the balance between the two types of negative pairs. For large graphs, we employ random
sampling to select M negative pairs for each node as an efficient approximation during training.

Interpretation. LECL is a simple yet very effective generalization of the popular InfoNCE loss in
Equation (3) from uni-model instance discrimination over augmentations to cross-model contrast over
graph neighbors. During the learning process, cross-model positive pairs of neighbors (fM (v), fG(u))
are pulled together in the latent space, while inter-model (fM (v), fG(v−)) and intra-model negative
pairs (fG(u), fG(v−)) are pushed apart. We theoretically prove why simple MLP in GraphECL can
still capture structural information and enjoys the good downstream performance (Section 4.2). We
also empirically demonstrate in Section 5 that GraphECL generalizes as well as state-of-the-art GCL
methods during the inference, with the additional benefit of faster inference and easier deployment.

4.2 THEORETICAL ANALYSIS

In this section, we provide theoretical evidence to support the design of our simple GraphECL. All
detailed proofs can be found in Appendix B. We start by providing some notations. We denote the
normalized adjacency matrix D−1A, with D being the diagonal degree matrix. We define the two
representation metrics M and G where the v-th row (M)v = fM (v) and the u-th row (G)u =
fG(u) represent the corresponding encoded representations from MLP and GNN, respectively. Let
Ā = exp(MG⊤/τ) is the estimated affinity matrix based on representation similarity. D̄ = deg(Ā)
is the diagonal matrix, whose element (Ā)i,i is the sum of the i-th row of Ā. Next, we reveal the
stationary point of the learning dynamics of GraphECL, which implies the model equilibrium as:

Theorem 4.1. The learning dynamics w.r.t the MLP encoder fM with the generalized contrastive loss
(λ = 1) in Equation (5) saturates when the true normalized adjacency and the estimated normalized
affinity matrices agree: D−1A = D̄−1Ā, which implies that, for ∀v, u ∈ V , we have:

Pn(u | v) = Pf (u | v) ≜
exp(fM (v)⊤fG(u)/τ)∑

v′∈V exp(fM (v)⊤fG(v′)/τ)
, (6)

where Pn(u | v) is the 1-hop neighborhood distribution (i.e., the v-th row of the normalized adjacency
matrix) and Pf (u | v) is the Boltzmann distribution estimated by encoders with temperature τ .

Theorem 4.1 implies that GraphECL essentially learns a probabilistic model based on cross-model
encoders to predict the conditional 1-hop neighborhood distribution. Specifically, our assumption
is more general than the homophily assumption. Even in heterophilic graphs, two nodes of the
same semantic class tend to share similar structural roles, i.e., 1-hop neighborhood context as shown
in (Ma et al., 2021; Chien et al., 2021) and graph statistics in Appendix C.2. This can explain the
effectiveness of the MLP encoder fM in learning effective representations some heterophilic graphs.

We establish formal guarantees for the generalization of GraphECL on downstream tasks for learned
MLP and GNN encoders. Without loss of generality, we use the linear probing task as an example. In
this task, we train a linear classifier to predict class labels y ∈ Y based on the MLP representation fM
using gf,W (v) = argmaxc∈[C](fM (v)

⊤
W)c, where W ∈ RK×C represents the weight matrix.

Theorem 4.2. Let f∗
M be the global minimum of generalized contrastive loss (λ = 1) in Equation (5)

and y(v) denote the label of v. σ1 ≥ · · · ≥ σN are the eigenvalues with descending order of the
normalized adjacency matrix D−1A. Then, the linear probing error of f∗

M is upper-bounded by:

E(f∗
M) ≜ min

W

1

|V|
∑
v∈V

1[gf∗,W (v) ̸= y(v)] ≤ 1− α

1− σK+1
, (7)

where α = 1
|V|

∑
v∈V

1
|N (v)|

∑
u∈N (v) 1[y(v) = y(u)] and K is the dimension of the representation.

This theorem establishes a significant relationship between the downstream error in learned represen-
tations and two crucial factors: the parameter α and the (K+1)-th largest eigenvalue. Remarkably, α
coincides precisely with the node homophily ratio metric, as defined in prior works (Pei et al., 2019;
Lim et al., 2021). This metric calculates the proportion of a node’s neighbors that share the same
class label and then averages these values across all nodes within the graph. Homophilous graphs

6

Under review as a conference paper at ICLR 2024

Table 1: Node classification results (%) under the transductive setting on benchmarking homophilic and
heterophilic graphs. The best and runner up methods are marked with boldface and underline, respectively.
Datasets Cora Citeseer Pubmed Photo Flickr Cornell Wisconsin Texas Crocodile Actor Snap-patents

Graph-MLP 76.70±0.18 70.30±0.27 78.70±0.33 89.59±0.45 41.33±0.25 42.65±2.21 57.96±1.11 60.22±1.76 53.22±2.31 25.66±0.77 21.41±0.62

VGAE 76.30±0.21 66.80±0.23 75.80±0.40 91.50±0.20 40.71±0.22 48.73±4.19 55.67±1.37 50.27±2.21 45.72±1.53 26.99±1.56 21.43±0.55

DGI 82.30±0.60 71.80±0.70 76.80±0.60 91.61±0.22 44.70±0.26 45.33±6.11 55.21±1.02 58.53±2.98 51.25±0.51 28.30±0.76 22.98±0.37
GCA 82.93±0.42 72.19±0.31 80.79±0.45 91.70±0.10 46.10±0.19 52.31±1.09 59.55±0.81 52.92±0.46 60.73±0.28 28.77±0.29 23.11±0.57
SUGRL 83.40±0.50 73.00±0.40 81.90±0.30 93.07±0.15 46.22±0.31 50.18±0.30 61.31±2.07 57.88±2.21 55.52±0.75 30.31±0.82 25.11±0.32
BGRL 82.70±0.60 71.10±0.80 79.60±0.50 92.90±0.30 45.33±0.19 50.33±2.29 51.23±1.17 52.77±1.98 53.87±0.65 28.80±0.54 24.33±0.13
CCA-SSG 84.00±0.40 73.10±0.30 81.00±0.40 93.14±0.14 47.54±0.14 52.17±1.04 58.46±0.96 59.89±0.78 56.77±0.39 27.82±0.60 25.51±0.46

DSSL 83.20±0.42 72.31±0.51 81.25±0.31 93.10±0.32 46.78±0.22 53.15±1.28 62.26±0.55 62.11±1.53 62.98±0.51 28.15±0.31 25.55±0.41
AF-GCL 83.16±0.13 71.96±0.42 79.16±0.73 92.49±0.31 46.95±0.33 52.29±1.21 60.12±0.39 59.81±1.33 61.72±0.21 28.94±0.69 26.31±0.75
AFGRL 81.30±0.20 68.70±0.30 80.60±0.40 93.22±0.28 46.81±0.20 55.37±3.56 63.21±1.55 60.35±1.05 60.31±0.87 30.31±0.95 24.26±0.81

GraphECL 84.25±0.05 73.15±0.41 82.21±0.05 94.22±0.11 48.49±0.15 69.19±6.86 79.41±2.19 75.95±5.33 65.84±0.71 35.80±0.89 27.22±0.06

Table 2: Node classification results in a real-world scenario with both inductive and transductive nodes. tran
denotes the results on seen transductive nodes. ind indicates the accuracy on unseen inductive nodes.

Methods
Citeseer Pubmed Photo Actor Flickr

tran ind tran ind tran ind tran ind tran ind
DGI 63.82±1.69 66.25±2.54 70.33±2.61 70.48±2.41 87.11±1.65 88.14±0.45 28.07±2.19 28.08±1.96 37.84±0.22 39.71±0.30

GCA 66.33±1.16 69.02±2.08 81.16±0.80 81.52±0.56 90.54±0.54 90.59±0.51 27.94±1.62 27.72±1.51 41.25±0.33 42.95±0.18

BGRL 67.04±1.44 67.62±1.24 78.36±0.41 79.55±0.40 87.95±0.68 88.30±0.45 29.04±1.06 29.07±0.65 40.78±0.20 41.75±0.15

SUGRL 69.16±0.63 71.24±1.06 81.07±0.76 80.52±1.21 89.88±0.64 89.11±0.24 28.95±1.37 28.68±1.18 40.37±0.20 41.33±0.25

CCA-SSG 68.81±1.05 70.05±2.70 79.76±2.32 80.34±2.32 88.60±1.95 88.77±1.85 28.52±1.11 28.06±2.69 42.16±0.25 43.22±0.27

GraphECL 69.96±0.10 72.87±1.30 81.71±0.91 82.47±1.00 92.18±0.15 89.42±0.03 36.18±1.29 37.17±1.84 45.43±0.14 43.50±0.20

(α → 1), exhibit a tendency for nodes to connect with others of the same class, while heterophilic
graphs (α → 0), display a preference for connections across different classes. This theorem shows
that graphs characterized by a low homophily value (i.e., heterophilic graphs) may require a larger
representation dimension, i.e., smaller (K+1)-th largest σK+1 to effectively bound the downstream
error. We empirically verify the effect of dimensions on different real-world graphs (Section 5.3).

5 EXPERIMENTS
Datasets. We perform extensive experiments on datasets that span different domains. For homophilic
graphs, we adopt the widely-used benchmarks: Cora, Citeseer, and Pubmed, co-purchase graph
Photo. For heterophilic graphs, we utilize Cornell, Wisconsin, Texas, Crocodile and Actor.
To fully evaluate our method, we also consider two large-scale real-world graphs: Flickr and
Snap-patents. We adhere to the public and standard splits employed by the previous studies for all
datasets. Detailed descriptions, splits, and statistics for these datasets can be found in C.3.

Baselines. We compare with recent graph contrastive or self-supervised methods: Graph-MLP (Hu
et al., 2021), VGAE (Kipf & Welling, 2016b), DGI (Veličković et al., 2018), GCA (Zhu et al.,
2021), SUGRL (Mo et al., 2022), BGRL (Thakoor et al., 2021), CCA-SSG (Zhang et al., 2021a),
DSSL (Xiao et al., 2022), AF-GCL (Wang et al., 2022a), and AFGRL (Lee et al., 2022).

Evaluation Protocol. Following (Veličković et al., 2018; Thakoor et al., 2021; Zhu et al., 2021),
we consider two downstream tasks: node classification and node clustering. For node classification,
we use standard linear-evaluation protocol, where a linear classifier is trained on top of the frozen
representation, and test accuracy is used as a proxy for representation quality. For node clustering, we
conduct k-means clustering on the representations, setting the number of clusters equal to the number
of ground truth classes, and report normalized mutual information (NMI) (Vinh et al., 2009).

Transductive vs. Inductive. The evaluation of unsupervised node representations through trans-
ductive node classification is a prevalent practice in GCL. Nevertheless, it neglects the scenarios
of inferring representations for previously unseen nodes. Thus, it can not evaluate the real-world
applicability of a deployed model, which often requires the inference of representations for novel data
points. We consider evaluating representations under two settings: transductive (tran) and inductive
(ind). The details about these two settings are given in Appendix C.4.

Setup. For a fair comparison, we employ a standard GCN model (Kipf & Welling, 2017) as the
GNN encoder for all methods unless otherwise specified. We conduct experiments using ten random
seeds and report both the average performance and standard deviation. We select the optimal
hyperparameters solely based on accuracy on the validation set. In cases where publicly available and
standardized data splits were used in the original paper, we adopt their reported results. For baselines

7

Under review as a conference paper at ICLR 2024

that deviated from publicly available and standardized data splits, we either reproduce the results
using the authors’ official code. The hyperparameter search space can be found in Appendix C.5.

5.1 MAIN RESULTS AND COMPARISON ON BOTH TRANSDUCTIVE AND INDUCTIVE SETTINGS

In this section, we evaluate the node representations from the MLP encoder learned by our GraphECL.

Transductive Setting. We first consider the standard transductive setting on the task of node
classification. We provide the results of the node clustering task in Table 7 in Appendix. Table 12
reports the average accuracy on both heterophilic and homophilic graphs. As shown in the table,
across different datasets, GraphECL is able to learn better representations that achieve the best
performance. These results are profoundly encouraging and indeed remarkable, given that GraphECL
exclusively employs the learned MLP representations for inference without any reliance on input graph
structures! This demonstrates that MLP learned by GraphECL is able to capture meaningful structural
information that is beneficial and generalized to the downstream task.

Inductive Setting. To gain a better understanding of GraphECL’s effectiveness, we evaluate the
inferred representations in a realistic production setting that encompasses both transductive and
inductive nodes. In the inductive evaluation, we set aside certain test nodes (20%) from the test
nodes in the transductive setting to create an inductive set (as detailed in Section C.4). We adopt
the GraphSAGE (Hamilton et al., 2017a) as the GNN encoder for all GCL methods. As shown in
Table 2, GraphECL still achieves superior or competitive performance compared to elaborate methods
employing GNN as the inference encoder. These results support the deployment of the MLP learned by
GraphECL as a significantly faster model, with minimal or no performance degradation.

5.2 SCALABILITY AND INFERENCE TIME COMPARISON

Figure 4: Inference time of different methods.
Note that time axes are log-scaled.

To further demonstrate the scalability of GraphECL,
we evaluate the inference time on large-scale graphs
(Flickr and Snap-patents). We compare the in-
ference time with BGRL (GNN-L2W256), CCA-SSG
(GNN-L2W128), and SUGRL (GNN-L1W128), where
GNN-LiWj indicates the method achieving the best
performance with i layers of GraphSAGE with j di-
mensions, as shown in Table 12. The MLP learned by
GraphECL has 128 hidden dimensions. Our results in Ta-
ble 12 and Figure 4 indicate that GraphECL achieves the
highest accuracy while maintaining significantly faster
inference times. On the large-scale graph: Snap-patents, the MLP learned by GraphECL is 286.82x
faster than CCA-SSG with the same number of layers, showing the superior efficiency of GraphECL.

5.3 ABLATION STUDIES

Table 3: Ablation studies on Flicker dataset.

Ablation Accuracy (%)
A1 w/o inter-model negative pair 42.34±0.03
A2 w/o intra-model negative pair 42.34±0.01
A3 w/o both types of negative pairs 40.25±0.05
A4 w/ only MLP encoder 44.83±0.06
A1 & A4 42.34±0.04
A2 & A4 42.32±0.10
A3 & A4 41.28±0.02

GraphECL 48.49±0.15

Ablation Studies. We study the effects of intra-
model and inter-model negative losses. We con-
sider three ablations: (A1) Removing the inter-
model negative pairs; (A2) Removing the intra-
model negative pairs; and (A3) Removing both
intra-model and inter-model negative pairs. We
also explore the effects of the cross-model con-
trastive architecture in GraphECL by removing
the asymmetric GNN-MLP architecture and consider
other two ablations for GraphECL: (A4) using only
the MLP as the encoder. Table 3 lists the results. We also find that GraphECL without any negative
pairs performs bad, demonstrating that adding the uniformity loss of negative pairs is crucial for good
generalization. Additionally, we observe that GraphECL with using only MLP as the encoder can not
achieve the best performance, although it can also conduct fast inference, confirming the effectiveness
of the designed GNN-MLP contrastive architecture. This confirms our motivation that cross-model ar-
chitecture is important for capturing structural information. GraphECL achieves the best performance
over other ablations, demonstrating that our designed components are complementary to each other.

8

Under review as a conference paper at ICLR 2024

Figure 5: (Left) The training dynamics of GraphECL on Cora. (Right two) The pairwise cosine similarity of
representations for randomly sampled node pairs, one-hop neighbors, and two-hop neighbors on Cora and Actor.

Table 4: Ablation study on the effectiveness of using generalized contrastive loss in GraphECL.

Cora Citeseer Pubmed Photo Actor Crocodile

GraphECL (InfoNCE) 74.55±0.45 67.15±0.25 76.50±1.20 91.44±0.61 33.39±0.37 63.88±0.34

GraphECL (Generalized) 84.25±0.05 73.15±0.41 82.21±0.05 94.22±0.11 35.80±0.89 65.84±0.71

Effectiveness of Generalized Contrastive Loss. We maintain the cross-model contrastive archi-
tecture while replacing our generalized contrastive loss with the vanilla InfoNCE loss, as shown
in Equation (2). Table 4 summarizes the results across all six datasets, demonstrating consistent
improvements when using the generalized contrastive loss in the GraphECL formulation.

Size of Negative Pairs. We investigate the influence of different number of negative pairs (i.e., M)
in GraphECL (Appendix D.2). While a proper range can lead to certain gains (Figure 7), a small
number of negative samples (e.g., M = 5) is enough to achieve good performance.

Representation Dimension. We study the effects of dimensions (i.e., K) in Appendix D.3. Interest-
ingly, we find that larger dimensions often yield better results, except in the case of extremely large
dimensions, for both homophilic and heterophilic graphs. This observation aligns with Theorem 4.2,
showing that a larger dimension can effectively reduce the upper bound of downstream errors.

The Trade-off Parameter. We explore the effects of the trade-off parameter of λ which controls the
balance between the two types of negative pairs. As shown in Figure 6, while a specific value can
lead to certain gains, GraphECL is robust to different choices of the value λ on different graphs.

5.4 FURTHER MODEL ANALYSIS

Training Dynamics. We also investigate the training process of GraphECL. Figure 5 (left) shows the
curves of the training losses and downstream performances utilizing GNN and MLP, respectively. We
can find: (1) GraphECL exhibits training stability, consistently enhancing performance as training
losses decrease; (2) As the training proceeds, MLP gradually and dynamically acquires knowledge
from GNN, facilitating the dynamic exchange of information between GNN and MLP in GraphECL.

Similarity Distribution. In addition to quantitative analysis, we visualize pairwise cosine similarities
among randomly sampled nodes, one-hop neighbors, and two-hop neighbor pairs based on learned
representations. Figure 5 shows that, in the homophilic graph (i.e., Cora), nodes exhibit similar repre-
sentations to their neighbors. GraphECL enhances similarities between neighbor nodes compared to
randomly sampled node pairs, demonstrating its ability to effectively preserve one-hop neighborhood
contexts. In contrast, in the heterophilic graph (i.e., Actor), GraphECL strives to bring two-hop
neighbor nodes closer together. This observation aligns seamlessly with our analytical insights,
showing GraphECL’s aptitude for automatically capturing graph structures beyond homophily.

6 CONCLUSION

We present GraphECL, a simple and inference-efficient GCL framework for learning effective node
representations from graph data. GraphECL introduces a cross-model contrastive architecture and a
generalized contrastive loss to train a MLP encoder. Interestingly, GraphECL is significantly faster
than GCL methods that require a GNN as the encoder, while also achieving superior performance! We
demonstrate theoretically that GraphECL leverages neighborhood distribution as an inductive bias.
Extensive experiments on various real-world graphs highlight its intriguing properties, including better
inference efficiency, robustness, and generalization on both homophilic and heterophilic graphs.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Pietro Bongini, Monica Bianchini, and Franco Scarselli. Molecular generative graph neural networks
for drug discovery. Neurocomputing, 450:242–252, 2021.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In ICLR, 2020.

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic, and
Inderjit S Dhillon. Node feature extraction by self-supervised multi-scale neighborhood prediction.
In International Conference on Learning Representations, 2021.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326–22340, 2022.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD, pp.
855–864, 2016.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NeurIPS, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584, 2017b.

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. Mlpinit: Embarrassingly simple gnn
training acceleration with mlp initialization. In The Eleventh International Conference on Learning
Representations, 2022.

Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
deep learning with spectral contrastive loss. arXiv preprint arXiv:2106.04156, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

W Hu, B Liu, J Gomes, M Zitnik, P Liang, V Pande, and J Leskovec. Strategies for pre-training
graph neural networks. In ICLR, 2020.

Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue Gao. Graph-mlp: Node
classification without message passing in graph. arXiv preprint arXiv:2106.04051, 2021.

Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang Zhao. On feature decor-
relation in self-supervised learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9598–9608, 2021.

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in
contrastive self-supervised learning. In 10th International Conference on Learning Representations,
ICLR 2022, 2022.

Chaitanya K Joshi, Fayao Liu, Xu Xun, Jie Lin, and Chuan Sheng Foo. On representation knowledge
distillation for graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016b.

10

Under review as a conference paper at ICLR 2024

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised learning
on graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
7372–7380, 2022.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. NeurIPS, pp. 20887–20902, 2021.

Qiang Liu, Haoli Zhang, and Zhaocheng Liu. Simplification of graph convolutional networks: A
matrix factorization-based perspective. arXiv preprint arXiv:2007.09036, 2020.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In ICLR, 2021.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is Homophily a Necessity for Graph Neural
Networks? In International Conference on Learning Representations (ICLR), 2022.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In SIGIR, pp. 43–52, 2015.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

Yujie Mo, Liang Peng, Jie Xu, Xiaoshuang Shi, and Xiaofeng Zhu. Simple unsupervised graph
representation learning. In AAAI, 2022.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In ICLR, 2019.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN: Geometric
Graph Convolutional Networks. In International Conference on Learning Representations (ICLR),
volume abs/2002.05287, 2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend ranking in
large-scale social platforms. In Proceedings of the Web Conference 2021, pp. 2535–2546, 2021.

Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to improve
graph contrastive learning. NeurIPS, 2021.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In WWW, pp. 1067–1077, 2015.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer, Remi
Munos, Petar Veličković, and Michal Valko. Large-scale representation learning on graphs via
bootstrapping. In ICLR, 2021.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L. Dyer, Rémi
Munos, Petar Velickovic, and Michal Valko. Large-Scale Representation Learning on Graphs via
Bootstrapping. In International Conference on Learning Representations (ICLR), 2022.

Yijun Tian, Chuxu Zhang, Zhichun Guo, Xiangliang Zhang, and Nitesh Chawla. Learning mlps on
graphs: A unified view of effectiveness, robustness, and efficiency. In The Eleventh International
Conference on Learning Representations, 2022.

Puja Trivedi, Ekdeep S Lubana, Mark Heimann, Danai Koutra, and Jayaraman Thiagarajan. Analyzing
data-centric properties for graph contrastive learning. Advances in Neural Information Processing
Systems, pp. 14030–14043, 2022.

11

Under review as a conference paper at ICLR 2024

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2018.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings
comparison: is a correction for chance necessary? In ICML, 2009.

Haonan Wang, Jieyu Zhang, Qi Zhu, and Wei Huang. Augmentation-free graph contrastive learning
with performance guarantee. arXiv preprint arXiv:2204.04874, 2022a.

Yuansheng Wang, Wangbin Sun, Kun Xu, Zulun Zhu, Liang Chen, and Zibin Zheng. Fastgcl: Fast
self-supervised learning on graphs via contrastive neighborhood aggregation. arXiv preprint
arXiv:2205.00905, 2022b.

Lirong Wu, Haitao Lin, Yufei Huang, , and Stan Z Li. Quantifying the knowledge in gnns for reliable
distillation into mlps. In International Conference on Machine Learning. PMLR, 2023.

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. Simgrace: A simple framework for
graph contrastive learning without data augmentation. In Proceedings of the ACM Web Conference
2022, pp. 1070–1079, 2022a.

Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, and Stan Z Li. Progcl: Rethinking hard negative mining
in graph contrastive learning. In ICML, pp. 24332–24346, 2022b.

Teng Xiao, Zhengyu Chen, Zhimeng Guo, Zeyang Zhuang, and Suhang Wang. Decoupled self-
supervised learning for non-homophilous graphs. arXiv preprint arXiv:2206.03601, 2022.

Bencheng Yan, Chaokun Wang, Gaoyang Guo, and Yunkai Lou. Tinygnn: Learning efficient graph
neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1848–1856, 2020.

Cheng Yang, Jiawei Liu, and Chuan Shi. Extract the knowledge of graph neural networks and go
beyond it: An effective knowledge distillation framework. In Proceedings of the web conference
2021, pp. 1227–1237, 2021a.

Chenxiao Yang, Qitian Wu, Jiahua Wang, and Junchi Yan. Graph neural networks are inherently
good generalizers: Insights by bridging gnns and mlps. In The Eleventh International Conference
on Learning Representations, 2022a.

Chenxiao Yang, Qitian Wu, and Junchi Yan. Geometric knowledge distillation: Topology compression
for graph neural networks. Advances in Neural Information Processing Systems, 35:29761–29775,
2022b.

Han Yang, Kaili Ma, and James Cheng. Rethinking graph regularization for graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 4573–4581, 2021b.

Ling Yang, Ye Tian, Minkai Xu, Zhongyi Liu, Shenda Hong, Wei Qu, Wentao Zhang, Bin Cui,
Muhan Zhang, and Jure Leskovec. Vqgraph: Graph vector-quantization for bridging gnns and
mlps. arXiv preprint arXiv:2308.02117, 2023.

Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang. Distilling knowledge from
graph convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7074–7083, 2020.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. NeurIPS, pp. 5812–5823, 2020.

Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Bringing your own view: Graph
contrastive learning without prefabricated data augmentations. In WSDM, pp. 1300–1309, 2022.

12

Under review as a conference paper at ICLR 2024

Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen. Are graph
augmentations necessary? simple graph contrastive learning for recommendation. In Proceedings
of the 45th international ACM SIGIR conference on research and development in information
retrieval, pp. 1294–1303, 2022.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph Sampling Based Inductive Learning Method. In International Conference on
Learning Representations (ICLR), 2020.

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. From canonical correlation
analysis to self-supervised graph neural networks. Advances in Neural Information Processing
Systems, 2021a.

Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching old
mlps new tricks via distillation. In International Conference on Learning Representations, 2021b.

Yifei Zhang, Hao Zhu, Zixing Song, Piotr Koniusz, and Irwin King. Costa: covariance-preserving
feature augmentation for graph contrastive learning. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 2524–2534, 2022.

Tong Zhao, Tianwen Jiang, Neil Shah, and Meng Jiang. A synergistic approach for graph anomaly
detection with pattern mining and feature learning. IEEE Transactions on Neural Networks and
Learning Systems, 2021.

Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and Karthik Sub-
bian. Cold brew: Distilling graph node representations with incomplete or missing neighborhoods.
In International Conference on Learning Representations, 2021.

Yizhen Zheng, Shirui Pan, Vincent Lee, Yu Zheng, and Philip S Yu. Rethinking and scaling up graph
contrastive learning: An extremely efficient approach with group discrimination. Advances in
Neural Information Processing Systems, 35:10809–10820, 2022.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. NeurIPS, pp.
7793–7804, 2020a.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020b.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In The Web Conference, pp. 2069–2080, 2021.

Marinka Zitnik, Rok Sosič, and Jure Leskovec. Prioritizing network communities. Nature communi-
cations, pp. 1–9, 2018.

13

Under review as a conference paper at ICLR 2024

A ADDITIONAL RELATED WORK

In this section, we detail comparisons with prior contrastive learning schemes on graphs. Although we
have compared previous works in the main body of the paper, we further provide a clear comparison
of characteristics with previous contrastive learning schemes on graphs in Table 5.

Comparisons with GCL methods with augmentation (Trivedi et al., 2022; Veličković et al., 2018;
Zhu et al., 2021; You et al., 2020; 2022; Suresh et al., 2021; Xia et al., 2022b): This contrastive
learning scheme relies on graph augmentations and is built based on the invariant assumption that the
augmentation can preserve the semantic nature of samples, i.e., the augmented samples have invariant
semantic labels with the original ones. This scheme requires a GNN as the encoder to achieve good
performance, which is computation-intensive during inference. However, our GraphECL is not based
on graph augmentations but directly captures the 1-hop neighborhood distribution.

Comparisons with Graph-MLP (Yang et al., 2016; Hu et al., 2021; Yang et al., 2021b; Liu et al., 2020):
Despite its inference efficiency due to the exclusive use of MLP, this approach exhibits significantly
lower performance compared to GCL with augmentations, as depicted in Figure 1. Moreover, this
scheme over-emphasizes homophily (You et al., 2020; Xiao et al., 2022), making it difficult to
generalize to graphs with heterophily (Lim et al., 2021). In contrast, our GraphECL enjoys good
downstream performance with fast inference speed for both homophilic and heterophilic graphs.

Comparisons with MLP-augmented GCL: This method mentioned in Section 4.1 also relies on the
invariant assumption that the augmentation can preserve the semantic nature of samples, i.e., the
augmented samples have invariant semantic labels with the original ones. In addition, it suffers from
significant performance degradation on downstream tasks as shown in the results in Section 4.1.

Table 5: Comparison of characteristics to previous contrastive schemes on graphs. Our GraphECL
does not rely on invariant assumption that the augmentation can preserve the semantic nature of
samples and homophily assumption that connected nodes should have similar representations.

Contrastive Schemes Invariant Assumption Homophily Assumption Task Effective Inference Efficient
GCL with Augmentations ✓ ✗ ✓ ✗
Graph-MLP ✗ ✓ ✗ ✓
MLP-Augmented GCL ✓ ✗ ✗ ✓

Our GraphECL ✗ ✗ ✓ ✓

B PROOFS

B.1 PROOFS OF THEOREM 4.1

Theorem 4.1. The learning dynamics w.r.t the MLP encoder fM with the generalized contrastive loss
(λ = 1) in Equation (5) saturates when the true normalized adjacency and the estimated normalized
affinity matrices agree: D−1A = D̄−1Ā, which implies that, for ∀v, u ∈ V , we have:

Pn(u | v) = Pf (u | v) ≜ exp(fM (v)⊤fG(u)/τ)∑
v′∈V exp(fM (v)⊤fG(v′)/τ)

, (8)

where Pn(u | v) is the 1-hop neighborhood distribution (i.e., the v-th row of the normalized adjacency
matrix) and Pf (u | v) is the Boltzmann distribution estimated by encoders with temperature τ .

Proof. We first show that minimizing GraphECL objective with λ = 1 is approximately to minimizing
the losses of the positive and negative pairs on MLP representations.

LECL = −
1

|V|

∑
v∈V

1

|N (v)|

∑
u∈N (v)

log
exp(fM (v)⊤fG(u)/τ)∑

v−∈V exp(fG(u)⊤fG(v−)/τ) + exp(fM (v)⊤ fG(v−)/τ)
,

≥
1

|V|

∑
v∈V

(
1

|N (v)|

∑
u∈N (v)

−fM (v)⊤fG(u)/τ + log
∑

v−∈V

exp(fM (v)⊤ fG(v−)/τ))

=
1

|V|

∑
v∈V

1

|N (v)|

∑
u∈N (v)

−fM (v)⊤fG(u)/τ

︸ ︷︷ ︸
Lpos

+
1

|V|

∑
v∈V

log
∑

v−∈V

exp(fM (v)⊤ fG(v−)/τ)

︸ ︷︷ ︸
Lneg

. (9)

14

Under review as a conference paper at ICLR 2024

Then, we consider the unfolded iterations of descent steps on MLP representation fM (v). Specifically,
we first consider taking the derivatives of Lpos and Lneg on fM (v):

∂Lpos

∂fM (v)
= −

1

|V|
1

|N (v)|

∑
u∈N (v)

fG(u)/τ,
∂Lneg

∂fM (v)
=

1

|V|

∑
v−∈V

exp(fM (v)⊤ fG(v−)/τ)fG(v−)/τ∑
ṽ−∈V exp(fM (v)⊤ fG(ṽ−)/τ)

. (10)

As we denote representation matrix as M with fM (v) as the v-th row, the Equation (10) can be
written as the following matrix forms for simplicity and clarity:

∂Lpos

∂M
= − 1

|V|
1

τ
D−AG,

∂Lneg

∂M
=

1

|V|
1

τ
D̄−1ĀG, (11)

where Ā = exp(MG⊤/τ) is the affinity matrix based on feature similarity. D̄ = deg(Ā) is the
diagonal matrix, whose element in the v-th row and v-th column is the sum of the v-th row of Ā. In
order to reduce the losses on positive pairs and negative pairs, we can take a single step performing
gradient descent, which is to update MLP representations M as follows:

M(t+1) = M(t) − α
∂(Lpos + Lneg)

∂M
= M(t) − α

τ
(D̄−1Ā−D−A)G, (12)

where M(t+1) and M(t) denote the representations before and after the update, respectively, and
α > 0 is the step size of the gradient descent. Note that the constant 1/|V| has been absorbed in α.
We can easily notice the updating in Equation (12) reveals the stationary point, i.e, global minimum,
of the learning: D̄−1Ā = D−A. Combining this with Equation (9) completes the proof.

B.2 PROOFS OF THEOREM 4.2

To prove Theorem 4.2, we first present the following Lemma:

Lemma B.1. (Theorem B.3 (page 32) in (HaoChen et al., 2021)). Let f∗ be a minimizer of the
spectral contrastive loss: LSCL =

∑
x,x′∈X −2 · wxx′ · f(x)⊤f(x′) + wxwx′ · (f(x)⊤f(x′))2,

where wx,x′ = w(x)w(x′|x) is the probability of a random positive pair being (x, x′) while wx is
the probability of a randomly selected data point being x, we have:

E(f∗) ≜ min
W

∑
x∈X

wx · 1[gf∗,W (x) ̸= y(x)] ≤ ϕŷ

λk+1
, (13)

where ϕŷ =
∑

x,x′∈X wxx′ · 1[ŷ(x) ̸= ŷ(x′)] and W is the downstream linear classifier. λk+1 is the
(K +1)-th smallest eigenvalues of the matrix: I−D−1/2PD−1/2 where P ∈ RN×N is a symmetric
probability matrix with Pxx′ = wxx′ and DP ∈ RN×N is a diagonal matrix with (DP)xx = wx.

We also introduce the following Lemma which asserts that multiplying the embedding matrix on the
right by an invertible matrix does not affect the linear probing error.

Lemma B.2. (Lemma 3.1 (page 8) in (HaoChen et al., 2021)). Consider an embedding matrix
F ∈ RN×k and a linear classifier B ∈ Rk×r. Let D ∈ RN×N be a diagonal matrix with positive
diagonal entries and Q ∈ Rk×k be an invertible matrix. Then, for any matrix F̃ = D · F ·Q, the
linear classifier B̃ = Q−1B on F̃ has the same prediction as B on F. Thus, we have E(F) = E(F̃).

Intuitively, this Lemma suggests that although there might not be a single unique optimal solution,
when we employ the representation within the context of linear probing, the linear classifier can
efficiently handle variations caused by affine transformations. Consequently, it produces identical
classification errors across different variants when operating at the optimal settings.

Theorem 4.2. Let f∗
M be the global minimum of generalized contrastive loss (λ = 1) in Equation (5)

and y(v) denote the label of v. σ1 ≥ · · · ≥ σN are the eigenvalues with descending order of the
normalized adjacency matrix D−1A. Then, the linear probing error of f∗

M is upper-bounded by:

E(f∗
M) ≜ min

W

1

|V|
∑
v∈V

1[gf∗,W (v) ̸= y(v)] ≤ 1− α

1− σK+1
, (14)

where α = 1
|V|

∑
v∈V

1
|N (v)|

∑
u∈N (v) 1[y(v) = y(u)] and K is the dimension of the representation.

15

Under review as a conference paper at ICLR 2024

Proof. Based on Equation (9), we further have the following:

LECL ≥ 1

|V|
∑
v∈V

(
1

|N (v)|
∑

u∈N (v)

−fM (v)⊤fG(u)/τ + log
∑

v−∈V

exp(fM (v)⊤ fG(v
−)/τ)).

=
1

|V|
∑
v∈V

(
1

|N (v)|
∑

u∈N (v)

−fM (v)⊤fG(u)/τ + log
∑

v−∈V

exp(fM (v)⊤ fG(v
−)/τ)

|V| |V|)

=
1

|V|
∑
v∈V

(
1

|N (v)|
∑

u∈N (v)

−fM (v)⊤fG(u)/τ + log
∑

v−∈V

exp(fM (v)⊤ fG(v
−)/τ)

|V| + log |V|)

c
=

1

|V|
∑
v∈V

(
1

|N (v)|
∑

u∈N (v)

−fM (v)⊤fG(u)/τ + log
∑

v−∈V

exp(fM (v)⊤ fG(v
−)/τ)

|V|)

≥ 1

|V|
∑
v∈V

(
1

|N (v)|
∑

u∈N (v)

−fM (v)⊤fG(u)/τ +
∑

v−∈V

1

|V| (fM (v)⊤ fG(v
−)/τ)) (15)

=
1

|V|
∑
v∈V

1

|N (v)|
∑

u∈N (v)

−fM (v)⊤fG(u)/τ +
1

|V|
1

|V|
∑
v∈V

∑
v−∈V

fM (v)⊤ fG(v
−)/τ

≥ 1

|V|
∑
v∈V

1

|N (v)|
∑

u∈N (v)

−fM (v)⊤fG(u)/τ +
1

|V|
1

|V|
∑
v∈V

∑
v−∈V

(fM (v)⊤ fG(v
−))2/τ (16)

c
=

1

|V|
∑
v∈V

1

|N (v)|
∑

u∈N (v)

−2fM (v)⊤fG(u) +
1

|V|
1

|V|
∑
v∈V

∑
v−∈V

(fM (v)⊤ fG(v
−))2 ≜ Lcross, (17)

where the symbol c
= indicates equality up to a multiplicative and/or additive constant. Here, we utilize

Jensen’s inequality in (15). Inequality (16) holds because fM (v) and fG(u) are ℓ2-normalized, and
we consider the embedding heads consisting of last-layer ReLU neural networks. We define the
two metrics M̃ and G̃. Equation (17) holds if we set the temperature of positive pairs is twice to
it of negative pairs. Here (M̃)v = |V|−1/2

fM (v) and (G̃)u = |V|−1/2
fG(u). Then. the loss in

Equation (17) is equivalent to the low-rank asymmetric matrix factorization loss up to a constant:

LAMF = ∥D−1A− M̃G̃⊤∥ = Lcross + const (18)

According to Eckart–Young–Mirsky theorem (Eckart & Young, 1936), the optimal solution M̃∗ and
G̃∗ of LAMF can be respectively represented as follows:

M̃∗(G̃∗)⊤ = UK deg(σ1, . . . , σK)(VK)⊤ (19)

where we denote D−1AUΣV⊤ as the spectral decomposition of D−1A. (σ1, . . . , σK) are the
K-largest eigenvalue of D−1A. The k-th column of UK ∈ R|V|×K is the corresponding eigenvector
of the k-th largest eigenvalue and VK ∈ R|V|×K is a unitary matrix. Then the optimal solution M̃∗

and G̃∗ can be represented as follows:

M̃∗ = UKBR, G̃∗ = VK deg(σ1, . . . , σK)B−1R, (20)

where R ∈ R
K×K is a unitary matrix and B is an invertible diagonal matrix. Since (M̃)v =

|V|−1/2
fM (v) and (G̃)u = |V|−1/2

fG(u), we have:

f∗
M (v) = |V|1/2((UK)vBR)⊤, f∗

G(u) = |V|1/2((VK)u deg(σ1, . . . , σK)B−1R)⊤. (21)

Similar, if we consider optimizing following uni-model spectral contrastive loss:

Luni =
1

|V|
∑
v∈V

1

|N (v)|
∑

u∈N (v)

−2fM (v)⊤fM (u) +
1

|V|
1

|V|
∑
v∈V

∑
v−∈V

(fM (v)⊤ fM (v−))2. (22)

The optimal solution f̂∗
M of this uni-model spectral contrastive loss can be represented as follow:

f̂∗
M (v) = |V|1/2((UK

uni)vBuniRuni)
⊤. (23)

Since one can easily find the uni-model spectral contrastive loss in Equation (22) also decomposes
the matrix D−1A, the UK

uni = UK . As B, R, Buni, Runi are invertible matrices and the product of
the invertible matrices is still invertible, we have:

f∗
M (v) = f̂∗

M (v)T, (24)

16

Under review as a conference paper at ICLR 2024

where T = (Buni)
−1(Runi)

−1BR. With Lemma B.2, we establish that E(f∗
M) = E(f̂∗

M). Additionally,
we observe that the loss in Equation (22) shares the same form as the spectral contrastive loss
when we define 1

|V|D
−1A = Â i.e., wx = 1

|V| and wx′|x = (D−1A)x,x′ . It’s worth noting that
D−1A = D−1/2AD−1/2 forms a symmetric matrix due to our random sampling process, which
ensures that the same neighbors are sampled for each central node, approximately resulting in equal
node degrees. Thus, with Lemma B.1, we can obtain the following:

E(f∗
M) = E(f̂∗

M) ≜ min
W

1

|V|
∑
v∈V

1[gf∗,W (v) ̸= y(v)] ≤ 1− α

1− σK+1
(25)

where α = 1/|V|
∑

v∈V
1

|N (v)|
∑

u∈N (v) 1[y(v) = y(u)] and σK+1 is the (K + 1)-th largest singular
value of the normalized adjacency matrix D−1A. Given the above, the proof is finished.

C EXPERIMENTAL DETAILS

Table 6: Statistics of Benchmark Datasets.

Cora Citeseer Pubmed Photo Flickr Crocodile Actor Wisconsin Cornell Texas Snap-patents

#Nodes 2,708 3,327 19,717 7,650 89,250 11,631 7,600 251 183 183 2,923,922
#Edges 5,278 4,552 44,324 119,081 899,756 360,040 33,544 466 295 309 13,975,788
#Classes 7 6 3 8 7 5 5 5 5 5 5
#Features 1,433 3,703 500 745 500 2,089 931 1,703 1,703 1,793 269
H(G) 0.83 0.71 0.79 0.85 0.32 0.30 0.22 0.16 0.11 0.06 0.22
S(G) 0.89 0.81 0.87 0.91 0.33 0.71 0.68 0.42 0.40 0.79 0.29

C.1 ONE-HOP NODE HOMOPHILY LEVEL

We use the node homophily ratio to measure the one-hop neighbor homophily of the graph (Pei et al.,
2020). The detailed node homophily ratio H(G) can be computed as:

H(G) = 1

|V|
∑
v∈V

1

N (v)

∑
u∈N (v)

1(y(v) = y(u)). (26)

C.2 NEIGHBORHOOD CONTEXT SIMILARITY

To validate the assumption that nodes belonging to an identical semantic category are likely to exhibit
similar patterns in their one-hop neighborhoods, even in heterophilic graphs, we examine whether
nodes with the same label demonstrate similar distributions of labels in their neighborhoods regardless
of the homophily. We evaluate the characteristic by computing the class neighborhood similarity (Ma
et al., 2022), which is defined as:

s
(
m,m′

)
=

1

|Vm| |Vm′ |
∑

u∈Vm,v∈Vm′

cos(d(u), d(v)), (27)

where M denotes the total number of classes, Vm represents the set of nodes classified as m, and d(u)
is the empirical histogram of the labels of node u ’s neighbors across M classes. The cosine similarity
function is represented by cos(·). This metric for cross-class neighborhood similarity quantifies
the differences in neighborhood distributions between varying classes. When m = m′, s

(
m,m′)

determines the intra-class similarity. To quantify the neighborhood similarity, we take the average of
the intra-class similarities across all classes:

S(G) =
M∑

m=1

1

M
s(m,m). (28)

If nodes with identical labels exhibit similar neighborhood distributions, then the class neighborhood
similarity S(G) will be high. As shown in Table 6, we can observe that many heterophilic graphs
exhibit stronger neighborhood similarity, even when the homophily ratio is low.

17

Under review as a conference paper at ICLR 2024

C.3 DATASETS DETAILS

The statistics of benchmark datasets, including homophily levels and 1-hop neighborhood similarities,
are given in Table 6. All datasets and public splits can found in PyTorch Geometric: https:

//pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html.

Cora, Citeseer, and Pubmed. (Kipf & Welling, 2016a; Yang et al., 2016) These datasets serve as some of
the most prevalent benchmarks for node classification. Each one constitutes a high-homophily graph
representing citations, with nodes symbolizing documents and edges depicting citation relationships
between them. The classification of each node is determined by the respective research field. Features
of the nodes are derived from a bag of words model applied to their abstracts. We utilize the public
split: a fixed 20 nodes from each class for training and another distinct set of 500 and 1000 nodes for
validation and testing, respectively (Kipf & Welling, 2016a).

Photo. (Thakoor et al., 2022; McAuley et al., 2015) The graphs originate from the Amazon co-
purchase graph (McAuley et al., 2015), where nodes denote products and edges connect pairs of items
often bought together. In the context of Photo dataset, products are categorized into 8 classes based
on their category, and the node features are represented by a bag-of-words model of the product’s
reviews. We employ a random splits of the nodes into training, validation, and testing sets, following
a 10/10/80% ratio respectively following (Thakoor et al., 2022).

Flickr. (Zeng et al., 2020) In this graph, each node symbolizes an individual image uploaded to
Flickr. An edge is established between the nodes of two images if they share certain attributes,
such as geographic location, gallery, or user comments. The node features are represented by a
500-dimensional bag-of-word model provided by NUS-wide. Regarding labels, we examined the
81 tags assigned to each image and manually consolidated them into 7 distinct classes, with each
image falling into one of these categories. We utilize a random node division method, adhering to a
50/25/25% split for training, validation, and testing sets following (Zeng et al., 2020).

Cornell, Wisconsin and Texas. (Pei et al., 2020) These are networks of webpages, gathered from
the computer science departments of various universities by Carnegie Mellon University. In each
network, the nodes represent individual webpages, while the edges signify hyperlinks between them.
The features of the nodes are depicted using bag-of-words representations of the webpages. The
objective is to categorize each node into one of five classes: student, project, course, staff, or faculty.

Actor. (Pei et al., 2020) This is a subgraph induced solely by actors, derived from the broader
film-director-actor-writer network. In this subgraph, nodes represent actors, while edges denote the
co-occurrence of two nodes on the same Wikipedia page. The features of the nodes are constituted by
keywords found on Wikipedia pages. Labels are categorized into five groups based on the content of
the actor’s corresponding Wikipedia page.

Crocodile. (Rozemberczki et al., 2021) These networks are sourced from Wikipedia, with nodes
symbolizing web pages and edges denoting the hyperlinks between them. The features of the nodes
consist of various informative nouns found on the Wikipedia pages. The labels assigned to the nodes
are determined by the average daily traffic each web page receives.

For Texas, Wisconsin, Cornell, Crocodile, Actor and Snap-patents, we use the raw data provided by the
Geom-GCN (Pei et al., 2019) with the standard fixed 10-fold split for our experiment.

Snap-patents. (Lim et al., 2021) The snap-patents dataset encompasses a collection of utility patents
from the US, where each node represents a patent, and edges are formed between patents that cite
one another. The features of the nodes are extracted from the metadata of the patents. In this work,
we introduce a task aiming to predict the time at which a patent was granted, which is categorized
into five classes. We utilize the unprocessed data from Lim et al. (2021), employing the standard
10-fold split for our experimental setup.

C.4 TRANSDUCTIVE AND INDUCTIVE SETTINGS FOR UNSUPERVISED REPRESENTATION
LEARNING

Transductive Setting. To fully evaluate the model, we consider two settings: transductive (tran) and
inductive (ind). In the transductive setting, our evaluation consists of two phases. Initially, we
pre-train models on graph G, followed by the generation of representations for all nodes within the

18

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html

Under review as a conference paper at ICLR 2024

Table 7: Node clustering performance in terms of NMI (%) on homophilic and heterophilic graphs

Method Citeseer Cora Photo Texas Cornell Actor
VGAE 36.40±0.01 38.92±0.02 53.00±0.04 27.75±0.16 17.87±0.13 15.92±0.07

DGI 43.90±0.00 31.80±0.02 47.60±0.03 34.17±0.07 15.92±0.15 19.31±0.05

BGRL 45.38±0.04 47.35±0.03 54.61±0.08 33.59±0.15 19.74±0.14 22.03±0.06

DSSL 45.91±0.06 46.77±0.04 54.99±0.05 38.22±0.15 20.36±0.08 21.32±0.10

SUGRL 45.86±0.08 45.66±0.04 53.05±0.05 39.41±0.10 19.55±0.05 24.69±0.17

GraphECL 46.87±0.06 48.52±0.07 56.71±0.05 44.56±0.02 27.85±0.12 29.71±0.20

graph, denoted as zv for v ∈ V. Subsequently, we employ a linear classifier trained on the fixed
learned representations using labeled data ZL and Y L. Finally, we assess the remaining inferred
representations ZU with corresponding labels Y U .

Inductive Setting. In the unsupervised inductive setting, we randomly select 20% of the nodes
as a test set for inductive evaluation. Specifically, we partition the unlabeled nodes VU into two
separate subsets: observed and inductive (i.e., VU = VU

obs ∪ VU
ind). This leads to the creation of

three distinct graphs: G = GL ∪ GU
obs ∪ GU

ind, where no nodes are shared between GL ∪ GU
obs and GU

ind.
Importantly, during self-supervised training, we remove the edges connecting GL ∪ GU

obs and GU
ind.

Upon completing the self-supervised pre-training on GL ∪ GU
obs, we generate node representations for

all nodes. Consequently, the learned representations and associated labels are partitioned into three
separate sets: Z = ZL∪ZU

obs∪ZU
ind and Y = Y L∪Y U

obs∪Y U
ind . A downstream classifier is then trained

on the fixed learned representations using labeled data ZL and Y L. Finally, we evaluate the remaining
representations ZU and ZU

ind on downstream classifier with labels Y U
obs and Y U

ind , respectively.

C.5 SETUP AND HYPER-PARAMETER SETTINGS

We utilized the official implementations publicly released by the authors for the baseline methods.
To ensure a fair comparison, we conducted a grid search to determine the optimal hyperparameters
for these baselines. Our experiments were conducted on a machine equipped with an NVIDIA
RTX A6000 GPU boasting 48GB of GPU memory. For all experiments, we employed the Adam
optimizer (Kingma & Ba, 2014). A small-scale grid search was employed to select the best hyper-
parameters for all methods. Specifically, for our GraphECL approach, we explored the following
hyperparameter ranges: λ from {0.001, 0.01, 0.1, 0.5, 1}, K from {256, 512, 1024, 2048, 4096},
τ from {0.5, 0.75, 0.99, 1}, and the number of negative pairs M from {1, 5, 10} when negative
sampling was utilized. In addition, we tuned the learning rate from the set {0.001, 0.0005, 0.0001}
and the weight decay from the set {0, 0.0001, 0.0003, 0.000001}. The selection of the optimal
hyperparameter configuration was based solely on the average accuracy on the validation set.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 NODE CLUSTERING PERFORMANCE

We also perform node clustering to assess the quality of learned node representations. Specifically,
we acquire node representations using GraphECL and subsequently apply k-means clustering to these
representations, setting the number of clusters equal to the number of ground truth classes. This
experiment is repeated five times, and the average normalized mutual information (NMI) for clustering
is reported in Table 7 for both homophilic and heterophilic graphs.

From the table, it is evident that our GraphECL consistently enhances node clustering performance
when compared to state-of-the-art self-supervised learning baselines across eight datasets. This
observation, coupled with the node classification results, underscores the effectiveness of GraphECL
in acquiring more expressive and resilient node representations for a variety of downstream tasks.
These findings further validate that modeling one-hop neighborhood patterns confers advantages to
downstream tasks on real-world graphs with varying degrees of homophily.

19

Under review as a conference paper at ICLR 2024

Figure 6: The effect of the hyperparameter λ.

Figure 7: The effect of the size of negative pairs.

Figure 8: The effect of the dimensions of representations.

D.2 THE EFFECT OF SIZE OF NEGATIVE PAIRS

We conducted a sweep over the size of negative samples, denoted as M , to study its impact on
performance. We varied M across the values 1, 5, 10. For each M value, we first learned node
representations and subsequently applied these learned representations to node classification. The
results of this experiment are shown in Figure 7. From the figure, we observe that even a small
number of negative samples, such as M = 5, is sufficient to achieve good performance across all
graphs, demonstrating that GraphECL is particularly robust to reduced negative pairs.

D.3 THE EFFECT OF REPRESENTATION DIMENSION

We investigate the impact of different dimensions of representations. Figures 8 shows the node
classification results with varying dimensions on homophily and heterophilic graphs. From the figure,
we can observe that larger dimensions often yield better results for both homophilic and heterophilic
graphs. This observation aligns with Theorem 4.2, which shows that a larger dimension can effectively
reduce the upper bound of downstream errors. Training with extremely large dimensions for some
graphs may lead to a slight drop of performance as GraphECL may suffer from the over-fitting issue.

D.4 MORE SIMILARITY HISTOGRAMS OF REPRESENTATIONS

Figure 9 presents additional results on representation similarity. These observations align with the
findings in the main body of the paper. As shown in Figure 9, we notice that randomly sampled node

20

Under review as a conference paper at ICLR 2024

Figure 9: The distribution of pair-wise cosine similarity of learned representations on randomly
sampled node pairs, one-hop neighbors and two-hop neighbors.

Table 8: Additional comparison with CGD (Zheng et al., 2022), SimGCL (Yu et al., 2022) and FastGCL (Wang
et al., 2022b) under the transductive setting on benchmarking homophilic and heterophilic graphs. The best and
runner up methods are marked with boldface and underline, respectively.

Datasets Cora Citeseer Pubmed Photo Flickr Cornell Wisconsin Texas Crocodile Actor Snap-patents

GGD 83.90±0.40 73.00±0.60 81.30±0.80 92.50±0.60 46.33±0.20 52.98±1.32 61.85±0.43 59.36±1.23 57.57±0.39 28.27±0.23 24.38±0.57
SimGCL 83.01±0.32 72.05±0.29 80.57±0.52 91.55±0.12 46.85±0.19 53.52±0.71 60.55±0.32 58.91±0.88 58.51±0.19 28.63±0.33 25.24±0.21
FastGCL 82.33±0.51 71.60±0.51 80.41±0.62 92.91±0.07 45.21±0.11 51.35±0.92 57.74±0.28 57.72±0.76 55.23±0.25 27.71±0.15 24.05±0.31

GraphECL 84.25±0.05 73.15±0.41 82.21±0.05 94.22±0.11 48.49±0.15 69.19±6.86 79.41±2.19 75.95±5.33 65.84±0.71 35.80±0.89 27.22±0.06

Table 9: Node classification results (%) under the transductive setting on additional graphs. The best and runner
up methods are marked with boldface and underline, respectively. From the table, we can observe that our simple
GraphECL performs well on the additional graphs and achieves better (or competitive) performance compared
to baselines with GCN, which further strengthens our contribution.

Datasets WikiCS Computers CS Physics Ogbn-arxiv Ogbn-products

GCA 78.35±0.05 88.94±0.15 93.10±0.01 95.70±0.04 68.20±0.20 78.96±0.15
SUGRL 78.83±0.31 88.90±0.20 92.83±0.23 95.38±0.11 69.30±0.20 82.60±0.40
BGRL 79.98±0.10 90.34±0.19 93.31±0.13 95.73±0.05 71.64±0.12 81.32±0.21
CCA-SSG 79.31±0.21 88.74±0.28 93.35±0.22 95.38±0.06 71.21±0.20 79.51±0.05
AFGRL 77.62±0.49 89.88±0.33 93.27±0.17 95.69±0.10 71.05±0.32 79.20±0.17

GraphECL 80.17±0.15 89.91±0.35 93.51±0.12 95.81±0.12 71.75±0.22 82.69±0.33

Table 10: Graph classification results (%) on MUTAG and PROTEINS.

Method Graph-MLP VGAE CCA-SSG DSSL GraphCL GraphECL

MUTAG 75.8±2.0 84.4±0.6 85.8±0.4 87.2±1.5 86.8±1.3 88.5±1.2
PROTEINS 71.1±1.5 74.0±0.5 73.1±0.6 73.5±0.7 74.4±0.5 75.2±0.3

Table 11: The effect of hidden layers on GraphECL.

Layers Cora Citeseer Photo Texas Cornell Wisconsin

1 83.57±0.03 73.15±0.41 93.47±0.15 71.19±2.58 67.28±4.35 76.54±1.28
2 84.25±0.05 73.56±0.50 94.22±0.11 75.95±5.33 69.19±6.86 79.41±2.19
4 84.17±0.03 73.21±0.30 94.10±0.12 76.21±3.95 69.33±5.51 79.27±1.75

Table 12: The performance on the long-range graph benchmark PascalVOC-SP (Dwivedi et al., 2022)

Method BGRL CCA-SSG GraphECL

PascalVOC-SP 0.1356±0.0087 0.1437±0.0095 0.1588±0.0091

pairs are more easily distinguishable from one-hop and two-hop neighbors based on representation
similarity for homophilic graphs. This demonstration underscores that our GraphECL model effectively
captures the semantic meaning of nodes, encouraging the separation of semantically dissimilar nodes.

Furthermore, we observe that the two-hop similarities in heterophilic graphs are significantly larger
than those in homophilic graphs. This observation provides an explanation for GraphECL’s strong per-
formance, as it effectively captures the 1-hop structural information not only emphasizes homophily.

21

