
MULTI-OBJECTIVE GFLOWNETS

Anonymous authors
Paper under double-blind review

ABSTRACT

In many applications of machine learning, like drug discovery and material design,
the goal is to generate candidates that simultaneously maximize a set of objectives.
As these objectives are often conflicting, there is no single candidate that simul-
taneously maximizes all objectives, but rather a set of Pareto-optimal candidates
where one objective cannot be improved without worsening another. Moreover, in
practice, these objectives are often under-specified, making the diversity of candi-
dates a key consideration. The existing multi-objective optimization methods focus
predominantly on covering the Pareto front, failing to capture diversity in the space
of candidates. Motivated by the success of GFlowNets for generation of diverse
candidates in a single objective setting, in this paper we consider Multi-Objective
GFlowNets (MOGFNs). MOGFNs consist of a novel Conditional GFlowNet which
models a family of single-objective sub-problems derived by decomposing the
multi-objective optimization problem. Our work is the first to empirically demon-
strate conditional GFlowNets. Through a series of experiments on synthetic and
benchmark tasks, we empirically demonstrate that MOGFNs outperform existing
methods in terms of Hypervolume, R2-distance and candidate diversity. We also
demonstrate the effectiveness of MOGFNs over existing methods in active learning
settings. Finally, we supplement our empirical results with a careful analysis of
each component of MOGFNs.

1 INTRODUCTION

Decision making in practical applications often involves reasoning about multiple, often conflicting,
objectives (Keeney et al., 1993). For example, in drug discovery, the goal is to generate novel drug-like
molecules that inhibit a target, are easy to synthesize and can safely be used by humans (Dara et al.,
2021). Unfortunately, these objectives often conflict – molecules effective against a target might also
have adverse effects on humans – so there is no single molecule which maximizes all the objectives
simultaneously. Such problems fall under the umbrella of Multi-Objective Optimization (MOO;
Ehrgott, 2005; Miettinen, 2012), wherein one is interested in identifying Pareto-optimal candidates.
The set of Pareto-optimal candidates covers all the best tradeoffs among the objectives, i.e., the Pareto
front, where each point on that front corresponds to a different set of weights associated with each of
the objectives.

In-silico drug discovery and material design are typically driven by proxies trained with finite data,
which only approximate the problem’s true objectives, and therefore include intrinsic epistemic
uncertainty associated with their predictions. In such problems, not only it is important to cover
the Pareto front, but also to generate sets of diverse candidates at each solution of the front so as to
increase the likelihood of success in downstream evaluations (Jain et al., 2022).

Generative Flow Networks (GFlowNets; Bengio et al., 2021a;b) are a recently proposed family of
probabilistic models which tackle the problem of diverse candidate generation. Contrary to the reward
maximization view of reinforcement learning (RL) and Bayesian optimization (BO), GFlowNets
sample candidates with probability proportional to the reward. Sampling candidates, as opposed to
greedily generating them, implicitly encourages diversity in the generated candidates. GFlowNets
have shown promising results in single objective problems of molecule generation (Bengio et al.,
2021a) and biological sequence design (Jain et al., 2022).

In this paper, we study Multi-Objective GFlowNets (MOGFNs), extensions of GFlowNets
which tackle the multi-objective optimization problem. We consider two variants of MOGFNs

1



– (a) Preference-Conditional GFlowNets (MOGFN-PC) which combine Reward-Conditional
GFlowNets (Bengio et al., 2021b) with Weighted Sum Scalarization (Ehrgott, 2005) and (b) MOGFN-
AL, an extension of GFlowNet-AL (Jain et al., 2022) for multi-objective active learning settings. We
empirically demonstrate the advantage of MOGFNs over existing approaches on a variety of high-
dimensional multi-objective optimization tasks: the generation of small molecules, DNA aptamer
sequences and fluorescent proteins. Our contributions are as follows:

C1 We demonstrate how two variants of GFlowNets – MOGFN-PC and MOGFN-AL – can be
applied to multi-objective optimization. Our work is the first successful empirical validation of
Reward-Conditional GFlowNets (Bengio et al., 2021b).

C2 Through a series of experiments on molecule generation and sequence generation we demonstrate
that MOGFN-PC generates diverse Pareto-optimal candidates.

C3 In a challenging active learning task for designing fluorescent proteins, we show that MOGFN-AL
results in significant improvements to sample-efficiency and diversity of generated candidates.

C4 We perform a thorough analysis of the main components of MOGFNs to provide insights into
design choices that affect performance.

2 BACKGROUND

2.1 MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization (MOO) involves finding a set of feasible candidates x⋆ ∈ X which all
simultaneously maximize a set of objectives:

max
x∈X

(R1(x), . . . , Rd(x)) . (1)

In general, the objectives being optimized can be conflicting such that there is no single x⋆ which
simultaneously maximizes all objectives. Consequently, the concept of Pareto optimality is adopted
in MOO, giving rise to a set of solutions trading off the objectives in different ways.

Given x1, x2 ∈ X , x1 is said to dominate x2, written (x1 ≻ x2), iff Ri(x1) ≥ Ri(x2) ∀i ∈
{1, . . . , d} and ∃k ∈ {1, . . . , d} such that Rk(x1) > Rk(x2). A candidate x⋆ is Pareto-optimal if
there exists no other solution x′ ∈ X which dominates x⋆. In other words, for a Pareto-optimal
candidate it is impossible to improve one objective without sacrificing another. The Pareto set is the
set of all Pareto-optimal candidates in X , and the Pareto front is defined as the image of the Pareto
set in objective-space. It is important to note that since the objectives being optimized in general
might not be injective, any point on the Pareto front can be the image of several candidates in the
Pareto set. This introduces a notion of diversity in the candidate space, capturing all the candidates
corresponding to a point on the Pareto front, that is critical for applications such as drug discovery.

While there are several paradigms for tackling the MOO problem (Ehrgott, 2005; Miettinen, 2012;
Pardalos et al., 2017), we consider Scalarization, where the multi-objective problem is decomposed
into simpler single-objective problems, as it is well suited for the GFlowNet formulation introduced
in Section 3.1. A set of weights (preferences) ωi are assigned to the objectives Ri, such that ωi ≥ 0

and
∑d

i=1 ωi = 1. The MOO problem in Equation 1 is then decomposed into solving single-objective
sub-problems of the form maxx∈X R(x|ω), where R is a scalarization function.

Weighted Sum Scalarization, R(x|ω) =
∑d

i=1 ωiRi(x) is a widely used scalarization function which
results in Pareto optimal candidates for problems with a convex Pareto front (Ehrgott, 2005). Weighted
Tchebycheff, R(x|ω) = min

1≤i≤d
ωi|Ri(x)− z⋆i |, where z⋆i denotes some ideal value for objective Ri,

results in Pareto optimal solutions even for problems with a non-convex Pareto front (Pardalos et al.,
2017). See Appendix B for more discussion on scalarization. In summary, using scalarization, the
MOO problem can be viewed as solving a family of single-objective optimization problems.

2.2 GFLOWNETS

Generative Flow Networks (Bengio et al., 2021a;b) are a family of probabilistic models which
generate, through a sequence of steps,compositional objects x ∈ X with probability proportional to a
given reward R : X → R+. The sequential construction of x ∈ X can be described as a trajectory

2



τ ∈ T in a weighted directed acyclic graph (DAG)1 G = (S, E), starting from an empty object s0 and
following actions a ∈ A as building blocks. The nodes S of this graph (states) correspond to the set
of all possible objects that can be constructed using sequences of actions in A. An edge s

a−→ s′ ∈ E
indicates that action a at state s leads to state s′.

The forward policy PF (−|s) is a distribution over the children of state s. x can be generated by
starting at s0 and sampling a sequence of actions iteratively from PF . Similarly, the backward
policy PB(−|s) is a distribution over the parents of state s and can generate backward trajectories
starting at any state x, e.g., iteratively sampling from PB starting at x shows a way x could have
been constructed. Let π(x) be the marginal likelihood of sampling trajectories terminating in x
following PF , and partition function Z =

∑
x∈X R(x). The learning problem solved by GFlowNets

is to estimate PF such that π(x) ∝ R(x). This is achieved using learning objectives like trajectory
balance (TB; Malkin et al., 2022), to learn PF (−|s; θ), PB(−|s; θ), Zθ which approximate the
forward and backward policies and partition function, parameterized by θ. We refer the reader
to Bengio et al. (2021b); Malkin et al. (2022) for a more thorough introduction to GFlowNets.

3 MULTI-OBJECTIVE GFLOWNETS

We broadly categorize Multi-Objective GFlowNets (MOGFNs) as GFlowNets which solve a family
of sub-problems derived from a Multi-Objective Optimization (MOO) problem. We first consider
solving a family of MOO sub-problems simultaneously with preference-conditional GFlowNets,
followed by MOGFN-AL, which solves a sequence of MOO sub-problems.

3.1 PREFERENCE-CONDITIONAL GFLOWNETS

Whereas a GFlowNet learns how to sample according to a single reward function, reward-conditional
GFlowNets (Bengio et al., 2021b) are a generalization of GFlowNets that simultaneously model a
family of distributions associated with a corresponding family of reward functions. Let C denote
a set of values c, with each c ∈ C inducing a unique reward function R(x|c). We can define a
family of weighted DAGs {Gc = (Sc, E) , c ∈ C} which describe the construction of x ∈ X , with
conditioning information c available at all states in Sc.

We denote PF (−|s, c) and PB(−|s′, c) as the conditional forward and backward policies, Z(c) =∑
x∈X R(x|c) as the conditional partition function and π(x|c) as the marginal likelihood of sampling

trajectories τ from PF terminating in x given c. The learning objective in reward-conditional
GFlowNets is thus estimating PF (−|s, c) such that π(x|c) ∝ R(x|c). We refer the reader to Bengio
et al. (2021b) for a more formal discussion on conditional GFlowNets.

Recall from Section 2.1 that MOO problems can be decomposed into a family of single-objective
problems each defined by a preference ω over the objectives. Thus, we can employ reward-conditional
GFlowNets to model the family of reward functions by using as the conditioning set C the d-simplex
∆d spanned by the preferences ω over d objectives.

Preference-conditional GFlowNets (MOGFN-PC) are reward-conditional GFlowNets conditioned on
the preferences ω ∈ ∆d over a set of objectives {R1(x), . . . , Rd(x)}. In other words, MOGFN-PC
model the family of reward functions R(x|ω) where R(x|ω) itself corresponds to a scalarization of
the MOO problem. We consider three scalarization techniques, which are discussed in Appendix B:

• Weighted-sum (WS) (Ehrgott, 2005): R(x|ω) =
∑d

i=1 ωiRi(x)

• Weighted-log-sum (WL): R(x|ω) =
∏d

i=1 Ri(x)
ωi

• Weighted-Tchebycheff (WT) (Choo & Atkins, 1983): R(x|ω) = min
1≤i≤d

ωi|Ri(x)− z⋆i |,.

MOGFN-PC is not constrained to any scalarization function, and can incorporate any user-defined
scalarization scheme that fits the desired optimization needs.

Training MOGFN-PC The procedure to train MOGFN-PC, or any reward-conditional GFlowNet,
closely follows that of a standard GFlowNet and is described in Algorithm 1. The objective is to learn

1If the object is constructed in a canonical order (say a string constructed from left to right), G is a tree.

3



the parameters θ of the forward and backward conditional policies PF (−|s, ω; θ) and PB(−|s′, ω; θ),
and the log-partition function logZθ(ω). To this end, we consider an extension of the trajectory
balance objective for reward-conditional GFlowNets:

L(τ, ω; θ) =
(
log

Zθ(ω)
∏

s→s′∈τ PF (s
′|s, ω; θ)

R(x|ω)
∏

s→s′∈τ PB(s|s′, ω; θ)

)2

. (2)

One important component is the distribution p(ω) used to sample preferences during training. p(ω)
influences the regions of the Pareto front that are captured by MOGFN-PC. In our experiments, we
use a Dirichlet(α) to sample preferences ω which are encoded with thermometer encoding (Buckman
et al., 2018) when input to the policy. Following prior work, we also use an exponent β for the reward
R(x|ω), i.e. π(x|ω) ∝ R(x|ω)β . This incentivizes the policy to focus on the modes of R(x|ω),
which is critical for generation of high reward and diverse candidates.

MOGFN-PC and MOReinforce MOGFN-PC is closely related to MOReinforce (Lin et al., 2021)
in that both learn a preference-conditional policy to sample Pareto-optimal candidates. The key differ-
ence is the learning objective: MOReinforce uses a multi-objective version of REINFORCE (Williams,
1992), whereas MOGFN-PC uses a preference-conditional GFlowNet objective as in Equation (2).
As discussed in Section 2.1, each point on the Pareto front (corresponding to a unique ω) can be the
image of multiple candidates in the Pareto set. MOReinforce, given a preference ω will converge to
sampling a single candidate that maximizes R(x|ω). MOGFN-PC, on the other hand, samples from
R(x|ω), which enables generation of diverse candidates from the Pareto set for a given ω. This is a
key feature of MOGFN-PC whose advantage we empirically demonstrate in Section 5.

3.2 MULTI-OBJECTIVE ACTIVE LEARNING WITH GFLOWNETS

In many practical scenarios, the objective functions of interest are computationally expensive. For
instance, in the drug discovery scenario, evaluating objectives such as the binding energy to a target
even in simulations can take several hours. Sample-efficiency, in terms of number of evaluations of
the objective functions, and diversity of candidates, thus become critical in such scenarios. Black-box
optimization approaches involving active learning (Zuluaga et al., 2013), particularly multi-objective
Bayesian optimization (MOBO) methods (Shah & Ghahramani, 2016; Garnett, 2022) are powerful
approaches in these settings.

MOBO uses a probabilistic model to approximate the objectives R = {R1 . . . Rd} and leverages the
epistemic uncertainty in the predictions of the model as a signal for prioritizing potentially useful
candidates. The optimization is performed over M rounds, where each round i consists of generating
a batch of candidates B given all the candidates Di proposed in the previous rounds. The batch B
is then evaluated using the true objective functions. The candidates are generated in each round by
maximizing an acquisition function a which combines the predictions with their epistemic uncertainty
into a single scalar utility score. We note that each round is effectively a scalarization of the MOO
problem, and as such it may be decomposed into each round’s single objective problem.

We broadly define MOGFN-AL as approaches which use GFlowNets to generate candidates in each
round of an active learning loop for multi-objective optimization. MOGFN-AL tackles MOO through
a sequence of single-objective sub-problems defined by acquisition function a. As such, MOGFN-AL
can be viewed as a multi-objective extension of GFlowNet-AL (Jain et al., 2022). In this work, we
consider an instantiation of MOGFN-AL for biological sequence design summarized in Algorithm 2
(Appendix A), building upon the framework proposed by Stanton et al. (2022).

We start with an initial dataset D0 = (xi, yi)
N
i=1 of candidates xi ∈ X and their evaluation with

the true objectives yi = R(x). Di is used to train a surrogate probabilistic model (proxy) of the
true objectives f̂ : X → Rd, which we parameterize as a multi-task Gaussian process (Shah &
Ghahramani, 2016) with a deep kernel (DKL GP; Maddox et al., 2021a;b). Using this proxy, the
acquisition function defines the utility to be maximized a : X × F → R, where F denotes the space
of functions represented by DKL GPs. In our work we use as acquisition function a noisy expected
hypervolume improvement (NEHVI; Daulton et al., 2020).

We use GFlowNets to propose candidates at each round i by generating mutations for candidates
x ∈ P̂i where P̂i is the set of non-dominated candidates in Di. Given a sequence x, the GFlowNet

4



generates a set of mutations m = {(li, vi)}Ti=1 where l ∈ {1, . . . , |x|} is the location to be replaced
and v ∈ A is the token to replace x[l] while T is the number of mutations. This set is generated
sequentially such that each mutation is sampled from PF conditioned on x and the mutations
sampled so far {(li, vi)}. Let x′

m be the sequence resulting from mutations m on sequence x.
The reward for a set of sampled mutations for x is the value of the acquisition function on x′

m,
R(m,x) = a(x′

m|f̂). This approach of generating mutations to existing sequences provides an
key advantage over generating sequences token-by-token as done in prior work (Jain et al., 2022) –
better scaling for longer sequences. We show empirically in Section 5.3 that generating mutations
with GFlowNets results in more diverse candidates and faster improvements to the Pareto front than
LaMBO (Stanton et al., 2022).

4 RELATED WORK
Evolutionary Algorithms (EA) Traditionally, evolutionary algorithms such as NSGA-II have
been widely used in various multi-objective optimization problems (Ehrgott, 2005; Konak et al.,
2006; Blank & Deb, 2020). More recently, Miret et al. (2022) incorporated graph neural networks
into evolutionary algorithms enabling them to tackle large combinatorial spaces. Unlike MOGFNs,
evolutionary algorithms do not leverage any type of data, including past experiences, and therefore
are required to solve each instance of a MOO from scratch rather than by amortizing computation
during training in order to quickly generate solutions at run-time. Evolutionary algorithms, however,
can be augmented with MOGFNs for generating mutations to improve efficiency, as in Section 3.2.

Multi-Objective Reinforcement Learning MOO problems have also received significant interest
in the reinforcement learning (RL) literature (Hayes et al., 2022). Traditional approaches broadly
consist of learning sets of Pareto-dominant policies (Roijers et al., 2013; Van Moffaert & Nowé, 2014;
Reymond et al., 2022). Recent work has focused on extending Deep RL algorithms for multi-objective
settings such as Envelope-MOQ (Yang et al., 2019), MO-MPO (Abdolmaleki et al., 2020; 2021) ,
and MOReinforce (Lin et al., 2021). A general shortcoming of RL based approaches is that they only
discover a single mode of the reward function, and thus cannot generate diverse candidates, which
also persists in the multi-objective setting. In contrast, MOGFNs sample candidates proportional to
the reward, implicitly resulting in diverse candidates.

Multi-Objective Bayesian Optimization (MOBO) Bayesian optimization (BO) has been used
in the context of MOO when the objectives are expensive to evaluate and sample-efficiency is a
key consideration. MOBO approaches consist of learning a surrogate model of the true objective
functions, which is used to define an acquisition function such as expected hypervolume improve-
ment (Emmerich et al., 2011; Daulton et al., 2020; 2021) and max-value entropy search (Belakaria
et al., 2019), as well as scalarization-based approaches (Paria et al., 2020; Zhang & Golovin, 2020).
Stanton et al. (2022) proposed LaMBO, which uses language models in conjunction with BO for
multi-objective sequence design problems. The key drawbacks of MOBO approaches are that they do
not consider the need for diversity in generated candidates and that they mainly consider continuous
state spaces. As we discuss in Section 3.2, MOBO approaches can be augmented with GFlowNets
for diverse candidate generation in discrete spaces.

Other Works Zhao et al. (2022) introduced LaMOO which tackles the MOO problem by iteratively
splitting the candidate space into smaller regions, whereas Daulton et al. (2022) introduce MORBO,
which performs BO in parallel on multiple local regions of the candidate space. Both these methods,
however, are limited to continuous candidate spaces.

5 EMPIRICAL RESULTS
In this section, we present our empirical findings across a wide range of tasks ranging from sequence
design to molecule generation.The experiments cover two distinct classes of problems in the context
of GFlowNets: where G is a DAG and where it is a tree. Through our experiments, we aim to answer
the following questions:
Q1 Can MOGFNs model the preference-conditional reward distribution?
Q2 Can MOGFNs sample Pareto-optimal candidates?
Q3 Are candidates sampled by MOGFNs diverse?
Q4 Do MOGFNs scale to high-dimensional problems relevant in practice?

5



(a)

Reward 1 0.00.20.40.60.8

Re
ward

 3

0.0
0.2

0.40.60.8

0.0
0.2
0.4
0.6

3 Unigrams (Conflicting)
Pareto Front

(b)

Reward 1

0.00.2
0.4
0.6
0.8

Reward 30.0 0.2 0.4 0.6 0.8
0.0
0.2
0.4
0.6
0.8

3 Bigrams (Correlated)
Pareto Front

(c)

Figure 1: (a) The distribution learned by MOGFN-PC (Top) almost exactly matches the ground
truth distribution (Bottom), in particular capturing all the modes, on hypergrid of size 32× 32 with
3 objectives. (b) and (c) illustrate the Pareto front of candidates generated by MOGFN-PC with
conflicting and correlated objectives respectively.

Metrics: We rely on standard metrics such as the Hypervolume (HV) and R2 indicators, as well as
the Generational Distance+ (GD+). To measure diversity we use the Top-K Diversity and Top-K
Reward metrics of Bengio et al. (2021a). We detail all metrics in Appendix D. For all our empirical
evaluations we follow the same protocol. First, we sample a set of preferences which are fixed for all
the methods. For each preference we sample 128 candidates from which we pick the top 10, compute
their scalarized reward and diversity, and report the averages over preferences. We then use these
samples to compute the HV and R2 indicators. We pick the best hyperparameters for all methods
based on the HV and report the mean and standard deviation over 3 seeds for all quantities.

Baselines: We consider the closely related MOReinforce (Lin et al., 2021) as a baseline. We also
study its variants MOSoftQL and MOA2C which use Soft Q-Learning (Haarnoja et al., 2017) and
A2C (Mnih et al., 2016) in place of REINFORCE. We also compare against Envelope-MOQ (Yang
et al., 2019), another popular multi-objective reinforcement learning method. For fragment-based
molecule generation we consider an additional baseline MARS (Xie et al., 2021), a relevant MCMC
approach for this task. To keep comparisons fair, we omit baselines like LaMOO (Zhao et al., 2022)
and MORBO (Daulton et al., 2022) as they are designed for continuous spaces and rely on latent
representations from pre-trained models for discrete tasks like molecule generation.

5.1 SYNTHETIC TASKS

5.1.1 HYPER-GRID

We first study the ability of MOGFN-PC to capture the preference-conditional reward distribution
in a multi-objective version of the HyperGrid task from Bengio et al. (2021a). The goal here is to
navigate proportional to a reward within a HyperGrid. We consider the following objectives for our
experiments: brannin(x), currin(x), shubert(x)2.

Since the state space is small, we can compute the distribution learned by MOGFN-PC in closed
form. In Figure 1a, we visualize π(x|ω), the distribution learned by MOGFN-PC conditioned on
a set of fixed preference vectors ω and contrast it with the true distribution R(x|ω) in a 32 × 32
hypergrid with 3 objectives. We observe that π(−|ω) and R(−|ω) are very similar. To quantify
this, we compute Ex [|π(x|ω)−R(x|ω)/Z(ω)|] averaged over a set of 64 preferences, and find a
difference of about 10−4. Note that MOGFN-PC is able to capture all the modes in the distribution,
which suggests the candidates sampled from π would be diverse. Further, we compute the GD+
metric for the Pareto front of candidates generated with MOGFN-PC, which comes up to an average
value of 0.42. For more details about the task and the additional results, refer to Appendix E.1.

5.1.2 N-GRAMS TASK

We consider version of the synthetic sequence design task from Stanton et al. (2022). The task
consists of generating strings with the objectives given by occurrences of a set of d n-grams.

In the results summarized in Table 1, we consider 3 Bigrams (with common characters in the bigrams
resulting in correlated objectives) and 3 Unigrams (conflicting objectives) as the objectives. MOGFN-
PC outperforms the baselines in terms of the MOO objectives while generating diverse candidates.

2We present additional results with more objectives in Appendix E.1

6



Table 1: N-Grams Task: Diversity and Pareto performance of various algorithms on for the 3
Bigrams and 3 Unigrams tasks with MOGFN-PC achieving superior Pareto performance.

Algorithm 3 Bigrams 3 Monograms

Reward (↑) Diversity (↑) HV (↑) R2 (↓) Reward (↑) Diversity (↑) HV (↑) R2 (↓)
Envelope-MOQ 0.05±0.04 0±0 0.012±0.013 19.66±0.66 0.08±0.015 0±0 0.023±0.011 21.18±0.72
MOReinforce 0.12±0.02 0±0 0.015±0.021 20.32±0.93 0.03±0.001 0±0 0.036±0.009 21.04±0.51

MOSoftQL 0.28±0.03 21.09±0.65 0.093±0.025 15.79±0.23 0.36±0.01 23.131±0.6736 0.105±0.014 12.80±0.26

MOGFN-PC 0.44±0.01 19.79±0.08 0.220±0.017 9.97±0.45 0.38±0.00 22.71±0.24 0.121±0.015 11.39±0.17

Since the objective counts occurrences of n-grams, the diversity is limited by the performance,
i.e. high scoring sequences will have lower diversity, explaining higher diversity of MOSoftQL.
We note that the MOReinforce and Envelope-MOQ baselines struggle in this task potentially due
to longer trajectories with sparse rewards. MOGFN-PC adequately models the trade-off between
conflicting objectives in the 3 Monograms task as illustrated by the Pareto front of generated
candidates in Figure 1b. For the 3 Bigrams task with correlated objectives, Figure 1c demonstrates
MOGFN-PC generates candidates which can simultaneously maximize multiple objectives. We refer
the reader to Appendix E.2 for more task details and additional results with different number of
objectives and varying sequence length.

5.2 BENCHMARK TASKS

5.2.1 QM9

We first consider a small-molecule generation task based on the QM9 dataset (Ramakrishnan et al.,
2014). We generate molecules atom-by-atom and bond-by-bond with up to 9 atoms and use 4 reward
signals. The main reward is obtained via a MXMNet (Zhang et al., 2020) proxy trained on QM9 to
predict the HOMO-LUMO gap. The other rewards are Synthetic Accessibility (SA), a molecular
weight target, and a molecular logP target. Rewards are normalized to be between 0 and 1, but the gap
proxy can exceed 1, and so is clipped at 2. We train the models with 1M molecules and present the
results in Table 2, showing that MOGFN-PC outperforms all baselines in terms of Pareto performance
and diverse candidate generation.

Table 2: Atom-based QM9 task: MOGFN-PC exceeds Diversity and Pareto performance on QM9
task with HUMO-LUMO gap, SA, QED and molecular weight objectives compared to baselines.

Algorithm Reward (↑) Diversity (↑) HV (↑) R2 (↓)
MOA2C (Mnih et al., 2016) 0.61±0.05 0.39±0.28 1.16±0.08 6.28±0.67

Envelope QL (Yang et al., 2019) 0.65±0.06 0.85±0.01 1.26±0.05 5.80±0.20
MOReinforce (Lin et al., 2021) 0.57±0.12 0.53±0.08 1.35±0.01 4.65±0.03

MOGFN-PC 0.76±0.00 0.93±0.00 1.40±0.18 2.44±1.88

5.2.2 FRAGMENT-BASED MOLECULE GENERATION

We evaluate our method on the fragment-based (Kumar et al., 2012) molecular generation task
of Bengio et al. (2021a), where the task is to generate molecules by linking fragments to form a
junction tree (Jin et al., 2020). The main reward function is obtained via a pretrained proxy, available
from Bengio et al. (2021a), trained on molecules docked with AutodockVina (Trott & Olson, 2010)
for the sEH target. The other rewards are based on Synthetic Accessibility (SA), drug likeness (QED),
and a molecular weight target. We detail the reward construction in Appendix E.4. Similarly to
QM9, we train MOGFN-PC to generate 1M molecules and report the results in Table 3. We observe
that MOGFN-PC is consistently outperforming baselines not only in terms of HV and R2, but also
candidate diversity score. Note that we do not report reward and diversity scores for MARS, since
the lack of preference conditioning would make it an unfair comparison.

5.2.3 DNA SEQUENCE GENERATION

As a practical domain where the GFlowNet graph is a tree, we consider the generation of DNA
aptamers, single-stranded nucleotide sequences that are popular in biological polymer design due
to their specificity and affinity as sensors in crowded biochemical environments (Zhou et al., 2017;
Corey et al., 2022; Yesselman et al., 2019; Kilgour et al., 2021). We generate sequences by adding one
nucleobase (A, C, T or G) at a time, with a maximum length of 60 bases. We consider three objectives:

7



Table 3: Fragment-based Molecule Generation Task: Diversity and Pareto performance on the
Fragment-based drug design task with sEH, QED, SA and molecular weight objectives.

Algorithm Reward (↑) Diversity (↑) HV (↑) R2 (↓)
MOReinforce (Lin et al., 2021) 0.41±0.07 0.01±0.007 0±0 9.88±1.06

MARS (Xie et al., 2021) – – 0.85±0.008 1.94±0.03

MOA2C (Mnih et al., 2016) 0.76±0.16 0.48±0.39 0.75±0.01 3.35±0.02

Envelope QL (Yang et al., 2019) 0.70±0.10 0.15±0.05 0.74±0.01 3.51±0.10

MOGFN-PC 0.89±0.05 0.75±0.01 0.90±0.01 1.86±0.08

the free energy of the secondary structured calculated with the software NUPACK (Zadeh et al.,
2011), the number of base pairs and the inverse of the sequence length to favour shorter sequences.

We report the results in Table 4. In this case, the best Pareto performance is obtained by the
multi-objective RL algorithm MOReinforce (Lin et al., 2021). However, it achieves so by finding a
quasi-trivial solution with the pattern GCGCGC... for most lengths, yielding very low diversity. In
contrast, MOGFN-PC obtains much higher diversity and Top-K rewards but worse Pareto performance.
An extended discussion, ablation study and further details are provided in Appendix E.5.

Table 4: DNA Sequence Design Task: Diversity and Pareto performance of various algorithms on
DNA sequence generation task with free energy, number of base pairs and inverse sequence length
objectives.

Algorithm Reward (↑) Diversity (↑) HV (↑) R2 (↓)

Envelope-MOQ (Yang et al., 2019) 0.238±0.042 0.0±0.0 0.163±0.013 5.657±0.673

MOReinforce (Lin et al., 2021) 0.105±0.002 0.6178±0.209 0.629±0.002 1.925±0.003

MOSoftQL 0.446±0.010 32.130±0.542 0.163±0.014 5.565±0.170

MOGFN-PC 0.682±0.021 18.131±0.981 0.517±0.006 2.432±0.002

5.3 ACTIVE LEARNING

0 200 400 600 800 1000
Black-Box Evaluations

1.0

1.2

1.4

1.6

1.8

2.0

Re
l. 

Hy
pe

rv
ol

um
e

MOGFN-AL
LaMBO
MTGP + NEHVI + GA
NSGA-2 (Model-Free)

(a)

11000 12000
SASA

20

0

20

40

60

80

St
ab

ilit
y

DsRed.M1
mScarlet
DsRed.T4
AdRed
mRouge
RFP630
Old Frontier
New Frontier

(b)
Algorithm Diversity (↑)

NSGA-2 0.07±0.03
MTGP + NEHVI + GA 0.12±0.02

LaMBO 0.18±0.03

MOGFN 0.25±0.01

(c)

Figure 2: (a) MOGFN-AL demonstrates substan-
tial advantage in terms of Relative Hypervolume
and (b) Pareto frontier of candidates generated by
MOGFN-AL dominates the Pareto front of the ini-
tial dataset. (c) MOGFN-AL is particularly strong
in terms of diversity of candidates.

Finally, to evaluate MOGFN-AL, we consider
the Proxy RFP task from Stanton et al. (2022),
with the aim of discovering novel proteins with
red fluorescence properties, optimizing for fold-
ing stability and solvent-accessible surface area.
We adopt all the experimental details (described
in Appendix E.6) from Stanton et al. (2022),
using MOGFN-AL for candidate generation.
In addition to LaMBO, we use a model-free
(NSGA-2) and model-based EA from Stanton
et al. (2022) as baselines. We observe in Fig-
ure 2a that MOGFN-AL results in significant
gains to the improvement in Hypervolume rel-
ative to the initial dataset, in a given budget of
black-box evaluations. In fact, MOGFN-AL is
able to match the performance of LaMBO within
about half the number of black-box evaluations.

Figure 2b illustrates that the Pareto frontier of
candidates generated with MOGFN-AL, which
dominates the Pareto frontier of the initial
dataset. As we the candidates are generated
by mutating sequences in the existing Pareto
front, we also highlight the sequences that are
mutations of each seqeunce in the initial dataset with the same color. To quantify the diversity of
the generated candidates we measure the average e-value from DIAMOND (Buchfink et al., 2021)
between the initial Pareto front and the Pareto frontier of generated candidates. Table 2c shows that
MOGFN-AL generates candidates that are more diverse than the baselines.

8



6 ANALYSIS

In this section, we isolate the important components of MOGFN-PC: the distribution p(ω) for
sampling preferences during training, the reward exponent β and the reward scalarization R(x|ω)
to understand the impact of each component on Pareto performance and diversity. We consider the
3 Bigrams task discussed in Section 5.1.2 and the fragment-based molecule generation task from
Section 5.2.1 for this analysis and provide further results in the Appendix.

Impact of p(ω) To examine the effect of p(ω), which controls the coverage of the Pareto front,
we set it to Dirichlet(α) and vary α ∈ {0.1, 1, 10}. This results in ω being sampled from different
regions of ∆d. Specifically, α = 1 corresponds to a uniform distribution over ∆d, α > 1 is skewed
towards the center of ∆d whereas α < 1 is skewed towards the corners of ∆d. In Table 5 and Table 6
we observe that α = 1 results in the best performance. Despite the skewed distribution with α = 0.1
and α = 10, we still achieve performance close to that of α = 1 indicating that MOGFN-PC is
able to interpolate to preferences not sampled during training. Note that diversity is not affected
significantly by p(ω).

Table 5: N-grams: Analysing the impact of α, β and R(x|ω) on the performace of MOGFN-PC

Metrics Effect of p(ω) Effect of β Choice of R(x | ω)
Dir(0.1) Dir(1) Dir(10) 16 32 48 WS WL WT

Reward (↑) 0.38±0.02 0.44±0.01 0.37±0.03 0.22±0.004 0.36±0.008 0.44±0.01 – – –

Diversity (↑) 18.82±0.41 19.79±0.08 18.56±0.75 29.23±0.34 23.86±0.35 19.79±0.08 19.79±0.08 24.87±0.62 22.51±0.34

Hypervolume (↑) 0.17±0.015 0.22±0.017 0.18±0.009 0.06±0.006 0.14±0.008 0.22±0.02 0.22±0.017 0.051±0.010 0.097±0.021

R2 (↓) 10.95±0.21 9.97±0.45 10.52±0.13 17.00±0.23 12.46±0.26 9.97±0.45 9.97±0.45 21.54±0.71 18.17±0.32

Impact of β During training β, controls the concentration of the reward density around modes of
the distribution. For large values of β the reward density around the modes become more peaky and
vice-versa. In Table 5 and Table 6 we present the results obtained by varying β ∈ {16, 32, 48}. As β
increases, MOGFN-PC is incentivized to generate samples closer to the modes of R(x|ω), resulting
in better Pareto performance. However, with high β values, the reward density is concentrated close
to the modes and there is a negative impact on the diversity of the candidates.

Choice of scalarization R(x|ω) Next, we analyse the effect of the scalarization defining R(x|ω)
used for training. The set of R(x|ω) for different ω specifies the family of MOO sub-problems and
thus has a critical impact on the Pareto performance. Table 5 and Table 6 include results for the
Weighted Sum (WS), Weighted-log-sum (WL) and Weighted Tchebycheff (WT) scalarizations. Note
that we do not compare the Top-K Reward as different scalarizations cannot be compared directly.
WS scalarization results in the best performance. WL scalarization on the other hand is not formally
guaranteed to cover the Pareto front and consequently results in poor Pareto performance. We suspect
the poor performance of WT and WL are in part also due to the harder reward landscapes they induce.

7 CONCLUSION

In this work, we have empirically demonstrated the generalization of GFlowNets to conditional
GFlowNets for multi-objective optimization problems (MOGFN) to promote the generation of diverse
optimal candidates. We presented two instantiations of MOGFN: MOGFN-PC, which leverages
reward-conditional GFlowNets (Bengio et al., 2021b) to model a family of single-objective sub-
problems, and MOGFN-AL, which sequentially solves a set of single-objective problems defined by
multi-objective acquisition functions. Finally, we empirically demonstrated the efficacy of MOGFNs
for generating diverse Pareto-optimal candidates on sequence and graph generation tasks.

As a limitation, we identify that in certain domains, such as DNA sequence generation, MOGFN
generates diverse candidates but currently does not match RL algorithms in terms of Pareto perfor-
mance. The analysis in Section 6 hints that the distribution of sampling preferences p(ω) affects
the Pareto performance. Since for certain practical applications only a specific region of the Pareto
front is of interest, future work may explore gradient based techniques to learn preferences for more
structured exploration of the preference space. Within the context of MOFGN-AL, an interesting
research avenue is the development of preference-conditional acquisition functions.

9



Reproducibility Statement We include the code necessary to replicate experiments with our
submission and provide detailed description of experimental setups in the Appendix. All datasets and
pretrained models used are publicly available or included in the supplementary materials.

Ethics Statement We acknowledge that as with all machine learning algorithms, there is potential
for dual use of multi-objective GFlowNets by nefarious agents. This work was motivated by the
application of machine learning to accelerate scientific discovery in areas that can benefit humanity.
We explicitly discourage the use of multi-objective GFlowNets in applications that may be harmful to
others.

REFERENCES

Abbas Abdolmaleki, Sandy Huang, Leonard Hasenclever, Michael Neunert, Francis Song, Martina
Zambelli, Murilo Martins, Nicolas Heess, Raia Hadsell, and Martin Riedmiller. A distributional
view on multi-objective policy optimization. In International Conference on Machine Learning,
pp. 11–22. PMLR, 2020.

Abbas Abdolmaleki, Sandy H Huang, Giulia Vezzani, Bobak Shahriari, Jost Tobias Springenberg,
Shruti Mishra, Dhruva TB, Arunkumar Byravan, Konstantinos Bousmalis, Andras Gyorgy, et al.
On multi-objective policy optimization as a tool for reinforcement learning. arXiv preprint
arXiv:2106.08199, 2021.

Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Max-value entropy search for multi-
objective bayesian optimization. Advances in Neural Information Processing Systems, 32, 2019.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, 2021a. URL https://openreview.net/forum?id=Arn2E4IRjEB.

Yoshua Bengio, Tristan Deleu, Edward J. Hu, Salem Lahlou, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations, 2021b.

J. Blank and K. Deb. pymoo: Multi-objective optimization in python. IEEE Access, 8:89497–89509,
2020.

Benjamin Buchfink, Klaus Reuter, and Hajk-Georg Drost. Sensitive protein alignments at tree-of-life
scale using diamond. Nature methods, 18(4):366–368, 2021.

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding: One hot way
to resist adversarial examples. In International Conference on Learning Representations, 2018.

Eng Ung Choo and Derek R Atkins. Proper efficiency in nonconvex multicriteria programming.
Mathematics of Operations Research, 8(3):467–470, 1983.

Peter JA Cock, Tiago Antao, Jeffrey T Chang, Brad A Chapman, Cymon J Cox, Andrew Dalke, Iddo
Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski, et al. Biopython: freely available
python tools for computational molecular biology and bioinformatics. Bioinformatics, 25(11):
1422–1423, 2009.

David R Corey, Masad J Damha, and Muthiah Manoharan. Challenges and opportunities for nucleic
acid therapeutics. nucleic acid therapeutics, 32(1):8–13, 2022.

Amber Dance et al. The hunt for red fluorescent proteins. Nature, 596(7870):152–153, 2021.

Suresh Dara, Swetha Dhamercherla, Surender Singh Jadav, CH Babu, and Mohamed Jawed Ahsan.
Machine learning in drug discovery: a review. Artificial Intelligence Review, pp. 1–53, 2021.

Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hypervolume
improvement for parallel multi-objective bayesian optimization. Advances in Neural Information
Processing Systems, 33:9851–9864, 2020.

10

https://openreview.net/forum?id=Arn2E4IRjEB


Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Parallel bayesian optimization of multiple
noisy objectives with expected hypervolume improvement. Advances in Neural Information
Processing Systems, 34:2187–2200, 2021.

Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Multi-objective bayesian
optimization over high-dimensional search spaces. In The 38th Conference on Uncertainty in Arti-
ficial Intelligence, 2022. URL https://openreview.net/forum?id=r5IEvvIs9xq.

Matthias Ehrgott. Multicriteria optimization, volume 491. Springer Science & Business Media, 2005.

Michael TM Emmerich, André H Deutz, and Jan Willem Klinkenberg. Hypervolume-based ex-
pected improvement: Monotonicity properties and exact computation. In 2011 IEEE Congress of
Evolutionary Computation (CEC), pp. 2147–2154. IEEE, 2011.

C.M. Fonseca, L. Paquete, and M. Lopez-Ibanez. An improved dimension-sweep algorithm for the
hypervolume indicator. In 2006 IEEE International Conference on Evolutionary Computation, pp.
1157–1163, 2006. doi: 10.1109/CEC.2006.1688440.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2022. in preparation.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Michael Pilegaard Hansen and Andrzej Jaszkiewicz. Evaluating the quality of approximations to the
non-dominated set. Citeseer, 1994.

Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane,
Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley, Fredrik Heintz, et al.
A practical guide to multi-objective reinforcement learning and planning. Autonomous Agents and
Multi-Agent Systems, 36(1):1–59, 2022.

Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, and Yusuke Nojima. Modified distance calculation
in generational distance and inverted generational distance. In António Gaspar-Cunha, Carlos
Henggeler Antunes, and Carlos Coello Coello (eds.), Evolutionary Multi-Criterion Optimization,
pp. 110–125, Cham, 2015. Springer International Publishing. ISBN 978-3-319-15892-1.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning, pp.
9786–9801. PMLR, 2022.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Chapter 11. junction tree variational autoencoder
for molecular graph generation. Drug Discovery, pp. 228–249, 2020. ISSN 2041-3211.

R.L. Keeney, H. Raiffa, K.R. L, and R.F. Meyer. Decisions with Multiple Objectives: Preferences and
Value Trade-Offs. Wiley series in probability and mathematical statistics. Applied probability and
statistics. Cambridge University Press, 1993. ISBN 9780521438834. URL https://books.
google.ca/books?id=GPE6ZAqGrnoC.

Michael Kilgour, Tao Liu, Brandon D Walker, Pengyu Ren, and Lena Simine. E2edna: Simulation
protocol for dna aptamers with ligands. Journal of Chemical Information and Modeling, 61(9):
4139–4144, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Abdullah Konak, David W. Coit, and Alice E. Smith. Multi-objective optimization using genetic
algorithms: A tutorial. Reliability Engineering and System Safety, 91(9):992–1007, 2006. ISSN
09518320. doi: 10.1016/j.ress.2005.11.018.

11

https://openreview.net/forum?id=r5IEvvIs9xq
https://books.google.ca/books?id=GPE6ZAqGrnoC
https://books.google.ca/books?id=GPE6ZAqGrnoC
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


Ashutosh Kumar, Arnout Voet, and Kam Y.J. Zhang. Fragment based drug design: from experimental
to computational approaches. Current medicinal chemistry, 19(30):5128–5147, 2012.

Greg Landrum. Rdkit: Open-source cheminformatics. URL http://www.rdkit.org.

Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective combinatorial
optimization. In International Conference on Learning Representations, 2021.

Wesley J Maddox, Maximilian Balandat, Andrew G Wilson, and Eytan Bakshy. Bayesian optimization
with high-dimensional outputs. Advances in Neural Information Processing Systems, 34:19274–
19287, 2021a.

Wesley J Maddox, Samuel Stanton, and Andrew G Wilson. Conditioning sparse variational gaussian
processes for online decision-making. Advances in Neural Information Processing Systems, 34:
6365–6379, 2021b.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Neural Information Processing Systems (NeurIPS), 2022.
To appear.

Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science & Business
Media, 2012.

Santiago Miret, Vui Seng Chua, Mattias Marder, Mariano Phiellip, Nilesh Jain, and Somdeb Majum-
dar. Neuroevolution-enhanced multi-objective optimization for mixed-precision quantization. In
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1057–1065, 2022.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Panos M Pardalos, Antanas Žilinskas, Julius Žilinskas, et al. Non-convex multi-objective optimization.
Springer, 2017.

Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for multi-
objective bayesian optimization using random scalarizations. In Uncertainty in Artificial Intelli-
gence, pp. 766–776. PMLR, 2020.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Mathieu Reymond, Eugenio Bargiacchi, and Ann Nowe. Pareto conditioned networks. In 21st
International Conference on Autonomous Agents and Multi-agent System. IFAAMAS, 2022.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,
2013.

Joost Schymkowitz, Jesper Borg, Francois Stricher, Robby Nys, Frederic Rousseau, and Luis Serrano.
The foldx web server: an online force field. Nucleic acids research, 33(suppl 2):W382–W388,
2005.

Amar Shah and Zoubin Ghahramani. Pareto frontier learning with expensive correlated objectives.
In International conference on machine learning, pp. 1919–1927. PMLR, 2016.

Andrew Shrake and John A Rupley. Environment and exposure to solvent of protein atoms. lysozyme
and insulin. Journal of molecular biology, 79(2):351–371, 1973.

Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Greenside,
and Andrew Gordon Wilson. Accelerating Bayesian optimization for biological sequence design
with denoising autoencoders. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 20459–20478. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/stanton22a.html.

12

http://www.rdkit.org
https://proceedings.mlr.press/v162/stanton22a.html


Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of pareto
dominating policies. The Journal of Machine Learning Research, 15(1):3483–3512, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. {MARS}:
Markov molecular sampling for multi-objective drug discovery. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
kHSu4ebxFXY.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. Advances in Neural Information Processing Systems,
32, 2019.

Joseph D Yesselman, Daniel Eiler, Erik D Carlson, Michael R Gotrik, Anne E d’Aquino, Alexandra N
Ooms, Wipapat Kladwang, Paul D Carlson, Xuesong Shi, David A Costantino, et al. Computational
design of three-dimensional rna structure and function. Nature nanotechnology, 14(9):866–873,
2019.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

Joseph N Zadeh, Conrad D Steenberg, Justin S Bois, Brian R Wolfe, Marshall B Pierce, Asif R
Khan, Robert M Dirks, and Niles A Pierce. Nupack: Analysis and design of nucleic acid systems.
Journal of computational chemistry, 32(1):170–173, 2011.

Richard Zhang and Daniel Golovin. Random hypervolume scalarizations for provable multi-objective
black box optimization. In International Conference on Machine Learning, pp. 11096–11105.
PMLR, 2020.

Shuo Zhang, Yang Liu, and Lei Xie. Molecular mechanics-driven graph neural network with multiplex
graph for molecular structures, 2020. URL https://arxiv.org/abs/2011.07457.

Yiyang Zhao, Linnan Wang, Kevin Yang, Tianjun Zhang, Tian Guo, and Yuandong Tian. Multi-
objective optimization by learning space partition. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=FlwzVjfMryn.

Wenhu Zhou, Runjhun Saran, and Juewen Liu. Metal sensing by dna. Chemical reviews, 117(12):
8272–8325, 2017.

Marcela Zuluaga, Guillaume Sergent, Andreas Krause, and Markus Püschel. Active learning for
multi-objective optimization. In International Conference on Machine Learning, pp. 462–470.
PMLR, 2013.

13

https://openreview.net/forum?id=kHSu4ebxFXY
https://openreview.net/forum?id=kHSu4ebxFXY
https://arxiv.org/abs/2011.07457
https://openreview.net/forum?id=FlwzVjfMryn


A ALGORITHMS

We summarize the algorithms for MOGFN-PC and MOGFN-AL here.

Algorithm 1: Training preference-conditional GFlowNets
Input:
p(ω): Distribution for sampling preferences;
β: Reward Exponent;
δ: Mixing Coefficient for uniform actions in sampling policy;
N : Number of training steps;
Initialize:
(PF (s

′|s, ω), PB(s|s′, ω), logZ(ω)): Conditional GFlowNet with parameters θ;
for i = 1 to N do

Sample preference ω ∼ p(ω);
Sample trajectory τ following policy π̂ = (1− δ)PF + δUniform ;
Compute reward R(x|ω)β for generated samples and corresponding loss L(τ, ω; θ) as in

Equation 2;
Update parameters θ with gradients from the loss, ∇θL(τ, ω);

end

Algorithm 2: Training MOGFN-AL
Input:
R = {R1, . . . , Rd}: Oracles to evaluate candidates x and return true objectives
(R1(x), . . . , Rd(x)) ;
D0 = {(xi, yi)}: Initial dataset with yi = R(xi);
f̂ : Probabilistic surrogate model to model posterior over R given a dataset D;
a(x|f̂): Acquisition function computing a scalar utility for x given f̂ ;
πθ: Learnable GFlowNet policy;
b: Size of candidate batch to be generated;
N : Number of active learning rounds;
Initialize:
f̂ , πθ;
for i = 1 to N do

Fit f̂ on dataset Di−1;
Extract the set of non-dominated candidates P̂i−1 from Di−1;
Train πθ with to generate mutations for x ∈ P̂i using a(−|f̂) as the reward;
Generate batch B = {x′

1,mi
, . . . , x′

b,mb
} by sampling x′

i from P̂i−1 and applying to it
mutations mi sampled from πθ;

Evaluate batch B with R to generate D̂i = {(x1,R(x1)), . . . , (xb,R(xb))};
Update dataset Di = D̂i ∪Di−1

end
Result:
Approximate Pareto set P̂N

B SCALARIZATION

Scalarization is a popular approach for tackling multi-objective optimization problems. MOGFN-
PC can build upon any scalarization approach. We consider three choices. Weighted-sum (WS)
scalarization has been widely used in literature. WS finds candidates on the convex hull of the
Pareto front (Ehrgott, 2005). Under the assumption that the Pareto front is convex, every Pareto
optimal solution is a solution to a weighted sum problem and the solution to every weighted sum
problem is Pareto optimal. Weigthed Tchebycheff (WT), proposed by Choo & Atkins (1983) is

14



an alternative designed for non-convex Pareto fronts. Any Pareto optimal solution can be found
by solving the weighted Tchebycheff problem with appropriate weights, and the solutions for any
weights correspond to a weakly Pareto optimal solution of the original problem (Pardalos et al., 2017).
Lin et al. (2021) deomstrated through their empirical results that WT can be used with neural network
based policies. The third scheme we consider, Weighted-log-sum (WL) has not been considered
in prior work. We hypothesized that in some practical scenarios, we might want to ensure that all
objectives are optimized, since, for instance, in WS the scalarized reward can be dominated by a
single reward. WL, which considers the weigthed sum in log space can potentially help with this
drawback. However, as discussed in Section 6, in practice WL can be hard to optimize, and lead to
poor performance.

C ADDITIONAL ANALYSIS

Table 6: Fragment-based molecule generation: Analysing the impact of α, β and R(x|ω) on the
performace of MOGFN-PC

Metrics Effect of p(ω) Effect of β Choice of R(x | ω)
Dir(0.1) Dir(1) Dir(10) 16 32 48 96 WS WL WT

Reward (↑) 0.57±0.04 0.89±0.05 0.58±0.03 0.44±0.02 0.51±0.008 0.55±0.008 0.89±0.05 – – –

Diversity (↑) 0.79±0.01 0.75±0.01 0.75±0.09 0.86±0.006 0.86±0.001 0.85±0.002 0.75±0.01 0.75±0.01 0.82±0.016 0.10±0.002

Hypervolume (↑) 0.67±0.08 0.90±0.01 0.82±0.12 0.59±0.06 0.55±0.001 0.60±0.06 0.90±0.01 0.90±0.01 0.55±0.017 0.71±0.10

R2 (↓) 2.57±0.43 1.86±0.08 1.93±1.12 5.76±0.30 4.46±0.28 3.64±0.19 1.86±0.08 1.86±0.08 6.92±0.18 11.51±1.79

Can MOGFN-PC match Single Objective GFNs? To evaluate how well MOGFN-PC models
the family of rewards R(x|ω), we consider a comparison with single objective GFlowNets. More
specifically, we first sample a set of 10 preferences ω1, . . . , ω10, and train a standard single objective
GFlowNet using the weighted sum scalar reward for each preference. We then generate N = 128
candidates from each GFlowNet, throughout training, and compute the mean reward for the top 10
candidates for each preference. We average this top 10 reward across {ω1, . . . , ω10}, and call it Rso.
We then train MOGFN-PC, and apply the sample procedure with the preferences {ω1, . . . , ω10}, and
call the resulting mean of top 10 rewards Rmo. We plot the value of the ratio Rmo/Rso in Figure 3.
We observe that the ratio stays close to 1, indicating that MOGFN-PC can indeed model the entire
family of rewards simultaneously at least as fast as a single objective GFlowNet could.

0.0 2.5 5.0 7.5 10.0
Points seen (x1000)

0.8

0.9

1.0

1.1

1.2

Av
er

ag
e 

Re
wa

rd
 R

at
io

(a) 3 Bigrams task

0.00 0.25 0.50 0.75 1.00
Points seen (xM)

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e 

Re
wa

rd
 R

at
io

(b) Fragment-based Molecule Generation Task

Figure 3: We plot the ratio of rewards Rmo/Rso for candidates generated with MOGFN-PC (Rmo)
and single-objective GFlowNets(Rso) for a set of preferences in the (a) 3 Bigrams and (b) Fragment-
based molecule generation tasks. We observe that MOGFN-PC matches and occasionally surpasses
single objective GFlowNets

15



Effect of Model Capacity and Architecture Finally we look at the effect of model size in training
MOGFN-PC. As MOGFN-PC models a conditional distribution, an entire family of functions as
we’ve described before, we expect capacity to play a crucial role since the amount of information
to be learned is higher than for a single-objective GFN. We increase model size in the 3 Bigrams
task to see that effect, and see in Table 7 that larger models do help with performance–although the
performance plateaus after a point. We suspect that in order to fully utilize the model capacity we
might need better training objectives.

Table 7: Analysing the impact of model size on the performance of MOGFN-PC. Each architecture
choice for the policy is denoted as A-B-C where A is number of layers, B is the number of hidden
units in each layer, and C is the number of attention heads.

Metrics Effect of model size

3-64-8 3-256-8 4-64-8 4-256-8

Reward (↑) 0.44±0.01 0.47±0.00 0.49±0.03 0.51±0.01

Diversity (↑) 19.79±0.08 17.13±0.38 17.53±0.15 16.12±0.04

Hypervolume (↑) 0.22±0.017 0.255±0.008 0.262±0.003 0.270±0.011

R2 (↓) 9.97±0.45 9.22±0.25 8.95±0.05 8.91±0.12

D METRICS

In this section we discuss the various metrics that we used to report the results in Section 5.

1. Generational Distance Plus (GD +) (Ishibuchi et al., 2015): This metric measures the
euclidean distance between the solutions of the Pareto approximation and the true Pareto
front by taking the dominance relation into account. To calculate GD+ we require the
knowledge of the true Pareto front and hence we only report this metric for Hypergrid
experiments (Section 5.1.1)

2. Hypervolume (HV) Indicator (Fonseca et al., 2006): This is a standard metric reported in
MOO works which measures the volume in the objective space with respect to a reference
point spanned by a set of non-dominated solutions in Pareto front approximation.

3. R2 Indicator (Hansen & Jaszkiewicz, 1994): R2 provides a monotonic metric comparing
two Pareto front approximations using a set of uniform reference vectors and a utopian point
z∗ representing the ideal solution of the MOO.
This metric provides a monotonic reference to compare different Pareto front approxi-
mations relative to a utopian point. Specifically, we define a set of uniform reference
vectors λ ∈ Λ that cover the space of the MOO and then calculate:R2(Γ,Λ, z

∗) =

1
|Λ|

∑
λ∈Λ minγ∈Γ

{
maxi∈1,...,k{λi|z∗i − γi|}

}
where γ ∈ Γ corresponds to the set of

solutions in a given Pareto front approximations and z∗ is the utopian point corresponding
to the ideal solution of the MOO. Generally, R2 metric calculations are performed with z∗

equal to the origin and all objectives transformed to a minimization setting, which serves to
preserve the monotonic nature of the metric. This holds true for our experiments as well.

4. Top-K Reward This metric was originally used in (Bengio et al., 2021a), which we extend
for our multi-objective setting. For MOGFN-PC, we sample N candidates per test preference
and then pick the top-k candidates (k < N ) with highest scalarized rewards and calculate
the mean. We repeat this for all test preferences enumerated from the simplex and report the
average top-k reward score.

5. Top-K Diversity This metric was also originally used in (Bengio et al., 2021a), which we
again extend for our multi-objective setting. We use this metric to quantify the notion of
diversity of the generated candidates. Given a distance metric d(x, y) between candidates
x and y we calculate the diversity of candidates as those who have d(x, y) greater than a

16



threshold ϵ. For MOGFN-PC, we sample N candidates per test preference and then pick the
top-k candidates based on the diversity scores and take the mean. We repeat this for all test
preferences sampled from simplex and report the average top-k diversity score. We use the
edit distance for sequences, and 1 minus the Tanimoto similarity for molecules.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 HYPER-GRID

Here we elaborate on the Hyper-Grid experimental setup which we discussed in Section 5.1.1.
Consider an n-dimensional hypercube gridworld where each cell in the grid corresponds to a state.
The agent starts at the top left coordinate marked as (0, 0, . . . ) and is allowed to move only towards
the right, down, or stop. When the agent performs the stop action, the trajectory terminates and
the agent receives a non-zero reward. In this work, we consider the following reward functions
- brannin(x), currin(x), sphere(x), shubert(x), beale(x). In Figure 4, we
show the heatmap for each reward function. Note that we normalize all the reward functions between
0 and 1.

Figure 4: Reward Functions Different reward function considered for HyperGrid experiments
presented in Section 5.1.1. Here the grid dimension is H = 32

.

Additional Results To verify the efficacy of MOGFNs across different objectives sizes, we perform
some additional experiments and measure the L1 loss and the GD+ metric. In Figure 5, we can see
that as the reward dimension increases, the loss and GD+ increases. This is expected because the
number of rewards is indicative of the difficulty of the problem. We also present extended qualitative
visualizations across more preferences in Figure 6.

Figure 5: (Left) Average test loss between the MOGFN-PC distribution and the true distribution for
increasing number of objectives. (Right) GD + metrics of MOGFN-PC across objectives.

Model Details and Hyperparameters For MOGFN-PC policies we use an MLP with two hidden
layers each consisting of 64 units. We use LeakyReLU as our activation function as in Bengio et al.
(2021a). All models are trained with learning rate=0.01 with the Adam optimizer Kingma
& Ba (2015) and batch size=128. We sample preferences ω from Dirichlet(α) where α = 1.5.
We try two encoding techniques for encoding preferences - 1) Vanilla encoding where we just use the
raw values of the preference vectors and 2) Thermometer encoding (Buckman et al., 2018). In our
experiments we have not observed significant difference in performance difference.

17



Figure 6: Extended Qualitative Visualizations for Hypergrid epxeriments

E.2 N-GRAMS TASK

Task Details The task is to generate sequences of some maximum length L, which we set
to 36 for the experiments in Section 5.1.2. We consider a vocabulary (actions) of size
21, with 20 characters ["A", "R", "N", "D", "C", "E", "Q", "G", "H", "I",
"L", "K", "M", "F", "P", "S", "T", "W", "Y", "V"] and a special token to in-
dicate the end of sequence. The rewards {Ri}di=1 are defined by the number of occurrences of a given
set of n-grams in a sequence x. For instance, consider ["AB", "BA"] as the n-grams. The rewards
for a sequence x = ABABC would be [2, 1]. We consider two choices of n-grams: (a) Unigrams: the
number of occurrences of a set of unigrams induces conflicting objectives since we cannot increase
the number of occurrences of a monogram without replacing another in a string of a particular length,
(b) Bigrams: given common characters within the bigrams, the occurrences of multiple bigrams can
be increased simultaneously within a string of a fixed length. We also consider different sizes for
the set of n-grams considered, i.e. different number of objectives. This allows us to evaluate the
behaviour of MOGFN-PC on a variety of objective spaces. We summarize the specific objectives
used in our experiments in Table 8. We normalize the rewards to [0, 1] in our experiments.

Table 8: Objectives considered for the N-grams task

Objectives n-grams

2 Unigrams ["A", "C"]
2 Bigrams ["AC", "CV"]
3 Unigrams ["A", "C", "V"]
3 Bigrams ["AC", "CV", "VA"]
4 Unigrams ["A", "C", "V", "W"]
4 Bigrams ["AC", "CV", "VA", "AW"]

Model Details and Hyperparameters We build upon the implementation from Stanton et al. (2022)
for the task: https://github.com/samuelstanton/lambo. For the string generation task,
the backward policy PB is trivial (as there is only one parent for each node s ∈ S), so we only have to
parameterize PF and logZ. As PF (−|s, ω) is a conditional policy, we use a Conditional Transformer
encoder as the architecture. This consists of a Transformer encoder (Vaswani et al., 2017) with 3
hidden layers of dimension 64 and 8 attention heads to embed the current state (string generated so far)
s. We have an MLP which embeds the preferences ω which are encoded using thermometer encoding
with 50 bins. The embeddings of the state and preferences are concatenated and passed to a final
MLP which generates a categorical distribution over the actions (vocabulary token). We use the same
architecture for the baselines using a conditional policy – MOReinforce and MOSoftQL. For Envelope-
MOQ, which does not condition on the preferences, we use a standard Transformer-encoder with a
similar architecture. We present the hyperparameters we used in Table 9. Each method is trained for
10,000 iterations with a minibatch size of 128. For the baselines we adopt the official implementations
released by the authors for MOReinforce – https://github.com/Xi-L/PMOCO and Envelope-
MOQ – https://github.com/RunzheYang/MORL.

Additional Results We present some additional results for the n-grams task. We consider different
number of objectives d ∈ {2, 4} in Table 10 and Table 11 respectively. As with the experiments
in Section 5.1.2 we observe that MOGFN-PC outperforms the baselines in Pareto performance while
achieving high diversity scores. In Table 12, we consider the case of shorter sequences L = 24.

18

https://github.com/samuelstanton/lambo
https://github.com/Xi-L/PMOCO
https://github.com/RunzheYang/MORL


Table 9: Hyperparameters for N-grams Task

Hyperparameter Values
Learning Rate (PF ) {0.01, 0.05, 0.001, 0.005, 0.0001}
Learning Rate (Z) {0.01, 0.05, 0.001}
Reward Exponent: β {16, 32, 48}
Uniform Policy Mix: δ {0.01, 0.05, 0.1}

MOGFN-PC continues to provide significant improvements over the baselines. There are two trends
we can observe considering the N-grams task holistically:

1. As the sequence size increases the advantage of MOGFN-PC becomes more significant.
2. The advantage of MOGFN-PC increases with the number of objectives.

Table 10: N-grams Task. 2 Objectives

Algorithm 2 Bigrams 2 Unigrams

Reward (↑) Diversity (↑) HV (↑) R2 (↓) Reward (↑) Diversity (↑) HV (↑) R2 (↓)

Envelope-MOQ 0.05±0.001 0±0 0.0±0.0 0±0.0 0.09±0.02 0±0 0.014±0.001 5.73±0.09

MOReinforce 0.12±0.01 0±0 0.151±0.023 0.031± 0.43±0.04 0±0 0.222±0.013 2.54±0.06

MOSoftQL 0.37±0.03 19.40±0.91 0.247±0.031 2.92±0.39 0.46±0.02 22.05±0.04 0.253±0.003 2.54±0.02

MOGFN-TB 0.51±0.04 20.65±0.58 0.321±0.011 2.31±0.04 0.48±0.01 22.15±0.22 0.267±0.007 2.24±0.03

Table 11: N-grams Task. 4 Objectives

Algorithm 4 Bigrams 4 Unigrams

Reward (↑) Diversity (↑) HV (↑) R2 (↓) Reward (↑) Diversity (↑) HV (↑) R2 (↓)

Envelope-MOQ 0±0 0±0 0±0 85.23±2.78 0±0 0±0 0±0 80.36±3.16

MOReinforce 0.01±0.00 0±0 0.001±0.001 60.42±1.52 0.00±0.00 0±0 0±0 79.12±4.21

MOSoftQL 0.12±0.04 24.32±1.21 0.013±0.001 39.31±1.35 0.22±0.02 24.18±1.43 0.019±0.005 31.46±2.32

MOGFN-TB 0.23±0.02 20.31±0.43 0.055±0.017 24.42±1.44 0.33±0.01 23.24±0.23 0.063±0.032 23.31±2.03

19



Table 12: N-grams Task. Shorter Sequences

Algorithm 3 Bigrams 3 Unigrams

Reward (↑) Diversity (↑) HV (↑) R2 (↓) Reward (↑) Diversity (↑) HV (↑) R2 (↓)

Envelope-MOQ 0.07±0.01 0±0 0.027±0.010 16.21±0.48 0.08±0.02 0±0 0.031±0.015 20.13±0.41

MOReinforce 0.18±0.01 0±0 0.053±0.031 13.35±0.82 0.07±0.02 0±0 0.041±0.009 19.25±0.41

MOSoftQL 0.31±0.02 20.12±0.51 0.143±0.019 12.79±0.41 0.38±0.02 21.13±0.35 0.109±0.011 12.12±0.24

MOGFN-PC 0.45±0.02 19.62±0.04 0.225±0.009 9.82±0.23 0.39±0.01 21.94±0.21 0.125±0.015 10.91±0.14

E.3 QM9

Reward Details As mentioned in Section 5.2.1, we consider four reward functions for our experiments.
The first reward function is the HUMO-LUMO gap, for which we rely on the predictions of a
pretrained MXMNet (Zhang et al., 2020) model trained on the QM9 dataset (Ramakrishnan et al.,
2014). The second reward is the standard Synthetic Accessibility score which we calculate using the
RDKit library (Landrum), to get the reward we compute (10− SA)/9. The third reward function is
molecular weight target. Here we first calculate the molecular weight of a molecule using RDKit,
and then construct a reward function of the form e−(molWt−105)2/150 which is maximized at 105. Our
final reward function is a logP target, e−(logP−2.5)2/2, which is again calculated with RDKit and is
maximized at 2.5.

Model Details and Hyperparameters We sample new preferences for every episode from a
Dirichlet(α), and encode the desired sampling temperature using a thermometer encoding (Buck-
man et al., 2018). We use a graph neural network based on a graph transformer architecture (Yun
et al., 2019). We transform this conditional encoding to an embedding using an MLP. The embedding
is then fed to the GNN as a virtual node, as well as concatenated with the node embeddings in the
graph. The model’s action space is to add a new node to the graph, a new bond, or set node or bond
properties (like making a bond a double bond). It also has a stop action. For more details please
refer to the code provided in the supplementary material. We summarize the hyperparameters used in
Table 13.

Hyperparameter Value
Learning Rate (PF ) 0.0005
Learning Rate (Z) 0.0005
Reward Exponent: β 32
Batch Size: 64
Number of Embeddings 64
Uniform Policy Mix: δ 0.001
Number of layers 4

Table 13: Hyperparameters for QM9 Task

E.4 FRAGMENTS

More Details As mentioned in Section 5.2.2, we consider four reward functions for our experiments.
The first reward function is a proxy trained on molecules docked with AutodockVina (Trott & Olson,
2010) for the sEH target; we use the weights provided by Bengio et al. (2021a). We also use synthetic
accessibility, as for QM9, and a weight target region (instead of the specific target weight used for
QM9), ((300 - molwt) / 700 + 1).clip(0, 1) which favors molecules with a weight
of under 300. Our final reward function is QED which is again calculated with RDKit.

Model Details and Hyperparameters We again use a graph neural network based on a graph
transformer architecture (Yun et al., 2019). The experimental protocol is similar to QM9 experiments
discussed in Appendix E.3. We additionally sample from a lagged model whose parameters are
updated as θ′ = τθ′ + (1− τ)θ. The model’s action space is to add a new node, by choosing from a

20



list of fragments and an attachment point on the current molecular graph. We list all hyperparameters
used in Table 14.

Hyperparameter Value
Learning Rate (PF ) 0.0005
Learning Rate (Z) 0.0005
Reward Exponent: β 96
Batch Size: 256
Sampling model τ 0.95
Number of Embeddings 128
Number of layers 6

Table 14: Hyperparameters for Fragments

Additional Results We also present in Figure 7 a view of the reward distribution produced by
MOGFN-PC. Generally, the model is able to find good near-Pareto-optimal samples, but is also able
to spend a lot of time exploring. The figure also shows that the model is able to respect the preference
conditioning, and remains capable of generating a diverse distribution rather than a single point.

0 1seh 0 1seh
0

1

qe
d

0 1seh
0

1

SA

0 1seh
0

1

wt

0 1qed
0

1

se
h

0 1qed 0 1qed
0

1

SA

0 1qed
0

1

wt

0 1SA
0

1

se
h

0 1SA
0

1

qe
d

0 1SA 0 1SA
0

1

wt

0 1wt
0

1

se
h

0 1wt
0

1

qe
d

0 1wt
0

1

SA

0 1wt

0

1

pr
ef

er
en

ce

0

1

pr
ef

er
en

ce

0

1

pr
ef

er
en

ce

0

1

pr
ef

er
en

ce

Figure 7: Fragment-based molecule generation: See Appendix E.4.

In the off-diagonal plots of Figure 7, we show pairwise scatter plots for each objective pair; the
Pareto front is depicted with a red line; each point corresponds to a molecule generated by the model
as it explores the state space; color is density (linear viridis palette). The diagonal plots show two
overlaid informations: a blue histogram for each objective, and an orange scatter plot showing the
relationship between preference conditioning and generated molecules. The effect of this conditioning
is particularly visible for seh (top left) and wt (bottom right). As the preference for the sEH binding
reward gets closer to 1, the generated molecules’ reward for sEH gets closer to 1 as well. Indeed, the
expected shape for such a scatter plot is a triangular-ish shape: when the preference ωi for reward Ri

is close to 1, the model is expected to generate objects with a high reward for Ri; as the preference
ωi gets further away from 1, the model can generate anything, including objects with a high Ri–that
is, unless there is a trade off between objectives, in which case in cannot; this is the case for the seh
objective, but not for the wt objective, which has a more triangular shape.

21



E.5 DNA SEQUENCE DESIGN

Task Details The set of building blocks here consists of the bases["A", "C", "T", "G"] in
addition to a special end of sequence token. In order to compute the free energy and number of base
with the software NUPACK (Zadeh et al., 2011), we used 310 K as the temperature. The inverse of
the length L objective was calculated as 30

L , as 30 was the minimum length for sampled sequences.
The rewards are normalized to [0, 1] for our experiments.

Model Details and Hyperparameters We use the same implementation as the N-grams task,
detailed in Appendix E.2. Here we consider a 4-layer Transformer architecture, with 256 units per
layer and 16 attention head instead. We detail the most relevant hyperparameters Table 15.

Table 15: Hyperparameters tuned for DNA-Aptamers Task.

Hyperparameter Values
Learning Rate (PF ) {0.001, 0.0001, 0.00001, 0.000001}
Learning Rate (Z) 0.001
Reward Exponent: β {40, 60, 80}
Batch Size: 16
Training iterations: 10,000
Dirichlet α {0.1, 1.0, 1.5}

Discussion of Results Contrary to the other tasks on which we evaluated MOGFN-PC, for the
generation of DNA aptamer sequences, our proposed model did not match the best baseline, multi-
objective reinforcement learning (Lin et al., 2021), in terms of Pareto performance. Nonetheless, it is
worth delving into the details in order to better understand the different solutions found by the two
methods. First, as indicated in section 5, despite the better Pareto performance, the best sequences
generated by the RL method have extremely low diversity (0.62), compared to MOGFN, which
generates optimal sequences with diversity of 19.6 or higher. As a matter of fact, MOReinforce
mostly samples sequences with the well-known pattern GCGC... for all possible lengths. Sequences
with this pattern have indeed low (negative) energy and many number of pairs, but they offer little new
insights and poor diversity if the model is not able to generate sequences with other distinct patterns.
On the contrary, GFlowNets are able to generate sequences with patterns other than repeating the
pair of bases G and C. Interestingly, we observed that GFlowNets were able to generate sequences
with even lower energy than the best sequences generated by MOReinforce by inserting bases A and
T into chains of GCGC.... Finally, we observed that one reason why MOGFN does not match the
Pareto performance of MOReinforce is because for short lengths (one of the objectives) the energy
and number of pairs are not successfully optimised. Nonetheless, the optimisation of energy and
number of pairs is very good for the longest sequences. Given these observations, we conjecture that
there is room for improving the set of hyperparameters or certain aspects of the algorithm.

Additional Results In order to better understand the impact of the main hyperparameters of
MOGFN-PC in the Pareto performance and diversity of the optimal candidates, we train multiple
instances by sweeping over several values of the hyperparameters, as indicated in Table 15. We
present the results in Table 16. One key observation is that there seems to be a tradeoff between the
Pareto performance and the diversity of the Top-K sequences. Nonetheless, even the models with the
lowest diversity are able to generate much more diverse sequences than MOReinforce. Furthermore,
we also observe α < 1 as the parameter of the Dirichlet distribution to sample the weight preferences,
as well as higher β (reward exponent), both yield better metrics of Pareto performance but slightly
worse diversity. In the case of β, this observation is consistent with the results in the Bigrams task
(Table 5), but with Bigrams, best performance was obtained with α = 1. This is indicative of a degree
of dependence on the task and the nature of the objectives.

E.6 ACTIVE LEARNING

Task Details We consider the Proxy RFP task from Stanton et al. (2022), an in silico benchmark task
designed to simulate searching for improved red fluorescent protein (RFP) variants (Dance et al.,
2021). The objectives considered are stability (-dG or negative change in Gibbs free energy) and

22



Table 16: Analysis of the impact of α, β and the learning rate on the performance of MOGFN-PC
for DNA sequence design. We observe a trade-off between the Top-K diversity and the Pareto
performance.

Metrics Effect of p(ω) Effect of β Effect of the learning rate

Dir(α = 0.1) Dir(α = 1) Dir(α = 1.5) 40 60 80 10−5 10−4 10−3 10−2

Reward (↑) 0.687±0.01 0.652±0.01 0.639±0.01 0.506±0.01 0.560±0.01 0.652±0.01 0.587±0.01 0.652±0.01 0.654±0.03 0.604±0.01

Diversity (↑) 17.65±0.37 19.58±0.15 20.18±0.58 28.49±0.32 24.93±0.19 19.58±0.15 21.92±0.59 19.58±0.15 19.51±1.14 23.16±0.18

Hypervolume (↑) 0.506±0.01 0.467±0.02 0.440±0.01 0.277±0.03 0.363±0.03 0.467±0.02 0.333±0.01 0.467±0.02 0.496±0.01 0.336±0.01

R2 (↓) 2.462±0.05 2.576±0.08 2.688±0.02 4.225±0.34 2.905±0.18 2.576±0.08 3.855±0.31 2.576±0.01 2.488±0.03 3.422±0.07

solvent-accessible surface area (SASA) (Shrake & Rupley, 1973) in simulation, computed using
the FoldX suite (Schymkowitz et al., 2005) and BioPython (Cock et al., 2009). We use the dataset
introduced in Stanton et al. (2022) as the initial pool of candidates D0 with |D0| = 512.

Method Details and Hyperparameters Our implementation builds upon the publicly released code
from (Stanton et al., 2022): https://github.com/samuelstanton/lambo. We follow
the exact experimental setup used in Stanton et al. (2022). The surrogate model f̂ consists of an
encoder with 1D convolutions (masking positions corresponding to padding tokens). We used 3
standard pre-activation residual blocks with two convolution layers, layer norm, and swish activations,
with a kernel size of 5, 64 intermediate channels and 16 latent channels. A multi-task GP with an
ICM kernel is defined in the latent space of this encoder, which outputs the predictions for each
objective. We also use the training tricks detailed in Stanton et al. (2022) for the surrogate model.
The hyperparameters, taken from Stanton et al. (2022) are shown in Table 17. The acquisiton function
used is NEHVI (Daulton et al., 2021) defined as

α({xj}ij=1) =
1

N

N∑
t=1

HVI({f̃t(xj)}i−1
j=1|Pt) +

1

N

N∑
t=1

HVI(f̃t(xj)|Pt ∪ {f̃t(xj)}i−1
j=1) (3)

where f̃t, t = 1, . . . N are independent draws from the surrogate model (which is a posterior over
functions), and Pt denotes the Pareto frontier in the current dataset D under f̃t.

Table 17: Hyperparameters for training the surrogate model f̂

Hyperparameter Value
Shared enc. depth (# residual blocks) 3
Disc. enc. depth (# residual blocks) 1
Decoder depth (# residual blocks) 3
Conv. kernel width (# tokens) 5
# conv. channels 64
Latent dimension 16
GP likelihood variance init 0.25
GP lengthscale prior N(0.7, 0.01)
# inducing points (SVGP head) 64
DAE corruption ratio (training) 0.125
DAE learning rate (MTGP head) 5.00E-03
DAE learning rate (SVGP head) 1.00E-03
DAE weight decay 1.00E-04
Adam EMA params 0., 1e-2
Early stopping holdout ratio 0.1
Early stopping relative tolerance 1.00E-03
Early stopping patience (# epochs) 32
Max # training epochs 256

We replace the LaMBO candidate generation with GFlowNets. We generate a set of mutations
m = {(li, vi)} for a sequences x from the current approximation of the Pareto front P̂i. Note

23

https://github.com/samuelstanton/lambo


that, as opposed to the sequence generation experiments, PB here is not trivial as there are mul-
tiple ways (orders) of generating the set. For our experiments, we use a uniform random PB .
PF takes as input the sequence x with the mutations generated so far applied. We use a Trans-
former encoder with 3 layers, with hidden dimension 64 and 8 attention heads as the architec-
ture for the policy. The policy outputs a distribution over the locations in x, {1, . . . , |x|}, and
a distribution over tokens for each location. The vocabulary of actions here is the same as the
N-grams task - ["A", "R", "N", "D", "C", "E", "Q", "G", "H", "I", "L",
"K", "M", "F", "P", "S", "T", "W", "Y", "V"]. The logits of the locations of the
mutations generated so far are set to -1000, to prevent generating the same sequence. The acquisition
function(NEHVI) value for the mutated sequence is used as the reward. We also use a reward
exponent β. To make optimization easier (as the acquisition function becomes harder to optimize
with growing β), we reduce β linearly by a factor δβ at each round. We train the GFlowNet for 750
iterations in each round. Table 18 shows the MOGFN-AL hyperparameters. The active learning batch
size is 16, and we run 64 rounds of optimization. Table 18 presents the hyperparameters used for
MOGFN-AL.

Table 18: Hyperparameters for MOGFN-AL

Hyperparameter Values
Learning Rate (PF ) {0.01, 0.001, 0.0001}
Learning Rate (Z) {0.01, 0.001}
Reward Exponent: β {16, 24}
Uniform Policy Mix: δ {0.01, 0.05}
Maximum number of mutations {10, 15, 20}
δβ {0.5, 1, 2}

24


	Introduction
	Background
	Multi-Objective Optimization
	GFlowNets

	Multi-Objective GFlowNets
	Preference-Conditional GFlowNets
	Multi-Objective Active Learning with GFlowNets

	Related Work
	Empirical Results
	Synthetic Tasks
	Hyper-Grid
	N-grams Task

	Benchmark Tasks
	QM9
	Fragment-Based Molecule Generation
	DNA Sequence Generation

	Active Learning

	Analysis
	Conclusion
	Algorithms
	Scalarization
	Additional Analysis
	Metrics
	Additional Experimental Details
	Hyper-Grid
	N-grams Task
	QM9
	Fragments
	DNA Sequence Design
	Active Learning


