Published as a conference paper at ICLR 2024

GEOMETRICALLY ALIGNED TRANSFER ENCODER
FOR INDUCTIVE TRANSFER IN REGRESSION TASKS

Sung Moon Ko*, Sumin Lee*, Dae-Woong Jeong®, Woohyung Lim, Sehui Han
LG AI Research
{sungmoon.ko, sumin.lee, dw.jeong, w.lim, hansse.han}@lgresearch.ai

ABSTRACT

Transfer learning is a crucial technique for handling a small amount of data that is
potentially related to other abundant data. However, most of the existing methods
are focused on classification tasks using images and language datasets. Therefore,
in order to expand the transfer learning scheme to regression tasks, we propose a
novel transfer technique based on differential geometry, namely the Geometrically
Aligned Transfer Encoder (GATE). In this method, we interpret the latent vectors
from the model to exist on a Riemannian curved manifold. We find a proper dif-
feomorphism between pairs of tasks to ensure that every arbitrary point maps to
a locally flat coordinate in the overlapping region, allowing the transfer of knowl-
edge from the source to the target data. This also serves as an effective regularizer
for the model to behave in extrapolation regions. In this article, we demonstrate
that GATE outperforms conventional methods and exhibits stable behavior in both
the latent space and extrapolation regions for various molecular graph datasets.

1 INTRODUCTION

A machine learning model requires abundant data to learn and perform effectively. However, col-
lecting sufficient amounts of data often consumes substantial amounts of energy and time. One of
the most practical approaches to addressing this issue is to make use of large datasets correlated with
the target data. Transfer learning stands out as one of the potential contenders. Transfer learning
focuses on transferring knowledge from source to target data. Recently, there has been immense
development in various domains such as languages (Zhuang et al.| | 2011; |Long et al.; Zhuang et al.,
2013;2014; [Pan et al., 2020), computer vision (Quattoni et al., 2008} Kulis et al.|[2011;|Raghu et al.,
2019; Yu et al.,2022) and biomedical domain (Wang et al.,[2019; |Peng et al., [2021]).

Despite these achievements, the primary area of concern is mostly limited to classification tasks in
the vision and language domains. Moreover, identifying an architecture that effectively addresses
regression problems has proven to be challenging. Hence, our primary objective is to develop an
algorithm that can be generally applied to regression problems. In this article, our main focus centers
on molecular property prediction tasks (Scarselli et al.,[2009; Bruna et al., |2013; [Duvenaud et al.,
2015; Defferrard et al.,|2016; Jin et al.,|2018;; |Coley et al.,|2019; |[Ko et al., [2023)). Molecular datasets
tend to be small in size, have a large number of task types, and are mainly regression. This makes
molecular property prediction a good application to test our novel algorithm.

The fundamental concept of our method rests on a geometric interpretation of the encoding space.
Given that the encoding process within a model involves intricate non-linear mappings, it is reason-
able to regard the encoding space as non-linear and curved. As itis illustrated in Figure[I| we assume
a data point in each task is on a manifold, and its collection formulates a coordinate patch that can be
interpreted as a task coordinate. Each task coordinate has a chart to map to another correlated task
to form a manifold. Additionally, machine learning models are obligated to exhibit continuity and
differentiability to facilitate training through backpropagation. This requirement extends to the en-
coding space, which should ideally possess smoothness properties. These observations collectively
suggest the possibility of interpreting the encoding space as a Riemannian manifold.
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Figure 1: Two different coordinate frames are demonstrated in the figure, with coordinate trans-
formation maps to each individual coordinate choice. One can interpret each coordinate frame as
task-specific coordinates and map them with transformation models. An arbitrary point in the over-
lapping region of the manifold can be transformed from one task coordinate to another by combining
mapping functions ¢. Moreover, by introducing perturbation points, as demonstrated in the figure,
one can define the distance between points to match the geometrical shape in the overlapping region.

In general, a curved space is considerably more intricate than a flat space. For instance, when deal-
ing with a curved space, determining the distance between points requires the computation of entire
geodesic equations based on a specific metric. Consequently, the straightforward calculation of sim-
ilarities between data points using Euclidean distance no longer applies, making it challenging to
discern meaningful similarities between points. However, when the manifold is regarded as a Rie-
mannian manifold, there are strategies that can help navigate these challenges. One such strategy
involves finding diffeomorphisms that allow points to be situated in a locally flat frame (LF). As a
result, it becomes feasible to develop models specifically designed to identify appropriate diffeo-
morphisms. These models aim to confine individual data points to LF within overlapping regions
that align with other coordinate patches. This approach simplifies the process of establishing cor-
respondence between similar points across different coordinate systems, as each point is effectively
situated within a Euclidean environment on a local scale.

In essence, the act of matching overlapping points on a manifold ensures the alignment of their ge-
ometries. This alignment is crucial because the encoding space’s inherent geometry in the source
data contains relevant information for the target data. By achieving this alignment, the model fa-
cilitates the flow of information from the source to the target. In effect, this approach establishes a
strong foundation for the model’s capabilities and extends its capacity to generalize effectively.

Our main contribution of the article is as follows.

* We design a novel transfer algorithm (GATE) based on Riemannian differential geometry.

The GATE is utilizable on regression tasks for inductive transfer learning.

The GATE outperforms conventional methods in various molecular property regressions.

The GATE exhibits stable underlying geometry and robust behavior in extrapolation tasks.

2 RELATED WORKS

2.1 TRANSFER LEARNING

Given a source domain D* with source task 7°* and a target domain D! with target task 7", transfer
learning aims to improve the learning of a better mapping function f?(-) for the target task 7" with
the transferable knowledge gained from the D* and T (Pan & Yang, |2009). Depending on the
relationship between the source and target domains and tasks, transfer learning can be divided into
three categories: inductive, transductive, and unsupervised transfer learning. Our problem setting
is inductive transfer learning, where the target task is different from the source task (1 # T*),
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regardless of whether the source and target domains are the same (Yang et al., [2020). Additionally,
molecular property prediction is a regression task. In transductive transfer learning, studies have
been done on regression tasks such as domain adaptation regression (DAR) (Chen et al.l 2021}
However, recent studies on regression tasks in an inductive transfer learning setting were only found
in papers that applied it to a specific domain (Li & Fourches, 2020; [Hoffmann et al., 2023).

2.2 MULTI-TASK LEARNING AND KNOWLEDGE DISTILLATION

Multi-task learning (MTL) can be viewed as a form of inductive transfer learning that learns multiple
related tasks simultaneously. By using a shared representation, the knowledge gained from one
task can help the learning of other tasks (Caruana, [1997). MTL and transfer learning both aim to
generalize knowledge across different tasks. However, MTL aims to improve performance on a set
of target tasks with equal importance, whereas transfer learning only focuses on one target task.
Studies using MTL in various domains can be found (Lee & Kim [2019; |[Liu et al.| 2022).

Knowledge distillation (KD) is a training paradigm where the knowledge from a large teacher model
is transferred to a small student model. According to (Gou et al., [2021), distillation techniques
can be classified by knowledge types: response-based, feature-based, and related-based knowledge.
Response-based knowledge, also called “dark knowledge”, uses the output of the last layer, such as
logits (Hinton et al.,2015)). Feature-based knowledge distillation utilizes the output of intermediate
layers, which are feature representations, to guide the student model. Relation-based KD transfers
the relationships between features or data samples. For molecular property prediction, (Joshi et al.,
2022) introduced feature-based distillation for GNNs by preserving global topology. Studies using
cross-modal KD can also be found (Zhang et al.,[2022; Zeng et al., 2023)).

2.3 GEOMETRICAL DEEP LEARNING

Methods that extend deep neural networks to Euclidean and non-Euclidean domains, such as graphs
and manifolds, are collectively referred to as geometric deep learning(GDL) (Bronstein et al.,|2017).
Regarding “how to transfer”, transfer learning can be categorized into instance-based, feature-based,
model-based, and relation-based transfer learning. A feature-based approach aims to find a feature
representation that is effective for both the source and target domains. In the context of domain
adaptation, the subspace spanned by the features in the source and target domains is the knowledge
that is transferred (Yang et al., 2020). Manifold feature learning can learn tight representations that
are invariant across domains. Some studies have used the property of manifold to perform unsu-
pervised domain adaptation. By embedding datasets into Grassmann mainfolds, (Gopalan et al.|
2011) obtained intermediate subspaces by sampling points along the geodesic between the source
and target subspaces. (Gong et al.,2012) extended on this by learning a geodesic flow kernel (GFK)
between domains. (Baktashmotlagh et al.l [2014) embedded the probability distributions on a Rie-
mannian manifold and used a Hellinger distance to approximate the geodesic distance. (Luo et al.,
2020) proposed a Riemannain manifold embedding and alignment framework that used intra-class
similarity and manifold metric alignment loss to achieve discriminability and transferability, respec-
tively. However, to our best knowledge, we could not find geometrical deep learning approaches for
inductive transfer learning in regression tasks.

3 GEOMETRICALLY ALIGNED TRANSFER ENCODER

The latent vector is believed to capture the essence of information for a given task. Therefore, one
may consider if two different but correlated tasks may share a similar underlying geometry of latent
spaces. Hence, if the latent spaces of given tasks can be aligned smoothly, mutual information will
flow through the latent spaces from one another. This will lead to the superior performance of a
target task not only in interpolation but also in extrapolation cases, which is the basic strategy of the
GATE. However, deep learning models are designed to mimic non-linear functions by excavating
information from the training dataset. The underlying geometry of models should inherently exhibit
non-linearity and non-trivial curvature, as well as latent spaces, which are induced by non-linear
models. This makes it challenging to match the underlying geometry of latent spaces.

There are several assumptions required to put geometrical concept into practice: 1) A pair of source
and target tasks should be correlated; 2) a pair of tasks should have an overlapping region; 3) a
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Figure 2: Schematic diagram for the GATE algorithm

mathematically well-defined underlying geometry is preferred, such as a Riemannian. Molecular
datasets provide a perfect proving ground since they satisfy the first two assumptions, and with some
proper constraints, the third assumption can also be established. First, there exist numerous sets of
correlated tasks proven by scientific research. Also, the majority of molecules possess values for
multiple properties, which ensures a large area of overlapping regions across a pair of tasks. Finally,
by imposing the mathematical characters of Riemannian geometry as constraints, the underlying
geometry can be interpreted as a Riemannian manifold. Moreover, every molecule can be expressed
in a single corresponding universal string in, for instance, the SMILES format(Weininger, |1988).

3.1 RIEMANNIAN GEOMETRY

In Figure 2| we first take an input SMILES and embed it into the corresponding vector. After em-
bedding, latent space is formulated by encoders, which consist of DMPNN(Yang et al., 2019)) and
MLP layers. The latent vector is fed into task-corresponding heads for inference properties. Here
we utilize MSE for basic regression loss in the training scheme as follows:

! =12Nj( i — 0:)° (1)
reg N : Yi Yi

Where N, y;, and ¢; are the number of data points, target, and predicted value, respectively. This is
a simple, basic loss to train a molecular property, yet to match the latent space and design a transfer
scheme requires more mathematically advanced techniques.

The Riemannian manifold enjoys isometries induced by diffeomorphisms, which guarantee freedom
of coordinate choices on the manifold. Thus, one can find a LF around a point on a manifold. A
LF means the coordinate patch can be interpreted as Euclidean around its infinitesimal boundary.
Note that the input vector can be embedded on a smooth manifold, and its latent space can also be
assumed to be smooth since the ML model should always be smooth at an arbitrary point due to the
backpropagation training scheme. Hence, by utilizing the model to map encoder space to a LF, the
inner product of vectors satisfies a positive semi-definite property. Considering these aspects, we
can fix the latent space to a Riemannian. This whole process is closely described in later sections.

3.2 MATCHING COORDINATE PATCHES

As we mentioned earlier, we interpret the latent vector from the encoder model to be on a Rieman-
nian manifold. Moreover, we assume each downstream task corresponds to a specific coordinate
patch on the manifold with a vast overlapping region in molecular property prediction cases. Since
one can always find a mapping relation between different coordinate patches, it is crucial to find
the specific analytic form of the mapping function. Yet, it is almost impossible to find an analytic
form of the mapping function of an unknown manifold with little numerical information. Hence, we
utilize a deep learning model to learn the mapping relation instead of finding one with hands.
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The coordinate mapping is induced by a Jacobian on a point. Since a vector enjoys isometry on dif-
feomorphism on a Riemannian manifold and is written in fundamental representation, the coordinate
transformation can be expressed as follows:

o Z/i

J

By introducing a model that mimics the above Jacobian and predicts the transformation matrix for a
given vector, one can freely transform between coordinates. However, its inverse may not be stable,
and moreover, its derivative may also not be stable and cause instability in the backpropagation
process. Resolving the issue is critical for training the model. Therefore, we tweak the problem to
not just mimic the Jacobian itself but to predict a transformed vector. Furthermore, we utilize an
autoencoder scheme to ensure its inverse behavior is accurate and stable.

2" = Transfer(z), % = Transfer *(2') 3)
We indeed utilize MSE loss for the autoencoder which consists of transfer and its inverse modules.
lauto = MSE(z, 2) 4)

Here, we restrict the model by imposing an autoencoder loss to match the overlapping region of
coordinates. But this is insufficient; thus, stronger conditions are necessary to match coordinates.

Since we are expecting transformations to occur between coordinate patches, the transfer and inverse
modules should have the same input and output dimensions. Moreover, as we are trying to match the
underlying geometry of overlapping regions, which are in fact the latent space of the autoencoder,
one can realize that we can require another condition for the autoencoder. We consider two distinct
autoencoders for source and target coordinates that map coordinate patches to same LF back and
forth; the transfer output from both should be equal in order to match the geometry of the overlapping
region.

2t = Transfer, ,r(z5) %, = Transfer ', ., (2]) (5)
2z, = Transfer; ,;r(2;) %, = Transfer ™', .., (2}) (6)

Where Model,_, , r indicate a model from source to LF frame and vice versa.
leons = MSE(2, 2}) @)

This loss, we call it a consistency loss, pivots points on overlapping regions to glue the underlying
geometry. Furthermore, one can induce information flow from the source domain to the target
domain by utilizing a mixture of autodencoders.

2! = Transfers 1 p(zs) 2y = Transfer ™", ., (2}) (8)

The above equation indicates a vector from the source domain that is transformed to the target
domain, retaining its mutual information. Therefore, this mapped vector Z,_,; should also predict
the same label as the original vector z; on the target side. This fact gives rise to another form of loss
function, namely a mapping loss.

lmap - MSE(yt> gs%t) (9)

Here y; indicates the label for corresponding vectors and ¢js_,; indicates predicted value from Z_,;.
Above loss ensures mutual information flow by matching overlapping coordinates on pivot points.
This particular loss is applied to reverse case too which maps z; to §—s.

Now the question is, ‘Is this enough?’. The answer is ‘No!’. The reason is actually not intricate to
find. If we start with immensely much data on both the source and target domains, then the answer
will be ‘Yes’. However, in most cases, we lack data points to glue coordinates together. If points are
not enough, there are always overfitting issues that cause the geometry to crumple outside the pivot
point region. There are two solutions to this issue. One is gathering more data points and hoping to
work smoothly, and the other is by adding a stronger condition to the geometry.

Our idea is not only to focus on point data but also on its geometries by considering the geodesics
of two different points. Here, there are two issues to compute the geodesics in curved space: one is
that the space itself is curved, and the Pythagorean theorem no longer holds on the space in general.
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The other is that the shortest path between two points in a curved space is no longer intuitive. In
curved space, one can calculate distance using the following equation:

§? = / > guvdatda” (10)
U

Here, g,,,, is a metric on the surface, dz*, dz" are infinitesimal displacements, and [ is the geodesic
path between two points. The geodesic of a curved space can be defined as a curve whose parallel
transport along the curve preserves the tangent vector to the curve. Which indicates,

Vi ¥(t) =0 (1D

Where ~(¢) is a curve on a manifold, 4(t) is the derivative respect to a parameter ¢, and V is a
covariant derivative with an affine connection I'# . It is clear that solving the geodesic equation is
not a simple task since one must know the explicit form of the metric of space, and the equation itself
is a non-linear partial differential equation. Thus, as depicted in Figure [2] we introduce infinitesimal
perturbation points around a data point to detour the issue. The infinitesimal perturbation makes
things easy to tackle since a data point can always be expressed on a LF, where a geodesic becomes
trivial. Then one can easily compute the distance between a data point and perturbed points since it
can be interpreted to be on a flat Euclidean space.

The distance between two different points on a space is a key quantity to match the task coordinates
since, as shown in eq. distance always requires metric on a space. By restricting neighbor points
to an infinitesimal region around a pivot data point, the metric can now be considered a Euclidean
metric, 7,,,. Than the eq. [10|simplified as follows:

o [ S i [S i< [0 0
! H v ! % v a

Where a and b are the pivot data point and its perturbation point, respectively. If perturbation is
infinitesimal, one can take off the integral and find displacement in a simplified form.

S =b—al (13)

Since it is possible to find a LF on a Riemannian manifold, for a given data point, two different
task coordinates can always be transformed by their diffeomorphisms to be on a flat coordinate. If
we utilize the above distance between pivot and perturbation points, each task coordinate is now
glued together by not only a given pivot point but also by their neighbors. It is closely depicted in
Figure2] Right after the embedding, we find perturbation points around given data points and feed
them to each task-specific model for encoding. After encoding, models will be entangled together
by mapping loss, consistency loss, and distance loss, forcing the distances between pivot points and
their perturbations to be equal between tasks.

M
1 i
lgis = 7 ZMSE(SS, s (14)

Where M is the number of perturbations and s’ is the displacement between pivot data points and
their perturbations.

sy =1(2) = (D) si=1(2) — (2] (15)
2/" = Transfer,_, ;. r(Encoder,(z")) (16)
2}" = Transfer;_, , r(Encoder (z")) (17)

Here 2° denotes ith perturbation of embedded z, and Encoder, and Encoder; are encoder parts of
source and target model respectively. Finally, by gathering all losses with individual hyperparame-
ters, we obtain the complete form of the loss function used in the GATE algorithm.

ltot = lTeg + alauto + ﬂlcons + 'Ylmap + 51(11’,5 (18)

Each hyperparameter tunes the corresponding weight of loss. In most cases, it is sufficient to let
all the hyperparameters to 1, but in some cases, one can fine-tune the hyperparameters to achieve
superior performance. The most critical hyperparameter is § since the distance loss manages the
regularization effect of the model. This result will be closely examined in the ablation section. And
with the proper hyperparameters, our novel transfer model GATE outperforms conventional models
in inductive transfer settings for regression tasks, as shown in the experiment section.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To test our algorithms, we used a total of 14 datasets from three different open databases named
PubChem(Kim et al.| [2022), Ochem(Sushko et al., [2011), and CCCB(IIL, 2022), as described in
Appendix Table 3. The training and test split is an 80:20 ratio, and two sets of data were prepared:
random split and scaffold-based split(Bemis & Murckol [1996). Every experiment is tested in a four-
fold cross-validation setting with uniform sampling for accurate evaluation, and a single NVIDIA
A40 is used for the experiments. For the evaluation, we compare the performance of GATE against
that of single task learning (STL), MTL, KD, global structure preserving loss based KD (GSP-
KD) (Joshi et al., [2022)), and transfer learning (retrain all or head network only). We used the same
architecture for encoders and heads in both the baselines and our model for all experiments. More
detailed experimental setups can be found in Appendix. We performed experiments with a total of
23 target and source task pairs, respectively.

4.2 RESULTS

DGATE
STL
MTL
OKD
DGSP-KD
Transfer (Retrain All)
Transfer (Retrain Head)

’<V§/ ! \ }53
20 49

Random split Scaffold split

Figure 3: The RMSE of GATE divided by the RMSE of the corresponding methods are illustrated
in the radar chart. Experiments were performed with 23 target and source task pairs in random split
(left) and scaffold split (right) datasets. Inner characters correspond to the target tasks, and outer
characters are for the source tasks. The full names of the tasks can be found in Appendix Table 3.

The result of the training for the 23 task pairs with both random and scaffold split is demonstrated
in Figure[3] The figure illustrates the relative regression accuracy, calculated as the RMSE of GATE
divided by the RMSE of the corresponding method. As shown in the figure, in the majority of cases,
GATE outperforms baseline methods by significant margins. Note that, even though the KD and
GSP-KD outperforms the GATE for some task pairs, they show critically low accuracy for several
task pairs. On the other hand, as we can see in the Appendix Table 4-7, GATE exhibited the best
performance in more than half of task pairs, specifically 12 pairs in random split and 13 pairs in
scaffold split out of 23 pairs. Considering that the method with the second-highest number of best-
performing task pairs had only 4 task pairs in random split and 5 task pairs in scaffold split, this can
be regarded as a dramatic difference. Also, when considering the second-best performance, GATE
maintained consistently high performance in the majority of pairs, reaching 18 pairs in random split
and scaffold split. For the average RMSE over all task pairs, GATE demonstrates significantly lower
RMSE compared to the second-best method, 9.8 % lower in random split (GSP-KD) and 14.3 %
lower in scaffold split (MTL). This indicates that GATE performs even better in extrapolation tasks.
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Figure 4: Training and validation loss curves of GATE and MTL models with different sets of loss
terms. Upper left: GATE trained without consistency and distance loss; upper right: GATE trained
without distance loss; lower left: plain GATE, lower right: plain MTL.

5 ABLATIONS STUDIES AND FURTHER ANALYSIS

5.1 ROLE OF DISTANCE LOSS

The most distinguishable aspect of GATE is the distance loss, which connects task coordinates not
only through labeled data points but also surrounding perturbation points. Since learning signals
from consistency and distance loss do not require regression target labels, these two losses can
be applied in an unsupervised manner. GATE directly leverages this advantage in distance loss
and regularizes the overall latent space to be geometrically transferable to a LF. To verify this, we
trained GATE using different sets of losses: 1) only mapping, 2) mapping and consistency, and 3)
mapping, consistency, and distance losses. As a result, we observed that the addition of distance
loss significantly suppresses overfitting during the training process, as shown in Figure[d Note that
the training loss curve of MTL never reached the lowest validation loss of GATE (grey dashed line).
These results indicate that the regression model can be strongly regularized by the distance loss
while having a minimal adverse impact on the regression task itself.

Surface tension Kovats retention index Viscosity Abraham descriptor S
' I 20
. giiin ! 10
GATE | e S L O
U-I.O

MTL

Sl
53
[

Figure 5: PCA on latent space of GATE and MTL model trained with collision cross section dataset
as a target task and surface tension, Kovats retention index, viscosity, and Abraham descriptor S as
source tasks, respectively. The color indicates the predicted value of the collision cross section.
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5.2 STABILITY OF LATENT SPACE

For further investigation on the regularization effect of GATE, we examined the shape of the la-
tent space of the GATE and MTL models. Transfer learning offers a way to leverage information
from source tasks, but undesired interfering information can cause negative transfer. Ideally, if a
model is well-guided by the right information and regularized properly, the overall geometry of the
latent space may remain stable and not depend on the type of source tasks. (Zhang et al. 2023}
Gomez-Bombarelli et al.l 2018) However, if the target task is overwhelmed by the source task and
regularization is not enough, latent space will be deformed according to the source tasks. To check
this effect, we trained regression on the same target task using GATE or MTL with four different
source tasks and then performed principal component analysis. Figure [3 effectively illustrates that
the latent space of GATE exhibits relatively stable characteristics compared to that of MTL.

5.3 ROBUSTNESS TO DATA CORRUPTION

We examined the robustness against data corrup-

tion in order to directly verify the regularization

effect. To artificially introduce significant cor- Heat of vaporization  Collision cross section
ruption to the dataset, data points with labeled 3 06
values outside the standard deviation were ran-

28
domly selected, and the values of these data points 0.5
were altered to be twice the standard deviation 26 0s
with negation. And then, after training with the 24 '

MSE
ISW

corrupted dataset, we assessed the mean squared
error (MSE) between the model’s predictions on
the corrupted data points used during training and 2

the original values before the corruption. If the MTL  GATE MTL  GATE
model exhibits overfitting to the corrupted data, it

will manifest substantial errors, whereas effective . .
model regularization will lead to error reduction. Figure 6: GATE and MTL models are trained

Figure [6] shows the result of the test for GATE with artiﬁcially corrupted data pOir.ltS. and MSEs
and MTL. The GATE model exhibits considerably between predlcted. Val?les and original values
lower errors compared to MTL. This result indi- befor.e the corruption 1s 'recorded. The target
cates that the regularization effect of the GATE al- task is hqat of'vaponz'anon (left) or cqlhsmn
gorithm leads to high robustness against data cor- cross-section (right), with the opposite side be-
ruption and successful generalization. ing used as the source task.

0.45

0.4

6 DISCUSSION

We demonstrated a novel transfer algorithm based on the geometrical interpretation of latent space.
By assuming latent space to be on a Riemannian manifold with a curved metric, the conventional
Euclidean interpretation is no longer valid. However, since diffeomorphism invariance guarantees
freedom of coordinate choices, one can always find a LF for each task coordinate. Hence, it is
possible to impose consistency loss by matching an encoded vector from one task to another. Fur-
thermore, we showed that the distance loss of displacement from a point in an overlapping region to
its perturbations is crucial. All together, we demonstrated that the GATE outperforms conventional
methods in the majority of molecular prediction task setups and proved its robustness.

In this article, we focused on regression tasks for molecular property prediction. Yet, the algorithm
itself is not restricted to regression tasks. Thus, it is interesting to expand the algorithm to other
domains such as images, languages, or, further, multi-modal setups. Another technical point is that
we considered the neighboring region of a pivoting point to compute displacement on a flat space.
However, to match the entire geometry, it is necessary to consider not only perturbations but also
points in finite-distance regions. In this scheme, one must solve a geodesic equation instead of
merely computing the Euclidean distance. It is incomparably complicated since one must consider
1) finding an explicit form of curved metric and 2) solving highly non-linear differential geodesic
equations analytically or numerically. Yet, considering GATE’s performance, by imposing geometric
characters on fully curved backgrounds, the performance gains may be substantial. Hence, this could
be another interesting research topic to expand GATE’s horizons.



Published as a conference paper at ICLR 2024

REFERENCES

Mahsa Baktashmotlagh, Mehrtash T Harandi, Brian C Lovell, and Mathieu Salzmann. Domain
adaptation on the statistical manifold. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2481-2488, 2014.

Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.
Journal of medicinal chemistry, 39(15):2887-2893, 1996.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEFE Signal Processing Magazine, 34(4):18—42,
2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral networks and locally
connected networks on graphs. 12 2013.

Rich Caruana. Multitask learning. Machine learning, 28:41-75, 1997.

Xinyang Chen, Sinan Wang, Jianmin Wang, and Mingsheng Long. Representation subspace distance
for domain adaptation regression. In ICML, pp. 1749-1759, 2021.

Connor W. Coley, Wengong Jin, Luke Rogers, Timothy F. Jamison, Tommi S. Jaakkola, William H.
Green, Regina Barzilay, and Klavs F. Jensen. A graph-convolutional neural network model for
the prediction of chemical reactivity. Chem. Sci., 10:370-377, 2019. doi: 10.1039/C8SC04228D.
URL http://dx.doi.org/10.1039/C8SC04228D.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. 06 2016.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gémez-Bombarelli, Timo-
thy Hirzel, Aldn Aspuru-Guzik, and Ryan Adams. Convolutional networks on graphs for learning
molecular fingerprints. Advances in Neural Information Processing Systems (NIPS), 13, 09 2015.

Rafael Gémez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Herndndez-Lobato,
Benjamin Sanchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Aldn Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS central science, 4(2):268-276, 2018.

Boging Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised
domain adaptation. In 2012 IEEE conference on computer vision and pattern recognition, pp.
2066-2073. IEEE, 2012.

Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for object recognition:
An unsupervised approach. In 2011 international conference on computer vision, pp. 999—1006.
IEEE, 2011.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129:1789-1819, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop, 2015. URL http://arxiv.
org/abs/1503.02531l

Noah Hoffmann, Jonathan Schmidt, Silvana Botti, and Miguel AL Marques. Transfer learning on
large datasets for the accurate prediction of material properties. arXiv preprint arXiv:2303.03000,
2023.

Russell D. Johnson III. Nist computational chemistry comparison and benchmark database. NIST
Standard Reference Database, 101, 2022. URL http://cccbdb.nist.gov/\

Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal graph-to-
graph translation for molecular optimization, 12 2018.

10


http://dx.doi.org/10.1039/C8SC04228D
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
http://cccbdb.nist.gov/

Published as a conference paper at ICLR 2024

Chaitanya K Joshi, Fayao Liu, Xu Xun, Jie Lin, and Chuan Sheng Foo. On representation knowledge
distillation for graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Ben-
jamin A Shoemaker, Paul A Thiessen, Bo Yu, Leonid Zaslavsky, Jian Zhang, and Evan E Bolton.
PubChem 2023 update. Nucleic Acids Research, 51(D1):D1373-D1380, 10 2022. ISSN 0305-
1048. doi: 10.1093/nar/gkac956. URL https://doi.org/10.1093/nar/gkac956.

Sung Moon Ko, Sungjun Cho, Dae-Woong Jeong, Sehui Han, Moontae Lee, and Honglak Lee.
Grouping matrix based graph pooling with adaptive number of clusters. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 8334-8342, 2023.

Brian Kulis, Kate Saenko, and Trevor Darrell. What you saw is not what you get: Domain adaptation
using asymmetric kernel transforms. CVPR 2011, pp. 1785-1792,2011. URL https://api.
semanticscholar.org/CorpusID:7419723.

Kyoungyeul Lee and Dongsup Kim. In-silico molecular binding prediction for human drug targets
using deep neural multi-task learning. Genes, 10(11):906, 2019.

Xinhao Li and Denis Fourches. Inductive transfer learning for molecular activity prediction: Next-
gen gsar models with molpmofit. Journal of Cheminformatics, 12(1):1-15, 2020.

Shengchao Liu, Meng Qu, Zuobai Zhang, Huiyu Cai, and Jian Tang. Structured multi-task learn-
ing for molecular property prediction. In International conference on artificial intelligence and
statistics, pp. 8906-8920. PMLR, 2022.

Mingsheng Long, Jianmin Wang, Guiguang Ding, Wei Cheng, Xiang Zhang, and Wei Wang. Dual
Transfer Learning, pp. 540-551. doi: 10.1137/1.9781611972825.47. URL https://epubs.
siam.org/doi/abs/10.1137/1.9781611972825.47.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

You-Wei Luo, Chuan-Xian Ren, Pengfei Ge, Ke-Kun Huang, and Yu-Feng Yu. Unsupervised do-
main adaptation via discriminative manifold embedding and alignment. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pp. 5029-5036, 2020.

Jianhan Pan, Teng Cui, Thuc Duy Le, Xiaomei Li, and Jing Zhang. Multi-group transfer learning on
multiple latent spaces for text classification. IEEE Access, 8:64120-64130, 2020. doi: 10.1109/
ACCESS.2020.2984571.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345-1359, 2009.

Minshi Peng, Yue Li, Brie Wamsley, Yuting Wei, and Kathryn Roeder. Integration and transfer
learning of single-cell transcriptomes via cfit. Proceedings of the National Academy of Sciences,
118(10):e2024383118, 2021. doi: 10.1073/pnas.2024383118. URL https://www.pnas.
org/doi/abs/10.1073/pnas.2024383118!

Ariadna Quattoni, Michael Collins, and Trevor Darrell. Transfer learning for image classification
with sparse prototype representations. Proceedings / CVPR, IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2, 03 2008. doi: 10.1109/CVPR.2008.4587637.

Maithra Raghu, Chiyuan Zhang, Jon M. Kleinberg, and Samy Bengio. Transfusion: Understanding
transfer learning with applications to medical imaging. CoRR, abs/1902.07208, 2019. URL
http://arxiv.org/abs/1902.07208.

Franco Scarselli, Marco Gori, Ah Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph

neural network model. /EEE transactions on neural networks / a publication of the IEEE Neural
Networks Council, 20:61-80, 01 2009. doi: 10.1109/TNN.2008.2005605.

11


https://doi.org/10.1093/nar/gkac956
https://api.semanticscholar.org/CorpusID:7419723
https://api.semanticscholar.org/CorpusID:7419723
https://epubs.siam.org/doi/abs/10.1137/1.9781611972825.47
https://epubs.siam.org/doi/abs/10.1137/1.9781611972825.47
https://www.pnas.org/doi/abs/10.1073/pnas.2024383118
https://www.pnas.org/doi/abs/10.1073/pnas.2024383118
http://arxiv.org/abs/1902.07208

Published as a conference paper at ICLR 2024

Turii Sushko, Sergii Novotarskyi, Robert Korner, Anil Kumar Pandey, Matthias Rupp, Wolfram
Teetz, Stefan Brandmaier, Ahmed Abdelaziz, Volodymyr V Prokopenko, Vsevolod Y Tanchuk,
et al. Online chemical modeling environment (ochem): web platform for data storage, model de-
velopment and publishing of chemical information. Journal of computer-aided molecular design,
25:533-554, 2011.

Jingshu Wang, Divyansh Agarwal, Mo Huang, Gang Hu, Zilu Zhou, Chengzhong Ye, and Nancy
Zhang. Data denoising with transfer learning in single-cell transcriptomics. Nature Methods, 16:
875-878, 09 2019. doi: 10.1038/541592-019-0537-1.

David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31-36,
1988.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-
Perez, Tim Hopper, Brian Kelley, Miriam Mathea, Andrew Palmer, Volker Settels, Tommi
Jaakkola, Klavs Jensen, and Regina Barzilay. Analyzing learned molecular representations
for property prediction. Journal of Chemical Information and Modeling, 59, 07 2019. doi:
10.1021/acs.jcim.9b00237.

Qiang Yang, Yu Zhang, Wenyuan Dai, and Sinno Jialin Pan. Transfer learning. Cambridge Univer-
sity Press, 2020.

Xiang Yu, Jian Wang, Qing-Qi Hong, Raja Teku, Shui-Hua Wang, and Yu-Dong Zhang. Trans-
fer learning for medical images analyses: A survey. Neurocomputing, 489:230-254, 2022.
ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2021.08.159. URL https://www.
sciencedirect.com/science/article/p11/S0925231222003174.

Liang Zeng, Lanqing Li, and Jian Li. Molkd: Distilling cross-modal knowledge in chemical reac-
tions for molecular property prediction. arXiv preprint arXiv:2305.01912, 2023.

Hao Zhang, Nan Zhang, Ruixin Zhang, Lei Shen, Yingyi Zhang, and Meng Liu. Coordinating cross-
modal distillation for molecular property prediction. arXiv preprint arXiv:2211.16712, 2022.

Wen Zhang, Lingfei Deng, Lei Zhang, and Dongrui Wu. A survey on negative transfer. IEEE/CAA
Journal of Automatica Sinica, 10(2):305-329, 2023. doi: 10.1109/JAS.2022.106004.

Fuzhen Zhuang, Ping Luo, Hui Xiong, Qing He, Yuhong Xiong, and Zhongzhi Shi. Exploiting
associations between word clusters and document classes for cross-domain text categorizationt.
Statistical Analysis and Data Mining: The ASA Data Science Journal, 4(1):100-114, 2011. doi:
https://doi.org/10.1002/sam.10099. URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/sam.10099.

Fuzhen Zhuang, Ping Luo, Changying Du, Qing He, and Zhongzhi Shi. Triplex transfer learning:
Exploiting both shared and distinct concepts for text classification. In Proceedings of the Sixth
ACM International Conference on Web Search and Data Mining, WSDM 13, pp. 425-434, New
York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450318693. doi: 10.
1145/2433396.2433449. URL https://doi.org/10.1145/2433396.2433449,

Fuzhen Zhuang, Ping Luo, Changying Du, Qing He, Zhongzhi Shi, and Hui Xiong. Triplex transfer
learning: Exploiting both shared and distinct concepts for text classification. /EEE Transactions
on Cybernetics, 44(7):1191-1203, 2014. doi: 10.1109/TCYB.2013.2281451.

12


https://www.sciencedirect.com/science/article/pii/S0925231222003174
https://www.sciencedirect.com/science/article/pii/S0925231222003174
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10099
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10099
https://doi.org/10.1145/2433396.2433449

Published as a conference paper at ICLR 2024

A NOTATIONS

Our notation is based on index notation and Einstein summation conventions. Notation of functions
and matrices in our algorithm is as follows.
X : Vector
X" : Vector Field
dzx,, : Basis
X, : Dual Vector Field
dz* : Dual Basis
T : Tensor
T, (ps q) Tensor Field
9w : Metric Tensor
0, : Kronecker Delta
V. : Covariant Derivative
L x : Lie Derivative
I'? ., + Christoffel Symbol

All indices are raised and lowered by a metric g,,,.. For instances,

gltu = gltﬂ)gpy (19)

where

glﬂ’gm/ =0, =D (20)

v

Here D is the number of dimensions.

B PROOFS AND DERIVATIONS

B.1 THE DEFINITION OF RIEMANNIAN MANIFOLD

A curved space is complicated to comprehend in general. Since late 19th century, there has been
immense development in differential geometry to interpret curved spaces formally. One of the best-
known intuitive geometrys is the Riemannian. Riemannian geometry enjoys a handful of useful
mathematical characters that can be utilized in the real world. The formal definition of Riemannian
is as follows:

Definition B.1 (Riemannian Manifold). A Riemannian metric on a smooth manifold M is a choice
at each point # € M of a positive definite inner product g, : T,M x T,M — R on T, M. The
smooth manifold endowed with the metric g is a Riemannian manifold, denoted (M, g).

As it is expressed above, a Riemannian manifold is smooth and differentiable everywhere on the
manifold and its derivative as well. Also, a Riemannian enjoys diffeomorphism invariances, induced
by the Lie derivative £ x. One can easily notice that the adjoint operation between two different Lie
derivatives forms a group, namely the diffeomorphism group. This isometry ensures coordinate
choices without changing the global geometry of the space.

o OX"
axn

As it is depicted in eq.[2} transformed vector remains unchanged. Moreover, one can always fix the
transformed coordinate in a locally flat space.

X' = X'"MdX] = X dX, = X"dX, = X Q1)

o
_ 8£ Xl/

n
&= o (22)
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Where &£# is a vector on a locally flat frame. To ensure the vector is on a flat frame, one must impose
the following condition:

3152 gﬂ( )= (23)

Since a vector is on a flat frame, it should be in a free-falling motion, so its acceleration should be
trivial. On a locally flat frame, the metric also becomes flat Euclidean metric

Guv = l,u,u (24)

B.2 COVARIANCE

The vector should be transformed in the same manner in any coordinate frame. However, if the
space is no longer flat, the ordinary derivative no longer guarantees it. Let us consider a derivative
of a vector in a general curved space.

ox#

Oy — 8’ ET —0, (25)
Where 0,, = a =, then the vector transformation can be written as follows:
ox* 9 Ox'™

o,X" — 9 X'H — 26
O oz'v Ox ( ozP ) (26)

ox'" ;0P 9%y
- (T gy ) 27
oz ( 0z OxP @7

As it is shown above, a transformation of a vector on a curved space with an ordinary derivative is
no longer covariant. Thus, one must impose an additional factor to make it covariant, namely an
Affine connection. With this factor, one can define a covariant derivative, replacing an ordinary one.

A
Vu=0,+1",, (28)
By requiring a covariance condition on the covariant derivative,
OxP Ox'H
Vy o VAV = Sy yv (29)
a v axu
Then one can induce the explicit form of a connection.
Vu VY =8,V" + T,V (30)

Under coordinate transformation,

o 0z, e OxP OV L o L
g apx V) eV = g e OV g gy TV G
Here, to make the derivative of a vector covariant, the following equation must hold:
oxP 0%z’ oz dx'v
VA FIV Vlo _ A Ve 32
Ox'H OxP O ra ox'v x>~ P7 (32)
Which is
oz’ oxP O OxP OxzP 0%z’
F/V V™) = P g _ 33
o oz ) oz't oz~ P° ox'* Ox'+ dxPOx* (33)
OxP OxP Ox'v ox™ OxP 0%’
™ vT = A o _ A 34
pr oz's Ox'* x> P7 oz's Ox'+ dxrOx* 34

This leads us to the explicit form of how the Christoffel symbol transforms under coordinate
changes.
o dz™ dxP Oz o ox™ dxP  D*x™ 35)
wE T 9als Or'i 9an - PT Oal Ozt DxPOxT
Since the Kronecker delta is a constant matrix, it is obvious that the derivative of the delta should
be trivial. Then one can apply the chain rule to the delta and find the following relation, which can
simplify the above transformation rule.

0 0 0x' 0  0x™ 0’V _ 02" Ox° 82z oz’ 9z 9%z”

ox'H O = dx'l dr't Dk (8:10’” ox™ )=0= ox's Ox'® QxPOx™ = Ox™ Ox™ Ox'HOx'P
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Finally, the transformation rule for a Christoffel symbol is as follows:

o ox™ dxP Az ) oz’ 9*x” 37)
" Ox's Oz’ dxr T T dxT da'tOx'P
By the same logic, one can easily find out how covariant derivatives act on forms.
ViV =0V, =T, Vi (38)

B.3 EXPLICIT FORM OF CHRISTOFFEL SYMBOL

The metric is a ruler of a given geometry; it should not vary under position on a coordinate. The
Euclidean is trivial to see since the metric on Euclidean space is mere d,,,, which is a constant
matrix.

0
oz
However, in the curved case, the above statement should also hold to interpret the metric as a ruler,
yet the statement does not hold for an ordinary derivative. There, the covariant derivative kicks in to

replace an ordinary derivative instead. By taking covariant derivative to the curved metric, the term
diminishes.

O =0 (39)

Vagu =0 (40)
One can express this in terms of a flat metric with a diffeomorphism transformation factor.
oM ogP
g,uu(x) = Ok Ox? 5)\p(£) 41
If we take a derivative of x on both sides, the above equation becomes:
0 0%xr  gp %P 9eN
——Guv = — —— 42
ox°® Gyu () 0z Ozt Oxv P T Dxodxv dan (42)
B 0%¢r Ox™ OL”P 5‘7@5 n o%er Oz 9N ogr 43)
T 9290z 9€P Oz Oz N Dxodah OEN DxT Dxv
2¢p T 2 ¢ T
_ 0°EP Ox 07" Oz (44

0xo 0z” 5‘7599’” * Oxo OxH T@gw

From eq[40} one can easily find out the specific form of the Christoffel symbol in terms of derivatives
of curved and flat coordinates.
a T T
%gHV =T ngTV + r yUgHU (45)
82€A ox”

D on = Suromm aer @)

(46)

Since the metric should always be symmetric, the lower indices of the Christoffel symbol should also
be symmetric. It is called a torsion-free condition. Furthermore, by utilizing a simple mathematical
trick, one can obtain the Christoffel symbol in terms of the metric g,,, .

0

@gﬂl/ = FTJ,ugTV + FTJygI“' (47)
0 T T

nga = T pv9ro + r podvr (43)
0 T T

@gau = T uangL =+ r uug(TT (49)

Adding the first two equations and subtracting the last one leads to

10 0 0

A — — -
o = 597" Cggutvn & G 9on = G nv) 0
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B.4 GEODESIC EQUATIONS

The shortest path between two points is simple in flat space. However, in curved space, the notion
becomes rather complicated. The shortest path in a curved space is defined as a geodesic. There are
several ways to induce a geodesic equation. One is by requiring a free-falling condition.

d%EM ()
or?

By diffeomorphism, one can transform a coordinate into an arbitrary coordinate x.

=0 (51)

g 0" Ox” OE* 9% 9%+ 9z Oz
= —_— frd e 2
97 92 97 ) = 0w 02 T 00w 07 or (52)

2,.p 2 ¢p P A v 2,..p A v
0°x o=¢r Ox? Oz Ox¥ 0%z p O0x" 0z _o (53)

orr " asowr dgr or or | o2 | Mar or
Another way to derive the equation is by finding the minimum value of the distance in curved space.

dxt dxv
— —dT
i dr dr
By varying the above equation and requiring it to be 0, one can compute its minimum value, and
after tedious calculation, the geodesic equation can be obtained.

(54)

C BASE GRAPH NEURAL NETWORK MODEL

In general, molecule is represented in a graph form. Therefore, in order to handle molecule dataset,
it is inevitable to utilize graph neural networks. We chose directional message passing network
(DMPNN) (Yang et al., 2019) for our backbone, since it outperforms other GNN architectures in
molecular domain. Given a graph, DMPNN initializes the hidden state of each edge (i, j) based
on its edge feature F;; with node feature X;. At each step ¢, directional edge summarizes incident

edges as a message mfj‘l and updates its hidden state to hf;rl

mit =" h, (55)
KEN()\J
hif' = ReLU(RY; + Wem{™) (56)

Where A/ (i) denotes the set of neighboring nodes and W, a learnable weight.he hidden states of
nodes are updated by aggregating the hidden states of incident edges into message m: !, and passing

%

its concatenation with the node feature X; into a linear layer followed by ReL.U non-linearity

mitl = Z hﬁj (57)
JEN(4)
RiT = ReLU (W, concat(X;, mith)) (58)

Similarly, W,, denotes a learnable weight. Assuming DMPNN runs for 7' timesteps, we use
(Xouts Eout) = GNN(A, X, E) to denote the output representation matrices containing hidden
states of all nodes and edges, respectively (i.e., Xoyi,; = h7T and Eoyp 55 = hzj;)

For graph-level prediction, the node representations after the final GNN layer are typically sum-
pooled to obtain a single graph representation hg = ) . h;, which is then passed to a FFN prediction
layer.

D ARCHITECTURE AND HYPERPARAMETERS

Detailed steps of training GATE is described in Algorithm The architecture of our model is
composed of five distinct networks and their parameter sizes are depicted in Table[I] As illustrated in
Figure E], one embedding network is shared across tasks, and encoder, transfer, inverse transfer, and
head network exists for each task. The embedding network embedd|(-) has the DMPNN architecture
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Algorithm 1 GATE

1: Initialize encoder network f., transfer network f;, inverse transfer network f;, head network f7,
with random parameters 6

2:

3: forepochi=1,2,...ndo

4: for each t € Tasks do

5: for each batch b = (2!, y!) € dataset D do

6: at < embedd(zt)

7: {@'} « perturb(at)

8:

9: 2t f(ab)

10: mt < fl(z')

11: {2}« fe({a'})

12 {mt} < FHE)

13:

14: L,y < MSELoss(y', fi(z")

15: Louto < MSELoss(ff(m'),2")

16:

17: for ecach s € Subtasks do

18: 25+ fi(at)

19: m® <+ f{(z°)
20 {2} < £2({a"})
5t e} < F ({2
22:
23: Lynap ¢ Limap + MSELoss(y", }; fHm®))
24: Leons < Leons + MSELoss({m'}, ms)
25: Lgist + Laist + MSE Loss(m?® {m b,m® —{m*})
26: end for
27:
28: Compute Ltotal = Lreg + aLauto + BLmap + 'YLcons + 6Ldist
29: Update 0 using Lotq;

30: end for

31: end for

32: end for

with depth 2 and converts the input molecule representation x into a new representation a in a
common embedding space. We apply perturbation perturd(-) to a for a number of perturbations,
which is set to 10 in this paper. All of the perturbed representation {G} along with a are then fed
into the encoder network. The encoder network is composed of backbone network and bottleneck
network. Backbone network has the DMPNN architecture with depth 2 and the bottleneck network
has an autoencoder structure with MLP layers. The output from the encoder f(a) becomes the
input to the transfer network and head network. The output of transfer network f;(z), notated as m,
is used to calculate consistency loss and distance loss. It is also fed into inverse transfer network,
so that the output from inverse transfer network f;(m) can be used to calculate autoencoder loss.
The output from head network fj, o f;(m) is used to calculate regression loss and mapping loss.
We trained 600 epochs with batch size 512 while using AdamW (Loshchilov & Hutter, 2017) for
optimization with learning rate Se-5. The hyperparameters for «, 3,7, d are 1, 1, 1, 1 respectively.

Table 1: Network parameters

network layer input, output size | hidden size | dropout
backbone DMPNN [134,149], 100 200 0
bottleneck MLP layer 100, 50 50 0
transfer MLP layer 50, 50 100,100,100 0.2
inverse transfer | MLP layer 50, 50 100,100,100 0.2
head MLP layer 50, 1 25,12 0.2
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Table 2: Hyperparameters

learning rate 0.00005
optimizer AdamW
batch size 512

epoch 600
# of perturbation 10
a, B,7,0 1,1,1,1

E DETAILED EXPLANATION OF DATASETS AND EXPERIMENTAL SETUPS

E.1 DATASETS

Table 3: Detailed information about the datasets.

name acronym  source count mean std
Abraham Descriptor S AS Ochem 1925 1.05 0.68
Boiling Point BP Pubchem 7139 198.99 108.88
Collision Cross Section CCS Pubchem 4006  205.06 57.84
Critical Temperature CT Ochem 242 626.04 120.96
Dielectric Constant DK Ochem 1007 0.80 0.41
Density DS Pubchem 3079 1.07 0.29
Enthalpy of Fusion EF Ochem 2188 1.32 0.32
Tonization Potential Ip Pubchem 272 10.00 1.63
Kovats Retention Index ~ KRI Pubchem 73507 2071.20 719.34
Log P LP Pubchem 28268 11.17 9.89
Polarizability POL CCCB 241 0.84 0.26
Surface Tension ST Pubchem 379 29.01 10.36
Viscosity VS Pubchem 294 0.47 0.87
Heat of Vaporization HV Pubchem 525 43.77 18.08

We used 14 different molecular property datasets from three different open databases, described
in Table [3| and below explanations for evaluation of the GATE. Before the training process, the
data were purified to exclude data with incorrectly specified units, typos, and extreme measurement
environments. All datasets were normalized by mean and standard deviation before the training
process. We selected 23 pairs of source and target tasks among the 14 datasets, considering the
number of data points in each dataset. We also tried to select task pairs with diversity in correlation
as shown in the Figure [/| for a fair and unbiased examination. Hereby, we explicitly describe the
physical meaning of each dataset.

* AS : The solute dipolarity/polarizability.

* BP : The temperature at which this compound changes state from liquid to gas at a given
atmospheric pressure.

* CCS : The effective area for the interaction between an individual ion and the neutral gas
through which it is traveling.

* CT : The temparature when no gas can become liquid no matter how high the pressure is.

* DK : The ratio of the electric permeability of the material to the electric permeability of
free space.

* DS : The mass of a unit volume of a compound.

* EF : The change in enthalpy resulting from the addition or removal of heat from 1 mole of
a substance to change its state from a solid to a liquid.
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Absolute Corr. Values Between Task Pairs
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Figure 7: Pearson correlation between overlapping data points in target dataset and source dataset.

e IP : The amount of energy required to remove an electron from an isolated atom or
molecule.

¢ KRI : The rate at which a compound is processed through a gas chromatography column.

* LP: Logarithmic form of the ratio of concentrations of a compound in a mixture of octanol
and water at equilibrium.

* POL : The tendency of matter, when subjected to an electric field, to acquire an electric
dipole moment in proportion to that applied field.

» ST : The property of the surface of a liquid that allows it to resist an external force
* VS : A measure of a fluid’s resistance to flow.

* HV : The quantity of heat that must be absorbed if a certain quantity of liquid is vaporized
at a constant temperature.

E.2 EXPERIMENTAL SETUPS

For evaluation of the GATE, we compared the performance of six baseline methods, including STL,
MTL, KD, global structure preserving loss based KD (GSP-KD), and transfer learning (retrain all or
head network only). All of the baselines share the same base architecture, with a few different details
according to methods. The MTL shares parameters of backbone and bottleneck for given two tasks,
and only head networks are separated. In the case of the KD, latent vectors from the bottleneck
are used as labels for the distillation, and the distillation loss ratio is set to 0.1. Graph Contrastive
Representation Distillation (G-CRD) contains contrastive loss as well as the GSP loss (Joshi et al.,
2022). However, we only adopt GSP loss since the contrastive loss term is not applicable for regres-
sion tasks. For the GSP-KD, node features from the last layer of the backbone network are used to
calculate pairwise distances, which are the labels of the distillation process. The loss ratio of the
distillation process of the GSP is also set to 0.1. The maximum epoch is set to be 600, and the best
models are selected by early stopping.

F EXPERIMENTAL RESULTS

We express explicit test results in this section. A total of 23 task pairs from 14 distinct datasets were
tested thoroughly with seven different models. Four tables are depicted to show the full experimental
results. The best result is emphasized by bold and underlined on each individual result, and the
second-best result is underlined. The GATE outperforms other conventional methods by a noticeable
margin. In a random split setup, the GATE wins 52.17% out of total tasks, and for up to second, the
GATE wins 78.26% out of total. In scaffold setup, the GATE wins 56.52% and 78.26% respectively.
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Table 4: Random Split Result (part 1)

Tasks GATE STL MTL KD

RMSE STD RMSE | STD RMSE STD RMSE STD
hv < ds | 0.9221 | 0.0612 | 0.9574 | 0.0519 | 0.9782 | 0.0782 | 1.3726 | 0.2930
as<bp | 04583 | 0.0193 | 0.5125 | 0.0085 | 0.4370 | 0.0119 | 0.5426 | 0.0335
ds < kri | 0.4145 | 0.0172 | 0.4154 | 0.0045 | 0.4172 | 0.0102 | 0.4403 | 0.0119
hv < vs | 09116 | 0.0522 | 0.9574 | 0.0519 | 0.9700 | 0.1052 | 1.1995 | 0.1419
vs < hv | 0.5471 | 0.0719 | 0.5947 | 0.0357 | 0.5535 | 0.0353 | 0.5878 | 0.0264
st<as | 0.6689 | 0.0413 | 0.9902 | 0.0729 | 1.0272 | 0.0244 | 1.1601 | 0.0396
ds<1p | 0.4046 | 0.0142 | 0.4154 | 0.0045 | 0.4133 | 0.0135 | 0.4378 | 0.0086
pol <—ds | 0.3431 | 0.0475 | 0.3460 | 0.0291 | 0.4367 | 0.1213 | 0.3089 | 0.0270
vs < bp | 0.4457 | 0.0151 | 0.5947 | 0.0357 | 0.4516 | 0.0366 | 0.6076 | 0.0241
dk <—ef | 04331 | 0.0140 | 0.4331 | 0.0358 | 0.4498 | 0.0126 | 0.3852 | 0.0238
as < ccs | 0.4648 | 0.0139 | 0.5125 | 0.0085 | 0.4677 | 0.0220 | 0.5364 | 0.0211
ct<bp | 0.1742 | 0.0034 | 0.2549 | 0.1247 | 0.1707 | 0.0132 | 0.1690 | 0.0079
st<ccs | 09546 | 0.0452 | 0.9902 | 0.0729 | 1.0361 | 0.0737 | 1.1731 | 0.0730
ccs < kri | 0.2476 | 0.0034 | 0.2936 | 0.0110 | 0.2524 | 0.0042 | 0.2622 | 0.0117
hv < bp | 0.7251 | 0.0581 | 0.9574 | 0.0519 | 0.7550 | 0.0432 | 1.1983 | 0.1815
vs <—ccs | 0.5233 | 0.0323 | 0.5947 | 0.0357 | 0.5792 | 0.0228 | 0.6027 | 0.0127
st<hv | 0.7647 | 0.0622 | 0.9902 | 0.0729 | 0.7179 | 0.0259 | 1.1270 | 0.0184
hv < ct | 0.9399 | 0.0896 | 0.9574 | 0.0519 | 1.1118 | 0.1633 | 1.5114 | 0.1845
ip<bp | 0.5476 | 0.0642 | 0.6695 | 0.0660 | 0.6067 | 0.0345 | 0.5624 | 0.0273
hv < ef | 0.6131 | 0.0966 | 0.9574 | 0.0519 | 0.8296 | 0.0999 | 1.3659 | 0.2587
hv < kri | 0.5410 | 0.0732 | 0.9574 | 0.0519 | 0.8631 | 0.0354 | 1.3739 | 0.2487
ct<kri | 0.1658 | 0.0136 | 0.2549 | 0.1247 | 0.1716 | 0.0090 | 0.1586 | 0.0102
ip <« dk | 0.6510 | 0.0381 | 0.6695 | 0.0660 | 0.7083 | 0.0226 | 0.5508 | 0.0100
mean 0.5592 | 0.0271 | 0.6642 | 0.0320 | 0.6263 | 0.0414 | 0.7667 | 0.0908
Count Ratio Count Ratio Count Ratio Count Ratio

1st 12 52.17% 0 0.00% 1 4.35% 2 8.70%
2nd 18 78.26% 1 4.35% 7 30.43% 5 21.74%
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Table 5: Random Split Result (part 2)

Tasks GSP-KD Transfer Retrain All | Transfer Retrain Head

RMSE STD RMSE STD RMSE STD

hv<ds | 0.9321 | 0.0487 | 1.0428 0.1165 1.1166 0.0024
as <+ bp | 0.5315 | 0.0151 | 0.4325 0.0104 0.7712 0.0105
ds <~ kri | 0.4147 | 0.0063 | 0.4414 0.0154 0.8842 0.0049
hv < vs | 0.9154 | 0.0130 | 0.9937 0.0821 1.0091 0.0181
vs <~ hv | 0.5619 | 0.0223 | 0.5712 0.0232 0.7215 0.0392
st<—as | 0.9938 | 0.0141 | 1.1296 0.1302 1.0045 0.0220
ds<1Ip | 04106 | 0.0077 | 0.4280 0.0136 09111 0.0022
pol <—ds | 0.2603 | 0.0270 | 0.3741 0.0303 0.9060 0.0141
vs<bp | 0.5932 | 0.0097 | 0.5445 0.0239 0.7220 0.0645
dk <—ef | 0.4230 | 0.0133 | 0.3936 0.0164 0.9380 0.0026
as <—ccs | 0.5457 | 0.0150 | 0.4741 0.0148 0.9935 0.0033
ct<bp | 0.2018 | 0.0093 | 0.1563 0.0044 0.6847 0.0186
st<—ccs | 0.9595 | 0.0405 | 1.1334 0.0687 1.1039 0.0046
ccs < kri | 0.2698 | 0.0095 | 0.2273 0.0016 0.6166 0.0567
hv < bp | 0.9051 | 0.0571 | 0.8267 0.0417 0.8829 0.0499
vs <—ccs | 0.5269 | 0.0167 | 0.4868 0.0119 0.8684 0.0116
st<—hv | 0.9618 | 0.0086 | 1.0290 0.0945 1.0102 0.0138
hv <—ct | 0.9207 | 0.0112 | 1.2072 0.0460 1.0302 0.0186
ip«<bp | 0.4631 | 0.0037 | 0.9816 0.2334 0.8732 0.0293
hv <—ef | 0.8112 | 0.0463 | 1.0818 0.1021 0.9616 0.0478
hv < kri | 0.9191 | 0.0676 | 0.9080 0.0510 1.0715 0.0145
ct<kri | 0.2080 | 0.0057 | 0.1661 0.0075 0.8349 0.0279
ip < dk | 0.5257 | 0.0192 | 0.6099 0.0273 1.0336 0.0085

mean 0.6198 | 0.0212 | 0.6800 0.0540 0.9108 0.0181

Count Ratio Count Ratio Count Ratio
1st 4 17.39% 4 17.39% 0 0.00%
2nd 10 43.48% 5 21.74% 0 0.00%
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Table 6: Scaffold Split Result (part 1)

Tasks GATE STL MTL KD

RMSE STD RMSE STD RMSE STD RMSE | STD

hv <ds | 0.6939 | 0.0996 | 0.6744 | 0.1079 | 0.6465 | 0.0776 | 0.5920 | 0.0466
as < bp | 1.0495 | 0.0256 | 1.2828 | 0.0724 | 1.1677 | 0.1068 | 1.3580 | 0.0136
ds < kri | 0.4395 | 0.0108 | 0.4477 | 0.0052 | 0.4849 | 0.0061 | 0.5409 | 0.0480
hv < vs | 0.7174 | 0.0796 | 0.6744 | 0.1079 | 0.9954 | 0.2059 | 0.8948 | 0.2294
vs <~ hv | 0.6120 | 0.0639 | 0.9816 | 0.1267 | 0.8535 | 0.0558 | 1.2597 | 0.3638
st<—as | 0.7540 | 0.0660 | 0.8041 | 0.1062 | 1.0254 | 0.0251 | 1.7083 | 0.1608
ds<1p | 0.4049 | 0.0102 | 0.4477 | 0.0052 | 0.4517 | 0.0184 | 0.5221 | 0.0328
pol <—ds | 0.9040 | 0.0852 | 0.9604 | 0.1056 | 1.4198 | 0.0796 | 1.3309 | 0.1998
vs<bp | 0.6121 | 0.0297 | 0.9816 | 0.1267 | 0.5686 | 0.0276 | 0.9371 | 0.2386
dk <—ef | 0.7122 | 0.0545 | 0.7028 | 0.0391 | 0.6549 | 0.0210 | 0.8189 | 0.0462
as<—ccs | 1.1313 | 0.0496 | 1.2828 | 0.0724 | 1.1197 | 0.0558 | 1.3773 | 0.0781
ct<bp | 0.3883 | 0.0203 | 1.4436 | 0.1150 | 0.4359 | 0.0126 | 1.2459 | 0.1199
st<ccs | 0.7281 | 0.0586 | 0.8041 | 0.1062 | 0.9905 | 0.0737 | 1.5402 | 0.1418
ccs < kri | 0.5292 | 0.0094 | 0.5489 | 0.0107 | 0.5297 | 0.0083 | 0.5534 | 0.0190
hv < bp | 0.4821 | 0.0132 | 0.6744 | 0.1079 | 0.4668 | 0.0169 | 0.6271 | 0.0868
vs ¢—ccs | 0.6126 | 0.0671 | 0.9816 | 0.1267 | 0.8186 | 0.0790 | 1.3034 | 0.5354
st<hv | 0.7209 | 0.0412 | 0.8041 | 0.1062 | 0.7237 | 0.0276 | 1.5256 | 0.1906
hv <ct | 0.6579 | 0.0678 | 0.6744 | 0.1079 | 0.6633 | 0.0660 | 0.7925 | 0.2694
ip<bp | 0.4668 | 0.0179 | 0.5780 | 0.1475 | 0.5540 | 0.0587 | 0.4205 | 0.0240
hv <—ef | 0.6406 | 0.0335 | 0.6744 | 0.1079 | 0.7879 | 0.0643 | 0.6773 | 0.1553
hv < kri | 0.5084 | 0.0264 | 0.6744 | 0.1079 | 0.6204 | 0.0269 | 0.6710 | 0.1524
ct<kri | 0.3902 | 0.0140 | 1.4436 | 0.1150 | 0.5173 | 0.0927 | 1.3392 | 0.1076
ip<«dk | 04335 | 0.0119 | 0.5780 | 0.1475 | 0.5335 | 0.1016 | 0.4975 | 0.0769

mean 0.6343 | 0.0270 | 0.8313 | 0.0408 | 0.7404 | 0.0441 | 0.9797 | 0.1218

Count Ratio Count Ratio Count Ratio Count Ratio

Ist 13 56.52% 0 0.00% 3 13.04% 2 8.70%

2nd 18 78.26% 3 13.04% 9 39.13% 2 8.70%
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Table 7: Scaffold Split Result (part 2)

Tasks GSP-KD Transfer Retrain All | Transfer Retrain Head
RMSE STD RMSE STD RMSE STD
hv «+ds | 0.7606 | 0.0810 | 0.8659 0.0788 0.9584 0.0339
as < bp | 1.2340 | 0.0294 | 1.1478 0.0264 1.0935 0.0079
ds < kri | 0.4467 | 0.0104 | 0.8753 0.1134 1.0928 0.0482
hv < vs | 0.6536 | 0.0345 | 0.7520 0.1666 0.7924 0.0595
vs < hv | 0.6377 | 0.0253 | 0.9217 0.1575 0.9179 0.0539
st<as | 09335 | 0.0954 | 1.2604 0.0946 1.0780 0.0613
ds<1lp | 0.4685 | 0.0111 | 0.4664 0.0121 1.0410 0.0026
pol < ds | 0.8475 | 0.0627 | 1.0385 0.2146 1.3204 0.0491
vs < bp | 0.6599 | 0.0204 | 1.1532 0.1766 1.0135 0.0820
dk < ef | 0.6353 | 0.0171 | 0.7417 0.0384 0.7963 0.0071
as<ccs | 1.1272 | 0.0778 | 1.2925 0.0606 1.4530 0.0143
ct+<bp | 1.1837 | 0.0586 | 0.5644 0.053 0.9347 0.0316
st<ccs | 0.7344 | 0.0187 | 0.9075 0.0431 1.2596 0.0287
ces + kri | 0.5356 | 0.0115 | 0.5640 0.0137 0.7904 0.0159
hv < bp | 0.7403 | 0.0889 | 0.6093 0.0422 0.8111 0.0251
vs <—ccs | 0.8027 | 0.0159 | 0.7271 0.0828 1.2282 0.0243
st<hv | 0.7417 | 0.0206 | 1.4243 0.0627 1.0047 0.0813
hv < ct | 0.6428 | 0.008 | 0.9499 0.2579 0.8089 0.0532
ip<bp | 04579 | 0.0207 | 0.4419 0.0371 0.9704 0.0399
hv < ef | 0.5862 | 0.0375 | 1.0003 0.1719 0.9503 0.0307
hv < kri | 0.5509 | 0.0252 | 0.6560 0.0408 0.9998 0.0311
ct<+ kri | 1.2358 | 0.0373 | 1.1124 0.1265 1.2769 0.0193
ip<«dk | 0.4376 | 0.0255 | 0.5248 0.0471 1.0165 0.0521
mean 0.7415 | 0.0363 | 0.8694 0.0671 1.0265 0.0217
Count Ratio Count Ratio Count Ratio
Ist 5 21.74% 0 0.00% 0 0.00%
2nd 11 47.83% 2 8.70% 1 4.35%
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