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ABSTRACT

Fine-tuning pretrained (large) Transformer backbones efficiently for downstream
tasks has been extensively explored using both Parameter-Efficient Fine-Tuning
(PEFT) methods, such as Low-Rank Adaptation (LoRA) and its variants, as well
as more recent Representation-Efficient Fine-Tuning (ReFT) approaches. In both
of these formulations, fine-tuning weights for selected pretrained layers are treated
as model parameters that are directly learned from the downstream task data, often
making them layer-specific. While these methods simultaneously aim for memory
efficiency, some approaches, such as VeRA (Vector-based Random matrix Adapta-
tion), may not achieve this consistently in practice. In this paper, we propose a novel
approach for generating fine-tuning weights through a configurable layer-sharing
mechanism, termed Generative parameter-effIcient Fine-Tuning (GIFT). GIFT
uses a simple parameterization scheme involving two linear layers (without bias
terms) to enable efficient fine-tuning. This method bridges the gap between PEFT
and ReFT, ensuring both parameter and memory efficiency. GIFT can be viewed
as a variant of LoRA with parameters shared across layers, conditioned on the
pretrained weights, with significantly fewer trainable parameters. Through exten-
sive experiments, we demonstrate that our GIFT consistently achieves superior
performance and parameter efficiency compared to baselines on commonsense and
arithmetic reasoning tasks, instruction tuning with the Llama family of models, and
visual recognition benchmarks with Vision Transformers. Notably, GIFT achieves
a 5.7% absolute increase in average accuracy with a 14x reduction in trainable
parameters compared to LoRA on the Commonsense170k dataset using Llama-3
(8B), and a 5.4% increase in win rate with a 4x reduction in parameters using
Llama-2 (7B) during instruction tuning. Our method also attains a slightly
higher win rate for instruction tuning than GPT-3.5 (Turbo 1106).

1 INTRODUCTION

Fine-tuning pretrained deep neural networks (DNNs) as feature backbones for downstream tasks
has been an important and challenging research topic. In recent years, large feature backbones
with open weights such as Llama (Touvron et al., 2023a;b; AI@Meta, 2024), termed foundation
models (Bommasani et al., 2021), have become ubiquitous. Training such models from scratch is
impossible with limited resources, and fine-tuning them entirely may also be costly. This raises
questions about which parts of a pretrained model to fine-tune (often as a hyperparameter), and how
they should be trained (entailing rigorous formulations).

Efficient fine-tuning in terms of parameters, compute and memory/storage has been extensively
explored using both Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation
(LoRA) (Hu et al., 2022) and its variants (Zhang et al., 2023b; Dettmers et al., 2023; Lialin et al.,
2023; Jie & Deng, 2023; Kopiczko et al., 2023; Gao et al., 2024; Liu et al., 2024), as well as more
recent Representation Fine-Tuning (ReFT) (Wu et al., 2024b) approaches. LoRA learns weight-
residuals in the low-rank form (i.e., Al and Bl in Fig. 1 (a)). Motivated from a causal intervention
mechanism (Geiger et al., 2024), ReFT steers the pretrained model towards a task by editing the
representations of a few selected tokens in a low-dimensional subspace, showing strong performance
at a lower parameter cost compared to LoRA, albeit at a slight increase in inference cost as the
learnable parameters cannot be merged into the pretrained model like LoRA.

In both, LoRA-based and ReFT-based formulations, fine-tuning parameters for selected pretrained
layers are treated as model parameters that are directly learned from the downstream task data, often
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Figure 1: Comparisons between (a) LoRA (Hu et al., 2022) and (b) our proposed GIFT.

making them layer-specific. ReFT further entails token selection (i.e., selective token positions to
intervene regardless of the sequence), and is applicable to the residual stream (which is weightless
and not fine-tuned in PEFT methods). Moreover, while LoRA-based methods simultaneously aim for
memory efficiency, some approaches like VeRA (Vector-based Random matrix Adaptation) (Kopiczko
et al., 2023), may not achieve this in practice without sacrificing performance on the downstream
task. We are motivated to develop efficient fine-tuning methods where the learnable parameters
are not layer or token specific, while ensuring memory efficiency: (i) Enabling configurable
layer-sharing in learning fine-tuned weights will result in more efficient and potentially more effective
fine-tuning. (ii) Enabling token-agnosticity will facilitate the exchangability between PEFT and
ReFT, leading to potentially better understanding of PEFT in terms of the relationship between frozen
pretrained models and their fine-tuned models for a downstream task.

Specifically, let W l ∈ Rdout×din denote the pretrained weights of a layer l ∈ L of a model to be
finetuned, and Ŵ l ∈ Rdout×din denote the finetuned weights. LoRA learns Ŵ l by,

LoRA: Ŵ l
dout×din

=W l
dout×din

+Bl
dout×r ·Al

r×din
, (1)

where r is the (low) rank (r ≪ min(din, dout)). Tied LoRA (Renduchintala et al., 2024) propose
to share the residual weights across layers selected for fine-tuning (i.e., ∆W = B · A ∀l ∈ L) to
enable layer agnosticity. However, in our ablation studies (Section 4.1), we show that this strategy
leads to subpar performance.

The variants of LoRA focus on different parametrization scheme of Bl ·Al by exploiting different
constraints in addition to be low-rank. For example, VeRA (Kopiczko et al., 2023) uses fixed random
matrices for Bl and Al and learns learns Ŵ l by,

VeRA: Ŵ l
dout×din

=W l
dout×din

+ Λl
dout×ddout

·Bl
dout×r · Γl

r×r ·Al
r×din

, (2)
where Λl

dout×ddout
and Γl

r×r are diagonal matrices. Although VeRA can significantly reduce the
number of learnable parameters, the rank r needs to be sufficiently high for achieving good perfor-
mance, which leads to a significant increase in memory consumption and training time in practice (as
observed in our experiments).

For ReFT, let yl ∈ Rdout×1 be the activation output (i.e., representation) for a token selected to
intervene in the l-th layer, DiReFT (Wu et al., 2024b) edits the representation by,

DiReFT: ŷldout×1 = yldout×1 +Bl
dout×r · (W l

r×dout
· yldout×1 + blr×1), (3)

which can be viewed as LoRA applied directly to hidden representations at selected intervened
positions. DiReFT builds an explicit and simple learnable affine relationship between the edited /
fine-tuned representation (the 2nd term) and the representation of the pretrained model yl.

Our Contributions: (i) As shown in Fig. 1 (b), we propose a novel approach for generating
fine-tuning weights through a configurable layer-sharing mechanism, termed Generative parameter-
effIcient Fine-Tuning (GIFT). We have,

Our GIFT: Ŵ l
dout×din

=W l
dout×din

+ G(W l
dout×din

; Θ), (4)

=W l
dout×din

+W l
dout×din

· ϕdin×r · ψr×din , (5)
where in Eqn. 4, G(·; Θ) is a weight-generator, which learns to generate the fine-tuning weights
directly from the pretrained weights, and Θ collects parameters of the weight-generator, which are
shared by multiple layers (e.g., all the Query layers of a pretrained Transformer model). Eqn. 5
presents a simple and linear parametrization scheme for the weight-generator, Θ = (ϕ, ψ).

(ii) We show that our two-linear-layer parametrized GIFT (Eqn. 5) bridges the gap between PEFT
such as LoRA (Eqn. 1) and DiReFT (Eqn. 3), extending the direct and simple relationship between
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Figure 2: Comparisons of performance vs. trainable parameters between GIFT and baseline methods
on three tasks using the Llama model family. All GIFT variants consistently achieve comparable or
better performance than prior PEFT (Liu et al., 2024; Kopiczko et al., 2023) and ReFT (Wu et al.,
2024b) methods at a much lower parameter cost. See Section 3 for experimental details.

edited representation and pretrained counterparts in the representation space to parameter space in an
exchangeable way. Similar to how DiReFT can be viewed as a customized LoRA, our GIFT can be
thought of as a variant of LoRA with layer-sharing, conditioned on pretrained weights. GIFT contains
significantly fewer trainable parameters, while ensuring both parameter and memory efficiency, and
shows superior performance consistently across an extensive series of experiments (see Fig. 2).

2 APPROACH

2.1 OUR PROPOSED GIFT

Denote by ΩL×dout×din
the pretrained weights of L selected layers in fine-tuning (e.g., all the Query

layers). Following the common practice towards efficiency, we enforce a low-rank structure for the
weight-generator network G(·; Θ) in Eqn. 4. We have,

G(ΩL×dout×din ; Θ) = Linear

(
g

(
Linear

(
ΩL×dout×din ;ϕ

)
; θ

)
;ψ

)
, (6)

where,

• Linear(Ω;ϕ) projects the input dimension to a lower dimension (or rank) r with learnable weights
ϕ ∈ Rdin×r without bias terms. Denote by Ω1 ∈ RL×dout×r the output of this layer.

• Linear(·;ψ) is an output dimension-recovery projection with learnable weights ψ ∈ Rr×din and
no bias term. It outputs the learned weight-residuals, ∆Ω ∈ RL×dout×ddin .

• g(·; θ) is the low-dimensional generator network, which can be realized by any suitable network
specifications. We consider the following schema in this paper:
– Transformer: We treat Ω1 as a batch of L sequences each consisting of dout tokens in r-dim

space. We then apply a single Transformer block (Vaswani et al., 2017; Dosovitskiy et al., 2021).
– MLP-Mixers: Similar to vanilla Transformers, we apply a single MLP-Mixer (Tolstikhin et al.,

2021) block.
– Multi-Layer Perceptrons (MLPs): e.g., g(Ω1; θ) = Linear(GELU(Linear(Ω1; θ1)); θ2), where
θ1 ∈ Rm·r×r+m·r and θ2 ∈ Rr×m·r+r consist of weights and bias terms of the two linear layers
with the MLP latent dimension ratio m (e.g., m = 2).

– Element-wise non-linearity functions without learnable parameters (i.e., θ = ∅): e.g., g(Ω1) =
Sigmoid(Ω1) or g(Ω1) = GELU(Ω1).

– The identity operation: g(Ω1; θ) = Identity(Ω1) = Ω1 with no learnable parameters θ = ∅,
which leads to the simple two-layer linear parameterization of GIFT (Eqn. 5).
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Through ablation studies (Sec. 4), we show that the two-layer linear parameterization of GIFT is
surprisingly effective, and thus our focus in this paper 1. We rewrite Eqn. 5 here,

Ŵ l
dout×din

=W l
dout×din

+W l
dout×din

· ϕdin×r · ψr×din
,

=W l
dout×din

·
(
I+ ϕ · ψ

)
≜W l

dout×din
·Θdin×din , (7)

where I is the identity matrix. The two-linear-layer GIFT can be viewed as a layer-sharing and
pretrained weights conditioned variant of LoRA, where we have the counterpart of the layer-specific
Bl

dout×r in LoRA, Bl
dout×r =W l

dout×din
· ϕdin×r, is computed, rather than being treated as direct

learnable parameters, by conditioning on the layer-specific pretrained weights and modulating with
a layer-agnostic ϕdin×r, and the counterpart of the layer-specific Al

r×din
in LoRA, Al

r×din
=

ψr×din(∀l) is directly relaxed to be layer-agnostic.

It is important to note that the “GIFTed” weights (Eqn. 7) are still layer-specific even though the
parameters ϕ and ψ are shared. This is different from Tied LoRA (Renduchintala et al., 2024), where
the residuals are the same across all the layers. In Section 4.1 we show that our GIFT formulation
leads to much better performance than simply sharing the weight residuals across layers, which shows
the importance of learning layer-specific fine-tuned weights as done in vanilla LoRA and GIFT.

GIFT can be applied along the dout dimension too. It is straightforward to learn GIFT along the
dout dimension by,

(Ŵ l
dout×din

)⊤ = (W l
dout×din

)⊤ + (W l
dout×din

)⊤ · ϕdout×r · ψr×dout
. (8)

We will henceforth focus our description of GIFT only on the din dimension for simplicity.

2.2 GIFT BRIDGES PEFT AND REFT

Consider a linear layer with pretrained weights W l ∈ Rdout×din and the bias term bldout
. The

representation/activation for its input xlN×din
is ylN×dout

= xlN×din
· (W l

dout×din
)⊤ + bldout

. With
the GIFT weights Ŵ l

dout×din
(Eqn. 7), we have,

ŷlN×dout
= xlN×din

· (Ŵ l
dout×din

)⊤ + bldout
= x̂lN×din

· (W l
dout×din

)⊤ + bldout
,

where x̂lN×din
= xlN×din

+ xlN×din
· (ϕdin×r · ψr×din

)⊤ = xlN×din
· (Θdin×din

)⊤ is the “GIFTed”
input activation, the counterpart of the “GIFTed” weights Ŵ l

dout×din
(Eqn. 7). Hence, our GIFT

can be equivalently applied to the input activation, rather than the pretrained weights, to
achieve the same fine-tuning effect, maintaining the memory and compute efficiency of LoRA in
implementation. Unlike the ReFT (Wu et al., 2024b) that entails a dedicated search for where the
representation interventions should apply at the token level, our GIFT eliminates the need of search,
enabling token-agnosticity and providing a conceptual shift from the representation intervention.

2.3 GIFT AIMS TO “BALANCE” PRETRAINING AND FINE-TUNING

Pretrained Transformer backbones encode diverse knowledge from large-scale pretraining datasets
within their weights. Fine-tuning them for a downstream task aims to incorporate new information
from the task-specific training data and utilize the information present in the pretrained weights to the
fullest extent. To achieve this, the fine-tuned weights can be directly conditioned on the pretrained
weights, such that the new information is learned conditionally from the information in the pretrained
weights. While LoRA and it’s variants use a residual structure to address this, the residual weights
are not directly conditioned on the pretrained weights, but rather learned via back-propagation (chain
rule) updates. One of the simplest functions that can achieve this explicit conditioning is a linear
transformation of the pretrained weights, as leveraged in Eqn. 7. Hence, the fine-tuned weights can
also be expressed in the space of the pretrained weights Wdout×din via Wdout×din ·Θdin×din .

When pretrained Transformer backbones are sufficiently expressive, as is typically assumed in
efficient fine-tuning, simpler parameterization methods like GIFT should be more generalizable and
better under the principle of Occam’s razor. Our ablation studies in Section 4.2 show the effectiveness
of the linear parametrization over other schemes.

1We note that the ablation study is done on the computer vision tasks. So the choice is preliminary. When
computing resources are available, we will conduct more thorough ablation studies on language tasks.
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3 EXPERIMENTS

We conduct extensive experiments across Natural Language Generation, Natural Language Under-
standing, and Visual Recognition and compare our two-linear-layer parameterized GIFT with various
other PEFT methods and ReFT. We also conduct ablation studies on the different parameterization
schemes of GIFT. We use the HuggingFace’ PEFT code framework. Our source code is provided
in the supplementary. We describe experiments with Natural Language Understanding on the GLUE
dataset (Wang et al., 2018) in Appendix A.1.

Naming Convention and choice of finetuning layers: We mainly follow the prior works of selecting
layers of pretrained backbones to be fine-tuned on different tasks for fair comparisons. Fig. 3
illustrates the naming convention. We index different components in a Transformer block using
their initials (Q,K, V,O,U,G,D): Query, Key, V alue and Output projection in MHSA, and Up
projection, Gate projection, and Down projection in MLP.

Figure 3: Naming convention of
our GIFT in experiments.

E.g., GIFTr
Q,K,V ,U,D represents that a separate GIFT is ap-

plied for all the components, and the GIFT parameters are
shared across all the layers of the same component. We use the
preceding superscript B to represent a block-wise sharing pat-
tern we test: BGIFTr

QKV ,O,UG,D
in which each Transformer

block has its own GIFTs, where we share one GIFT each for
QKV , UG, O, and D.

3.1 RESULT HIGHLIGHTS

Fig. 2 shows the consistently better results of our GIFT in extensive experiments, which we highlight
as follows:

• On Instruction Following (Section 3.2), our GIFT can outperform GPT-3.5 Turbo using
0.0311% trainable parameters in fine-tuning Llama-2 (7B), which is the only method to do so in
our comparisons.

• On Commonsense Reasoning (Section 3.3), our GIFT outperforms both the prior art of PEFT and
of ReFT consistently using Llama 1-2-3 model family, often by large margin with less trainable
parameters used.

• On Arithmetic Reasoning (Section 3.4), our GIFT can outperform all the prior PEFT and ReFT
approaches. Unlike VeRA, which performs slightly better than LoRA, GIFT maintains the com-
putational efficiency while achieving better performance. VeRA takes about 1.5 days in training,
while our GIFT takes about 4 hours.

• The proposed block-wise sharing BGIFTr
QKV ,O,UG,D

shows stronger consistency of achieving

better results across tasks (Commonsense Reasoning and Arithmetic Reasoning).

3.2 INSTRUCTION FOLLOWING Table 1: Results of fine-tuning Llama-2 (Touvron et al.,
2023b) (7B) with GIFT for instruction following. Params
(%) are calculated as the ratio between the number of
trainable parameters and the total number of parameters
in the base model. The preceding superscript, if added,
indicates the source of results.

Method Params (%) Win Rate
(Li et al., 2023)GPT-3.5 Turbo 1106 - 86.3
(Li et al., 2023)Llama-2 Chat (13B) - 81.1
(Li et al., 2023)Llama-2 Chat (7B) - 71.4

L
la

m
a-

2
(7

B
)

(Wu et al., 2024a)Full Finetuning 1.0 80.93
(Wu et al., 2024a)LoRA (Hu et al., 2022) 0.1245 81.48
RED (Wu et al., 2024a) 0.0039 81.69
DiReFT (Wu et al., 2024b) 0.0039 84.85
LoReFT (Wu et al., 2024b) 0.0039 85.60
GIFT16

Q,V 0.0039 85.91
GIFT128

Q,V 0.0311 86.87

Setup: We follow the experimental setup
of ReFT (Wu et al., 2024b), in which
Alpaca-Eval 1.0 (Li et al., 2023) is used
for evaluating performance based on the
win rate against the responses generated
by the text-davinci-003model us-
ing GPT 4 as the annotator. We fine-tune
GIFTr

Q,V with r = 16 and r = 128 us-
ing the Ultrafeedback dataset (Cui et al.,
2023). We ensure that we do not hill-
climb on the test set in hyper-parameter
search (see Appendix C.2).

Results: Table 1 shows that given the
same parameter budget (r = 16), GIFT
outperforms prior methods. With an in-
creased budget (r = 128), which is still below LoRA, GIFT can outperform GPT-3.5 Turbo.
Examples of raw generations can be found in Appendix D.
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Table 2: Results on eight Commonsense Reasoning benchmarks by fine-tuning the pretrained LLaMA-
1 (Touvron et al., 2023a) 7B/13B, Llama 2 (Touvron et al., 2023b) 7B and Llama 3 (AI@Meta, 2024)
8B models. The preceding superscript, if added, indicates the source of results. (VeRA is trained by
us using the standard HuggingFace implementation).

Method Params (%) BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg

L
L

aM
A

-1
(7

B
)

(Liu et al., 2024)PrefT 0.039 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6
(Liu et al., 2024)AdapterS 1.953 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8
(Liu et al., 2024)AdapterP 3.542 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.3
(Liu et al., 2024)LoRA (Hu et al., 2022) 0.826 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
(Liu et al., 2024)DoRA (Liu et al., 2024) 0.838 68.5 82.9 79.6 84.8 80.8 81.4 65.8 81 78.1
(Liu et al., 2024)DoRA (half) (Liu et al., 2024) 0.427 70 82.6 79.7 83.2 80.6 80.6 65.4 77.6 77.5
VeRA4096 (Kopiczko et al., 2023) 0.023 70.4 82.4 79.9 91.4 81.8 83.3 67.0 80.6 79.6
GIFT64

Q,K,V ,U,D 0.052 72.4 83.4 80.2 93.9 83.8 85.8 73.4 84.4 82.2

DiReFT (Wu et al., 2024b) 0.031 69.5 83.0 79.0 92.5 80.5 82.2 68.0 77.5 79.0
LoReFT (Wu et al., 2024b) 0.031 69.3 84.4 80.3 93.1 84.2 83.2 68.2 78.9 80.2
GIFT64

O,D
0.016 71.5 83.4 81.1 93.6 83.7 86.1 72.0 83.9 81.9

BGIFT16
QKV ,O,UG,D

0.249 73.1 84.9 81.2 94.2 84.5 87.3 73.0 85.7 83.0

L
L

aM
A

-1
(1

3B
)

(Liu et al., 2024)PrefT 0.031 65.3 75.4 72.1 55.2 68.6 79.5 62.9 68.0 68.4
(Liu et al., 2024)AdapterS 1.586 71.8 83.0 79.2 88.1 82.4 82.5 67.3 81.8 79.5
(Liu et al., 2024)AdapterP 2.894 72.5 84.9 79.8 92.1 84.7 84.2 71.2 82.4 81.5
(Liu et al., 2024)LoRA (Hu et al., 2022) 0.670 72.1 83.5 80.5 90.5 83.7 82.8 68.3 82.4 80.5
(Liu et al., 2024)DoRA (Liu et al., 2024) 0.681 72.4 84.9 81.5 92.4 84.2 84.2 69.6 82.8 81.5
(Liu et al., 2024)DoRA (half) (Liu et al., 2024) 0.347 72.5 85.3 79.9 90.1 83.6 80.8 69.7 83.6 80.8
GIFT64

Q,K,V ,U,D 0.034 74.3 87.3 81.8 95.3 86.5 87.4 76.2 89.0 84.7

DiReFT (Wu et al., 2024b) 0.025 71.3 86.1 80.8 94.6 83.6 85.5 72.9 82.7 82.2
LoReFT (Wu et al., 2024b) 0.025 72.1 86.3 81.8 95.1 87.2 86.2 73.7 84.2 83.3
GIFT64

O,D
0.010 69.1 82.3 80.4 91.9 82.2 82.3 66.9 80.6 79.5

BGIFT16
QKV ,O,UG,D

0.201 74.6 87.9 82.3 95.6 87.1 90.3 77.9 89.0 85.6

L
la

m
a

2
(7

B
)

(Liu et al., 2024)LoRA (Hu et al., 2022) 0.826 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81 77.6
(Liu et al., 2024)DoRA (Liu et al., 2024) 0.838 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
(Liu et al., 2024)DoRA (half) (Liu et al., 2024) 0.427 72 83.1 79.9 89.1 83 84.5 71.0 81.2 80.5
VeRA4096 (Kopiczko et al., 2023) 0.023 71.9 82.2 80.0 92.2 83.3 84.3 68.8 80.5 80.4
GIFT64

Q,K,V ,U,D 0.052 73.1 85.4 81.0 94.5 85.2 87.7 74.5 84.5 83.2

DiReFT (Wu et al., 2024b) 0.031 70.8 83.6 80.2 93.6 82.1 84.8 70.4 81.5 80.9
LoReFT (Wu et al., 2024b) 0.031 71.1 83.8 80.8 94.3 84.5 85.6 72.2 82.3 81.8
GIFT64

O,D
0.016 73.4 85.2 81.8 94.3 85.3 87.7 74.9 83.8 83.3

BGIFT16
QKV ,O,UG,D

0.249 74.5 85.0 81.5 94.9 85.8 88.5 75.8 84.1 83.8

L
la

m
a

3
(8

B
)

(Liu et al., 2024)LoRA (Hu et al., 2022) 0.700 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
(Liu et al., 2024)DoRA (Liu et al., 2024) 0.710 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
(Liu et al., 2024)DoRA (half) (Liu et al., 2024) 0.361 74.5 88.8 80.3 95.5 84.7 90.1 79.1 87.2 85.0
VeRA4096 (Kopiczko et al., 2023) 0.018 71.6 85.7 80.7 93.8 85.2 87.6 75.6 84.1 83.0
GIFT64

Q,K,V ,U,D 0.049 75.3 89.0 81.6 96.2 88.4 92.3 81.9 87.3 86.5

DiReFT (Wu et al., 2024b) 0.026 73.4 88.7 81.0 95.6 85.5 91.8 81.8 85.4 85.4
LoReFT (Wu et al., 2024b) 0.026 75.1 90.2 82.0 96.3 87.4 92.4 81.6 87.5 86.6
GIFT64

O,D
0.013 75.7 89.9 82.5 96.4 88.7 92.5 82.3 86.3 86.8

BGIFT16
QKV ,O,UG,D

0.209 75.9 90.4 82.7 96.6 90.0 93.6 83.5 88.9 87.7

3.3 COMMONSENSE REASONING

Data: We follow Hu et al. (2023) and Wu et al. (2024b) to use a combined training data of eight
benchmarks (i.e., Commonsense170k), and evaluate GIFT on their test sets individually. Examples in
the Commonsense170k are formulated as multiple choice questions and consists of BoolQ (Clark
et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), Arc-e and Arc-c (Clark et al., 2018), and OBQA (Mihaylov
et al., 2018) datasets.

Models: We fine-tune the pretrained LLaMa-1 7B and 13B, Llama-2 7B and Llama-3 8B models using
our GIFT. We compare with LoRA and DoRA using GIFTr

Q,K,V ,U,D. We compare with LoReFT

and DiReFT (Wu et al., 2024b) using GIFTr
O,D

. Furthermore, we also evaluate BGIFTQKV ,O,UG,D.
Experimental details including test-set-exclusive hyperparameter tuning setup are in Appendix C.4.

Results: Table 2 shows the comparison results. All variants of GIFT consistently outperform the
baselines while using significantly less parameters. Notably, our proposed block-wise sharing
BGIFTQKV ,O,UG,D with 0.206% trainable parameters, outperforms all the prior methods while
using 4 times fewer parameters than LoRA. All variants of GIFT outperform VeRA (Kopiczko et al.,
2023). Note that even though VeRA reduces the number of parameters, it needs a large rank for the
fixed random weights (here, we use 4096) for improving performance, resulting in increased training
time and GPU usage. In our experiments using the same setup, VeRA takes ∼5 days and 18.42GB
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GPU memory to complete training with Llama 2, whereas GIFT takes less than 1 day (∼17 hours)
and 17.73GB GPU memory. Given the large training time, VeRA is prohibitive for large benchmarks
and models. Examples of raw generations can be found in Appendix D.

3.4 ARITHMETIC REASONING

Data: We follow Hu et al. (2023) and Wu et al. (2024b) to use a combined training set of four
arithmatic reasoning datasets (Math10k), and evaluate on their individual test sets. The Math10k
benchmarks consists of AqUA (Ling et al., 2017), GSM8k (Cobbe et al., 2021), MAWPS (Koncel-
Kedziorski et al., 2016) and SVAMP (Patel et al., 2021). While models are expected to generate
a chain-of-thought before the final answer, we only evaluate on the final answer following (Wu
et al., 2024b). Experimental details including test-set-exclusive hyperparameter tuning strategy are in
Appendix C.3.

Table 3: Comparisons on Arithmetic reasoning benchmarks by fine-tuning the pretrained LLaMA-
1 (Touvron et al., 2023a) 7B. The preceding superscript, if added, indicates the source of results.

LLaMA-1 (7B) LLaMA-1 (13B)
Method Params (%) AQuA GSM8k MAWPS SVAMP Avg Params (%) AQuA GSM8k MAWPS SVAMP Avg
(Hu et al., 2023)PrefT 0.039 14.2 24.4 63.4 38.1 35.0 0.031 15.7 31.1 66.8 41.4 38.8
(Hu et al., 2023)AdapterS 1.953 15.0 33.3 77.7 52.3 44.6 1.586 22.0 44.0 78.6 50.8 48.9
(Hu et al., 2023)AdapterP 3.542 18.1 35.3 82.4 49.6 46.4 2.894 20.5 43.3 81.1 55.7 50.2
LoRA (Hu et al., 2022) 0.826 18.9 37.5 79 52.1 46.9 0.67 18.5 47.5 83.6 54.6 51.1
VeRA12288 (Kopiczko et al., 2023) 0.042 21.3 34.0 82.8 50.7 47.2 -
GIFT64

Q,K,V ,U,D 0.052 22.1 36.4 83.6 54.8 49.2 0.034 25.1 46.6 83.6 61.7 54.2

DiReFT (Wu et al., 2024b) 0.031 21.3 24.1 74.5 42.7 40.6 0.025 20.5 35.8 80.8 54.8 48.0
LoReFT (Wu et al., 2024b) 0.031 21.4 26.0 76.2 46.8 42.6 0.025 23.6 38.1 82.4 54.2 49.6
GIFT64

O,D
0.016 23.0 33.6 80.0 52.6 47.3 0.010 25.6 44.9 85.2 59.6 53.8

BGIFT16
QKV ,O,UG,D

0.249 22.0 37.7 84.0 55.3 49.8 0.201 26.0 46.2 86.3 60.6 54.8

Models: For fair comparisons with prior works, we finetune the LLaMA-1 7B/13B models.

Results: Table 3 shows the comparison results. All variants of GIFT outperform prior methods.
GIFT64

Q,K,V ,U,D achieves much higher average accuracy while using much fewer parameters than
LoRA and DoRA. GIFT64

O,D
achieves higher average accuracy than LoReFT and DiReFT while

using half the parameters. BGIFT16
QKV ,O,UG,D

outperforms all the prior methods while using 4

times less parameters than LoRA. In contrast to commonsense reasoning, we do not observe a large
difference between the performance of GIFTQ,K,V ,U,D and GIFTQKV ,O,UG,D. This suggests that
while different variants are suited for different tasks, GIFTQKV ,O,UG,D is robust to different tasks.
All variants of GIFT outperform VeRA (Kopiczko et al., 2023). Again, although VeRA reduces the
number of parameters, it needs a large intermediate dimension for the fixed random weights (here, we
use 12288). In our experiments, VeRA takes ∼1.5 days and 20.65GB GPU memory, whereas GIFT
takes ∼4 hours and 17.73GB GPU memory using the same setup. Examples of raw generations can
be found in Appendix D.

3.5 VISUAL RECOGNITION

Table 4: Results on the finegrained visual classification (FGVC) tasks. The number of trainable param-
eters are reported without the classification head (which has the same number of parameters for all the
methods). The GPU memory usage is reported via torch.cuda.max_memory_allocated()
during training with the batch size 32.

Method Params (%) ↓ GPU Mem (G) ↓ CUBS Bird Flower Dog Car Avg

VPT (Jia et al., 2022) 0.054 2.753 87.88 84.79 98.98 84.51 82.89 87.81
BitFit (Zaken et al., 2022) 0.097 2.673 87.75 84.61 99.32 85.23 84.01 88.18
LoRA (Hu et al., 2022) 0.172 2.622 88.00 84.94 99.32 85.36 85.92 88.71
GIFT16

O 0.029 2.646 89.71 86.28 99.22 87.44 84.28 89.39

Data. We evaluate our GIFT on two image classification benchmarks: i) The fine-grained visual
classification (FGVC) benchmark contains 5 datasets – Caltech-UCSD Birds (200 classes) (Wah
et al., 2011), NABirds (555 classes) (Horn et al., 2015), Oxford Flowers (102 classes) (Nilsback &
Zisserman, 2008), Stanford Cars (196 classes) (Gebru et al., 2017), and Stanford Dogs (120 classes)
(Khosla et al., 2011). ii) Due to space constraints, we show the results for the VTAB-1k benchmark
(Zhai et al., 2019) in Appendix A.2.
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Figure 4: GIFT can play the role of a r-way segmentation/token-clustering head that can localize
meaningful objects/parts on images. Two examples from NABirds (Horn et al., 2015) benchmark in
FGVC are shown here. More examples can be found in Figure 5 in the Appendix.

Models. We use the ViT-B/16 architecture (Dosovitskiy et al., 2021) pretrained on ImageNet21k
dataset (Deng et al., 2009) using a supervised objective, with the checkpoints from the timm
package (Wightman, 2019). We apply LoRA and GIFT to the output projection layers in MHSA,
which is inspired by observations in (Savadikar et al., 2023) and verified in our ablation studies
(Section A.3). All hyperparameters are provided in Appendix C.5.

Results: Table 4 and Table 8 (in the appendix) show that our GIFT performs better than other
PEFT methods on both FGVC and VTAB-1k, while using fewer parameters. The GPU memory
consumption is similar among the different methods with negligible differences. With 5.9 times less
parameters used (0.025M vs 0.147M), on FGVC tasks, our GIFT improves LoRA by 0.68% Top-1
accuracy. On VTAB-1k tasks, our GIFT slightly outperforms LoRA by 0.14% Top-1 accuracy.

Visual Inspection of GIFT: Let Cl
dout×r = W l

dout×din
· ϕdin×r be the transformation using the

first linear layer of GIFT, where W l
dout×din

is the pretrained weights of the output projection layer
in MHSA. We show that Cl

dout×r can be used as an emergent segmentation/token-clustering head.
Using the fine-tuned model, the activation of the output projection layer is,

ŷlN×dout
= xlN×din

· (Ŵ l
dout×din

)⊤ + bldout
, (9)

where Ŵ l is the fine-tuned weights (Eqn 5), and N the number of visual tokens in raster order. We
compute r heatmaps for visual token clustering by,

H l
N×r =ŷlN×dout

· Cl
dout×r, (10)

which can highlight semantically meaningful parts of the image. We normalize the r heatmaps to
[0, 1] individually and use 0.5 as the threshold to generate the visualizations in Figure 4.

4 ABLATION STUDIES

4.1 SHARING THE WEIGHT RESIDUALS IN LORA

As mentioned in Section 2, GIFT generates layer-specific weight residuals and fine-tuned weights
even though the learnable parameters are shared across layers. We verify that this approach proposed
in our GIFT is beneficial over simply sharing the residual weights in LoRA across the layers of
the same type, (i.e., ∆W l = B · A ∀l ∈ L). Table 5 show that this strategy leads to much lower
performance than GIFT. This shows that the fine-tuned weights indeed need to be layer specific, and
the generative approach in GIFT can achieve this while still maintaining the parameter efficiency
of shared weights. This also suggests that methods like (Renduchintala et al., 2024), which impose
further restrictions by sharing the residuals across Query, Key and Value components may not scale
to more complex datasets.

Table 5: Comparison of Shared LoRA and GIFT on eight commonsense reasoning benchmarks.
Method Params (%) BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg

Llama-3 (8B) Shared LoRA64
Q,K,V ,U,D 0.044 66.2 79.8 77.5 87.3 78.7 79.0 65.1 75.3 76.1

GIFT64
Q,K,V ,U,D 0.049 75.3 89.0 81.6 96.2 88.4 92.3 81.9 87.3 86.5

4.2 DIFFERENT PARAMETERIZATION SCHEMAS FOR GIFT
We evaluate the various schema proposed for GIFT (Section 2) on the FGVC benchmark using the
same settings as Section 3.5. As seen from Table 6, the simple two-linear layer formulation achieves
better or equivalent performance than all other schema at a lower parameter cost. We hypothesize
that when a downstream task is out of distribution to the pretraining non-linear relationships between
fine-tuning weight-residuals and pretrained weights could be entailed to be helpful, which we also
leave for future investigation.
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Table 6: Comparisons between various parameterization schemes of GIFT on the FGVC benchmark.
Schema #Params (M) ↓ GPU Mem (G) ↓ CUBS Bird Flower Dog Car Avg

Identity 0.025 2.65 89.71 86.28 99.22 87.44 84.28 89.39
Sigmoid 0.025 2.65 89.56 84.61 99.20 86.69 84.04 88.82
GeLU 0.025 2.65 89.70 85.30 99.19 86.71 83.81 88.94
MLP 0.036 2.65 89.06 85.44 99.30 86.17 84.24 88.84
Transformer 0.027 2.65 89.56 86.23 99.24 86.31 84.26 89.12
MLP Mixer 0.125 2.65 88.76 86.21 99.25 86.35 85.66 89.25

5 RELATED WORK

Parameter Efficient Fine-tuning (PEFT). The goal of PEFT methods is to reduce the compu-
tational resources (memory footprint, wall time, etc.) required for fine-tuning large models such
as Transformers (Vaswani et al., 2017) and Vision Transformers (ViTs) (Dosovitskiy et al., 2021).
Prompt-based methods either append prompts to the input tokens (Lester et al., 2021; Jia et al., 2022),
or the intermediate layers (Li & Liang, 2021; Liu et al., 2021; Zhang et al., 2023c). Early work on
PEFT used sequential/parallel learnable adapters added after the Multi-Head Self Attention and/or
FFN blocks (Houlsby et al., 2019; Bapna & Firat, 2019; Pfeiffer et al., 2021; 2020; Rücklé et al.,
2021; Mahabadi et al., 2021a; Chen et al., 2022). LoRA (Hu et al., 2022) and its variants (Zhang
et al., 2023b; Dettmers et al., 2023; Lialin et al., 2023; Jie & Deng, 2023; Kopiczko et al., 2023;
Gao et al., 2024; Liu et al., 2024) learn residuals to the pretrained weight matrices in the form of
low-rank factorization, removing the added inference cost in adapter based methods. Tied LoRA
(Renduchintala et al., 2024) shares the residual weights across layers, and also across Query, Key and
Value components. BitFit (Zaken et al., 2022) fine-tunes all the bias terms in a pretrained backbone.
MEND (Mitchell et al., 2022) edits a pretrained model by learning fine-tuning weights from the
gradient inputs with a low-rank MLP parameterization.

Hypernetworks. Ha et al. (2016) introduced Hypernetworks, i.e., neural networks that generate
the parameters for other neural networks, in language modeling tasks by generating the weights
of an LSTM (Hochreiter & Schmidhuber, 1997). Hypernetworks have previously been applied for
few-shot classification (Zhao et al., 2020; Zhmoginov et al., 2022), transfer learning (Requeima et al.,
2019) and continual learning (von Oswald et al., 2020; Yin et al., 2022). Similar to our proposed
approach, (Requeima et al., 2019) learns to adapt a global feature extractor through an adaptation
network. In a few shot continual learning setup, (Vladymyrov et al., 2023) uses a hyper-Transformer
to generate the parameters for a separate Convolutional Neural Network (ConvNet), which use as
inputs both a support set of images of the current task and the ConvNet parameters generated for the
previous tasks. HyperFormer++ (Mahabadi et al., 2021b) uses a Multi-Layer Perceptron (MLP) to
generate the parameters from layer embedding and a latent vector for Adapters (Houlsby et al., 2019)
introduced across layers of a pretrained model in a multitask setting. Unlike (Mahabadi et al., 2021b),
we directly use the weights of the frozen pretrained model, thus eliminating the need for embeddings.

Neural Functionals: Our approach is related to neural functionals that aim to learn deep neural
networks acting on the weights of other neural networks. For toy problems, equivariant architectures
have been explored for tasks like classifying implicit neural representations (Navon et al., 2023; Zhou
et al., 2023a;b; Kofinas et al., 2024), adapting model architectures to new domains (Navon et al.,
2023), predicting model generalization performance (Zhou et al., 2023a;b; Kofinas et al., 2024; Lim
et al., 2023), and learned optimizers (Zhou et al., 2024). However, our work is the first to explore
fine-tuning of a model using it’s own weights. We do not use equivariant architectures, but note that
this direction of work is orthogonal to ours, and can be further explored in the future.

6 CONCLUSION

We present Generative Parameter Efficient Fine-Tuning (GIFT) for adapting pretrained Transformer
backbones on downstream tasks. Our GIFT learns to generate the fine-tuning weight-residuals for
layers selected in fine-tuning directly from their frozen pretrained weights using a neural network.
We show that a simple design - where GIFT consists of two linear layers without bias terms - can
achieve strong performance, which provides a novel angle for formulating PEFT methods. We further
show that the simple GIFT bridges PEFT and ReFT methods. We conduct experiments across various
tasks, including Natural Language Generation (instruction following, commonsense reasoning, and
arithmetic reasoning), Natural Language Understanding, and Visual Recognition. GIFT outperforms
previous PEFT methods while using approximately 14 times fewer parameters and surpasses previous
ReFT approaches with half the parameters.
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APPENDIX

A ADDITIONAL EXPERIMENTS

A.1 LANGUAGE UNDERSTANDING ON GLUE

Table 7: Results on the GLUE benchmark. Following the common protocol, we report the Matthew’s
Correlation for CoLA, Pearson’s Correlation for STS-B. For all other datasets, we report the accuracy.
The preceding superscript, if added, indicates the source of results.

Method Params (%) SST-2 MRPC CoLA QNLI RTE STS-B Avg.

R
oB

E
R

Ta
-B

as
e (Hu et al., 2022)FT 100 94.8 90.2 63.6 92.8 78.7 91.2 85.2

(Hu et al., 2022)BitFit 0.080 93.7 92.7 62.0 91.8 81.5 90.8 85.4
(Hu et al., 2022)AdptD 0.240 94.2±0.1 88.5±1.1 60.8±0.4 93.1±0.1 71.5±2.7 89.7±0.3 83.0
(Hu et al., 2022)AdptD 0.720 94.7±0.3 88.4±0.1 62.9±0.9 93.0±0.2 75.9±2.2 90.3±0.1 84.2
(Kopiczko et al., 2023)LoRA (Hu et al., 2022) 0.240 95.1±0.2 89.7±0.7 63.4±1.2 93.3±0.3 86.6±0.7 91.5±0.2 86.6
VeRA (Kopiczko et al., 2023) 0.034 94.6±0.1 89.5±0.5 65.6±0.8 91.8±0.2 78.7±0.7 90.7±0.2 85.2
GIFT32

Q,V 0.079 94.8±0.3 90.0±1.1 64.1±1.0 92.7±0.2 78.7±2.1 90.3±0.1 85.1

R
oB

E
R

Ta
-L

ar
ge

(Hu et al., 2022)AdptP 0.847 96.1±0.3 90.2±0.7 68.3±1.0 94.8±0.2 83.8±2.9 92.1±0.7 87.6
(Hu et al., 2022)AdptP 0.226 96.6±0.2 89.7±1.2 67.8±2.5 94.8±0.3 80.1±2.9 91.9±0.4 86.8
(Hu et al., 2022)AdptH 1.693 96.2±0.3 88.7±2.9 66.5±4.4 94.7±0.2 83.4±1.1 91.0±1.7 86.8
(Hu et al., 2022)AdptH 0.226 96.3±0.5 87.7±1.7 66.3±2.0 94.7±0.2 72.9±2.9 91.5±0.5 84.9
(Zhang et al., 2023a)LoRA-FA 1.044 96.0 90.0 68.0 94.8 86.1 92.0 87.7
(Kopiczko et al., 2023)LoRA (Hu et al., 2022) 0.226 96.2±0.5 90.2±1.0 68.2±1.9 94.8±0.3 85.2±1.1 92.3±0.5 87.8
VeRA (Kopiczko et al., 2023) 0.017 96.1±0.1 90.9±0.7 68.0±0.8 94.4±0.2 85.9±0.7 91.7±0.8 87.8
GIFT32

Q,V 0.037 95.8±1.1 88.7±1.2 67.0±1.5 94.7±0.1 87.0±1.4 91.5±0.8 87.5

Data. General Language Understanding Evaluation benchmark (GLUE) (Wang et al., 2018) is a
widely used benchmark for sequence classification, where the model must learn to classify the entire
sentence into two categories. We finetune RoBERTa-Base/Large models (Liu et al., 2019) with the
pretrained checkpoints from HuggingFace using GIFT. We also compare with VeRA (Kopiczko et al.,
2023). We follow a similar experimental setup as VeRA (Kopiczko et al., 2023): We do not evaluate
on MNLI and QQP tasks due to computational budget restrictions, and hence do not use the MNLI
trick as done in LoRA (Hu et al., 2022) 2. Our hyperparameters are provided in the Appendix C.6.

Results. Table 7 shows the results. our GIFT achieves similar performance as prior PEFT methods.
We note that although VeRA obtains slightly better performance than our GIFT using less parameters,
the randomly initialized and frozen A and B, VeRA does not scale to larger models and more
challenging tasks, as seen in Table 2 and Table 3 in the main text. We hypothesize that when a
downstream task is out of distribution to the pretraining those randomly initialized A and B may
have limited expressivity.

A.2 VTAB-1K

Table 8: Results on the VTAB-1k benchmark (Zhai et al., 2019). #Params and GPU Memory are
reported in the same way as those in Table 4.

Method Params (%) ↓ GPU Mem (G) ↓ Natural Specialized Structured Avg

VPT (Jia et al., 2022) 0.054 2.753 81.03 85.65 58.89 72.68
BitFit (Zaken et al., 2022) 0.097 2.673 81.79 85.15 57.75 72.37
LoRA (Hu et al., 2022) 0.172 2.622 81.96 85.89 60.98 73.95
GIFT16

O 0.029 2.644 81.95 86.30 61.12 74.09

A.3 CHOICE OF FINE-TUNING THE PROJECTION LAYER IN MHSA FOR VISION TASKS.

As opposed to the common convention of applying PEFT methods to the Query and Value layers,
we apply GIFT to the last linear projection layer of the Multi-Head Self Attention block, following
(Savadikar et al., 2023) who show that the projection layer is a sweet spot to for finetuning and growing
model for continual learning. We empirically observe that applying GIFT to the Projection layer has
two advantages: (1) it results in better visual clusters (2) achieves almost the same performance as

2For experiments with RoBERTa-Base, LoRA (Hu et al., 2022) use the checkpoints from the MNLI task
when fine-tuning on the RTE, STS-B and MRPC tasks.
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that of the Query and Value layers at half the parameter cost, as seen in Table 9. We also note that in
both cases, GIFT performs better than LoRA.

Table 9: Comparisons between the projection layer in the MHSA module and the Query+Value layer
in PEFT using LoRA and our GIFT on the FGVC benchmark.

Component Method #Params (M) ↓ GPU Mem (G) ↓ CUBS Bird Flower Dog Car Avg

Proj LoRA 0.147 2.62 88.00 84.94 99.32 85.36 85.92 88.71
GIFT 0.025 2.65 89.71 86.28 99.22 87.44 84.28 89.39

Q+V LoRA 0.295 2.97 87.97 84.85 99.20 84.62 87.03 88.73
GIFT 0.049 2.97 89.54 86.47 99.45 86.92 85.42 89.56

B GRADIENT ANALYSIS

During fine-tuning, the derivatives to the learnable parameters Bl and Al in LoRA and those to ϕ and
ψ in GIFT are significantly different. Without loss of generality, consider a toy isotropic MLP with 2
hidden layers and no bias terms as the pretrained backbone:

Toy MLP: x1 = σ
(
x0W 1⊤

)
, x2 = σ

(
x1W 2⊤

)
, x3 = x2W 3⊤, (11)

where x0, x1, x2, x3 ∈ RN×d are the hidden representations of an N -token sequence in the d-dim
space, W 1,W 2,W 3 ∈ Rdout×din denote the pretrained weights, and σ(·) denotes the activation
function. For simplicity, we assume that dout = din = d.

Consider fine-tuning layers 1 and 3. Let ℓ be the scalar loss (e.g., the cross-entropy loss) computed
using one data point for simplicity. For LoRA at the first layer, we have,

LoRA:
∂ℓ

∂A1
= B1⊤ · x′1,

∂ℓ

∂B1
= x′1 ·A1⊤; where x′1 =

∂ℓ

∂x1

⊤
· x0, x′1 ∈ Rd×d, (12)

and for ψ and ϕ shared by layers 1 and 3 in our GIFT,

GIFT:
∂ℓ

∂ψ
= ϕ⊤ · y′1,3,

∂ℓ

∂ϕ
= y′1,3 · ψ⊤; where y′1,3 =W 1⊤ · x′1 +W 3⊤ · x′3, (13)

where ψ and ϕ gather information from all the selected layers in a way more holistic than LoRA, e.g.,
comparing y′1,3 vs x′1.

C IMPLEMENTATION DETAILS AND HYPERPARAMETER TUNING

In practice, we use a scaling factor of α
r for residuals as done in LoRA (Hu et al., 2022):

Ŵ l
dout×din

=W l
dout×din

+
α

r
W l

dout×din
· ϕdin×r · Ar×din , (14)

We omit this in the main section for ease of notation and simplicity, as it does not affect the analysis.
In experiments, we initialize ψ to all zeros and ϕ to Kaiming Uniform initialization (He et al., 2015).

C.1 COMPUTING RESOURCES AND CODE

All our experiments are run on a single Nvidia A100 GPU. Our code is provided in the supplementary
materials.

C.2 INSTRUCTION FOLLOWING

Following Wu et al. (2024b), we finetune LLaMA-1 7B (Touvron et al., 2023a) using the Alpaca52k
dataset (Taori et al., 2023) and evaluate using GPT4 Turbo as the annotator during the hyperparameter
search. After finding the best hyperparameters, we finetune Llama-2 7B (Touvron et al., 2023b) using
the Ultrafeedback dataset and use GPT4 as the annotator with Alpaca-Eval 1.0. This setup prevents
overfitting to the hyperparameters and GPT4 as the judge. Table 10 shows the hyperparameters used
in our experiments. We report the final results by finetuning the Llama-2 model Touvron et al. (2023b)
using the Ultrafeedback dataset Cui et al. (2023) and use and use Alpaca-Eval v1.0 Li et al. (2023)
with GPT-4 as the annotator for evaluation. We report average results of 2 runs with seeds 42 and 43.
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We use the same inference strategy as Wu et al. (2024b) and Wu et al. (2024a) to ensure fair
comparison: we use a greedy decoding strategy, maximum repetition penalty of 1.1, maximum
repetition n-gram size of 5, and maximum new token number of 2048.

Table 10: Hyperparameters used for the Instruction Tuning experiments. We only perform search
over the learning rate and the rank, and choose the other hyperparameters from Wu et al. (2024b).
Bold faced and underlined pairs denote the final hyperparameters.

Hyperparameter Value
Learning Rate 5e−5, 7.5e−5, 1e−4, 2.5e−4, 5e−4, 7.5e−4, 1e−3

Rank 16, 32, 64, 128
Optimizer AdamW (Loshchilov & Hutter, 2019)

Weight Decay 0.0
LR Scheduler Linear
Warmup Ratio 0.0

Batch Size 4
Gradient Accumulation Steps 32

Epochs 12

C.3 ARITHMETIC REASONING

Following Wu et al. (2024b), we tune the hyperparameters by fine-tuning the LLaMA-1 (7B) model
on the GSM8k dataset Cobbe et al. (2021) using a separate validation set constructed from the training
set, and use the same hyperparamters for LLaMA-1 (13B), Llama-2 (7B) and Llama-3 (8B). Table 11
shows the hyperparameters used in our experiments. We perform hyperparameter search using the
seed 42, and report the final results by averaging over three runs with seeds 42, 43, and 44. We use a
greedy decoding scheme during inference, with a maximum new token number of 512.

Table 11: Hyperparameters used for the arithmetic reasoning experiments. The final hyperparameters
are underlined.

Hyperparameter Value
Max Sequence Length 512
Optimizer AdamW
Weight Decay 0.0
LR Scheduler Linear
Batch Size 16
Gradient Accumulation Steps 1
Epochs 3

GIFT64
Q,K,V ,U,D

Learning Rate {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} × 10−4

Rank 64
Scaling Factor 64, 128
Warmup Ratio 0.06, 0.1

GIFT64
O,D

Learning Rate {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} × 10−4

Rank 64
Scaling Factor 64, 128
Warmup Ratio 0.06, 0.1

GIFT16
QKV ,O,UG,D

Learning Rate {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} × 10−4

Rank 16
Scaling Factor 16, 32
Warmup Ratio 0.06, 0.1

VeRA
Learning Rate {2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30} × 10−3

Rank 12288
Warmup Ratio 0.06, 0.1

C.4 COMMONSENSE REASONING

We tune the hyperparameters for commonsense reasoning by fine-tuning the LLaMA-1 model on the
BoolQ dataset Clark et al. (2019) using a separate validation set constructed from the training set.
Table 12 shows the hyperparameters used in our experiments. We search for the hyperparameters
using LLaMa-1 (7B) and use the same hyperparameters for LLaMA-1 (13B), Llama 2 (7B) and
Llama 3 (8B) models. We perform hyperparameter search using the seed 42, and report the final
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results by averaging over three runs with seeds 42, 43, and 44. We use a greedy decoding scheme
during inference, with a maximum new token number of 32.

Table 12: Hyperparameters used for the commonsense reasoning experiments. The final hyperparam-
eters are underlined.

Hyperparameter Value
Max Sequence Length 512
Optimizer AdamW
Weight Decay 0.0
LR Scheduler Linear
Batch Size 16
Gradient Accumulation Steps 1
Epochs 3

GIFT64
Q,K,V ,U,D

Learning Rate {0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7} × 10−4

Rank 64
Scaling Factor 64, 128
Warmup Ratio 0.06, 0.1

GIFT64
O,D

Learning Rate {0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7} × 10−4

Rank 64
Scaling Factor 64, 128
Warmup Ratio 0.06, 0.1

GIFT16
QKV ,O,UG,D

Learning Rate {0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7} × 10−4

Rank 16
Scaling Factor 16, 32
Warmup Ratio 0.06, 0.1

VeRA
Learning Rate {5, 6, 7, 8, 9, 10, 20} × 10−3

Rank 4096
Warmup Ratio 0.06, 0.1

C.5 FGVC AND VTAB EXPERIMENTS

For all the experiments, we use ViT-B/16 model Dosovitskiy et al. (2021), which contains 12
transformer blocks, each with 12 heads in the Multi-Head Self-Attention (MHSA) blocks, and a
dimension of 768. We use checkpoints from the model pretrained on the ImageNet21k Deng et al.
(2009) under the supervised training protocol provided by the timm package. For both VTAB
and FGVC experiments, we use a hyperparameter search using the validation sets and use the
training+validation data during the final run and report the results on the test sets. The hyperparameter
search space used in our experiments in provided in Table 13. For the VTAB benchmark, we use
the official splits provided by Zhai et al. (2019). For the FGVC benchmark, we use the same train,
validation and test splits as Shi et al. (2023), except for Stanford Cars dataset Gebru et al. (2017).
Due to the unavailability of the dataset from the original source, and the difference in the format of
the data provided by the updated source, we create our own training and validation split (with the
same number of images as Shi et al. (2023)) and use the official testing split. We initialize ϕ with
zeros and ψ with Kaiming uniform initialization.

C.6 GLUE BENCHMARK

For our experiments with the GLUE benchmarks, we use RoBERTa-Base and RoBERTA-Large
models Liu et al. (2019). Table 14 shows the hyperparameters used in our experiments. We perform
the hyperparameter search using a single seed, and use 5 seeds for the final run and report the median
across them. We use the seed 42 for performing hyperparameter search and use 42, 43, 44, 45, 46
for the final runs. We observe that for RoBERTa-Large, the training is unstable for some seeds, and
hence replace them. Following Hu et al. (2022) and Kopiczko et al. (2023), we use the training split
for training the models and report the results on the validation split. We initialize ϕ with zeros and ψ
with Kaiming uniform initialization.
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Table 13: Hyperparameter search space used for GLUE experiments. During the search, we use 50
epoch for each experiment in the VTAB benchmark for 25 epochs for the FGVC benchmark due to
computational constraints, and use 100 epochs in the final run with the selected hyperparameters

Hyperparameter Values

BitFit Learning Rate 1e−3, 1.5e−3, 2e−3, 2.5e−3, 5e−3, 1e−2

Weight Decay 0.0

VPT Learning Rate 1e−3, 1.5e−3, 2e−3, 2.5e−3, 5e−3, 1e−2

Weight Decay 0.0
Num. Prompts 5

LoRA Learning Rate 1e−3, 1.5e−3, 2e−3, 2.5e−3, 5e−3, 1e−2

Weight Decay 0.01, 0.001, 0.0001, 0.0
Rank r 8

GIFT Learning Rate 1e−4, 2.5e−4, 5e−4, 1e−3, 2.5e−3, 5e−3

Weight Decay 0.01, 0.001, 0.0001, 0.0
Rank r 16

Optimizer AdamW
LR Scheduler Cosine

Warmup Epochs 5
Epochs 100

Batch Size 32

Table 14: Hyperparameter search space used for GLUE experiments. Except for r, learning rate
and weight decay, all the other hyperparameters have been taken from Kopiczko et al. (2023) due to
computational constraints.

Hyperparameters SST-2 MRPC CoLA QNLI RTE STS-B
Optimizer AdamW
Warmup Ratio 0.06
LR Scheduler Linear
Rank r 32

Base

LR 5e−4 1e−3 5e−4 5e−4 7.5e−4 5e−4

Weight Decay 0 0 1e−4 1e−2 1e−3 1e−3

Epochs 60 30 80 25 160 80
Batch Size 64
Max Seq. Len. 512

Large

LR 1e−3 5e−4 7.5e−4 2.5e−4 5e−4 7.5e−4

Weight Decay 1e−2 1e−4 1e−2 0 1e−2 0
Epochs 10 40 40 20 40 20
Batch Size 128
Max Seq. Len. 128

D GENERATION EXAMPLES

Commonsense Reasoning (WinoGrande)

Please choose the correct answer to fill in the blank to complete the given sentence: Sarah
was a much better surgeon than Maria so _ always got the easier cases.

Option1: Sarah Option2: Maria Answer format: option1/option2

Model Response
LLaMA-1 7B (GIFT)option1
Llama-2 7B (GIFT) option2
Llama-3 7B (GIFT) option2
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Commonsense Reasoning (OBQA)

Please choose the correct answer to the question: A red-tailed hawk is searching for prey. It
is most likely to swoop down on

Answer1: an eagle Answer2: a cow Answer3: a gecko Answer4: a deer

Answer format: answer1/answer2/answer3/answer4

Model Response
LLaMA-1 7B (GIFT)answer3
Llama-2 7B (GIFT) answer4
Llama-3 7B (GIFT) answer3
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Arithmetic Reasoning (GSM8K)

A car in the fast lane is traveling at 60 miles/hour. A car in the slow lane is traveling at half
that speed. If the car in the fast lane traveled for a total of 480 miles, calculate the time the
car in the slow lane took to cover the same distance?

Model Response
LLaMA-1 7B The car in the slow lane is traveling at 60/2 = 30 miles/hour

Let’s assume the time taken by the car in the fast lane to cover 480
miles is t.
Distance = Speed x Time
Distance in fast lane = 60t
Distance in slow lane = 30t
We know that the distance covered by the car in the fast lane is 480
miles.
Therefore, 60t = 480
t = 480/60
t = 8 hours
Now, we need to calculate the time taken by the car in the slow lane
to cover the same distance.
Distance in slow lane = 30t
480 = 30t
t = 480/30
t = 16 hours
Therefore, the car in the slow lane took 16 hours to cover the same
distance as the car in the fast lane.
Answer: 16.
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Instruction Following (Alpaca-Eval) - Llama-2 7B

List the layers of the TCP/IP model and for each layer identify one protocol.

Model Response
GIFT (r=128) The TCP/IP (Transmission Control Protocol/Internet Protocol) model

is a standard network architecture used to communicate between
devices on the Internet. It consists of four main layers, which are as
follows:
1. Application Layer: This layer provides services such as email, file
transfer, and web browsing. The most common protocol at this layer
is HTTP (Hypertext Transfer Protocol).
2. Transport Layer: This level handles data transmission between
applications. The most common transport protocols include TCP
(Transmission ControlProtocol) and UDP (User Datagram Protocol).
3. Internet Layer: This is responsible for routing packets across the
internet. The most common internet protocol at this layeris IP (Internet
Protocol).
4. Network Interface Layer: This interface connects the computer to
the physical network. The most common network interface protocol
is Ethernet.

GIFT (r=16) The TCP/IP (Transmission Control Protocol / Internet Protocol) model
is a standard network architecture used to communicate between
devices on the internet or any other computer network. It consists of
four layers, each with its own set of protocols:
1. **Application Layer** - This layer provides services such as email,
web browsing, file transfer, and remote login. The most common
protocol at this layer is Hypertext Transfer Protocol (HTTP).
2. **Transport Layer** - It ensures reliable data delivery by segment-
ing messages into smaller units called segments and reassembling
them at the receiving end. The main protocol here is Transmission
Control Protocol (TCP).
3. **Internet Layer** - Also known as the Network Layer, it handles
routing and forwarding of packets across multiple networks. The
primary protocol in this layer is Internet Protocol (IP).
4. **Data Link Layer** - Responsible for establishing and maintain-
ing connections between two hosts on a network. The most commonly
used protocol at this level is Ethernet.
Here are some examples of protocols associated with each layer:
- Application Layer: HTTP, FTP, Telnet, SMTP, DNS, etc.
- Transport Layer: TCP, UDP
- Internet Layer: IPv4, IPv6
- Data Link Layer: Ethernet, Token Ring, FDDI, ATM, etc.
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Instruction Following (Alpaca-Eval) - Llama-2 7B

Write a pitch for a horror movie that plays on the island Sylt in northern germany in the 19th
century. Include fishermen and a sinister force that drives the inhabitants insane.

Model Response
GIFT (r=128) Title: “The Curse of Sylt”

Synopsis: A group of fishermen from the picturesque island of Sylt,
located in Northern Germany, find themselves caught in a web of
terror as they uncover a sinister force lurking beneath the surface of
their tranquil community. As the men delve deeper into the mystery,
they begin to experience strange visions and hear whispers in the
night, leading them down a path of madness and despair. The island’s
inhabitants are driven to the brink of insanity by this malevolent force,
which seems to have no end in sight. Can our heroes break free
from its grasp before it’s too late? Find out in "The Curse Of Sylt,"
a chilling tale of horror and suspense set against the backdrop of a
beautiful but deadly island paradise.

GIFT (r=16) Title: “The Haunting of Sylt”
Synopsis: A group of fishermen from the small village of List on the
remote island of Sylt, Germany, are plagued by a mysterious force that
drives them to commit unspeakable acts of violence against their loved
ones. As the villagers succumb to madness, they begin to suspect that
something sinister lurks beneath the surface of the island’s tranquil
waters. Is it a curse? Or could there be a more sinister explanation for
the chaos that has descended upon their once-peaceful community?
Join us as we delve into the depths of this haunted island and discover
the truth behind its dark secrets.
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E VISUAL INSPECTION OF OUR TWO-LINEAR-LAYER PARAMETERIZED GIFT
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Figure 5: More examples of the visual interpretability of our two-linear-layer parameterized GIFT
tested on the FGVC benchmark. We show examples of head, wings and legs of birds in the top-left,
examples of flower petals in the top-right, examples of head, ears and legs of dogs in the bottom-left,
and examples of tires, windshield and bumper of cars in the bottom-right.
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