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ABSTRACT

While Deep Learning excels in structured data as encountered in vision and natural
language processing, it failed to meet its expectations on tabular data. In real world,
however, most machine learning applications face tabular data with less than 10,000
samples. For tabular data, Support Vector Machines (SVMs), Random Forests, and
Gradient Boosting are the best performing techniques, where Gradient Boosting
has the lead. Recently, we saw a surge of Deep Learning methods that were tailored
to tabular data. However, these methods still underperform compared to Gradient
Boosting. We suggest “Hopular” to learn from tabular data with hundreds or
thousands of samples. Hopular is a Deep Learning architecture, where each layer
is equipped with continuous modern Hopfield networks. The modern Hopfield
networks can store two types of data: (i) the whole training set and (ii) the feature
embedding vectors of the actual input. The stored data allow the identification
of feature-feature, feature-target, sample-sample, and sample-target dependencies.
The stored training set enables to find similarities across input vectors and targets,
while the stored actual input enables to determine dependencies between features
and targets. Hopular’s novelty is that the original training set and the original input
are provided at each layer. Therefore, Hopular can improve the current prediction at
every layer by re-accessing the original training set like standard iterative learning
algorithms. In experiments on small-sized tabular datasets with less than 1,000
samples, Hopular surpasses Gradient Boosting, Random Forests, SVMs, and in
particular several Deep Learning methods. In experiments on medium-sized tabular
data with about 10,000 samples, Hopular outperforms XGBoost and a state-of-the
art Deep Learning method designed for tabular data. Although Hopular needs more
training time than Gradient Boosting, Random Forests, and SVMs, it is a strong
alternative to these methods on small-sized and medium-sized tabular datasets as it
yields higher performance.

1 INTRODUCTION

Deep Learning has led to tremendous success in vision and natural language processing, where
it excelled on large image and text corpora (LeCun et al., 2015; Schmidhuber, 2015). On small
tabular data, however, Deep Learning could not convince so far. In real world, small tabular datasets
with less than 10,000 samples are ubiquitous. They are found in life sciences, when building a
model for a certain disease with a limited number of patients, for bio-assays in drug design, or
for the effect of environmental soil contamination. The same situation appears in most industrial
applications, when a company wants to predict customer behaviour, to control processes, to optimize
its logistics, to market new products, or to employ predictive maintenance. The omnipresence of
small datasets can also be witnessed at Kaggle challenges. On small-sized and medium-sized tabular
datasets with less than 10,000 samples, Support Vector Machines (SVMs) (Boser et al., 1992; Cortes
& Vapnik, 1995; Schölkopf & Smola, 2002), Random Forests (RF) (Ho, 1995; Breiman, 2001)
and, in particular, Gradient Boosted Decision Trees (GBDT) (Friedman, 2001) typically lead to
higher performances than Deep Learning methods. GBDT have the edge over other methods on
most small-sized and medium-sized tabular datasets. In real world applications, the best performing
and most prevalent GBDT variants are XGBoost (Chen & Guestrin, 2016), CatBoost (Dorogush
et al., 2017; Prokhorenkova et al., 2018), and LightGBM (Ke et al., 2017). For small-sized and
medium-sized tabular data, these methods dominate real world applications.
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Recently, research on extending Deep Learning methods to tabular data has been intensified. Some
approaches to tabular data are only remotely related to Deep Learning. AutoGluon-Tabular stacks
small neural networks for tabular data (Erickson et al., 2020). Neural Oblivious Decision Ensembles
(NODE) generalizes ensembles of oblivious decision trees by hierarchical representation learning
(Popov et al., 2019). NODE is a hybrid of differentiable decision trees and neural networks. DNF-Net
builds neural structures corresponding to logical Boolean formulas in disjunctive normal forms, which
enable localized decisions using small subsets of the features (Abutbul et al., 2020).

However, most research focused on adapting established Deep Learning techniques to tabular data. For
tabular data, modifications to deep neural networks like introducing leaky gates or skip connections
can improve their performance on tabular data (Fiedler, 2021). Even plain MLPs that are well-
regularized work well on tabular data (Kadra et al., 2021). Different regularization coefficients to
each weight improve the performance of Deep Learning architectures on tabular data (Shavitt &
Segal, 2018). TabularNet consists of three modules (Du et al., 2021). First, it uses handcrafted
cell-level feature extraction with a language model for textual data. Secondly, it uses both row and
column-wise pooling via bidirectional gated recurrent units. Thirdly, a graph convolutional network
captures dependencies between cells of the table.

Many approaches that adapt Deep Learning methods to tabular data use attention mechanisms from
transformers (Vaswani et al., 2017) and BERT (Devlin et al., 2019). The TabTransformer learns
contextual embeddings of categorical features (Huang et al., 2020). However continuous features
are not fed into the self-attention module, therefore the feature-feature interaction is limited. The
FT-Transformer maps features to tokens that are fed into a transformer (Gorishniy et al., 2021). The
FT-Transformer performs well on tabular data but all considered datasets have more than 10,000
samples. TabNet uses an attentive transformer for sequential attention to predict masked features
(Arik & Pfister, 2021). Therefore, TabNet does instance-wise feature selection, that is, can select
the relevant features for each input differently. TabNet also utilizes feature masking for pre-training,
which was very successful in natural language processing when pre-training the BERT model. Also
semi-supervised learning has been proposed for tabular data using projection of the features and
contrastive learning (Darabi et al., 2021). The contrastive loss is low if pairs of the same class have
high similarity. Value Imputation and Mask Estimation (VIME) uses self- and semi-supervised
learning of deep architectures for tabular data (Yoon et al., 2020). Like BERT, the network has to
predict the values of the masked feature vectors, where the target is always masked. The success of
BERT feature masking confirms that Deep Learning techniques must employ strong regularization
to be successful on tabular data (Kadra et al., 2021). A multi-head self-attentive neural network
for modeling feature-feature interactions was also used in AutoInt (Song et al., 2019). So far we
mentioned work, where attention mechanisms extract feature-feature and feature-target relations.
However, also inter-sample attention can be implemented, if the whole training set is given at the
input. TabGNN uses a graph neural network for tabular data to model inter-sample relations (Guo
et al., 2021). However, the authors focus on large tabular datasets with more than 40,000 samples.
SAINT contains both self-attention and inter-sample attention and embeds both categorical and
continuous features before feeding them into transformer modules (Somepalli et al., 2021). SAINT
also uses self-supervised pre-training with a contrastive loss to minimize the difference between
original and mixed samples. Non-Parametric Transformers (NPTs) also use feature self-attention
and inter-sample attention (Kossen et al., 2021). The feature self-attention identifies dependencies
between features, while inter-sample attention detects relations between samples. As in previous
approaches, BERT masking is used during training, where the masked feature values and the target
have to be predicted.

We suggest “Hopular” to learn from tabular data. Hopular is a Deep Learning architecture, where
each layer is equipped with continuous modern Hopfield networks (Ramsauer et al., 2021; 2020;
Widrich et al., 2020). Continuous modern Hopfield networks can store two types of data: (i) the
whole training set or (ii) the feature embedding vectors of the actual input. Like SAINT and NPTs,
Hopular can detect feature-feature, feature-target, sample-sample, and sample-target dependencies
via modern Hopfield networks. In each layer, the stored training set enables similarity-, prototype-,
or quantization-based learning methods like nearest neighbor. In each layer, the stored actual input
enables the identification of dependencies between the features and the target. Consequently, the
current prediction can be improved at every layer via direct access to both the training set and the
actual input. Therefore, a pass through a Hopular model is similar to standard learning algorithms,
which iteratively improve the current solution by re-accessing the training set. The number of
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iterations is fixed by the number of layers in the Hopular architecture. As previous methods, Hopular
uses a feature embedding and BERT masking, where masked features have to be predicted. Hopular
is most closely related to SAINT (Somepalli et al., 2021) and Non-Parametric Transformers (NPTs)
(Kossen et al., 2021), but in contrast to SAINT and NPTs, the whole training set and the actual input
are provided via Hopfield networks at every layer of the network and not only at the input.

Recently, it was reported that Random Forests still outperforms standard Deep Learning techniques
on tabular datasets with up to 10,000 samples (Xu et al., 2021). In (Shwartz-Ziv & Armon, 2021), the
authors show that XGBoost outperforms various Deep Learning methods that are designed for tabular
data on datasets that did not appear in the original papers. Therefore, we test Hopular on exactly those
datasets to see whether it performs as well as XGBoost. Furthermore, we test Hopular on UCI datasets
(Ramsauer et al., 2021; 2020; Klambauer et al., 2017; Wainberg et al., 2016; Fernández-Delgado et al.,
2014). Hopular surpasses Gradient Boosting, Random Forests, and SVMs but also state-of-the-art
Deep Learning approaches to tabular data like NPT.

2 BRIEF REVIEW OF MODERN HOPFIELD NETWORKS

We briefly review continuous modern Hopfield networks. Their main features are their property to
retrieve stored patterns with only one update and their exponential storage capacity. Modern Hopfield
networks have much higher storage capacity (Demircigil et al., 2017; Krotov & Hopfield, 2016)
than classical Hopfield networks (Hopfield, 1982; 1984). These binary modern Hopfield networks
have been generalized to continuous modern Hopfield networks that are differentiable and allow for
gradient descent if embedded in Deep Learning architectures (Ramsauer et al., 2021; 2020).

We assume a set of patterns {x1, . . . ,xN} ⊂ Rd that are stacked as columns to the matrix X =
(x1, . . . ,xN ) and a state pattern (query) ξ ∈ Rd that represents the current state. The largest norm
of a stored pattern is M = maxi ‖xi‖. Continuous modern Hopfield networks with state ξ have the
energy

E = − β−1 log

(
N∑
i=1

exp(βxTi ξ)

)
+ β−1 logN +

1

2
ξT ξ +

1

2
M2 . (1)

For energy E and state ξ, the update rule

ξnew = f(ξ;X, β) = X p = X softmax(βXT ξ) (2)
has been proven to converge globally to stationary points of the energy E, which are almost always
local minima (Ramsauer et al., 2021; 2020). The update rule Eq. (2) is also the formula of the
well-known transformer attention mechanism (Ramsauer et al., 2021; 2020), therefore Hopfield
retrieval and transformer attention coincide.

The separation ∆i of a pattern xi is defined as its minimal dot product difference to any of the
other patterns: ∆i = minj,j 6=i

(
xTi xi − xTi xj

)
. A pattern is well-separated from the data if

∆i ≥ 2
βN + 1

β log
(
2(N − 1)NβM2

)
. If the patterns xi are well separated, the iterate Eq. (2)

converges to a fixed point close to a stored pattern. If some patterns are similar to one another and,
therefore, not well separated, the update rule Eq. (2) converges to a fixed point close to the mean of
the similar patterns. This fixed point is a metastable state of the energy function and averages over
similar patterns.

The next theorem states that the update rule Eq. (2) typically converges after one update if the
patterns are well separated. Furthermore, it states that the retrieval error is exponentially small in the
separation ∆i (proof see (Ramsauer et al., 2021; 2020)):
Theorem 1. With query ξ, after one update the distance of the new point f(ξ) to the fixed point x∗i
is exponentially small in the separation ∆i. The precise bounds using the Jacobian J = ∂f(ξ)

∂ξ and its
value Jm in the mean value theorem are:
‖f(ξ) − x∗i ‖ 6 ‖Jm‖2 ‖ξ − x∗i ‖ , (3)

‖Jm‖2 6 2 β N M2 (N − 1) exp(− β (∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M)) . (4)
For given ε and sufficient large ∆i, we have ‖f(ξ) − x∗i ‖ < ε, that is, retrieval with one update.
The retrieval error ‖f(ξ) − xi‖ of pattern xi is bounded by
‖f(ξ) − xi‖ 6 2 (N − 1) exp(− β (∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M)) M . (5)
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The main requirement to modern Hopfield networks to be suited for tabular data is that they can store
and retrieve enough patterns. We want to store a potentially large training set in every layer of a Deep
Learning architecture. We first define what we mean by storing and retrieving patterns from a modern
Hopfield network.
Definition 1 (Pattern Stored and Retrieved). We assume that around every pattern xi a sphere Si is
given. We say xi is stored if there is a single fixed point x∗i ∈ Si to which all points ξ ∈ Si converge,
and Si ∩ Sj = ∅ for i 6= j. We say xi is retrieved for a given ε if iteration (update rule) Eq. (2) gives
a point x̃i that is at least ε-close to the single fixed point x∗i ∈ Si. The retrieval error is ‖x̃i − xi‖.

As with classical Hopfield networks, we consider patterns on the sphere, i.e. patterns with a fixed
norm. For randomly chosen patterns, the number of patterns that can be stored is exponential in the
dimension d of the space of the patterns (proof see (Ramsauer et al., 2021; 2020)):
Theorem 2. We assume a failure probability 0 < p 6 1 and randomly chosen patterns on the
sphere with radius M := K

√
d− 1. We define a := 2

d−1 (1 + ln(2βK2p(d− 1))), b := 2K2β
5 , and

c := b
W0(exp(a+ln(b)) , where W0 is the upper branch of the Lambert W function (Olver et al., 2010,

(4.13)), and ensure c ≥
(

2√
p

) 4
d−1

. Then with probability 1− p, the number of random patterns that
can be stored is:

N ≥ √p c
d−1
4 . (6)

Therefore it is proven for c ≥ 3.1546 with β = 1, K = 3, d = 20 and p = 0.001 (a+ ln(b) > 1.27)
and proven for c ≥ 1.3718 with β = 1, K = 1, d = 75, and p = 0.001 (a+ ln(b) < −0.94).

This theorem motivates to use continuous modern Hopfield networks for tabular data, where we want
to store the training set in each layer of a Deep Learning architecture. Even for hundreds of thousands
of training samples, the continuous modern Hopfield network is able to store the training set if the
dimension of the pattern is large enough.

3 HOPULAR: MODERN HOPFIELD NETWORKS FOR TABULAR DATA

Hopular architecture. The Hopular architecture consists of a Hopular input layer, then several
stacked Hopular Blocks, and a Hopular output layer. (i) The input layer of a Hopular architecture is a
feature embedding layer. Categorical features are encoded as one-hot vectors, whereas continuous
features are normalized to zero mean and unit variance. Then a linear mapping to an e-dimensional
embedding space is applied. The index of a feature w.r.t. the position inside the sample as well
as the feature type itself are conserved by separate e-dimensional learnable embeddings. All three
embedding vectors are element-wise summed and serve as the final representation of an input feature.
The input sample is represented by the concatenation of all of its feature representations. (ii) The
last layer of a Hopular architecture is a sparsely-connected layer which maps the output of the last
Hopular block to the output layer. (iii) In the following we explain the main architectural concept of
Hopular, the Hopular Block.

Figure 1 depicts a Hopular Block. A Hopular Block consecutively applies two different Hopfield
modules, where the results of each Hopfield module are combined with its respective input via a
residual block before passing the results on. The sample representation before and after each Hopular
Block is kept. The predicted target is at the position of the originally masked target and intermediate
results are at the unmasked feature positions. Figure 1 illustrates the forward-pass of a single input
sample with the masked target indicated by the question mark symbol (?). The masked target is
transformed by the Hopular block to a corresponding prediction as indicated by a check mark symbol
(3). Also other input features can be masked and predicted as with BERT pre-training. In the
following we describe the components (I)–(III) of a Hopular Block.

(I) Hopfield Module Hs. The first Hopfield module Hs implements a modern Hopfield network
via the layer HopfieldLayer (Ramsauer et al., 2021; 2020) with the training set as fixed stored
patterns. The current input (the state vector) ξ to Hopfield module Hs is interacting with the whole
training data as described in Eq. (7). This is the update rule of continuous modern Hopfield networks
as given in Eq. (2). Therefore, the Hopfield module Hs identifies sample-sample relations and can
perform similarity searches like a nearest-neighbor search in the whole training data. Hs can also
average over training data that are similar to a mapping of the current input ξ.

4

http://dlmf.nist.gov/4.13


Under review as a conference paper at ICLR 2022

sample-sample residual

feature-feature residual

Legend

3

7

+
37

reshape

37 ? ?3 37
+

reshape

Hopular Block

?

3

?
Hopular input

3

Hopular output

Memory sample

Reshaped sample

Hopfield module

Inner product

Figure 1: A Hopular Block. The first Hopfield module stores the whole training set and identifies
sample-sample relations. The second Hopfield module stores the embedded input features and
extracts feature-feature and feature-target relations. Residual blocks combine the Hopfield retrievals
with the input to refine the actual predicted target.

Next, we describe Hopfield Module Hs in more detail. Let d be the number of features, e the
embedding dimension of each single feature, and h the dimension of the Hopfield embedding space.
The forward-pass for module Hs with state ξ ∈ Rd·e, learned weight matricesWξ,WX ∈ Rh×(d·e),
WS ∈ R(d·e)×h, the stored training setX ∈ R(d·e)×n, and a fixed scaling parameter β is given as

Hs (ξ) := WS WX X softmax
(
β XT W T

X Wξ ξ
)
. (7)

The hyperparameter β allows to steer the type of fixed point the update rule Eq. (2) converges to,
hence it may be used to further amplify the nearest-neighbor-lookup of the sample-sample Hopfield
module Hs.

Hs may contain more than one continuous modern Hopfield network. In this case, the respective
results are combined and projected, serving as the modules final output. Let (Hi

s)
N
i=1 be the ordered

sequence of N separate Hopfield networks of the same Hopfield module Hs, then the corresponding
module output is defined as

Hs (ξ) = WG

[
H1
s (ξ) . . . HN

s (ξ)
]

(8)

with block matrix
[
H1
s (ξ) . . . HN

s (ξ)
]

and a learnable weight matrixWG ∈ R(d·e)×(d·e).

(II) Hopfield Module Hf . The second Hopfield module Hf implements a modern Hopfield network
via the layer Hopfield (Ramsauer et al., 2021; 2020) with the embedded input features as stored
patterns. The current input (the state vector) ξ is reshaped and transposed to the matrix Ξ, which
serves as input to the Hopfield module Hf . Ξ interacts with the actual embedded input features of
the corresponding original sample in the dataset as described in Eq. (9). Again, this is the update rule
of continuous modern Hopfield networks as given in Eq. (2). Therefore, the Hopfield module Hf

extracts and models feature-feature and feature-target relations. Feature are adjusted and refined by
directly associating the intermediate result with the original input sample features.
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Next, we describe Hopfield Module Hf in more detail. The state matrix Ξ ∈ Re×d is a transposed
and reshaped version of state vector ξ with respect to the embedding dimension e. Using the learned
weight matrices WΞ,WY ∈ Rh×e, WF ∈ Re×h, the embedded input Y ∈ Re×d, and a fixed
scaling parameter β the forward-pass is

Hf (Ξ) := WF WY Y softmax
(
β Y T W T

Y WΞ Ξ
)
. (9)

Of course also Hf may contain more than one continuous modern Hopfield network, which leads to
analog formulae as for Hs.

(III) Residual Block. The results of each Hopfield module are combined via a residual block with
the input to the Hopfield module. The residual blocks allow additional information to be passed
through directly from the previous layer.

Hopular’s Objective, Pre-Training, and Training Method. Hopular’s objective is a weighted sum
of a loss for predicting masked features (BERT masking) and the standard supervised target loss.

Feature Masking. We follow state-of-the-art Deep Learning methods like SAINT (Somepalli et al.,
2021) and Non-Parametric Transformers (NPTs) (Kossen et al., 2021) that are tailored to tabular
data and use BERT masking (Devlin et al., 2019) of the input features. Masked input features must
be predicted during training. Feature masking is an especially beneficial self-supervised approach
when handling small datasets as it exerts a strong regularizing effect on the training procedure. The
amount of masked attributes during training is determined by the masking probability, which is a
hyperparameter of the model. In Hopular, both features and targets can be masked during training,
while for inference only the target is masked.

Objective. Hopular’s objective is a weighted sum of the masked feature loss Lf and the supervised
target loss Lt. The overall loss L is

L = γ Lf + (1 − γ)Lt , (10)

where Lt and Lf are the negative logloss in case of discrete attributes and the mean squared error
in case of continuous attributes with γ as a hyperparameter. In our default hyperparameter setting
γ is annealed using a cosine scheduler starting at 1 with a final value of 0. Another essential
hyperparameter for Hopular is β in Eq. (7) and Eq. (9). A small β retrieves a pattern close to the
mean of the stored patterns, while a large β retrieves the stored pattern that is closest to the initial
state pattern (Ramsauer et al., 2021). For module Hs a large β value emphasizes a nearest-neighbor
lookup mechanics. For module Hf a large β value leads to less diluted features. Thus, large β values
seem to be beneficial for Hopular. Experiments confirm this assumption (see Section 4).

4 EXPERIMENTS

We want to know whether Hopular can produce competitive results on small tabular datasets. In
particular, we compare Hopular to XGBoost and NPT (Kossen et al., 2021). XGBoost has the lead on
tabular data when excluding Deep Learning methods. NPT represents state-of-the-art Deep Learning
methods for tabular data, as NPT yielded very good results on small tabular datasets.

4.1 SMALL-SIZED TABULAR DATASETS

In these experiments, we compare Hopular to other Deep Learning methods and to XGBoost on
small-sized tabular datasets.

Methods Compared. We compare Hopular, XGBoost, and NPT with the 24 machine learning
methods and self-normalizing networks discussed in (Klambauer et al., 2017). Following (Klambauer
et al., 2017; Wainberg et al., 2016), 17 methods were selected from their respective method group as
the model with the median performance over all datasets within each method group. NPT is used in a
non-transductive setting for a fair comparison.

Hyperparameter Selection. For NPT we use the hyperparameters reported in (Kossen et al., 2021),
which also form the basis of Hopular’s hyperparameter selection process. For XGBoost we used the
package hyperopt. More details about the hyperparameter selection and the precise hyperparameter
settings can be found in the Appendix Table A1. Hopular is very robust w.r.t. the hyperparameters,
since it is possible to obtain good results with only few hyperparameter adjustments.
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Datasets. In line with (Klambauer et al., 2017), we consider UCI machine learning repository
datasets with less than 1,000 samples as being small. To assess the performance of Hopular and other
Deep Learning methods on such small datasets, we selected a subset of 16 datasets from (Klambauer
et al., 2017). The sizes of these datasets range from 200 to 1,000 samples. We put the focus on
smaller sizes, therefore we selected 13 datasets with 500 samples or less. Additionally, we selected
two datasets with 500 to 750 samples and one dataset with 750 to 1,000 samples.

Small datasets typically have small test sets, which introduce a high variance in evaluating methods if
they are too small or unbalanced. Furthermore, some test sets seem not to be sampled iid from the
whole population. Thus, the method evaluation may be highly dependent on the chosen train/test
split and performance estimates may be skewed. Problematic datasets in (Klambauer et al., 2017) are
characterized by having an accuracy range of 0.5 or higher across well established methods. We have
excluded the problematic datasets seeds, spectf, libras, dermatology, arrythmia, and conn-bench-
vowel-deterding. The dataset spect was excluded as its description in (Fernández-Delgado et al., 2014)
is in conflict with the available UCI version regarding the number of attributes and samples. The
dataset heart-hungarian was excluded as the dataset description is insufficient to distinguish between
categorical and continuous attributes, which is required by some methods. Since breast-cancer-wisc
is solved (0.9859 accuracy), it is excluded as it does not distinguish the performance of methods.
We drop heart-va, since the best reported method has only a low accuracy of 0.4. The datasets and
train/test splits were taken from (Fernández-Delgado et al., 2014). Next, we give a short description
of the selected datasets that we used for comparison.
conn-bench-sonar-mines-rocks: Also known as Connectionist Bench (Sonar, Mines vs. Rocks). A

classification setting of 208 instances with 60 continuous features per instance. The task is
to discriminate between sonar sounds from metal vs. rocks.

glass: Also known as Glass Identification. A classification setting of 214 instances with 9 continuous
features per instance. The task is to discriminate between 6 types of glass.

statlog-heart: A classification setting of 270 instances with 6 continuous and 7 categorical features
per instance. The task is to predict the presence or absence of a heart disease.

breast-cancer: A classification setting of 286 instances with 9 categorical features per instance. The
task is to predict the presence or absence of breast cancer.

heart-cleveland: Also known as Heart Disease. A classification setting of 303 instances with 6
continuous and 7 categorical features per instance. The task is to predict the presence or
absence of a heart disease.

haberman-survival: A classification setting of 306 instances with 3 continuous features per instance.
The task is to predict whether patients survived longer than 5 years or not.

vertebral-column2, vertebral-column3: Also know as Vertebral Column Dataset. Two classification
settings of 310 instances each with 6 continuous features per instance. The task is to classify
patients into either 2 or 3 classes.

primary-tumor: A classification setting of 330 instances with 17 categorical features per instance.
The task is to predict the class of primary tumors.

ecoli: A classification setting of 336 instances with 5 continuous and 2 categorical features per
instance. The tasks is to classify proteins into 8 classes.

horse-colic: A classification setting of 368 instances with 8 continuous and 19 categorical features
per instance. The task is to predict the survival or death of a horse.

congressional-voting: A classification setting of 435 instances with 16 categorical features per
instance. The task is to predict political affiliation.

cylinder-bands: A classification setting of 512 instances with 20 continuous and 19 categorical
features per instance. The task is to classify the band type.

credit-approval: A classification setting of 690 instances with 6 continuous and 9 categorical
features per instance. The task is to determine positive or negative feedback for credit card
applications.

blood-transfusion: Also known as Blood Transfusion Service Center. A classification setting of 748
instances with 3 continuous and 1 categorical feature per instance. The task is to predict
whether a person donated blood or not.

mammographic: Also known as Mammographic Mass. A classification setting of 961 instances with
1 continuous and 5 categorical features per instance. The task is to discriminate between
benign and malignant mammographic masses.

7



Under review as a conference paper at ICLR 2022

Table 1: Median rank of compared methods across the datasets of the UCI machine learning repository.
Methods were ranked for each dataset according to the accuracy. 17 method groups have been
compared previously (Wainberg et al., 2016). We added XGBoost (Chen & Guestrin, 2016), Non-
Parametric Transformers (Kossen et al., 2021), Self-Normalizing Networks (Klambauer et al., 2017),
and our Hopular. “Partial Least Squares” abbreviates “Partial Least Squares and Principal Component
Regression”. Deep Learning methods are indicated by “(DL)” and are not grouped. Hopular achieves
the lowest median rank of 6.75, therefore is the best performing method across datasets.

Method Rank Method Rank

Hopular (DL) 6.75 MSRAinit (DL) 14.00
Support Vector Machines 8.25 Other Ensembles 14.00
Logistic and Multinomial Regression 9.00 Rule-Based Methods 14.50
Self-Normalizing Networks (DL) 9.75 LayerNorm (DL) 14.50
Random Forest 11.25 Highway Networks (DL) 14.50
Multivariate Adaptive Regression Splines 11.50 Non-Parametric Transformers 14.50
WeightNorm (DL) 11.50 Other Methods 17.25
Generalized Linear Models 11.75 ResNet (DL) 17.50
Neural Networks (DL) 12.00 Partial Least Squares 18.25
Boosting Methods 12.00 Bayesian Methods 19.50
Decision Trees 12.75 XGBoost 20.00
BatchNorm (DL) 13.25 Nearest Neighbour 23.00
Bagging Methods 13.75 Stacking (Wolpert) 26.00
Discriminant Analysis 13.75

Results. Table 1 gives the median rank of compared methods across the datasets of the UCI machine
learning repository. Methods were ranked for each dataset according to the accuracy. 17 method
groups have been compared previously (Wainberg et al., 2016), to which we added XGBoost (Chen
& Guestrin, 2016), Non-Parametric Transformers (Kossen et al., 2021), Self-Normalizing Networks
(Klambauer et al., 2017), and our Hopular. Hopular has a median rank of 6.75, followed by Support
Vector Machines with 8.25, while Non-Parametric Transformers and XGBoost have a median rank
of 14.5 and 20, respectively. Hopular with modern Hopfield networks as memory performs better
than other Deep Learning methods and in particular better than the closely-related Non-Parametric
Transformers (NPT). Hopular outperforms other Deep Learning methods and XGBoost. Across the
considered UCI datasets, Hopular is the best performing method.

4.2 MEDIUM-SIZED TABULAR DATASETS

In these experiments, we compare Hopular to other Deep Learning methods and to XGBoost on
medium-sized tabular datasets. In (Shwartz-Ziv & Armon, 2021), the authors show that XGBoost
outperforms various Deep Learning methods that are designed for tabular data on datasets that did
not appear in the original papers. We want to know whether XGBoost still has the lead on these
medium-sized datasets.

Methods Compared. We compare Hopular, NPT, and XGBoost, where NPT is used in a non-
transductive setting for a fair comparison.

Hyperparameter Selection. We used the default hyperparameters for Hopular as well as NPT,
which were found during the hyperparameter selection process for the UCI dataset in previous
Subsection 4.1. For XGBoost, we applied the same Bayesian hyperparameter optimization procedure
as described in (Shwartz-Ziv & Armon, 2021). For more details see Appendix Table A1.

Datasets. We selected the datasets of (Shwartz-Ziv & Armon, 2021), where XGBoost performed
better than Deep Learning methods that have been designed for tabular data.
shrutime: A classification setting of 10,000 instances with 2 continuous and 9 categorical features

per instance. The task is to predict whether a bank account is closed or not.
blastchar: A classification setting of 7,048 instances with 3 continuous and 17 categorical features

per instance. The task is to predict customer behavior.
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gesture-phase: Also known as Gesture Phase Segmentation. A classification setting of 9,873
instances with 31 continuous features per instance. The task is to classify gesture phases.

eye-movements: A classification setting of 10,936 instances with 19 continuous and 3 categorical
features per instance. The task is to discriminate between correct, irrelevant or relevant
answers.

Table 2: Results of all compared methods on the subset of medium-sized tabular datasets (Shwartz-Ziv
& Armon, 2021). Reported values are the logloss on the respective test sets, averaged over three
replicates, as well as the corresponding standard error of the mean.

Method Eye Gesture Shrutime Blastchar

Hopular 90.40 ± 0.16 113.14 ± 0.18 34.61 ± 0.05 40.99 ± 0.06
NPT 95.16 ± 0.84 141.86 ± 6.36 34.70 ± 0.12 41.11 ± 0.02

XGBoost 88.30 ± 0.00 91.93 ± 0.31 35.93 ± 0.00 46.60 ± 0.00

Table 3: Results of all compared methods on the subset of medium-sized tabular datasets (Shwartz-Ziv
& Armon, 2021). Reported values are the misclassification error on the respective test sets, averaged
over three replicates, as well as the corresponding standard error of the mean.

Method Eye Gesture Shrutime Blastchar

Hopular 45.91 ± 0.17 36.16 ± 0.03 14.23 ± 0.08 19.41 ± 0.15
NPT 48.59 ± 0.30 44.33 ± 0.67 14.35 ± 0.04 19.63 ± 0.09

XGBoost 43.06 ± 0.00 33.92 ± 0.00 14.94 ± 0.00 21.14 ± 0.00

Table 2 gives the logloss and Table 3 the misclassification error of Hopular, NPT, and XGBoost on
the medium-sized datasets. We report both losses, since the package hyperopt changed the default
loss type in version 1.3.0 (Bergstra et al., 2013). The evaluation procedure is from (Shwartz-Ziv &
Armon, 2021). Hopular is second best on two datasets and best on the other two datasets. Over the 4
datasets NPT has average rank 2.5, XGBoost has average rank 2, and Hopular has average rank 1.5.
On average over all 4 datasets, Hopular performs better than NPT and XGBoost.

4.3 RUNTIME ESTIMATES

Table 4: Runtime estimates of Hopular and XGBoost based on the dataset gesture-phase, specified in
seconds per step. One step refers to one complete pass through of the training set for Training, and
one complete pass through of the test set for Inference. Although it takes more time to train Hopular,
this difference is negligible during inference, as the absolute runtime is still in the seconds.

XGBoost Hopular
Training Inference Training Inference

[sec/step] 0.18 0.115 3.6 0.116

5 CONCLUSION

Hopular is a novel Deep Learning architecture which poses as a strong contender to current state-of-
the-art methods like XGBoost and other Deep Learning methods specialized in small- and medium-
sized datasets. Hopular’s performance is not only on par with all compared methods, but it even
surpasses them on average. One advantage of Hopular compared to XGBoost is the capability to
handle data with missing values without the need for additional imputation techniques. This makes
Hopular highly relevant for real world scenarios where incomplete data is a common companion.
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ETHICS STATEMENT

Our research has the potential to positively impact a wide domain of fields in real life. However, all
new developments in machine learning can be applied for both good and bad. Our system could be
used for medical applications to save lives but it could also be used for malevolent systems. It is
the society that decides how new technology is employed but it is our responsibility as scientists to
inform the public about the possibilities and limitations of new technologies. A big danger is that
practitioners apply our method to their problem settings in an unreflected way and too heavily rely
on the outcomes in a non-questioning way. For example, in medical practitioners might rely on the
technical system and shift the liability towards the machine. Depending on the area of application an
error of our method might of proportionally less concern like the prediction of customer behavior. If
our method is used for medical data an incorrect prediction could cause greater harm. However, this
is true for almost all machine learning methods, and usage and testing falls within the responsibility
of the application area. Since our method relies on humanly annotated data it could learn undesirable
biases and propagate them to downstream applications. Therefore, the responsible use of our method
depends on a careful selection of the training data and the awareness of the potential biases.

REPRODUCIBILITY STATEMENT

To ensure that the presented results are reproducible we will make the source code available to the
public after the reviewing period. This includes all material and information such as hyperparameter
optimizations scripts, dataset preprocessing pipelines as well as corresponding usage guidelines.
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A APPENDIX

A.1 HYPERPARAMETER SELECTION PROCESS

All evaluated hyperparameter settings are shown in Table A1 for both Hopular and NPT. Since
NPT constitutes an important benchmark for our model comparison we took exactly the same
hyperparameter settings that were successfully used among several datasets in (Kossen et al., 2021).
As Hopular provides an additional adjustable scaling factor for β, we also tested scaling factors of 100
and 1000 to further emphasize the nearest-neighbor search. The LAMB (You et al., 2020) optimizer
was used for all Hopular and NPT experiments, extended by a Lookahead (Zhang et al., 2019)
wrapper with fixed values. For LAMB we used βL = (0.9, 0.999), ε = 1e−6 and for Lookahead
α = 0.5, k = 6. NPT and Hopular were both trained for 10,000 epochs with early stopping.

Table A1: Complete listing of all evaluated hyperparameter settings for Hopular. Settings with a
scaling factor of 1 were additionally performed for NPT.

learn.
rate

#Hop.
blocks

dropout
prob.

#Hop.
nets

label mask.
prob.

feature mask.
prob.

learn. rate
scheduler

scaling
factor

0.001 8 0.1 8 1.0 0.15 cosine 1
0.001 16 0.1 8 1.0 0.15 cosine 1
0.001 8 0.1 16 1.0 0.15 cosine 1
0.001 16 0.1 16 1.0 0.15 cosine 1
0.001 8 0.1 8 0.1 0.15 cosine 1
0.001 8 0.1 8 0.5 0.15 cosine 1
0.001 8 0.1 8 1.0 0.2 cosine 1
0.001 8 0.1 8 1.0 0.15 cosine cyclic 1
0.001 8 0.1 8 1.0 0.15 cosine 100
0.001 16 0.1 8 1.0 0.15 cosine 100
0.001 8 0.1 16 1.0 0.15 cosine 100
0.001 16 0.1 16 1.0 0.15 cosine 100
0.001 8 0.1 8 0.1 0.15 cosine 100
0.001 8 0.1 8 0.5 0.15 cosine 100
0.001 8 0.1 8 1.0 0.2 cosine 100
0.001 8 0.1 8 1.0 0.15 cosine cyclic 100
0.001 8 0.1 8 1.0 0.15 cosine 1000
0.001 16 0.1 8 1.0 0.15 cosine 1000
0.001 8 0.1 16 1.0 0.15 cosine 1000
0.001 16 0.1 16 1.0 0.15 cosine 1000
0.001 8 0.1 8 0.1 0.15 cosine 1000
0.001 8 0.1 8 0.5 0.15 cosine 1000
0.001 8 0.1 8 1.0 0.2 cosine 1000
0.001 8 0.1 8 1.0 0.15 cosine cyclic 1000

A.2 SOURCE CODE

Source code will be made available for the public after the reviewing period.
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