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ABSTRACT

Knowledge distillation (KD) is widely used for compressing a teacher model to
reduce its inference cost and memory footprint, by training a smaller student model.
However, current KD methods for auto-regressive sequence models suffer from
distribution mismatch between output sequences seen during training and those
generated by the student during inference. To address this issue, we introduce
Generalized Knowledge Distillation (GKD). Instead of solely relying on a fixed set
of output sequences, GKD trains the student on its self-generated output sequences
by leveraging feedback from the teacher on such sequences. Unlike supervised KD
approaches, GKD also offers the flexibility to employ alternative loss functions
between the student and teacher, which may be useful when the student lacks the
expressivity to mimic the teacher’s distribution. Furthermore, GKD facilitates the
seamless integration of distillation with RL fine-tuning of language models. We
demonstrate the efficacy of GKD for distilling auto-regressive T5 language models
for task-specific distillation on summarization, translation, and reasoning tasks,
and task-agnostic distillation for instruction tuning.

1 INTRODUCTION
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Figure 1: Comparing GKD with KD approaches across different student model sizes. We use the TS
models (Raffel et al., 2020) trained with supervised FT as students. We use supervised FT T5-XL (~3B params)
as the teacher, whose performance is indicated by the horizontal line. Supervised KD and FT use ground-truth
output sequences for training while SeqKD trains on output sequences generated by the teacher. On-policy GKD
trains on output sequences sampled from the student. For GKD, we use JSD (0.1) on WMT and forward KL on
other tasks. For evaluation, we use greedy sampling for XSum and GSMS8K and beam search for WMT.

Auto-regressive sequence models, such as language models (LMs), have shown impressive capabilities
in numerous tasks, where the key to this success is often scaling the amount of training data as well as
the number of model parameters (Kaplan et al., 2020). However, scaling parameter count comes at a
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cost, and the deployment of such models is limited by either their inference cost or memory footprint.
Thus, a crucial goal for practical use of large capable models is to compress them by reducing their
parameter count, while retaining as much as possible of their performance.

One of the prevalent techniques for compressing models is knowledge distillation (Hinton et al.,
2015). Distillation is the process of training a model — the student — to replicate the knowledge of
another model — the teacher — on a specific set of tasks. Typically, the student has fewer parameters
than the teacher and as such, distillation can improve task-specific performance while maintaining
lower inference cost and memory footprint than the teacher. Current distillation methods for auto-
regressive sequence models either require generating a fixed set of output sequences from the teacher
model (Kim & Rush, 2016), which can be expensive, or a fixed dataset of sequences that the
teacher can label by assigning token-level probabilities (Sanh et al., 2019). However, using a fixed
dataset can lead to distribution mismatch between output sequences seen during training and the
sequences generated by the student auto-regressively during inference, a well-known problem in
imitation learning (Pomerleau, 1991; Ross & Bagnell, 2010). Furthermore, the common objective
for distillation is to minimize the forward KL between the teacher and the student distributions.
However, the student may not be expressive enough to fit the teacher’s distribution, which can result
in student-generated samples that are unlikely to be generated by the teacher (e.g., Figure A.16).

In this paper, we propose Generalized KD (GKD) to mitigate the above issues. First, we recognize
that KD for auto-regressive sequence models can be viewed as an imitation learning problem with an
interactive expert (Ross et al., 2011). Using this insight, GKD trains the student on its self-generated
sequences that are on-policy, instead of a fixed set of outputs sequences, using teacher probabilities
as expert labels on these sequences. Our idea is further supported by the recent success of fine-tuning
large language models on their own output sequences (Ouyang et al., 2022; Singh et al., 2023).
Furthermore, GKD provides the flexibility to optimize alternative divergence measures, such as
reverse KL and generalized JSD (Section 2), that can use student’s limited capacity to focus on
generating samples that are likely under the teacher.

GKD unifies some existing KD methods for autoregressive LMs while instantiating new on-policy
methods that substantially outperform prevalent approaches. In terms of performance gains over the
initial student from on-policy GKD, averaged across T5 student models of different sizes, we see rela-
tive gains of 2.1 X on summarization, 1.7 X on machine translation, and 1.9 on arithmetic reasoning
tasks, compared to the performance improvements achieved with baseline KD methods (Figure 1).
Additionally, we exhibit GKD’s efficacy in task-agnostic distillation, resulting in 2% and 1% absolute
accuracy improvement on the held-out BBH and MMLU benchmark suites (Figure A.11).

Our key contributions are:

o To tackle discrepancy during training and inference for auto-regressive LMs, we present GKD
that leverages on-policy student-generated outputs for distillation, guided by the token-level
teacher probabilities over these outputs. GKD substantially outperforms commonly-used methods
in task-specific (Figure 1) and task-agnostic KD (Figure A.11).

e We demonstrate that on-policy GKD can be seamlessly combined with RL fine-tuning (e.g.,
RLAIF) of language models, a combination that has not been previously explored (Figure 5).

e Through a systematic evaluation of design choices in GKD, we offer practical insights about the
importance of using student-generated on-policy output sequences during distillation and the
task-dependent nature of optimal divergence between the student and the teacher.

2 PRELIMINARIES

Auto-regressive Generative Sequence Models. We denote the input and output sequence as x, y
respectively. Let V denote the vocabulary comprising of M tokens, y<,+1 = (¥1,¥2, - - -, Yn) denote
the generated output sequence up to the n'” token, and L, denote the length of sequence y. A
token-level auto-regressive policy p(.|y<n, ) € (0,1)™ outputs a next-token probability distribution
over all tokens in V, conditioned on the input = and output sequence y,. Furthermore, y ~ p(-|z)
corresponds to a sampled output sequence y given the input x. For ease of notation, we define
P(Yn|x) := p(Yn|y<n,x). Auto-regressive generation involves predicting tokens one at a time, based
on the previously generated tokens. The probability of predicting n* token y,,, p(y,|x), is determined

using a softmax with temperature v: p(y,|z) = —g2Zn/2)

= ST exp(si/7)° where z,, is the logit score for the
i=1 i
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token y,,. Higher values of v introduces more randomness, while a lower value makes the output
more deterministic by favoring the most probable words. During training, the student’s temperature
is kept at 1. For evaluation, we use greedy sampling (v — 0) or temperature sampling (v > 0).

KL-Based Divergences. The divergence between two probability distributions is a measure of the
similarity of the distributions, with KL divergence a prevalent measure. The KL divergence between

two discrete distributions P(C) and Q(C) is given by: D1 (P||Q) = > ..o P(c)log ggzg

The KL divergence is not symmetric: Dg 1, (P||Q) # Dk r(Q||P). As such, we refer to D ,(P||Q)
as the forward KL while D, (Q||P) as the reverse KL between P and ). Forward KL under an
empirical data distribution corresponds to maximum likelihood, which we optimize in supervised
learning. Given model capacity mismatch, when approximating P(C) using a distribution Qy(C),
minimizing the reverse and forward KL results in mean and mode-seeking behavior (Figure A.16).

While KL divergence can be unbounded, a well-known divergence that is bounded even for probability
distributions with disjoint supports is the generalized JSD (Jensen-Shannon divergence). JSD(3)
interpolates between the forward and reverse KL using the bounded coefficient 0 < 8 < 1:

Dysos)(PIQ) = 8Dws (P8P + (1= 9Q) + (1 - B)Dws (Q[8P+ 1= HQ) )

Huszar (2015) show that limg .0 D y5p(s)(P|Q)/8 = Dk r(P||Q). As such, gradients of JSD(3)
behave similarly to forward KL and reverse KL when f is close to 0 and 1 respectively.

3 DISTILLATION FOR AUTO-REGRESSIVE SEQUENCE MODELS

Problem Setup. We are given two auto-regressive sequence models of different capacity, where
ps and pr refers to the student and teacher respectively. We assume that the student has learnable
parameters 6 and pg is differentiable w.r.t §. We are also given a dataset of inputs X. Optionally,
we can also assume access to a dataset of input-output sequence pairs (X, Y). If not given, such a
dataset can be generated by sampling sequences from the teacher. For a divergence D, we define the
discrepancy between token-level distributions of pr and pg as

L
1 Yy
D(prllpd) (ylz) = I > D(pr(ly<n 2P y<n, 7)), )
n=1

for an input x and output sequence y. For example, using JSD(5) as D in equation 2 results in
Dysp) (prllpg) (ylz) = L% > Dasn) (pr(ly<n, ) ||p§ (1y<n. ).

Supervised FT. If we are only given a fixed dataset of ground-truth output sequences but not query
access to the teacher policy, then a simple approach is to minimize the negative log-likelihood of such
sequences under the student policy: Lspr(0) = E(y )~ (x,v) | — log pd(y|z)].

Sequence-Level KD (Kim & Rush, 2016). SeqKD maximizes the likelihood of high probability
sequences generated by the teacher, and can be viewed as supervised FT on teacher-generated outputs.

Supervised KD (Hinton et al., 2015; Sanh et al., 2019) is a widely used technique where the student
is trained to imitate the token-level probability distributions of the teacher. The student pg is trained
with the supervised objective Lgp over the target token-level probabilities of the teacher pr:

Lsp(68) = Ee ) [Picr (pr190) ()] 3)

where the expectation is over the samples from the dataset. This supervised objective results in a rich
training signal by leveraging the full token-level distribution of the teacher.

3.1 GENERALIZED KNOWLEDGE DISTILLATION (GKD)

As discussed above, commonly-used KD approaches use a fixed dataset of output sequences, either
using ground-truth targets or teacher-generated sequences. However, distilling auto-regressive student
models using such approaches results in train-inference distribution mismatch. This is because the
partial sequences encountered by the student during the auto-regressive generation phase at inference
can be quite different from the ones seen during the training phase. Since predictions at any step are
contingent upon previous steps in auto-regressive models, this mismatch can have a cascading effect
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Algorithm 1 Generalized Knowledge Distillation (GKD)

1: Given: Teacher model pr, Student Model p, Dataset (X, Y") containing (input, output) pairs
2: Hyperparameters: Student data fraction A € [0, 1], Divergence D, Learning rate 7
3: foreachstepk =1,..., K do

4:  Generate a random value u ~ Uni form(0,1)

5. if u < )\ then

6: Sample inputs  from X and generate outputs y ~ pf(-|z) to obtain B = {(z, ys) } £,
7. else

8:

Sample batch of inputs and outputs from (X,Y") to obtain B = {(zp, y) }2_;.
9: endif

10:  Update 6 to minimize Lgkp: 6 < 0 — 5 D (ey)en VoD (pr|p?) (y|z)

11: end for

where error in prediction at early step can affect the future predictions, resulting in poor quality text
generation. To address this mismatch, we draw heavily from imitation learning (IL). In particular,
on-policy imitation approaches (e.g. Ross et al., 2011) iteratively collect sequences using the student
policy, obtain expert labels for those sequences, and then retrain the student on this dataset. Despite
their popularity in robotics and deep RL (Parisotto et al., 2015; Kelly et al., 2019; Agarwal et al.,
2022), on-policy approaches are typically not used for distilling auto-regressive models.

Extending on-policy imitation to distillation, we present on-policy KD. When using on-policy data
during distillation, the student receives token-specific feedback from the teacher’s logits on the
erroneous tokens in its self-generated output sequences. This enables a form of feedback loop akin to
what we observe in RL, which helps minimize the train-inference distribution mismatch. Moreover,
as the student evolves during training, the data it generates also improves in quality. Given an input
z, the student generates the output sequence y and imitates the teacher token-level distributions,
pr(yn|z), on intermediate states y,,. Specifically, the on-policy loss Lo p is given by

Lon(0) = Eanx [Eyps( o [Prce (prllpd) (wlo)] | )

where we do not backpropagate through the student’s sampling distribution pg(-|x), similar to
on-policy imitation. Not backpropagating through the sampling makes the training stable and
computationally efficient. In on-policy KD, the training is done on output sequences that the student
is likely to generate. During training, we use a temperature of v = 1 to encourage diversity in student
generated sequences. Moreover, given unlabeled input prompts, generating sequences using the
student is computationally cheaper than the teacher, due to differences in their model sizes.

Building further upon on-policy KD, we unify supervised and on-policy approaches and propose a
more general approach, which we call Generalized KD (GKD). In GKD, we can choose both the
divergence to optimize as well as the output sequences to train on. Specifically, we can optimize
any divergence between the teacher and student token-level probability distributions. For output
sequences, GKD uses a mixture of fixed dataset, either teacher-generated or ground-truth, and
on-policy student-generated sequences. Abstractly, GKD minimizes an objective of the form:

Lakn(0) = (1= ME( g~ (x.y) DOl 012)] + Nanx [Eymps o) [Pr o) (012)] | |

where D(pr, ps)(y|x) is a divergence between teacher and student distributions (equation 2), and
A € [0, 1] is a hyper-parameter that controls the student data fraction, that is, the fraction of on-policy
student-generated outputs. Akin to on-policy KD, we do not backpropagate gradients through the
student’s sampling process. On-policy and supervised KD are instantiations of GKD with divergence
D set to forward KL and student data fractions A to 1 and 0 respectively. That said, GKD allows for
other choices for the fraction A and the divergence, which we explore in this work.

Remark. As opposed to a randomly initialized student, we assume access to a student that can
generate sequences of adequate quality, which the teacher can provide feedback upon. In our
experiments, we start from student models that have undergone supervised FT. This is analogous to
two-stage RLHF training, which is widely used for LMs, where we first run SFT followed by the
online RL fine-tuning. As such, GKD can leverage hyperparameter tuning insights from RLHF and
can be combined with RLHF with small compute overhead and no additional hyperparameters.
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Choice of Divergence in GKD. While forward KL is commonly-used for distillation, it requires
the student to cover the entire support of the teacher token-level distribution pr(.|y<,, ). In doing
so, the student might end up assigning probability mass to tokens v which have low probability
under pr(.|y<n, z), which can result in hallucination and low-quality generations. When the student
has much lower model capacity than the teacher, this issue is likely to happen with temperature
sampling (e.g., Figure A.16). Alternatively, mode-seeking divergences, such as reverse KL, prioritize
the tokens where the teacher assigns high probability, which can avoid low-quality generations but
at the expense of less diverse generations for a given input. Our experiments indicate that optimal
divergence seems to be task-dependent. Overall, the diversity and performance trade-offs for a
particular task needs to be considered when choosing the GKD divergence (e.g., Figure 4, A.11).

3.2 RL FINE-TUNING + ON-POLICY GKD

In some tasks, it is plausible that distilling from a teacher model only provides a proxy to our
main objective, which can also be non-differentiable. We can directly optimize this objective with
reinforcement learning (RL). Conveniently, on-policy GKD can be easily combined with RL fine-
tuning from human (RLHF) or Al feedback (RLAIF), as it only requires output samples from the
student. Indeed, consider that one wants to optimize the student policy for a scalar reward r, while
staying close to a teacher policy, then we get a regularized RL fine-tuning objective of the form:

Eanx [(1= @) Byryg (o) [P(9)] =0 Eypst o [P 9 (012)] |, 5)

RL objective Generalized On-Policy Distillation

where « € [0, 1] controls the strength of the distillation loss compared to the RL objective. With o =
1, it will perform only distillation. The above objective allows us to maximize reward while improving
other model capabilities via distillation, which can possibly reduce the “alignment tax” decrease
in general model capabilities when aligning language models with human preferences (Ouyang
et al., 2022). We apply the above idea to mitigate hallucination using RLAIF, while simultaneously
improving downstream performance via distillation (Figure 5).

Remark. In RLHF or RLAIF, we typically use reverse KL to constrain the learned policy to stay
close to the initial policy. If one wants to only make slight modifications to existing RL fine-tuning
workflows, we recommend using reverse KL or JSD (0.9) when integrating GKD with RL.

4 EXPERIMENTS

In this section, we evaluate GKD for distilling language models, a typical class of auto-regressive
sequence models, on abstractive summarization, machine translation, and arithmetic reasoning.

Student / Teacher Models. Our experiments start from student and teacher models with different
sizes, specifically open-sourced TS5 models (Raffel et al., 2020), that are pretrained on the same
datasets. We use supervised fine-tuned T5-XL (~ 3B params) as the teacher. For students, we use
T5-small (77M params), T5-base (250M params), and T5-large (800M params), which are smaller
than the teacher by a factor of 38, 12X and 3.8 respectively. See Appendix A.3 for more details.

GKD Variants. For choice of divergence D in GKD in Algorithm 1, we use forward KL, reverse KL
and three variants of JSD(5): JSD (0.1), JSD (0.5) and JSD (0.9). For student data fraction \, we
try A = 1 (On-policy), A = 0.5 (Mixed) and A = 0 (Supervised). In particular, we are interested in
the on-policy variants (A = 1), which have not been previously explored.

Baselines. We compare to the widely-used KD methods discussed in Section 3: SeqKD and
Supervised KD. We also evaluate ImitKD (Lin et al., 2020) and f-distill (Wen et al., 2023), which can
be viewed as “mixed” data variants of GKD (A = 0.5) with forward KL and total variation distance as
divergence. All the baselines start from the same supervised fine-tuned student checkpoint as GKD.

4.1 CASE STUDY: ABSTRACTIVE SUMMARIZATION

We start by evaluating GKD on an abstractive summarization task of generating a summary that
captures salient ideas of the input document. To do so, we use the XSum dataset (Narayan et al., 2018),
which consists of news articles paired with human-written summaries. Following PaLM (Chowdhery
et al., 2022), we evaluate performance using ROUGE-2 score (Lin, 2004) of predicted summaries
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Figure 4: Effect of Divergence on Performance and Diversity. Utilizing on-policy GKD with different
divergences, we evaluate the trade-off between the distilled student’s generation quality and diversity, by varying
the sampling temperature. We quantify diversity using Self-BLEU (Zhu et al., 2018), where a score of 100
indicates deterministic outputs and 0 signifies maximum diversity. Transitioning from forward KL to reverse KL,
through generalized JSD, leads to decreased diversity, attributed to the enhanced mode-seeking characteristic of
the divergence. Mode-seeking divergences often yield superior quality, especially at high temperatures (v = 1).
Reducing the temperature curtails diversity while narrowing performance differences among divergences.

on the validation split of XSum but observe similar trends in ROUGE-L and ROUGE-1. We use T5
models supervised fine-tuned on XSum as students for distillation while the fine-tuned T5-XL as the
teacher. See Appendix A.4 for additional experimental details.

Comparison to baselines. First, we explore how GKD compares to widely-used KD approaches,
namely SeqKD and Supervised KD, across different student model sizes. As shown in Figure 1, we
observe consistent improvements with GKD, which demonstrates the scalability of GKD with respect
to the student capacity. Notably, GKD allows us to surpass the few-shot performance of PaLLM (540B)
using a 7000x smaller TS5 model. We also compare GKD variants with ImitKD and f-distill, and
evaluate performance with greedy sampling and temperature sampling (v = 1) in Figure 2. On-policy
GKD with JSD (0.9) outperforms these additional baselines in both scenarios.

Data efficiency and scaling. To evaluate the efficiency and scalability of GKD, we distilled the
T5-XL teacher using subsampled XSum training datasets: 1K (0.5%), 10K (5%), and 50K (25%)
examples. We used T5-small as the student and report data scaling curves in Figure 3. Notably,
on-policy GKD on the 5% subsampled dataset, without any ground-truth summaries, outperforms
supervised KD and ImitKD with entire training dataset with ground-truth summaries.

GKD Ablations. We ablated different divergences and student data fractions in GKD for various
student sizes in Figure A.12 and A.13. On-policy and mixed variants consistently outperform super-
vised variants. Mode-seeking divergences perform better when evaluation is done using temperature
sampling while the choice of divergence doesn’t affect performance much with greedy sampling.

Choosing GKD Divergence. The divergence chosen for distillation is crucial in determining the
trade-off between summarization quality and diversity. As the sampling temperature can also be
adjusted to balance summary quality and diversity, the optimal choice of divergence is temperature-
dependent. To understand this dependence, we evaluate T5-small distilled using on-policy GKD
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of the on-policy GKD loss with JSD (0.9). As « increases, ROUGE-2 increases while improvement in factual
consistency decreases. For comparison, we show the relative performance of the 12x larger T5-XL teacher.
RLEF* corresponds to RLAIF method from Roit et al. (2023), where the student is regularized towards the
original student model itself instead of the teacher. On-policy GKD + RL achieves higher ROUGE-2 compared
to RLEF* while generating more factually consistent summaries compared to the teacher.
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with different divergences. As shown in Figure 4, certain divergences, like JSD (0.5) and JSD (0.9),
offer better quality but less diversity at high temperatures. However, as temperature decreases, the
difference in quality among divergences narrows, while diversity also drops.

On-policy GKD with RL. In summarization, we want model-generated summaries to be factually
consistent with their input documents. However, distillation alone might not improve factual consis-
tency as even large models halluncinate and generate inconsistent summaries. Recently, Roit et al.
(2023) mitigate hallucination on summarization tasks by using RL with textual entailment feedback
as the reward (RLEF), as faithful summaries must be textually entailed from their input documents.
Inspired by their success, we explore combining RL fine-tuning using a REINFORCE-like objective
with on-policy GKD, as described in Section 3.2. As shown in Figure 5, GKD with RL fine-tuning
substantially improves factual consistency compared to the teacher model while obtaining large
improvements in summarization quality for the distilled student model.

4.2 MACHINE TRANSLATION

To evaluate GKD beyond summarization, we consider the task on translating English to German using
WMT14 en-de (Bojar et al., 2014). We report performance on the validation split using the BLEU
score, which measures the similarity of machine-translated text to high quality reference translations.
We use supervised fine-tuned T5-XL as the teacher with a softmax-temperature of 1.0 (BLEU score
of 28). See Appendix A.6 for additional experimental details.
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a calculator). We use forward KL and reverse KL respectively for on-policy and supervised GKD.

Results. Figure 1, A.15 show that on-policy GKD outperforms commonly-used KD approaches.
Furthermore, we ablate GKD variants using TS5-small and T5-base students in Figure 6. We observe
that generalized JSD divergences perform better than forward or reverse KL but their performance
gap reduces when using a larger student. Moreover, purely on-policy and mixed data distributions
consistently outperform GKD variants only using a fixed supervised dataset, showing the importance
of generating sequences from the student. This finding aligns with our results on XSum.

4.3 ARITHMETIC REASONING

Wei et al. (2022) show that reasoning abilities only appear to emerge in LLMs with at least several
billions parameters, making KD important for improving reasoning abilities of smaller models. To
this end, we evaluate GKD on GSM8K (Cobbe et al., 2021), a high-quality dataset of grade school
math word problems requiring multi-step logical inference. Here, we explore GKD in conjunction
with chain-of-thought (CoT) (Wei et al., 2022), a common approach to improve reasoning abilities of
LLMs by prompting them to produce intermediate reasoning steps before giving the final answer.

Setup. We perform few-shot prompting by prepending the math problems in GSM8K with the first 4
CoT input-output exemplars from Wei et al. (2022). For evaluation, we report accuracy on the test
split by checking whether the target answer matches the final answer given an external calculator,
akin to Cobbe et al. (2021). For supervised training, we use the CoT outputs generated by Magister
et al. (2022), resulting in around 5.3K (problem, CoTs) pairs in the original training split of GSM8K.
We use Flan-T5 models (Chung et al., 2022) supervised fine-tuned for 10K steps on the above CoT
dataset as a starting point for distillation. We use the fine-tuned FLAN T5-XL as the teacher, which
obtains a test accuracy of 27.9. See additional experimental in Appendix A.5.

Results. We first ablate GKD variants and report results in Figure 7 and A.14. We observe that when
using only the fixed CoT dataset or mixing it with student-generated CoTs, performance consistently
falls short of using solely the student-generated CoTs. Furthermore, forward KL performs quite well,
similar to our findings on XSum with greedy sampling. Notably, reverse KL also performs well,
especially when training using only a fixed dataset. Additionally, Figure 8 shows that performance
consistently improves as the proportion of on-policy data increases, provided that at least 25% of
the data is on-policy. Moreover, we demonstrate that on-policy GKD have superior performance
compared to baseline KD methods, across all student sizes, as shown in Figure 9.
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5 RELATED WORK

Knowledge distillation. Supervised KD (Bucilua et al., 2006; Hinton et al., 2015) is a classic
approach and has been successfully used for distilling auto-regressive models (Sanh et al., 2019).
Another approach for distilling such models is sequence-level KD (Kim & Rush, 2016). On-policy
GKD substantially outperforms supervised KD and SeqKD (Figure 1). Other KD approaches train the
student to match different quantities obtained from the teacher, such as hidden states (Jiao et al., 2020)
or attention scores (Wang et al., 2020). However, none of these approaches make the connection
between distillation and imitation learning, and a purely supervised approach can suffer from train-
inference mismatch, also known as exposure bias (Ranzato et al., 2015; Bengio et al., 2015). While
He et al. (2019) argue that this mismatch may not be critical, several papers demonstrate that exposure
bias leads to poor text generation (Zhang et al., 2019; Chiang & Chen, 2021; Arora et al., 2022).

ImitKD (Lin et al., 2020) identifies this connection by sampling sequences from both the student
and a fixed dataset but does not push the idea further. Unlike GKD, ImitKD does not explore
purely on-policy data collection, nor does it integrate RL fine-tuning. Moreover, ImitKD keeps
the forward KL at the token level, which is not necessary when one has access to the teacher’s
log-probabilities, rather than just samples. Furthermore, GKD demonstrates the scalability of the idea,
handling student models roughly 26 x larger than those explored by ImitKD. ImitKD can be viewed
as GKD with forward KL and a non-increasing schedule on A, a simple choice being A = 0.5. More
recently, f-distill (Wen et al., 2023) formulates sequence-level KD as minimizing an f-divergence and
propose an tractable objective based on total variation distance between the token-level student and
teacher distributions. In essence, both ImitKD and f-distill are specific instances of GKD, which we
demonstrate lead to worse empirical results than on-policy GKD (Figure 2, 9).

The concurrent work on MiniLLM (Gu et al., 2023) also exploits the link to imitation and frame
distillation as an RL problem. In particular, MiniLLM optimizes reverse KL between the teacher
and the student at the sequence level (while likelihood maximization is the forward one) using a
policy gradient approach. However, we argue that GKD is simpler and more stable, being closer to
supervised training, since it does not backpropagate through the student’s sampling process. Indeed,
MiniLLM relies on a number of stabilizing tricks, to tackle high variance, reward hacking, and
generation length bias. GKD is also more general as it can also be used with other divergences such
as forward KL or JSD, which can perform better than reverse KL (Figure 6, 7).

RL fine-tuning. There are now numerous examples of language models being fine-tuned with RL, be
the reward optimizing for some metric (Wu et al., 2018), or learned using human feedback (Ouyang
et al., 2022). In these approaches, it is typical to regularize the RL fine-tuned model towards the
initial (usually supervised fine-tuned) model. However, as far as we know, we are the first to perform
distillation and RL fine-tuning at the same time (Figure 5). If it may seem natural, it is quite different
from an optimization perspective, as it changes the regularization towards the initial policy to towards
the teacher policy, and we show empirically that it is a viable approach.

Distillation with reasoning traces or rationales. Chain-of-Thought prompting (Nye et al., 2021;
Wei et al., 2022) has recently demonstrated that LLMs can solve complex reasoning tasks, step by
step, just by prompting. This idea was quickly adapted to KD, by extending the teacher dataset
with CoT prompts for fine-tuning the student (Magister et al., 2022; Ho et al., 2022; Hsieh et al.,
2023). The distillation is still done in a supervised way, and other kind of enhanced prompts could be
considered (Li et al., 2022; Mukherjee et al., 2023). We adopt the same approach, but combine it
with on-policy distillation with various divergences. It shows the versatility of GKD, and improves
upon the purely supervised approaches, as seen in our results on GSM8K (Figure 9).

6 CONCLUSION

In this work, we proposed GKD to address the train-inference distribution mismatch and model
underspecification when distilling language models. GKD consistently outperformed commonly-used
distillation approaches on several generative tasks. We further showed that GKD can be combined
with reinforcement learning to optimize a sequence-level reward in addition to distilling the knowledge
of a large teacher model, which we believe can improve the widely-used RLHF training phase for
language models. One interesting direction would be extending GKD to auto-regressive sequence
models for audio (Radford et al., 2023), video (Villegas et al., 2022) and text-to-image generation (Yu
et al., 2022). We hope that our work will be valuable for researchers and practitioners who are
working on improving performance and efficiency of generative auto-regressive sequence models.
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A APPENDIX

A.1 SELF-DISTILLATION

Self-Distill (GSM8K): FLAN T5-Large
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Figure A.10: Self-Distillation on GSMS8K. Here, GKD corresponds to on-policy GKD (A = 1). On-policy
GKD variants outperform other approaches including supervised KD. The teacher FLAN T5-Large is supervised
fine-tuned on GSM8K and achieves an accuracy of 20.5% while the student FLAN T5-large (not trained on
GSMSK) obtains an accuracy of 14.4% on the test set.

Here, we investigate whether GKD works for self-distillation (Yim et al., 2017), where we want to
transfer knowledge from a teacher model to a student model with the same architecture and size.
To investigate this, we consider self-distillation on GSM8K with FLAN-TS large as the student and
teacher, where the teacher is supervised fine-tuned on GSM8K. As shown in Figure A.10, self-distilled
students surpass surpasses the teacher’s performance on the test set. Moreover, distillation using
student-generated data outperforms supervised KD, with on-policy GKD performing the best.

A.2 TASK-AGNOSTIC DISTILLATION: INSTRUCTION TUNING

While task-specific distillation provides optimized performance for predefined tasks, which is often
crucial for deployment purposes, task-agnostic distillation offers a compelling alternative in scenarios
where the exact nature of the task is not known beforehand and can vary during deployment. As
highlighted by Sanh et al. (2019), the allure of task-agnostic distillation lies in its efficiency: once
distilled, a model can be re-purposed for multiple downstream tasks via prompting or fine-tuning.

Setup. To study task-agnostic KD, we focus on instruction tuning (Chung et al., 2022). Our aim is to
enhance the distilled model’s proficiency to handle diverse tasks presented in the form of instructions.
To achieve this, we employ the FLAN T5-XL model as our teacher and distill its knowledge into
the FLAN T5-Base, as introduced by Chung et al. (2022). Our distillation process utilizes the
comprehensive FLAN2021 instruction tuning dataset, which boasts 5.36 million examples spanning
62 distinct language understanding and generation tasks. For hyperparameter details, see Table A 4.

Evaluation. To gauge the versatility of a task-agnostic model, it is essential to test it across a diverse
set of tasks. In line with Chung et al. (2022), we evaluate our distilled T5-base student on two
held-out benchmark suites: (1) MMLU (Massive Multitask Language Understanding) includes exam
questions from 57 tasks such as mathematics, history, law, and medicine, and (2) BBH (BIG-Bench
Hard) includes 23 tasks from BIG-Bench for which PaLM 540B (Chowdhery et al., 2022) performs
below average human raters. For performance, we report the distilled model’s ability to directly
predict the answer via standard few-shot prompting, averaged across tasks in MMLU and BBH.

Results. We report the performance of distilled checkpoints obtained after SOK training steps
for various methods in Figure A.11. We find that on-policy GKD with reverse KL substantially
outperforms supervised KD and ImitKD. Notably, in the context of instruction tuning, we find that
using reverse KL performs much better than forward KL. We hypothesize that the efficacy of reverse
KL in instruction tuning may stem from its mode-seeking nature as it ensures that the model zeroes
in on the main intent or behavior specified by the instruction. As a result, the model might prioritize
core behaviors over less relevant details, leading to better performance on held-out tasks.
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Figure A.11: Task-agnostic Distillation on FLAN (Chung et al., 2022). On-policy GKD with reverse KL
outperforms other approaches. The evaluation metric on both the MMLU and BBH benchmark suites is
few-shot prompted accuracy (exact match), where we take an unweighted average over all tasks. These
evaluation benchmarks are held-out (not included in the distillation data). Here, we do not run SeqKD due to
its computational inefficiency for generating data from the teacher during training. The teacher FLAN T5-XL
achieves an accuracy of 52.4% on MMLU and 41% on BBH, while the student T5-large model obtains an
accuracy of 35.6% on MMLU and 31.25% on BBH.

A.3 TS5 MODELS

As base checkpoints, we start from LM-adapted T5v1.1 models. These LM-adapted models are
initialized from T5v1.1 and trained for an additional 100K steps on the LM objective discussed in
the T5 paper (Raffel et al., 2020). These checkpoints are open-sourced at https://console.
cloud.google.com/storage/browser/t5-data/pretrained_models.

In our experiments, we initialize both the student and teacher models for distillation by running
further supervised FT on the original training dataset, as described below:

e XSum. For small, base, large and XL models, we use LM-Adapted T5v1.1 models super-
vised fine-tuned for 100K, 50K, 38k and 8K steps respectively.

o WMT. For small, base, large and XL models, we use LM-Adapted T5v1.1 models super-
vised fine-tuned for 250K, 250K, 110k and 50K steps respectively.

e GSMBSK. All models were supervised fine-tuned starting from FLAN-T5 models on the
Palm-540 generated CoT dataset for 10K steps.

Similar to T5 and FLAN-TS, our experiments use the Adafactor optimizer (Shazeer & Stern, 2018).

Computational cost of GKD. All methods including baselines start from the supervised fine-tuned
student checkpoint, which requires training for a few hours on the smallest TPUv3 (8 cores). On
GSMSK, the computational overhead from student sampling is approximately 1.8 %, 2x and 2.2x
compared to sampling from a fixed dataset of outputs, for a student-teacher ratio of 38 x, 12x and
3.8x. For RLHF + GKD, the computational overhead is somewhat small as we are only running
inference to get teacher logits instead of student logits.

Moreover, the majority of cost in real world use cases is due to serving cost at inference time and
not due to fine tuning. Concretely, if it is too costly to sample from the student during fine-tuning, it
might also be too expensive to serve this model to users (which may range from tens of thousands
to billions). Overall, performance benefits from on-policy GKD might be worth the compute cost,
especially when combined with RLHF.

A.4 XSum

Learning rate sweep. We performed a sweep over the learning rate in {0.0001, 0.0003, 0.001} and
found 0.0003 to be the best for TS-base, T5-large and 0.001 leads to best performance for T5-small.
As such, by default we use an LR of 0.0003 except when reporting results for T5-small, which uses
0.001. We found that reverse KL was more sensitive to higher LRs and we default to using 0.0003
for all models when using reverse KL.
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Teacher Softmax-temperature. When using greedy sampling for evaluation, we set the teacher
temperature to 1. However, when reporting student performance with temperature sampling (y = 1),
as done in Figures 2 and 3, we set teacher temperature to 0.1 for the student.

Table A.1: Hyperparameter Details for experiments on XSum.

Hyperparameter Value

Training Steps 40,000

Batch size 32

Eval Split Validation

Dropout 0.0

Learning Rate (LR) 0.0003

LR Warmup Steps 2,000

LR Cooldown (Begin, End) (30,000, 40,000)
Warmup Schedule Linear (from 0 to LR)
Cooldown Schedule Linear (from LR to 0)
Max Input Length 1024

Max Output Length 64

Evaluation Greedy & Temp. Sampling

GKD Ablations. We ablated different divergences and student data fractions in GKD for various
student sizes in Figure A.12 and A.13. On-policy and mixed variants consistently outperform super-
vised variants. Mode-seeking divergences perform better when evaluation is done using temperature
sampling while the choice of divergence doesn’t affect performance much with greedy sampling.
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Figure A.12: Ablating GKD on XSum with evaluation via temperature sampling (v = 1). We distill
supervised fine-tuned T5-XL model to different sized student TS models. Here, we evaluate using temperature
sampling and teacher temperature to 0.1 during training. In the plots above, we report the ROUGE-2 score of the
student post distillation. On-policy GKD approaches with reverse KL and JSD (0.9) performs the best, while
forward KL performs poorly.

A5 GSMSK

For training, we use the CoT outputs generated from Palm-540B by Magister et al. (2022). We report
accuracy on the original test split of the GSM8K dataset (Cobbe et al., 2021). We use checkpoints at
the end of training after distillation for reporting results, which are averaged across 3 seeds.
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Figure A.13: Ablating GKD on XSum with evaluation via greedy sampling. We distill supervised fine-tuned
T5-XL model to different sized student TS5 models. Here, we evaluate using greedy sampling and set student and
teacher temperature to 1 during training. When evaluated using greedy sampling, the teacher model obtains a
ROUGE-2 score of 22 while the student T5-small, base and large models obtain score of 13.4, 17.9, and 19.6
respectively. In the plots above, we report the ROUGE-2 score of the student post distillation. On-policy GKD
approaches performs the best, with small differences among different divergences. Furthermore, on-policy and
mixed variants strongly outperform supervised variants.

Table A.2: Hyperparameter Details for experiments on GSM8K.

Hyperparameter Value

Training Steps 40,000

Batch size 32

Evaluation Split Test

Dropout 0.05

Learning Rate (LR) 0.0003

LR Warmup Steps 2,000

LR Cooldown (Begin, End) (30,000, 40,000)
Warmup Schedule Linear (from 0 to LR)
Cooldown Schedule Linear (from LR to 0)
Max Input Length 512

Max Output Length 320

Checkpoint Flan-T5

Teacher softmax temperature 0.1

Evaluation Greedy Sampling

Few-shot CoT Prompt. Here, we specify the 4-shot CoT prompt used for the experiments:

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are
done, there will be 21 trees. How many trees did the grove workers plant today?

A: There are 15 trees originally. Then there were 21 trees after some more were planted. So there
must have been 21 - 15 = 6. The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.
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Figure A.14: Ablating GKD variants on GSM8K with 4-shot CoT. For evaluation, we use greedy sampling
and report improvement in test accuracy of the student after distillation. Results are averaged across three seeds.
Using only student-generated output samples typically outperform other GKD variants. We use the supervised
fine-tuned T5-XL as the teacher, which obtains an accuracy of 27.9. (Left) We use T5-small as the student,
which obtains an accuracy of 4.585. (Right) Student corresponds to T5-base with an accuracy of 20.5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in
total?

A: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After
eating 35, they had 74 - 35 = 39. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many
lollipops did Jason give to Denny?

A: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave Denny 20
- 12 =8. The answer is 8.

A.6 WMT

For evaluation, we use beam search with same hyperparameters as Raffel et al. (2020). We report
performance of the final checkpoints obtained after training. To reduce the variance in results, we
report the results averaged across 3 seeds.

WMT en-de: T5-XL -» Small WMT en-de: T5-XL - Base
‘a&'J 0.8 :,E)
g g 0.6
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< 204
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Figure A.15: Comparing GKD to ImitKD and f-distill on WMT. Here, GKD corresponds to best performing

variant on WMT, with A = 1 (on-policy) and JSD (0.1). On-policy GKD leads to 53% higher BLEU improvement
over ImitKD and 162% over f-distill, averaged across small and base models.
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Table A.3: Hyperparameter Details for WMT en-de experiments.

Hyperparameter Value

Training Steps 100,000

Batch size 32

Seqio Task Name >wmt_t2t_ende_v003’
Eval Split Validation

Dropout 0.0

Warmup Steps 5,000

Warmup Schedule Linear (from O to LR)
Learning Rate (LR) 0.0003

Input Length (Tokenized) 80
Output Length (Tokenized) 80
Teacher softmax temperature 1.0
Evaluation Beam Search

A.7 INSTRUCTION TUNING

Table A.4: Hyperparameter Details for FLAN Instruction Tuning.

Hyperparameter Value
Training Steps 50,000
Batch size 128

Task FLAN2021
Dropout 0.0
Warmup Schedule No Warmup
Learning Rate (LR) 0.0001

Input Length (Tokenized) 2048

Output Length (Tokenized) 256

Teacher softmax temperature 1.0

Evaluation Greedy Sampling

A.8 MODE-SEEKING VS MODE-COVERING KL

— P ---- argmingKL(P||Q) -

Figure A.16: Mode-seeking vs Model-covering KL with capacity mismatch. We show the learned distribution
Qo when minimizing the forward and reverse KL w.r.t ) between a mixture distribution P and a unimodal
Gaussian Q9. Reverse KL is mode-seeking as it forces (Qy to be zero where P is zero and hence makes it
concentrate on one of the modes (last plot). However, forward KL is mode-covering as it ensures that there is
some mass under Qg wherever there is some mass under P. See Le (2017) to replicate this plot.
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