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Abstract

Partially Observable Markov Decision Processes
(POMDPs) are powerful models for sequential de-
cision making under transition and observation
uncertainties. This paper studies the challenging
yet important problem in POMDPs known as the
(indefinite-horizon) Maximal Reachability Proba-
bility Problem (MRPP), where the goal is to maxi-
mize the probability of reaching some target states.
This is also a core problem in model checking
with logical specifications and is naturally undis-
counted (discount factor is one). Inspired by the
success of point-based methods developed for dis-
counted problems, we study their extensions to
MRPP. Specifically, we focus on trial-based heuris-
tic search value iteration techniques and present
a novel algorithm that leverages the strengths of
these techniques for efficient exploration of the be-
lief space (informed search via value bounds) while
addressing their drawbacks in handling loops for
indefinite-horizon problems. The algorithm pro-
duces policies with two-sided bounds on optimal
reachability probabilities. We prove convergence to
an optimal policy from below under certain condi-
tions. Experimental evaluations on a suite of bench-
marks show that our algorithm outperforms exist-
ing methods in almost all cases in both probability
guarantees and computation time.

1 INTRODUCTION

Partially Observable Markov Decision Processes (POMDPs)
are powerful models for sequential decision making in
which the agent has both transition uncertainty and partial
observability Sondik [1978], Kaelbling et al. [1998]. The
goal in a POMDP planning problem is to compute a policy
that optimizes for some objective, typically expressed as a

reward function or logical specification, e.g., linear temporal
logic (LTL) or probabilistic computation tree logic Baier and
Katoen [2008]. POMDP problems are notoriously hard (due
to the curse of dimensionality and history), and finding an
optimal policy for them is undecidable [Madani et al., 2003].
Hence, to enable tractability, simple objectives are usually
considered by either fixing a finite-time horizon or posing
discounting. For such objectives, effective techniques have
been developed, which can provide approximate solutions
fast [Shani et al., 2013]. However, a crucial problem in plan-
ning under uncertainty and probabilistic model checking is
to find a policy that maximizes the probability of reaching a
set of target states without knowing a priori how many steps
it may take. This is known as the (indefinite-horizon) Maxi-
mal Reachability Probability Problem (MRPP) [De Alfaro,
1998]. This paper focuses on MRPP for POMDPs and aims
to develop an efficient algorithm with optimality guarantees
for MRPP.

For infinite horizon discounted problems, point based meth-
ods [Pineau et al., 2003, Smith and Simmons, 2005, Kur-
niawati et al., 2009] approximate the value function by in-
crementally exploring the space of reachable beliefs. Trial-
based belief exploration algorithms such as Heuristic Search
Value Iteration (HSVI2) [Smith and Simmons, 2005] and
its extensions have been shown to be the most effective.
These methods utilize two-sided bounds to heuristically
search for a near-optimal policy via tree search, and can
efficiently solve moderately large POMDPs in both finite
and discounted infinite-horizon settings to arbitrary pre-
cision. However, these techniques have not been studied
to address (undiscounted indefinite-horizon) MRPP. Re-
cently, approaches have been proposed to provide under-
approximations on reachability probabilities for MRPP
[Bork et al., 2022, Andriushchenko et al., 2022, 2023]. Al-
though the under-approximations are shown to be tight em-
pirically, there is no way to ascertain how close the approxi-
mations are or whether the computed policy has converged
to optimality.

Taking inspiration from the success of trial-based belief
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exploration for discounted POMDPs and the goal of design-
ing an algorithm that can efficiently attain tight two-sided
bound approximations, this paper studies the effectiveness
of trial-based belief exploration for POMDPs with MRPP
objective. To this end, we analyze the drawbacks of dis-
counted POMDP trial-based search when applied to MRPP,
and propose an algorithm that leverages the strength of trial-
based belief exploration while addressing these drawbacks.

Our proposed algorithm is a trial-based belief exploration
approach that maintains and improves two-sided bounds on
the maximal probability of satisfying a reachability objec-
tive. Its use of forward exploration using these bounds al-
lows informed exploration of the relevant areas of the belief
space to improve search efficiency. Improving bounds at one
belief can also improve bounds at other beliefs. We propose
new heuristics for trial-based search tailored to MRPP, and
discuss techniques to ensure improvability of both bounds
during search. We prove the asymptotic convergence of
the policy from below under some conditions. Experimen-
tal evaluations show the applicability of our approach to
compute tight lower and upper bounds simultaneously that
improve over time, converging to the optimal solution for
several moderately sized POMDPs. Results show that trial-
based exploration allows for efficient search, outperforming
state-of-the-art belief-based approaches. Further, our ap-
proach is highly competitive, obtaining two-sided bounds
that can be tighter than that of existing solutions which
generally compute either a lower or upper bound, not both.

In short, the contributions of the paper are: (i) an analysis of
theoretical and practical issues when applying discounted-
sum algorithms to MRPP, (ii) an efficient algorithm that
simultaneously computes sound upper and lower bounds
for maximal reachability probabilities of POMDPs in an
anytime manner, (iii) proof of asymptotic convergence of
the lower bound to the optimal reachability probability value,
and (iv) a suite of benchmark comparisons that show our
algorithm outperforms existing methods in almost every
case both in tightness of the bound and computation time.

Related Work Algorithms to solve POMDPs with in-
finite horizon discounted properties have been extensively
studied in the literature [Lauri et al., 2023, Shani et al., 2013].
A major bottleneck in those methods is the curse of dimen-
sionality and history. To alleviate it, point-based methods
such as Perseus [Spaan and Vlassis, 2005], HSVI2 [Smith
and Simmons, 2005], SARSOP[Kurniawati et al., 2009],
and PLEASE [Zhang et al., 2015] approximate the value
function by incrementally exploring the space of reachable
beliefs. These algorithms have been shown to be effective
for moderately large discounted-sum POMDPs. They have
been applied to the MRPP and POMDPs with LTL spec-
ifications [Bouton et al., 2020, Kalagarla et al., 2022, Yu
et al., 2024], but their theoretical properties only hold for
discounted versions of such problems. In this work, we
study the drawbacks of point based methods for MRPP,

and propose an algorithm based on them to overcome these
drawbacks and provide theoretical soundness.

It has been shown that MRPP is a special type of Stochastic
Shortest Path Problem (SSP) with a specific non-negative
reward structure [De Alfaro, 1998]. Horák et al. [2018] in-
troduces a similar problem called Goal-POMDP, which is
is an SSP with only positive costs and a set of goal states.
The objective of Goal-POMDP is to minimize the expected
total cost until the goal set is reached. Similar to this work,
Horák et al. [2018] proposes extensions of HSVI2 to solve
Goal-POMDPs. However, Goal-POMDP is different from
MRPP because the assumption of positive cost and that the
goal state is reachable from every state cannot be applied
to MRPP. Hence, algorithms for Goal-POMDPs cannot di-
rectly be used to solve MRPP.

The works closest to ours are belief-based approaches [Nor-
man et al., 2017, Bork et al., 2022, 2020]. To the best of
our knowledge, the only method which computes two-sided
bounds with convergence guarantees is PRISM Norman
et al. [2017]. However, the approach is not scalable for
larger POMDP problems, computing loose bounds in prac-
tice. Bork et al. [2022] computes under-approximations
by expanding beliefs in a breadth-first search manner, and
adding them to a constructed belief MDP according to some
heuristic. Beliefs not added are cut-off, and values from a
pre-computed policy are used from cut-off beliefs. In a simi-
lar manner, Bork et al. [2020] compute over-approximations
using breadth-first belief exploration and cut-offs. However,
their technique relies heavily on good pre-computed poli-
cies, and requires searching a large part of the belief space
to obtain good policies. On the contrary, our algorithm per-
forms heuristic trials in a depth-first manner using two-sided
bounds, directing the search more efficiently.

An orthogonal approach to MRPP on POMDPs is to directly
compute policies as Finite State Controllers (FSCs) [An-
driushchenko et al., 2022]. Andriushchenko et al. [2022]
uses inductive synthesis to search for FSCs. They can
find good small-memory policies relatively quickly, but
they suffer when they require memory. Andriushchenko
et al. [2023] proposes an approach which integrates induc-
tive synthesis with belief-based approaches to extract the
strengths of both techniques. Generally, these methods com-
pute under-approximations in an anytime manner, and can-
not detect when or if a near-optimal policy has been found.
Our method, on the other hand, computes both lower and
upper bounds, providing sub-optimality bounds and means
for near-optimal policy guarantees.

2 PRELIMINARIES AND PROBLEM
FORMULATION

Partially Observable Markov Decision Processes We
focus on POMDPs with the following definition.



Definition 1 (POMDP). A Partially Observable
Markov Decision Process (POMDP) is a tuple
M = (S,A,O, T, Z, b0), where: S,A, and O are fi-
nite sets of states, actions, and observations, respectively,
T : S × A × S → [0, 1] is the transition probability
function, Z : S × A × O → [0, 1] is the probabilistic
observation function, and b0 ∈ ∆(S) is an initial belief,
where ∆(S) is the probability simplex (the set of all
probability distributions) over S.

We denote the probability distribution over states in S at
time t by bt and the probability of being in state s ∈ S at
time t by bt(s).

The evolution of an agent according to a POMDP model
is as follows. At each time step t ∈ N0, the agent has a
belief bt of its state st as a probability distribution over S
and takes action at ∈ A. Its state evolves from st ∈ S to
st+1 ∈ S according to probability T (st, at, st+1), and it
receives an observation ot ∈ O according to observation
probability Z(st+1, at, ot). The agent then updates its belief
recursively. That is for st+1 = s′,

bt+1(s
′) ∝ Z(s′, at, ot)

∑
s∈S

T (s, at, s
′)bt(s). (1)

Then, the process repeats.

The agent chooses actions according to a policy π : ∆(S)→
A, which maps a belief b to an action. Typically, the agent
is given a reward function R : S × A → R, which is the
immediate reward of taking action at at state st and tran-
sitioning to st+1. A POMDP can be reduced to an MDP
with an infinite number of states, whose states are the be-
liefs B = {b ∈ ∆(S)}. This MDP is called a belief MDP
[Åström, 1965]. Let R(b, a) = E [R(s, a)]. When given a
discount factor γ ∈ [0, 1], the expected discounted-sum of
rewards that the agent receives under policy π starting from
belief bt is

V π(bt) = E
[ ∞∑

j=t

γj−tR (bj , π(bj)) | bt, π
]
. (2)

The objective of discounted POMDP planning is typically
to find a policy that maximizes V π(b0) to some threshold ϵ.

The optimal value function V ∗ for a POMDP can be under-
approximated arbitrarily well by a piecewise linear and
convex function [Sondik, 1978], V ∗(b) ≥ maxα∈Γ∗(αT b),
where Γ∗ is a finite set of |S|-dimensional hyperplanes,
called α-vectors, representing the optimal value function.

Trial-based Value Iteration for Discounted POMDPs

There exists mature literature on algorithms for discounted-
sum POMDP problems for discount factor γ < 1. Among
discounted-sum POMDP algorithms that provide finite time
convergence guarantees, trial-based heuristic tree search

[Smith and Simmons, 2005, Kurniawati et al., 2009, Zhang
et al., 2015] generally exhibit the best performance. These
algorithms typically maintain and refine upper and lower
bounds on the value functions, and they explore the reach-
able belief space through repeated trials over a constructed
belief tree.

The basic ingredients of these algorithms are policy rep-
resentation, action selection, observation/belief selection,
backup function, and trial termination criteria. We briefly
describe HSVI2 [Smith and Simmons, 2005], a trial-based
heuristic search algorithm with these basic ingredients.

HSVI2 maintains a set of upper V U and lower V L bounds
on the optimal value function. Lower bounds are represented
as α-vectors and upper bounds are computed using an upper
bound point set. Trials are conducted in a depth-first manner.
At each belief bt, the action with the highest Q upper bound
is chosen for expansion using the IE-MAX heuristic:

a∗ = argmax
a
{R(b, a) + E[V U (bt+1)]}. (3)

Then, an observation is selected by computing the successor
belief bt+1 with the highest weighted excess uncertainty
(WEU):

WEU(bt, t, ϵ) =
[
V U (bt)− V L(bt)− ϵγ−t

]
, (4)

o∗ = argmax
o

[P (o|b, a) ·WEU(bt+1, t+ 1, ϵ)]. (5)

HSVI2 terminates a trial when V U (bt) − V L(bt) ≤ ϵγ−t.
After each trial, a Bellman backup is performed over the
belief states sampled, improving the lower and upper bound
sets. When a discounted (0 ≤ γ < 1) POMDP is given,
HSVI2 provably converges to an ϵ-optimal approximation
of V ∗(b0) with sound two-sided bounds.

Problem Definition The problem we are interested in is
the undiscounted indefinite-horizon Maximal Reachability
Probability Problem (MRPP). The agent is given a POMDP
M with a set of target states T ⊆ S. We define the reacha-
bility probability Pπ

M(♢T)

to be the probability of reaching T under policy π from
an initial belief b0 for the POMDP M. An optimal pol-
icy that maximizes the reachability probability is: π∗ =
argsup

π
Pπ
M(♢T).

Problem 1 (ϵ-MRPP). Given a POMDPM, a set of target
states T ⊆ S, and a regret bound ϵ ∈ (0, 1], find policy π̂
that is ϵ-optimal, i.e.,

Pπ∗

M (♢T)− P π̂
M(♢T) ≤ ϵ. (6)

Probabilistic reachability values can be computed by aug-
menting the POMDP with an absorbing state S ∪ {sT}
and action A ∪ {aT} such that transition probabilities
T (s, a, s′) = 1 if s ∈ T ∪ {sT}, a = aT, and s′ = sT;



otherwise T (s, a, s′) = 0. Then, by defining a reward func-
tion that assigns a reward of 1 to the augmented transitions
to sT and otherwise 0 (i.e., Rrp(s, a) = 1 if s ∈ T and
a = aT, otherwise Rrp(s, a) = 0) the undiscounted (γ = 1)
expected cumulative reward of a policy is equivalent to its
reachability probability [De Alfaro, 1998], i.e., for γ = 1,

Pπ
M(♢T) = V π(b0) = E

[ ∞∑
t=0

γtRrp(bt, π(bt)) | b0, π
]
.

(7)

Remark 1. In many cases, one may want to answer the
question of whether there exists a policy that has a reacha-
bility probability that exceeds a given threshold. Solutions
to Problem 1 also allows one to answer such questions.

Remark 2. An algorithm for MRPP can also be used for
problems in which the agent is tasked with maximizing
the probability of satisfying temporal logic specifications,
such as syntactically co-safe Linear Temporal Logic (cs-
LTL) [Kupferman and Vardi, 2001] or LTL over finite traces
(LTLf) [De Giacomo and Vardi, 2013]. These objectives can
be converted into MRPP by planning in the product space
of the POMDP and a Deterministic Finite Automaton (DFA)
representation of the temporal logic formula.

3 FROM DISCOUNTED-SUM TO
REACHABILITY PROBABILITIES

Given the success of trial based tree search algorithms in
discounted POMDPs and their application to probabilis-
tic reachability problems [Bouton et al., 2020], a natural
question that arises is whether these algorithms can directly
approximate MRPP well. As it turns out, they unfortunately
lose their desired theoretical properties, and there are prob-
lems in which these algorithms perform poorly. We dis-
cuss the issues that arise when applying these algorithms to
MRPP. We focus on HSVI2 [Smith and Simmons, 2005],
but the arguments presented also hold for other trial-based
discounted-sum POMDP algorithms, e.g., [Kurniawati et al.,
2009, Zhang et al., 2015].

Incorrect converged solution if γ < 1 is used. Dis-
counting causes trial-based search to converge to an under-
approximation of the optimal probability. This is a strict
under-approximation for all but trivial problems. More im-
portantly, the admitted upper bound is incorrect when γ < 1.

Proposition 1. The optimal value V πγ

(b0) computed via
Eq. (7) with discount γ < 1 strictly under-approximates the
optimal probability value Pπ∗

M (♢T) for Problem 1 if it takes
more than one time step to reach T in the POMDP.

Proof. Let π∗ and πγ be the policies that maximize Eq. (7)

b1 b2 b3 b4

o1 o2 o1

a: 0.6

a: 0.4 a : 1

c : 1

b: 1

a: 1

b: 1

Figure 1: Belief MDP with loops that HSVI2 is ineffective
on. The lower and upper bound values are initially [0, 1] for
all belief states. b4 is initially not yet explored.

with γ = 1 and γ < 1, respectively. Then,

V πγ

(b0) = R(b0, π
γ(b0)) + E

[ ∞∑
t=1

γtR (bt, π
γ(bt))

]
< R(b, πγ(b0)) + E

[ ∞∑
t=1

R (bt, π
γ(bt))

]
≤ R(b, πγ(b0)) + E

[ ∞∑
t=1

R (bt, π
∗(bt))

]
≤ Pπ∗

M (♢T)

Consider a problem instance such that the optimal policy
requires n steps to reach an optimal probability of p. Us-
ing γ < 1 gives an optimal value of γnp in the worst
case. Hence, discounting can lead to arbitrarily large under-
approximations.

Trials may not terminate for γ = 1. When γ < 1, ϵγ−t

is a strictly increasing and unbounded function, in which
case algorithm HSVI2 is guaranteed to converge. However,
when γ = 1, HSVI2 may not terminate for some POMDPs.
Unsurprisingly, a similar phenomenon is shown to exist for
Goal-POMDPs [Horák et al., 2018], which is also an indefi-
nite horizon problem. Consider the belief MDP in Figure 1,
with some initialized value function bounds (e.g., with the
blind policy for the lower bound [Kochenderfer et al., 2022]
and the VMDP method for the upper bound [Hauskrecht,
2000]). Starting from b1, Eq. (3) chooses action a, and se-
lects observation o1 since it has the largest WEU, returning
to b1. The trial will thus be stuck at b1 indefinitely, since the
termination condition is never met.

Loops. In a POMDP, it is possible to choose actions and
observations such that the same belief states are repeatedly
reached, i.e., a loop. This is depicted in Figure 1, where
taking action a at b1 and b at b2 is a policy that allows the
agent to remain at b1 and b2. Without properly accounting
for loops, the algorithm may either get stuck in a loop indef-
initely during exploration, or can be otherwise ineffective
due to repeatedly exploring the same sequences of beliefs.

In a discounted POMDP, the IE-MAX heuristic of HSVI2
performs well, since an action with the highest upper bound
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Figure 2: Overview of HSVI-RP. The algorithm incrementally constructs a belief graph using trial-based search, and
maintains upper and lower bound values for each belief node. In each trial, actions and observations are selected using a
heuristic based on the upper and lower bound values to visit a sequence of belief nodes (orange). After each trial, value
bounds for each visited node are updated using local Bellman backups. Every n iterations, upper bound values for all nodes
are reset, and frontier nodes (purple) are re-initialized using the upper bound value set ΥU , and value iteration is performed.
This allows better improvement of upper bound values for MRPP.

will be revealed to be suboptimal if its upper bound even-
tually decreases below the upper bound of another action.
However, in MRPP, due to the presence of loops, many ac-
tions may have similar or the same upper bound values at a
given belief. The IE-MAX heuristic may repeatedly choose
the same actions and be stuck in a loop indefinitely, and new
beliefs at the frontier may not be expanded to improve the
upper bounds. For example, in the Belief MDP in Figure 1,
from b3, taking actions a and b has the same value, so a may
be chosen and b4 is never expanded. Further, trial-based
local Bellman backups for MRPP may not converge for
upper bounds due to the presence of these so-called end
components.1. We discuss this in detail in Section 4.

4 HEURISTIC GRAPH SEARCH VALUE
ITERATION

In this section, we present our algorithm, called Heuristic
Search Value Iteration for Reachability Probabilities (HSVI-
RP). The algorithm explores the search space by incremen-
tally constructing a belief MDP graph G. The nodes in G
are allowed to have have multiple parents to alleviate the
aforementioned issue of loops in trial-based search. The
initial node of G is the initial belief b0. From b0, the al-
gorithm incrementally unrolls a finite fragment of the full

1An end component is a sub-belief-MDP with a set of belief
states B′ ⊆ B for which there exists a policy that enforces, from
any state in B′, only the states in B′ are visited infinitely often.

belief MDP through trial-based search, and maintains sound
two-sided bounds on maximal reachability probability. The
two-sided bounds are used to inform the direction of search,
detect ϵ-optimality, and bound the optimal solution when
used in an anytime manner. These bounds also have the
benefit that bound improvements in one part of the belief
space also improve the bounds in other parts of the belief
space.

HSVI-RP is outlined in Algorithm 1 and depicted in Fig-
ure 2. At each iteration, a depth-first trial is conducted. An
action is heuristically selected at belief b, and all successor
beliefs b′ and their transitions are added to the graph. To se-
lect the next belief in the trial, an observation is heuristically
selected. When a trial is terminated, we perform Bellman
backups over the selected belief nodes. We also perform
exact value iteration on G periodically to improve upper
bounds. The key is to search the belief MDP efficiently by
expanding belief nodes that may be part of the reachable
space of an optimal policy. To do so, we maintain and up-
date a set of upper and lower bounds. Each graph node has
an associated upper and lower bound value computed from
these sets. Then, we propose new search heuristics that take
advantage of these bounds and the structure of Problem 1.

The algorithm can be seen as a modification of discounted
POMDP trial-based search to address their drawbacks for
MRPP. The following summarize our key modifications:

• We do not use discounting. Instead of terminating trials



Algorithm 1 HSVI-RP(M, ϵ,T)

Global:M, G, V L,ΥU

1: Initialize G with b0
2: Initialize V L with blind policy
3: Initialize V U = ΥU with VMDP

4: while V U (b0)− V L(b0) > ϵ do
5: for n iterations do
6: EXPLORE(b0, 0, V U (b0)− V L(b0), dtrial)
7: end for
8: ∀b ∈ G,V U (b) = V L(b)
9: ∀b ∈ F, V U (l) = ΥU (b)

10: Perform Value Iteration for Upper Bounds on belief
MDP G to obtain a new ΥU

11: Increase dtrial if no improvements for i iterations
12: end while
13: return G,V L,ΥU

Algorithm 2 EXPLORE(b, t, ϵ, dtrial)

Global:M, G,ΥU , V L, κ

1: if V U (b)− V L(b) ≤ κ · ϵ or t > dtrial then
2: return
3: end if
4: A′ ← {a : max

a′
QU (b, a′)−QU (b, a) < ξ}

5: a∗ ← argmax
a∈A′

[
QU (b, a) + ca

√
N(b)/

(
1 +N(b, a)

)]
6: o∗ ← argmax

o

[
WEU(b, t, ϵ) + P (o|b, a∗) cz

√
N(b,a∗)

1+N(b′)

]
7: Add all b′ from taking a∗ at b to belief MDP graph G
8: Update bt+1 using a∗, o∗ with Eq. (1)
9: EXPLORE(bt+1, t+ 1, ϵ, dtrial)

10: Perform local updates on bounds ΥU , V L at belief b
11: return

with γ−t, we use an adaptively increasing search depth
to incrementally increase the depth of explored beliefs.

• We represent the search space as a graph by merging
belief states that already exist in the graph.

• We propose new trial-based expansion heuristics to
handle indefinite horizon graph search.

• To enable the improvability of two-sided bounds while
maintaining tractability, we use a combination of local
Bellman backups and exact value iteration on G.

Below, we provide details on the algorithm.

Lower and Upper Bounds An important reason for the
effectiveness of trial-based search is the use of bounds that
allow improvements in one part of the belief space to im-
prove the bounds in other parts of the belief space. Thus, we
utilize bound representations that have this property.

We use a set Γ of α-vectors for lower bound representation.

To initialize sound lower bounds, we use the blind policy
[Kochenderfer et al., 2022] by taking some i ≥ 0 number
of steps, yielding lower bound on reachability probabilities.
This set of α-vectors also represents the policy for execu-
tion. Since V ∗(b) ≥ V π(b) = maxα∈Γ(α

T b), the action at
belief b is chosen using argmaxα∈Γ(α

T b).

We use a belief point set ΥU to represent upper bounds. The
upper bound value V U (b) at any belief b is the projection
of b onto the convex hull formed by ΥU of belief-value
points (bi, V

U (bi). We denote this projection as ΥU (b),
where V U (b) = ΥU (b). To initialize sound upper bounds,
we use the VMDP method [Hauskrecht, 2000], which uses
optimal values obtained on the fully observable underlying
MDP. The MDP optimal value function provides values at
the corners of the belief simplex, which are the initial points
in the upper bound point set. These bounds can be further
improved using the QMDP or Fast Informed Bound meth-
ods. An upper bound for a belief is computed using an LP
or a sawtooth approximation Hauskrecht [2000].

Value Updates The Bellman update equation allows us to
update and improve the bounds through dynamic program-
ming. The Bellman operator B is defined as:

Q(b, a) = R(b, a) + E[V (bt+1)], (8)
[BV ](b) = max

a
Q(b, a) ∀b ∈ B. (9)

B is defined over the entire belief space. For discounted
POMDPs, it has been shown that performing an asyn-
chronous local Bellman update over the belief states sam-
pled in each trial is more efficient:

[BV ](b) = max
a

Q(b, a) ∀b ∈ Btrial ⊆ B. (10)

Our trial backup step performs asynchronous local Bellman
update for both lower and upper bounds. Each application
of B on a belief state adds an α-vector to Γ [Smith and
Simmons, 2004], and updates the upper bound point set. As
more of the belief space is explored during graph search,
successive local updates leads to uniform improvement in
the lower bounds and propagates improvements in the up-
per bound. Asynchronous local backups over trial sampled
beliefs are effective for improving lower bounds.

Periodic Exact Upper Bound Value Iteration Unlike for
discounted POMDPs, local backups over the upper bound
point set may not lead to improvements of the upper bounds.
Bellman backups over an upper bound for a POMDP may
never improve because the Bellman operator for MRPP
(which is reducible to the stochastic shortest path problem)
is a semicontractive model [Bertsekas, 2022]. Consequently,
there may be many fixed points for value function upper
bound, with the optimal upper bound solution being the
least fixed point, denoted by lfp[V U ].

Intuitively, this issue arises when there are loops, and thus
states in end components may have upper bound values



higher than lfp[V U ]. This may cause a Bellman update to
not decrease the upper bound value. Consider the example
in Figure 1 again. If b4 is added to the graph, and the upper
bound value of b3 is updated via Bellman backup to a value
below 1, the backup for upper bounds at b2 (and hence b1)
will not decrease in value because action b gives the highest
upper bound value of 1. When using local backups over the
upper bound set, backups over belief states that are in an
end component may not improve their upper bound values.

In finite state MDPs, when initialized with a suitable under-
approximate value function, value iteration (VI) converges
to lfp[V ] from below [Hartmanns and Kaminski, 2020]. By
treating the frontier nodes of the partially explored belief
MDP as an “upper bound target set” and via a suitable ini-
tialization, we can achieve a similar result for upper bounds
for a given G.

Let F be the set of frontier nodes of G. An upper bound on
the maximal probability of reaching T by first going to a
belief node b ∈ F is

Pπ∗

G (♢T) = max
π
{Eb∈F [P

π
G(♢b) + V U (b)]} ≥ Pπ∗

M (♢T).

Thus, this reduces to computing maximal values, given up-
per bound values of the frontier nodes.

What remains is a suitable initialization. Intuitively, we want
to fix V U for the frontier nodes, and under-approximate it
for all the other nodes. Hence, for each b ∈ F , we set V U (b)
to ΥU (b). For all other nodes, the upper bound values are
set to an under-approximation, such as their lower bounds,
i.e., V U (n) = V L(n). Then, VI of the upper bound values
over G until convergence obtains a new upper bound point
set ΥU ′

, which is the least fixed point for G and ΥU .

While VI is crucial to improve upper bounds, it has large
computation overhead as VI has to be conducted for all
nodes in the belief graph. Therefore, we periodically re-
initialize the upper bound values to re-compute lfp[V U ]
over G as more beliefs are added to G. This allows con-
tinual improvement of the upper bound over iterations by
reusing the least fixed point from previous iterations instead
of starting from a loose upper bound. As more of the belief
space is expanded, the upper bound values improve towards
Pπ∗

M (♢T).

Trial-based Graph Exploration Here, we present a trial-
based belief exploration technique modified for graphs in
MRPP. We also propose a technique to handle loops.

Action Selection: As discussed in Section 3, many ac-
tions may have the same upper bound value, so HSVI2’s
action selection method is ineffective. We propose an action
selection heuristic based on the Upper Confidence Bound
(UCB) [Coquelin and Munos, 2007], considering the up-
per bound Q values plus a term based on the number of
times that action has been selected. We additionally only
consider actions that have upper bound values within some

user-specified action selection radius ξ from the highest
upper bound:

A′ = {a : |QU (b, a)− argmax
a′

QU (b, a′)| < ξ}, (11)

a∗ = argmax
a∈A′

[
QU (b, a) + ca

√
N(b)/(1 +N(b, a))

]
where ca is an exploration constant, and N(b) and N(b, a)
are the number of times b has been visited, and action a has
been chosen at b respectively. This heuristic incentivizes ex-
ploration of other actions that have similar upper bounds. A
lower ξ favor actions with higher upper bounds, improving
upper bounds faster, but may reduce efficiency by limiting
exploration.

Observation Selection: Similarly, for observation selec-
tion, just using Eq. (5) is ineffective, as the same sequence of
observations may be repeatedly chosen at a belief. Instead,
we use a heuristic that is weighted based on the Excess
Uncertainty, probability of reaching that observation, and
number of times N(b′) the resulting belief has been chosen.

o∗ ← argmax
o

[
WEU(b, t, ϵ) + P (o|b, a∗)

cz
√
N(b, a∗)

1 +N(b′)

]
(12)

where cz is an exploration constant, and N(b, a∗) is the
number of times action a∗ has been chosen at node b. This
heuristic incentivizes choosing successor belief states that
have not been explored often.

Higher values of of ca and cz encourage more exploration
but can hinder convergence if they are set too high due to
too much exploration and too little exploitation.

Remark 3 (Observation Heuristic Randomization). A
heuristic that mixes between Eq. (5) and Eq. (12) also works
well empirically. When randomization is used, with proba-
bility p, we randomize between using Eq. (5) and (12).

Additionally, to address the problem of loops in graph
search, we also keep track of the beliefs, actions, and obser-
vations that have been sampled during a trial, to not repeat-
edly choose the same sequences of actions and observations.
When an action is selected, we only consider observations
that do not lead to beliefs that are already sampled during
the trial. Such beliefs are part of loops. If no observations
are available from that action, we avoid selecting that action,
and consider another action instead. If no more actions are
available, we skip to the next belief in the sampled sequence
that is part of the loop, and continue the trial. The trial ends
if all beliefs have no actions available. Alternatively, one can
maintain a global history list to not select the same histories
more than once, but maintaining this history list may be
ineffective if many histories end up in the same beliefs, and
can be computationally demanding due to the number and
length of histories in an indefinite horizon problem.



Adaptive Trial Termination: We define a maximum depth
dtrial for each trial, that is increased adaptively as the number
of iterations increase. We use a simple heuristic to increase
dtrial. dtrial is increased by dinc when neither the bounds have
changed by at least 0.01 over n successive trials. A trial
terminates when either of two conditions hold: t > dtrial or
V U (bt)−V L(bt) ≤ κ · (V U (b0)−V L(b0)) for 0 < κ < 1.
Parameters dtrial and dinc control the rate of increase of
search depth. Higher values are beneficial for long horizon
problems but may slow search efficiency if increased too
quickly.

Pruning The size of the α-vector set affects backups sig-
nificantly. To keep the problem tractable as more of the
search space is expanded, we prune dominated elements in
the lower bound α-vector set in a manner similar to HSVI2.
α-vectors are pruned when they are pointwise dominated by
other α-vectors. Pruning is conducted when the size of the
set has increased by 10% since the last pruning operation.

THEORETICAL ANALYSIS

Here, we analyze the theoretical properties of HSVI-RP
without observation heuristic randomization; specifically its
soundness and asymptotic convergence.

Although our algorithm is inspired by the trial-based HSVI2,
its properties are different due to the indefinite horizon prop-
erty of MRPP and the modifications made to HSVI-RP. The
proof for ϵ-convergence of HSVI2 relies on discounting to
bound the required trial depths and number of iterations.
Additionally, loops are not an issue due to discounting. On
the other hand, HSVI-RP’s asymptotic convergence of the
lower bound for MRPP stems from our proposed graph rep-
resentation, termination criteria, and trial-based expansion
heuristics, which allow adequate exploration of the belief
MDP.

Lemma 1 (Soundness). At any iteration of HSVI-RP, it
holds for all bt ∈ B that V L(bt) ≤ V ∗(bt) ≤ V U (bt).

Theorem 1 (Asymptotic Convergence). Let action selection
radius in Eq. (11) be ξ = 1. Further, let V L

n denote the
lower bound obtained from HSVI-RP after trial iteration n.
Assume that there exists an optimal belief-based policy π∗

computable with finite memory. Then,

lim
n→∞

[
Pπ∗

M (♢T)− V L
n (b0)

]
= 0.

Proofs of Lemma 1 and Theorem 1 can be found in the
Appendix.

In general, optimal belief-based policies for POMDPs with
indefinite horizon require infinite memory, and the corre-
sponding decision problem is undecidable [Madani et al.,
2003]. Therefore, the finite memory assumption is a practi-
cal requirement for any computed policy.

We leave the complete analysis of convergence of the up-
per bound to future work. It is possible to guarantee upper
bound convergence in certain cases, e.g., when the POMDP
induces a finite belief MDP. However, there are MRPPs in
which the upper bound does not converge. These are MRPPs
where lowering the upper bound requires an infinite number
of explored beliefs, related to the undecidability result for in-
definite horizon POMDPs. In our experimental evaluations,
we found that the upper bound converges (quickly) in some
problems but not in others.

5 EMPIRICAL EVALUATION

In this section, we evaluate our proposed algorithm. We aim
to answer the following questions in our evaluation.

Q1. How well do discounted trial-based POMDP algo-
rithms perform for MRPP? We study the effect of
discounting on solution quality for indefinite horizon
reachability. We use SARSOP Kurniawati et al. [2009]
together with Bouton et al. [2020], with varying levels
of discount factor.

Q2. How does our approach compare to state-of-the-art
belief-based approaches? We compare our approach to
those by PRISM Norman et al. [2017], STORM Bork
et al. [2022] and Overapp Bork et al. [2020]. PRISM
computes two-sided bounds using a grid-based dis-
cretization to approximate the belief MDP. STORM
and Overapp compute lower and upper bounds, respec-
tively, in a breadth first search manner.

Q3. How does our approach compare to other state-of-
the-art approaches? We compare our approach to
PAYNT Andriushchenko et al. [2022] and SAYNT
Andriushchenko et al. [2023]. PAYNT is an inductive
synthesis algorithm that searches in the space of (small-
memory) FSCs. SAYNT is an algorithm that integrates
both PAYNT and STORM by using the FSCs computed
from one to improve the other in an anytime loop.

Benchmarks and Setup We implemented a prototype of
HSVI-RP in Julia under the POMDPs.jl framework [Egorov
et al., 2017], and used the available open source tool-
boxes for the other algorithms. We use benchmark MRPPs
from [Bork et al., 2022], with variants on size and difficulty.
Details on the problems can be found in the Appendix. For
HSVI-RP, observation heuristic randomization (Remark 3)
with p = 0.5 was used for the Drone problems, and we
report the mean of the bounds obtained from 10 runs. All ex-
periments were run on a single core of a machine equipped
with an Intel i7-11700K @ 3.60GHz CPU and 32 GB of
RAM. Our code is open sourced and available on GitHub2.

2https://github.com/aria-systems-group/
HSVI-RP

https://github.com/aria-systems-group/HSVI-RP
https://github.com/aria-systems-group/HSVI-RP


Table 1: Performance of discounted-sum SARSOP. Bold indicates best results, and ‘−’ indicates not converged at timeout
(900s).

SARSOP Ours
γ = 0.95 γ = 0.98 γ = 0.99 γ = 0.999 γ = 0.99999 γ = 1− 10−16

Grid-av 4 [0.758, 0.758] [0.857, 0.857] [0.892, 0.892] [0.923, 0.923] [0.928,0.928] [0.928,0.928] [0.928,0.928]
< 1s < 1s < 1s < 1s < 1s < 1s < 1s

Grid-av 20 [0.028, 0.049] [0.155, 0.212] [0.332, 0.38] [0.709, 0.721] [0.781, 0.782] [0, 1] [0.782,0.783]
− − − − < 1s − 33s

Refuel6 [0.21, 0.21] [0.32, 0.33] [0.39, 0.39] [0.63, 0.63] [0.20, 0.98] [0.18, 0.98] [0.67,0.67]
< 1s < 1s 3.6s 200s − − 1.4s

Refuel8 [0.184, 0.184] [0.314, 0.314] [0.374, 0.375] [0.438, 0.439] [0.218, 0.987] [0.00, 0.988] [0.445,0.445]
1.4s 4.24s 9.83s 339s − − 20s

Table 2: Results for benchmark POMDPs. The top entry refers to the computed values, and bottom entry (left) is the time
taken to achieve that value. For belief-based approaches (PRISM, STORM, Overapp, Ours), we additionally report the
number of beliefs on the bottom entry (right). Bold entries denote the best solutions (best value, followed by lowest runtime
if multiple methods achieve the same value). TO/MO denotes timeout (2 hours) or out of memory with no solution, and ‘∗’
indicates that the reported result is from previous papers.

PRISM STORM PAYNT SAYNT Ours Overapp

Nrp8 [0.125, 0.189] ≥ 0.125 ≥ 0.125 ≥ 0.125 [0.125, 0.125] ≤ 0.125
58s, 735K beliefs < 1s, 50 beliefs < 1s < 1s < 1s,32 beliefs < 1s, 50 beliefs

Crypt4 [0.33, 0.77] ≥ 0.33 ≥ 0.33 ≥ 0.33 [0.33,0.33] ≤ 0.33
33s, 312K beliefs < 1s,560 beliefs < 1s < 1s 15.6s, 480 beliefs < 1s,560 beliefs

Rocks12 TO/MO 0.63 ≥ 0.75 ≥ 0.75 0.75,0.75 ≤ 0.75
1223s, 2M beliefs 5.7s 5.6s 2.8s,770 beliefs < 1s,2.5K beliefs

Grid-av 4 [0.21, 1.0] ≥ 0.928 ≥ 0.928 ≥ 0.928 [0.928, 0.928] ≤ 0.984∗

< 1s, 15 beliefs 118s, 10M beliefs 158s 87.2s < 1s,194 beliefs 6.3s, 125K beliefs

Grid-av 10 [0, 0.999] ≥ 0.513 ≥ 0.744 ≥ 0.773 [0.773,0.774] ≤ 1.0
34s, 97 beliefs 75s, 5M beliefs 309s 337s 8s,8K beliefs < 1s, 5K beliefs

Grid-av 20 TO/MO ≥ 0.115 ≥ 0.524 ≥ 0.667 0.782,0.783 ≤ 1.0
77s, 5M beliefs 1156s 1986s 33s,12K beliefs 1.2s, 75K beliefs

Drone 4-1 TO/MO ≥ 0.839 ≥ 0.869 ≥ 0.890 [0.884, 0.957] ≤ 0.942∗

210s, 6.5M beliefs 2509s 427s 7200, 51K beliefs 1270s, 14M beliefs

Drone 4-2 TO/MO ≥ 0.953 ≥ 0.963 ≥ 0.971 [0.964, 0.976] ≤ 0.974
207s, 8.8M beliefs 6815s 733s 7200s, 26K beliefs 44s,762K beliefs

Refuel6 [0.67, 0.72]∗ ≥ 0.672 ≥ 0.672∗ ≥ 0.672 [0.672,0.672] ≤ 0.687
136s, 6K beliefs 1.4s, 4.5K beliefs 77.8s 85s 1.4s,387 beliefs < 1s, 48K beliefs

Refuel8 TO/MO ≥ 0.439 ≥ 0.445 ≥ 0.445 [0.445,0.446] ≤ 0.509∗

1.7s, 20K beliefs 494s 91s 20s, 3.7K beliefs 410s, 11M beliefs

Refuel20 TO/MO ≥ 0.144 ≥ 0.018 ≥ 0.204 [0.328,0.999] ≤ 0.999
142s, 3.9M beliefs 1666s 937s 1356s,32K beliefs 7.56s, 177K beliefs

Q1: Performance of trial-based discounted-sum algo-
rithms. Table 1 summarizes the key results to answer
Q1. From Table 1, we see that there is not a clear way to use
a discounted POMDP algorithm to get good performance
for indefinite horizon maximal reachability probabilities
problems. A typical discount factor used in discounted-sum
POMDP problems is 0.95 to 0.999. Unsurprisingly, such
values of discounting under-estimate the optimal probabili-

ties. Therefore, one should increase the discount factor to
as close to 1 as possible, to get the best probabilities. How-
ever, for problems with more loops in the belief transitions,
such as Refuel6 and Refuel8, increasing the discount factor
causes trials to be deeper but search may not be effective (or
trials may not terminate). In all cases, HSVI-RP performs
as well or better than using discounted SARSOP directly.

Table 2 reports a set of benchmarks for algorithms that



do not use discounting3 to answer Q2-Q3. PRISM and
HSVI-RP provide two-sided bounds. STORM, PAYNT and
SAYNT provide under-approximations, while Overapp pro-
vides over-approximations. We also provide plots of the
evolution of our value bounds over time in the Appendix.
We report the computed values, time taken to achieve that
value, and also reports the number of beliefs expanded for
the compared belief-based approaches (PRISM, STORM,
Overapp, and HSVI-RP). Note that PAYNT does not expand
beliefs, and although SAYNT expands beliefs, it does not
report the number of beliefs expanded. As reported in [An-
driushchenko et al., 2023], SAYNT typically reduces the
memory usage of STORM by a factor of 3-4.

Q2: Comparison to belief expansion-based approaches.
HSVI-RP generally performs better than other belief-based
approaches, exceeding the accuracy of their under- and over-
approximations with faster convergence for most of the
problems. Additionally, HSVI-RP expands orders of mag-
nitude fewer beliefs than STORM and Overapp, requiring
less memory. All three compared algorithms were not able
to improve their computed values much more than their best
solutions due to the memory intensity of grid-based approx-
imations and breadth-first belief expansion, while HSVI-RP
was able to improve computed policies over time due to the
trial-based methodology. These results strongly suggest that
depth-first trial-based heuristic search that utilizes α-vector
and upper bound point set representations, is an effective
belief expansion methodology for MRPP.

Q3: Comparison to other approaches. HSVI-RP is
highly competitive compared to both PAYNT and SAYNT,
achieving better lower bounds in many of the problems,
while also providing upper bounds. Further, HSVI-RP gen-
erally (except in the Drone problems) finds optimal solutions
faster than both methods. For Refuel6, Refuel8, Grid-av 4,
and Grid-av 10, SAYNT computed near-optimal solution
within 377s, but continued computations until timeout with-
out detecting it. On the other hand, both of HSVI-RP’s
bounds converged for these problems, allowing termina-
tion with a near-optimal policy. Hence, the use of two-sided
bounds can help inform when a near-optimal policy is found.

Further Discussion. Although the efficiency of our ap-
proach is promising, we note that the rate of convergence
towards the optimal probabilities can be slow for larger prob-
lems which require deep trials. From preliminary analysis,
the computation time is mainly bottlenecked by Exact Up-
per Bound Value Iteration and Bellman backups over large
numbers of α-vectors during deep trials. Heuristic search
using two-sided bounds is also less effective when the upper

3These algorithms are also designed to handle minimizing or
maximizing expected (positive) rewards. While it is possible to
extend our approach to handle such reward structures under some
assumptions, we focus on maximizing reachability probabilities in
this work.

bound values are uninformative (as is the case for the Drone
problems), possibly due to the presence of large ECs. Better
model checking techniques, such as on-the-fly detection
and handling of ECs, may improve belief exploration and
convergence.

Similar to STORM, HSVI-RP benefits greatly from seeding
with a good policy. Our policy initialization is the blind pol-
icy, which achieves a lower bound of 0 for most problems. In
contrast, SAYNT’s inductive synthesis approach finds good
initial policies quickly. SAYNT performs the best among
these algorithms by leveraging the strengths of the belief
exploration of STORM and FSC generation of PAYNT. An
integrated approach with HSVI-RP and PAYNT may be a
good direction for scalable and fast verification and policy
synthesis.

6 CONCLUSION

This paper studies the problem of computing near-optimal
policies with both lower and upper bounds for POMDP
MRPP. Utilizing ideas from heuristic trial-based belief ex-
ploration for discounted POMDPs, we propose an incre-
mental graph search algorithm that searches in the space of
potentially optimal reachable beliefs. This work shows that
trial-based belief exploration can be an effective methodol-
ogy to obtain near-optimal policies with over- and under-
approximations of reachability probabilities.
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A PROOF OF LEMMA 1

Proof. We first show that the initial upper and lower bounds are sound.

We initialize the lower bound α-vectors with a blind policy for i steps, which is a lower bound on the maximal reachability
probability. Upper bounds are initialized with the VMDP technique, which assumes that there will be full observability after
taking the first step. Since we can only do better if we have full observability, the computed value function is an upper bound
on the optimal value function [Kochenderfer et al., 2022]. Therefore, the initialized bounds are sound.

Now, we show that iterations of belief exploration and backups preserve soundness of the bounds.

An α-vector obtained from a Bellman backup of an α-vector set is proven to remain a lower bound as long as the α-vector
set is a lower bound [Kochenderfer et al., 2022].

A Bellman backup of an upper bound point V U is:

V U ′
(b) = max

a∈A

(
E(R(s, a)) +

∑
o

Pr(o|b, a)V U (τ(b, a, o))
)
≥ max

a∈A

(
E(R(s, a)) +

∑
o

Pr(o|b, a)V ∗(τ(b, a, o))
)
= V ∗(b)

i.e., the upper bound point remains an upper bound.

Finally, we show that Exact Upper Bound Value Iteration preserves the upper bound property of the upper bound point
set. Let V U (l) be an upper bound maximal probability of reaching T from l ∈ L given G. The Exact Upper Bound Value
Iteration computes the upper bound on the maximal probability of reaching T by first going to a node l ∈ L:

Pπ∗

G (♢T) = max
π
{El∈L[P

π
G(♢l) + V U (l)]} ≥ Pπ∗

M (♢T).

Since Exact Upper Bound Value Iteration is initialized with a sound upper bound ΥU
i at frontier nodes, convergence of value

iteration implies that the new upper bound point set ΥU
i+1 is also an upper bound.

B PROOF OF THEOREM 1

Proof. Let the current trial depth be ttrial = d > 1. We show that our algorithm eventually expands all beliefs reachable
within d steps.

Consider belief b0 at the root of the graph, which will always be selected during a trial. From the action selection method

of Eq. (11), all actions are eventually selected infinitely often as n→∞ since the second term ca ·
√

N(b)

1+N(b,a) is a strictly
increasing function if a is not selected. The observation selection method of Eq. (12) behaves in a simlar manner, where

co ·
√

N(b)

1+N(bt+1)
is a strictly increasing function if observation o is not selected. Therefore, all beliefs will be selected infinitely

often as n→∞. Therefore, all beliefs reachable within 1 step (depth 1) will eventually be expanded.
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Next, during a trial, when a depth 1 belief is reached, all actions and observations are again eventually selected infinitely
often as n→∞. By induction, all beliefs reachable within d steps will eventually be expanded.

Suppose that the algorithm has searched all beliefs reachable within d steps, and constructed the belief MDP Gd. Note that
since belief MDP Gd is a graph, policies over Gd do not only include d-step trajectories, but also indefinite-horizon policies.
Let V ∗

Gd
(b0) be the optimal value function for the belief MDP Gd for Problem 1, i.e., maximal probability of reaching s ∈ T

only within Gd. Thus,

V ∗
Gd

(b0) ≤ V ∗(b0),

since there may be s ∈ T reachable from b0 that are not in Gd (reachable within d steps).

Let V U
0,∅, V

L
0,∅ be the upper and lower bounds at the initial iteration, and V U

n,Gd
, V L

n,Gd
be the upper and lower bound fixed

points computable with the belief MDP Gd at iteration n, i.e., V L
n,Gd

has converged to its fixed point (using asynchronous
local updates) and V U

n,Gd
has converged to its least fixed point (using Exact Upper Bound Value Iteration). At b0, V L

n,Gd
(b0)

upper bounds V ∗
Gd

, since the α-vectors represent conditional plans that include the probability of reaching s ∈ T that are not
in Gd,

V ∗
Gd

(b0) ≤ V L
n,Gd

(b0) ≤ V ∗(b0) ≤ V U
n,Gd

(b0),

Also, dtrial →∞ as n→∞. Assume that an optimal policy can be represented with a finite N -memory belief-based policy.
Since our states, actions and observations are finite, this implies that there exists M ≥ N where there is a trial depth
ttrial = M such that for a finite sized belief MDP GM

V ∗
GM

(b0) = V ∗(b0) =⇒ V L
n,GM

(b0) = V ∗(b0)

Therefore,

lim
n→∞

|V ∗(b0)− V L
n (b0)| = 0

The assumption that there exists a finite-memory is consistent with the results that the decision problem for POMDPs is
undecidable, even in the discounted-sum case. Additionally, note that this does not only hold for POMDPS with a a finite
reachable belief space, only that a finite belief MDP is sufficient to compute an optimal policy.

We remark that this proof considers the worst-case convergence of the algorithm, in which all beliefs and trajectories are
expanded in an unbounded manner to reach an optimal solution. In practice, we can get near-optimal policies without
needing to expand all possible nodes.

C BENCHMARK PROBLEMS

Nrp8 This problem is a non-repudiation protocol for information transfer, introduced as a discrete-time POMDP model by
[Norman et al., 2017]. The goal is to compute the maximum probability, of a malicious behavior, that a recipient R is able
to gain an unfair advantage by obtaining information from an originator O while denying participating in the information
transfer.

Crypt4 This problem models the the dining cryptographers protocol as a POMDP [Norman et al., 2017]. A group of N
cryptographers are having dinner at a restaurant. The bill has to be paid anonymously: one of the cryptographers might be
paying for the dinner, or it might be their master. The cryptographers respect each other’s privacy, but would like to know if
the master is paying for dinner. The goal is to know if the cryptographer’s master is . See [Norman et al., 2017] for more
details.

Rocks12 The rock sample problem was considered for model checking by [Bouton et al., 2020]. It models a rover
exploring a planet, tasked with collecting rocks. However, the rocks can be either good or bad and their status is not
directly observable. The robot is equipped with a long range sensor, but sensing rock states is noisy. The problem ends
when the robot reaches an exit area, with the state labelled as exit. We consider the formula ϕ2 = ♢good ∧ ♢exit from
[Bouton et al., 2020].



Grid Avoid This is a classical POMDP problem introduced as a benchmark problem for MRPP by [Norman et al., 2017].
There is 1 obstacle and 1 target state in a 4× 4 grid, and the goal is to reach the target state while avoiding the obstacle. In
Grid-av 4-0.1, the agent has a 0.1 probability of staying still when attempting to move to another grid. The agent has an
initial belief distribution of being in any of the non-obstacle or target states. We extend the problem to a 10× 10 grid with
3 obstacles in Grid-av 10-0.3, and the probability of staying still when attempting to move is increased to 0.3. In Grid-av
20-0.5, there are 5 obstacles and the probability of staying still is increased to 0.5. In both Grid-10-0.4 and Grid-10-0.5, the
agent has initial belief distribution of being in any of the non-obstacle states within the first 5× 5 grid.

Drone In Drone N-R, the agent has to reach a target state in an N × N grid, while avoiding a stochastically moving
obstacle. The obstacle is only visible within a limited radius R [Bork et al., 2020].

Refuel In RefuelN, the agent goal is to reach a target state in an N ×N grid. There is uncertainty in movement and its
own position is not directly observable. There are static obstacles, and movement requires energy. The agent starts with
N − 2 energy, and each move action uses 1 energy. Energy can be refilled at recharging stations.

Model States State-action pairs Observations
Nrp8 125 161 41

Crypt4 1972 4612 510
Rocks12 6553 3 · 104 1645

Grid-av 4-0.1 17 62 3
Grid-av 10-0.3 101 389 3
Grid-av 20-0.5 401 1580 3

Drone 4-1 1226 3026 384
Drone 4-2 1226 3026 761
Refuel-06 208 565 50
Refuel-08 470 1431 66
Refuel-20 6834 25k 174

Table 3: Size of Benchmark Problems

D ALGORITHM DETAILS AND PARAMETERS

Discounted-Sum POMDP We used the technique in [Bouton et al., 2020] together with SARSOP [Kurniawati et al.,
2009] (toolbox implementation in C++) to compute solutions.

PRISM We used the toolbox implemented by [Norman et al., 2017]. We varied the parameter resolution and report the
best results.

Overapp We used the implementation in [Bork et al., 2020] in the toolbox STORM. We report the best results over the
recommended parameters found in the paper.

STORM, PAYNT, SAYNT We used the implementation of all three algorithms from the toolbox available in [An-
driushchenko et al., 2023]. This toolbox is implemented in C++. The STORM implementation has multiple parameter
settings - cut-off, clip2, clip4, or expanding {2, 5, 10, 20} million belief states. We report the best results for each experi-
ments from these parameters. We use the default parameters for PAYNT, which method searches in the space of increasing
k-memory FSCs. We report the best result. We report the results using the parameters recommended in the toolbox for
SAYNT. SAYNT outputs two values (one for STORM and one for PAYNT); we report the best value. Overall, the results are
similar to those in the original publication of these algorithms.

HSVI-RP We use ca = 0.01, ξ = 0.1, cz = 0.01, initial dtrial = 200, dinc = 10, κ = 0.01, and performed Exact Upper
Bound Value Iteration every 10 exploration trials for all experiments. For all experiments except Drone 4-1 and Drone 4-2,
we used our proposed heuristic, so there is no randomization in the algorithm. For Drone 4-1 and Drone 4-2, we randomized
(probability 0.5) between our proposed heuristic and the original HSVI2 heuristic, and report the mean results over 10 runs.



The benchmark problems have specifications in the form of co-safe LTL. We use the technique by Bouton et al. to compute
product automata and accepting product target states.

Evaluation Validity This evaluation focuses on the potential for trial-based search to obtain policies with tight two-sided
bounds for maximal reachabiltiy probabilities through comparisons with state-of-the-art methods. It is important to note that
some of the algorithms are implemented in different toolboxes and programming languages with varying levels of code
optimization. To mitigate some of the issues related to this, we conducted all experiments on the same CPU when possible.
Nonetheless, we do not draw definite conclusions on the relative speed of each algorithm due to their implementation
differences.

E CONVERGENCE PLOTS

Figure 3 plots the evolution of our two-sided bounds for the evaluated benchmarks. The dashed and dotted lines give the
other algorithms’ final results for comparison. We omit the bounds obtained by PRISM as they are largely uninformative.



Figure 3: Evolution of lower and upper bound values over time. Overapp computes upper bounds, while STORM, PAYNT,
and SAYNT compute lower bounds.
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