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ABSTRACT

Prevention of complete and dimensional collapse of representations has recently
become a design principle for self-supervised learning (SSL). However, questions
remain in our theoretical understanding: When do those collapses occur? What
are the mechanisms and causes? We answer these questions by deriving and thor-
oughly analyzing an analytically tractable theory of SSL loss landscapes. In this
theory, we identify the causes of the dimensional collapse and study the effect of
normalization and bias. Finally, we leverage the interpretability afforded by the
analytical theory to understand how dimensional collapse can be beneficial and
what affects the robustness of SSL against data imbalance.

1 INTRODUCTION

Self-supervised learning (SSL) methods have achieved remarkable success in learning good repre-
sentations without labeled data (Chen et al., 2020b). Loss functions used in such SSL techniques
promote representational similarity between pairs of related samples while using explicit penalties
(Chen et al., 2020a; He et al., 2020; Zbontar et al., 2021; Caron et al., 2020) or asymmetric dynam-
ics (Caron et al., 2021; Grill et al., 2020; Chen and He, 2021) to ensure that the distance between
unrelated samples remains large. In practice, however, SSL training often experiences the phe-
nomenon of dimensional collapse (Jing et al., 2021; Tian et al., 2021; Pokle et al., 2022), where
the learned representation spans a low dimensional subspace of the overall available space. In the
extreme case, this failure mode instantiates as a complete collapse, where the learned representation
becomes zero-rank, and no informative features can be extracted.

Prior work has primarily positioned such collapses in SSL as enemies of learning, arguing that they
can negatively impact downstream task performance (Zbontar et al., 2021; Jing et al., 2021; Bardes
et al., 2021). However, recent work by Cosentino et al. (2022) empirically demonstrates otherwise:
quality of representations can be improved when there is a degree of collapse. These conflicting
results indicate that despite extensive empirical explorations, a gap remains in our understanding of
the collapse phenomenon in SSL training. We argue that this gap is due to the lack of a theoretical
framework to analyze the mechanisms promoting collapsed representations. We aim to close this
gap by carefully studying the loss landscapes of SSL.

In this work, we analytically solve the effective landscapes of linear models trained on several pop-
ular losses used in self-supervised learning, including InfoNCE (Oord et al., 2018), Normalized
Temperature Cross-Entropy (NT-xent) (Chen et al., 2020a), Spectral Contrastive Loss (HaoChen
et al., 2021), and Barlow Twins / VICReg (Zbontar et al., 2021; Bardes et al., 2021). The main
thesis of this work is: the local geometry of the SSL landscapes around the origin crucially decides
the learning behavior of SSL models. Technically, we show that

1. the interplay between data variation and data augmentation determines the geometry of the loss;
2. the geometry of the loss explains when dimensional collapse can be helpful and why certain SSL

losses are robust against data imbalance, but not the others.

To the best of our knowledge, our work is the first to study the landscape causes of collapse in SSL
thoroughly.

†Work done during an internship at Physics & Informatics Laboratories, NTT Research.

1



Published as a conference paper at ICLR 2023

(a) An eigenmode (b) No collapse (c) Dimensional collapse (d) Complete collapse

Figure 1: Landscape in self-supervised learning (SSL). SSL losses generally depend only on the relative
angle between pairs of network outputs (e.g, f(x)T f(x′)). Thus, the landscapes with a linear network (f(x) =
Wx) have a global rotational symmetry and are symmetric about the origin. Our theory finds that the local
stability at the origin decides the collapse, and larger data variation (green) prevents collapse, while strong data
augmentation (red) can promote collapse. We plot the loss for a toy linear model with a diagonal weight matrix
diag(r1, r2). (a) The 1d landscape when fixing one of the parameter. (b-d) The 2d landscape. (b) No collapse:
the origin is an unstable local maximum, and surrounding local minima avoid collapse. The dimensionally
collapsed solutions are the saddle points. (c) Dimensional collapse: the value of w1 for all stable fixed points
collapses to zero. (d) Complete collapse: the origin becomes the isolated local minimum.

2 RELATED WORKS

SSL and Collapses. On the one hand, prior literature has often argued collapse as a harmful phe-
nomenon that can deteriorate downstream task performance (Jing et al., 2021; Zbontar et al., 2021).
Preventing such collapsed representations is a frequently discussed topic in literature (Hua et al.,
2021; Jing et al., 2021; Pokle et al., 2022; Tian et al., 2021) and has motivated the design of several
SSL techniques (Zbontar et al., 2021; Bardes et al., 2021; Ermolov et al., 2021). On the other hand,
Cosentino et al. (2022) empirically showed that dimensional collapses under strong augmentations
could significantly improve generalization performance. Our work demystifies these conflicting
results by finding analytic solutions to loss landscapes of several standard SSL techniques.

Theoretical Advances in SSL. Recently, several advances have been made towards understand-
ing the success of SSL techniques from different perspectives: e.g., learning theory (Arora et al.,
2019; Saunshi et al., 2022; Nozawa and Sato, 2021; Wei et al., 2021), information theory (Tsai
et al., 2021a;b; Tosh et al., 2021), causality and data-generating processes (Zimmerman et al., 2021;
Kugelgen et al., 2021; Trivedi et al., 2022; Tian et al., 2020; Mitrovic et al., 2020; Wang et al., 2022),
dynamics (Wang and Isola, 2020; Tian et al., 2021; Tian, 2022; Wang and Liu, 2021; Simon et al.,
2023), and loss landscapes (Pokle et al., 2022). These advances have unveiled practically useful
properties of SSL, such as robustness to dataset imbalance (Liu et al., 2021) and principled solutions
to avoid spurious correlations (Robinson et al., 2021).

The work by Jing et al. (2021) is the closest to ours in problem setting. In that paper, the authors
focused on studying the linearized learning dynamics and suggested that a competition between the
feature signal strength and augmentation strength can lead to dimensional collapse. In contrast, our
focus is on the landscape and our result implies that this feature-augmentation competition on its
own is insufficient to cause a dimensional collapse. In fact, we show that there will be no collapse
in the setting studied by Jing et al. (2021).

3 A LANDSCAPE THEORY OF SELF-SUPERVISED-LEARNING

This section presents the main theoretical results. Let {x̂i}Ni be a dataset with N data points. For
every data point x̂, we augment it with an i.i.d. noise ϵ such that x ∶= x̂ + ϵ. To be concrete, we start
with considering the standard contrastive loss, InfoNCE (Oord et al., 2018):

L = Eϵ [−
N

∑
i=1

log
exp(−∣f(xi) − f(x′i)∣2/2)

∑j≠i exp(−∣f(xi) − f(χj)∣2/2) + exp(−∣f(xi) − f(x′i)∣2/2)
] , (1)

where f(x) ∈ Rd1 is the model output; all x, x′ and χ are augmented data points for some indepen-
dent additive noise ϵ such that Eϵ[x] = x̂ = Eϵ[x′] ≠ Eϵ[χ] = χ̂. We decompose the model output
into a general function ϕ(x) ∈ Rd0 and the last-layer weight matrix W ∈ Rd1×d0 : f(x) = Wϕ(x).
The covariance of ϕ(x̂) is A0 ∶= Ex̂[ϕ(x̂)ϕ(x̂)T ], and the covariance of the data-augmented penul-
timate layer representation is Σ ∶= Ex[ϕ(x)ϕ(x)T ]. The effect of data augmentation on the learned
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representation is captured through a symmetric matrix C ∶= Σ−A0. For a general ϕ, the eigenvalues
of C can be either positive or negative. When ϕ is the identity mapping, A0 becomes the empirical
data covariance, C becomes positive semi-definite and is the covariance of the noise ϵ, and Σ is the
covariance of the augmented data. In some sense, this loss function captures the essence of SSL: the
numerator encourages the representation f(x) to be closer to the representation of similar data, and
the denominator encourages a separation between dissimilar data.

For a fixed set of noises, we can write the InfoNCE in a cleaner form:

Lϵ = Ex̂ {
1

2
∣f(x) − f(x′)∣2 + logEχ̂ [exp(−

1

2
∣f(x) − f(χ)∣2)]} , (2)

where we used Ex̂ to denote an averaging over the training set.

Hessian Dim. Complete

InfoNCE A0 ✗ ✗
NT-Xent (SimCLR) A0 − C/N ✓ ✓
Spectral Contrastive C ✗ ✗
Barlow Twins A0 +C ✗ ✗
+ Normalization - ✓ ✗

+ bias - ✓ ✓
+ Weight Decay +γI ✓ ✓

Table 1: What shapes the SSL landscapes around
the origin? For each of the SSL losses, the combi-
nation of data covariance (A0), data-augmentation co-
variance (C), and dataset size (N ) can affect its sta-
bility and thus determine the presence (✓) and ab-
sence (✗) of dimensional/complete collapse (Here, a
✓means “there exists a hyperparameter setting and
data distribution such that the relevant collapse hap-
pens;” see section 3). Beyond collapses, the theory
implies that SCL, whose landscape is formed primar-
ily by data augmentation, is more robust to data im-
balance than InfoNCE, which is affected primarily by
the data (see section 4).

In this notation, we have EϵEx̂[x] = Ex[x] and
Eϵ[Lϵ] = L. We first show that the expansion
of the loss function around the origin takes a
rather universal form. We then find analytical so-
lutions to the stationary points of this landscape
and study their relevance to feature learning and
collapses. See Table 1 for a summary of the main
results. The proofs are presented in Appendix E.
For a quantitative understanding, we mainly fo-
cus on the case when ϕ is the identity function.
We discuss the general nonlinear case in Sec-
tion 4.1.

3.1 LANDSCAPE OF A LINEAR MODEL

We first analyze representative SSL loss func-
tions and show that to leading order in W , the
local geometry of SSL losses takes the following
form

L = −Tr[WBWT ] + 1

8
Var[∣W (x − χ)∣2]. (3)

A distinctive feature of Eq. (3) is that its first and third-order terms vanish. This is because the loss
function is invariant to a left rotation of W . We will see that this symmetry in rotation is a crucial
and general feature of the SSL loss functions that allow us to treat them in a universal way. We
discuss how rotation symmetry can cause collapses in nonlinear settings in Section 4.

InfoNCE. The loss function simplifies to:

L = Tr[WCWT ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

E

+Eϵ,x̂ {logEχ̂ [exp(−
1

2
∣W (x − χ)∣2)]}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−S

. (4)

Expanding the entropy term to the fourth order, we obtain1

−S = −ExEχ [
1

2
∣W (x − χ)∣2] + 1

8
Var[∣W (x − χ)∣2] +O(∣∣W ∣∣6). (5)

This (perturbative) decomposition of entropy deserves some special attention. The entropy decom-
poses into a repulsion term that is second order in W , and a variance term that is fourth order in W .
The first term encourages a repulsion between x and its augmentation, which counteracts the effect
of the energy term. The repulsion term can be decomposed into

ExEχ [
1

2
∣W (x − χ)∣2] = Tr[WCWT ] +Tr[WA0W

T ]. (6)

The first term encourages an expansion of W along the direction of the augmentation C, while
the second term encourages an expansion along the directions of feature A0. It is intriguing to see

1Throughout, we use ∣∣ ⋅ ∣∣ to denote the L2 norm for vectors and Frobenius norm for matrices.
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that the repulsion term dominates the attraction of the energy term: the motion along the direction
of C completely cancels out, and only the expansion along A0 remains. This means that to leading
order, the learned representation has a larger variation along the directions where the data has a larger
variation, which is what one naively expects. Collecting results, we have obtained the loss landscape
in the neighborhood of the origin as L = −Tr[WA0W

T ] + 1
8
Var[∣W (x − χ)∣2] +O(∣∣W ∣∣6).

NT-xent (SimCLR). As an additional example, we analyze Normalized Temperature Cross-Entropy
loss (NT-xent) used in SimCLR (Chen et al., 2020a). Tian (2022) shows that InfoNCE can be
generalized to encompass NT-xent as follows:

L = Eϵ [−
N

∑
i=1

log
exp(−∣f(xi) − f(x′i)∣2/2)

∑χ≠x exp(−∣f(xi) − f(χj)∣2/2) + α exp(−∣f(xi) − f(x′i)∣2/2)
] . (7)

In contrast to InfoNCE, here one of the terms in the denominator is reweighted by a factor of α ≥ 0.
Two interesting limits are α = 1, where we recover the InfoNCE loss, and α = 0, where we obtain
NT-xent. For general α, we refer to this loss as the weighted InfoNCE. We will see in section 3 that
this weighted InfoNCE can have a mild dimensional collapse problem.

The same perturbative expansion as Eq. (4)–(6) gives

L = 1 − α
N

Tr[WCWT ] −Tr[WA0W
T ] + 1

8
Var[∣W (x − χ)∣2] +O(∣∣W ∣∣6) +O(∣∣W ∣∣4N−1). (8)

Now, the Hessian of the origin is no longer guaranteed to be negative definite. In fact, if 1−α
N

C−A0 ≥
0, W = 0 becomes an isolated local minimum.

Landscape Analysis. The above discussion shows that the commone loss landscapes in self-
supervised contrastive learning can be reduced to an effective form in Eq. (3). The following propo-
sition shows that the variance term of the loss takes a specific form when the data is Gaussian.
Proposition 1. Let the data and noise be Gaussian. Then, L = −Tr[WBWT ] +
Tr[WΣWTWΣWT ].

When the training ends, one expects the model to locate at (at least close to) a stationary point of the
loss. It is thus important to identify all the stationary points of this loss function.
Theorem 1. Let d∗ ∶=min(d0, d1). Let the data and noise be Gaussian. All stationary points W of
Eq. (3) satisfy WTW = 1

2
Σ−1/2UMΛUTΣ−1/2, where UΛUT is the eigenvalue decomposition of

Σ−1/2BΣ−1/2, and M is an arbitrary (masking) diagonal matrix containing only zero or one such
that (1) Mii = 0 if Λii < 0 and (2) contain at most d∗ nonzero terms.

Additionally, if C and A0 commute, all stationary points satisfy

WTW = 1

2
Σ−1BMΣ−1, (9)

where BM denotes the matrix obtained by masking the eigenvalues of B with M .

This stationary-point condition implies the direct cause of the dimensional collapse. Namely, dimen-
sional collapse happens when the eigenvalues of the matrix B become negative. The eigenvalues
of B, in turn, depend on the competition between data augmentation and the data feature. Com-
paring the commuting case with the noncommuting case, we see that the main difference is that
when C does not commute with A0, the augmentation can also change the orientation of the learned
representation; otherwise, augmentation only affects the eigenvalues. To focus on the most impor-
tant terms, we now assume that the augmentation is well-aligned with the features such that the
augmentation covariance commute with the data covariance.
Assumption 1. From now on, we assume CA0 = A0C.

For the case of weighted InfoNCE, we have that B = A0 − 1−α
N

C. Let ai denote the i-th eigenvalue
of the A and ci that of C viewed in a predetermined order; then, the ith subspace collapses when
1−α
N

ci ≥ ai, namely, when the variation introduced by the noise dominates that of the original data.
Importantly, this collapse is a property shared by all stationary points of the landscape, and one
cannot hope to fix the problem by, say, biasing the gradient descent towards a certain type of local
minima. When weight decay is used, the condition for collapse becomes 1−α

N
ci +γ ≥ ai: it becomes

easier to cause a collapse when weight decay is used.
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The global minimum of the loss function is also easy to find. For all stationary points, the loss
function takes a simple form; L = − 1

4
Tr[Σ2BMB]. Thus, L becomes more and more negative if the

eigenvalues of BM align with the largest eigenvalues of B. Namely, the global minimum is achieved
if M leaves the largest eigenvalues of B intact.

Because the stationary points contain collapsed solutions where the eigenvalues of WTW are zero,
one is naturally interested in how likely it is to converge to these solutions.
Proposition 2. (WTW achieves maximum possible rank) Let m denote the number of positive
eigenvalues B. Then, rank(WTW ) =min(m,d∗) for any local minimum.

This proposition implies that the loss landscape of contrastive SSL (with a linear model) is rather
benign because all local minima must achieve a maximum possible rank. In fact, this result implies
that the collapses may be well controllable by carefully controlling and tuning the eigenvalues of the
matrix B, which directly depends on the nature of the data augmentation we use.

3.2 LANDSCAPE WITH NORMALIZATION

It is common in practice to normalize the learned representation such that ∣∣f(x)∣∣2 = c. When
normalization is applied, only the direction of the learned representation matters. While this is a
simple trick in practice, its implication on the landscape is poorly understood. In this section, we
extend our theory to analyze the effect of normalization.

We model the effect of normalization as a regularization term: R ∶= (Ex∣∣f(x)∣∣2 − c)2:
Lnorm = Eq. (3) + κR. (10)

Note that this regularization term achieves two things simultaneously: (1) ∣∣f(x)∣∣2 = c for all x is
a minimizer of the loss function; (2) the regularization is invariant to any rotation of the learned
representation. For a linear model, we note that this condition is not entirely the same as a direct
normalization of the representation because it is generally impossible to achieve ∣∣Wx∣∣2 = c for
all x because a linear model has limited expressivity. However, it is generally possible to achieve
the slightly weaker condition: the representation has a norm 1 on average. This loss function can
also be seen as a mathematical model of the VICReg loss (Bardes et al., 2021), where R effectively
models the variance regularization term of VICReg loss and κ is its strength. This modeling is
necessary because the variance term of the original VICReg is not differentiable and thus cannot be
expanded. The proposed term R captures the essence of the variance term because it also encourages
the representation to have a constant variance. Our theory also explains why the VICReg is observed
to experience collapses when κ is not large enough. As κ tends to infinity, this constraint will become
perfectly satisfied. We thus take the infinite κ limit to study the effect of normalization.

The following proposition gives a condition that all stationary points of Eq. (10) satisfy.
Proposition 3. Let ρ(W ) ∶= Tr[WΣWT ], B′ ∶= B+2κ(c−ρ)Σ, and let Λi be the eigevalues of B′.
Then, every stationary point of Eq. (10) satisfy WTW = 1

2
Σ−1B′MΣ−1, where M is an arbitrary

diagonal mask of the eigenvalues of B′ containing only zero or one such that (1) Mii = 0 if Λi < 0
and (2) contain at most d∗ nonzero terms.

Compared with the unnormalized case, the term 2κ(1 − ρ)ΣM emerges due to normalization. The
effect of normalization is as expected: it shrinks the norm of the model if ρ > 1, and it expands the
model if ρ < 1, and it does not have any effect if we have already achieved ρ = 1. Interestingly,
this rescaling effect is anisotropic and stronger along the directions of larger eigenvalues of the
covariance of the augmented data Σ.

The next theorem gives the explicit form of ρ at the stationary points.

Proposition 4. For any stationary point W ∗, c− ρ(W ∗) = c− 1
2Tr[Σ

−1BM ]

1+κdM
, where dM is the number

of non-zero eigenvalues of B′M .

For a finite κ, these results suggest that collapses can still happen. For VICReg, B = −A0, and the
complete collapse can happen when κ ≪ ∣∣A0∣∣/c∣∣Σ∣∣ – this explains the experimental observation
of collapses for small values of κ in VICReg loss (Bardes et al., 2021).

Lastly, to understand normalization, we are interested in the case of κ → ∞. Combining Proposi-
tion 3 and 4, we have proved the following theorem, showing that the asymptotic solution converges
to a form independent of κ.
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Theorem 2. Let Wκ be a stationary point of Eq. (10) at fixed κ. Then,

lim
κ→∞

WT
κ Wκ =

1

2
Σ−1 [BM +

2c −Tr[Σ−1BM ]
dM

ΣM]Σ−1. (11)

The correction term 2c−Tr[ΣBM ]

d0
ΣM emerges as a result of applying normalization. The effect can

be easier to understand if we write the solution as

WTW = 1

2
[Σ−1BM −

Tr[Σ−1BM ]
dM

M + 2c

dM
]Σ−1, (12)

where we have used the relation ΣMΣ−1 = M . Note the term in brackets: it subtracts the average
eigenvalue of Σ−1BM from Σ−1BM and shifts the remaining eigenvalues positively by 2c/dM . Be-
cause the eigenvalues of WWT must be positive, the following condition must hold for all solutions:

λi + 2c/dM > λ̄, (13)

where λi are the eigenvalues of Σ−1BM and λ̄ is its average. Namely, for the i−th dimension not
to collapse, it must be smaller than the average eigenvalues by at most 2c/dM . Any smaller eigen-
values must collapse. Compared to the case without normalization, normalization makes collapses
dependent on the relative strength of each feature and augmentation. In the following discussion, we
let c = 1 to simplify the discussion. We present a detailed analysis of this condition in Section D.1.
One finds that the condition for collapse becomes heavily dependent on the data structure, and there
are cases where collapses become harder, and there are cases where collapses become much easier.
Importantly, it also becomes the case that a sufficiently strong augmentation can always cause a
collapse in the corresponding subspace.

Effect of Bias. Lastly, we study the effect of explicitly having a bias term: Wx → Wx + b. First
of all, when there is no normalization, the bias term does not affect the solution because the loss
landscape is invariant to a translation in the learned representation. However, this effect dramatically
changes if we apply normalization at the same time. This is because normalization removes the
translation symmetry of the effective loss, and the trivial solution W = 0, b = 1 becomes the simplest
way to achieve the norm−1 constraint. Our result shows that the addition of bias dramatically affects
the stationary points.
Theorem 3. Let f(x) =Wx+b and E[x] = 0. Then, all stationary points W satisfy Eq. (9), subject
to the constraint that Tr[WTΣW ] ≤ c.

Namely, the solution reverts to the case where there is no normalization at all, except that the norm
of the solution can no longer be larger than c. This upper bound can make collapses much easier
to happen. For example, if c < (ai − ci)/(ai + ci) for all i, a complete collapse can happen despite
normalization. When c = 1 and ci ≪ ai, ρ ≈ dM /2 and the constraint indicates that dM ≤ 2: when
the augmentation is very weak, there are at most 2 nontrivial subspaces. This is too restrictive for
learning a meaningful representation, which helps us understand why dimensional collapse can harm
learning in practice. The fact that simple normalization cannot prevent collapse has been noticed for
a while for the simplest case of a cosine-similarity loss, and our result explains why previous works
have tried to introduce asymmetry to cosine similarity to avoid collapses (Grill et al., 2020; Chen
and He, 2021).

Relevant Loss Functions. Having developed a framework for understanding normalization, we
show that other common loss functions in SSL can also be written in the form given in Eq. (3). The
spectral contrastive loss (SCL) (HaoChen et al., 2021) reads

LSCL = −2E[f(x)T f(x′)] +E[(f(x)T f(χ))2] + const. s.t. ∣∣f(x)∣∣2 = 1. (14)

Let f(x) = Wx be linear, the distributions are zero-mean Gaussian, and ignore the normalization.
This loss function becomes

LSCL = −2Tr[WCWT ] +Tr[WΣWTWΣWT ]. (15)

When normalization exists, we can apply the result in Section 3.2. By our argument, there is no
collapse in this loss function. The difference with InfoNCE loss is that the learned feature spreads
along the directions of the augmentation C, not along the directions of the feature A0.
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(a) Landscape of ResNet (b) No collapse (c) Dimensional collapse (d) Complete collapse

(e) Landscape of ViT (f) No collapse (g) Dimensional collapse (h) Complete collapse

Figure 2: Landscape of Resnet18 (upper) and vision transformers (lower) on CIFAR10 with SimCLR
qualitatively agrees with our linear theory. (a) Training objective L as a function of a rescaling of the
last layer W → aW . (b-d) L as a function of a 2d rescaling of the last layer where the data augmentation
strength is (b) small, (c) intermediate, and (d) strong. Red indicates areas of high loss, blue indicates areas
of low loss, and stars locate local minima. The use of data augmentation changes the stability of the origin, a
qualitative change that leads to different types of collapses in qualitative agreement with our linear theory (cf.
Figure 1). Additionally, we also notice the same qualitative changes of landscape in simpler nonlinear models
(see Appendix A). (e-h) are the same setting but for ViT.

The case of Barlow Twin (BT) (Zbontar et al., 2021) is similar. While the fourth-order term of BT
is much more complicated due to the imbalance created by the λ term. The second-order term can
be identified easily: LBT = −2Tr[WΣWT ] +O(∣∣W ∣∣4). This also does not collapse. A difference
between the SCL loss and InfoNCE is that the learned representation has a spread that aligns with
the combination of the feature and the augmentation strength.

4 IMPLICATIONS

In this section, we explore some theoretical and practical implications of our results. In Appendix
Section A, we also present numerical simulations that directly validate the predictions of the theory.

4.1 RELEVANCE TO NONLINEAR MODELS

An important question is how much of the analysis is relevant for deep nonlinear models in gen-
eral. In fact, the loss landscape we have studied is quite close to the most general landscape
one can have. Let L(f(x)) be a general SSL loss function for data point x. The quality of the
learned representation should be independent of the population-level orientation of the representa-
tion. Therefore, the loss function should satisfy a rotational invariance. Namely, for any rotation
matrix R, L(x) = L(Rf(x)); this rotational invariance implies that the loss should expand as
L(f(x)) = af(x)T f(x) + b[f(x)T f(x)]2 +O(f(x)6). Note that all the odd-order terms of f(x)
vanish due to the rotational symmetry. Substituting f(x) =Wϕ(x) in the loss function, we obtain a
very general form of landscape that W obeys:

L(W,ϕ) = Tr[WTWA] +∑WimWjmWknWlnZijki, (16)

where A and Z are dependent on ϕ. Note how all the examples we have studied take this form. For
W , its collapse entirely depends on the stability of the matrix A. Thus the study of the stability of
the matrix A becomes crucial for our understanding. To illustrate, we train a Resnet18 on CIFAR10
with the SimCLR loss with normalization and with weight decay strength 10−3 until convergence to
obtain the converged weights W ∗. The representation has a dimension 128. We rescale the weight
matrix of the last layer W ∗

last by a factor a and compute the loss as a function of a. See Figure 2-a.
We then partition the singular values of W ∗

last into the larger half and the smaller half. We rescale the
larger half by a factor r1 and the smaller half by r2. We plot the loss as a 2d function of (r1, r2) in
Figure 2. We also perform experiments for vision transformers (ViT) in the lower row (Dosovitskiy
et al., 2020). In all cases, the landscape features qualitative changes comparable to those in Figure 1.
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A connection to Landau theory in physics. Those familiar with statistical physics should note
that the proposed theory is analogous to the Landau theory of second-order phase transitions. When
treating the loss function as the free energy, the square root of the eigenvalues

√
λ of WTW are the

order parameters of the system, and the phase transitions happen when λ turns from 0 to positive.
These transitions (collapses) happen because of symmetry breaking (Landau and Lifshitz, 2013):
the loss function (2) is symmetric in the sign of W . Yet, for any nontrivial learning, W must be
nonzero; thus, a symmetry breaking of the sign of W needs to happen for learning. The recent work
by Ziyin and Ueda (2022) suggested how symmetry breaking around the origin and Landau theory
could explain various types of collapses in deep learning. Therefore, the dimensional collapse could
be related to neural collapses in supervised learning (Papyan et al., 2020; Ziyin et al., 2022a) and
posterior collapse in Bayesian deep learning (Wang and Ziyin, 2022). Because second-order phase
transitions should come with the divergence of the correlation function, one might also wonder what
is “divergent” in the SSL problem. Here, the learning time scale for the collapsing dimension is
divergent at the critical point because the second-order term vanishes in this direction, and so the
dynamics are effectively frozen along this direction.

4.2 ROBUSTLY INDUCING GOOD COLLAPSES

Figure 3: Top: Phase diagram of
representational collapses. Bottom:
β−InfoNCE with β = 0.5. The gen-
eralization error of a downstream re-
gression task where the data augmen-
tation (1) is isotropic and noninforma-
tive or (2) aligns with the style. We see
that the performance worsens as col-
lapses happen for the noninformative
augmentation and improves as the col-
lapse happens for the style-targeting
augmentation.

Contrary to previous works, a recent work (Cosentino et al.,
2022) has suggested that dimensional collapse can be benefi-
cial and significantly improve the generalization performance
of the model. This observation raises a question. How can di-
mensional collapse be beneficial and how can it be induced? In
the following, we first introduce β-InfoNCE, which can adjust
the degree of dimensional collapse, and analyze the collapse
behavior to elucidate the mechanism of task-alligned collapse.

Adjusting the degree of dimensional collapse with β-
InfoNCE. Despite the potential benefit, existing SSL loss
functions cannot robustly induce dimensional collapse. In-
foNCE is insufficient to induce a collapse, and the collapse
induced by SimCLR depends on a vanishingly small param-
eter 1/N . One thus wonders whether there is a loss function
that allows us to induce collapsing behavior in a more pre-
dictable matter so that one might controllably extract some
benefits from collapse. Our result suggests that one way to
directly control collapses is through the strength of the compe-
tition for the model Hessian at the origin. For InfoNCE, one
way to achieve this is to weigh the entropy term by a general
factor β:

Ex {
1

2
∣f(x) − f(x′)∣2 + β logEχ [exp(−

1

2
∣f(x) − f(χ)∣2)]} .

Due to its similarity with the β-VAE in Bayesian learning, we
call it the β-InfoNCE. The leading term in the loss function
becomes

−Tr[W (A0 − (1 − β)C)WT ].
When 1 − β > 0, the augmentations C pull the representation
towards zero. When the augmentation is as strong as the fea-
ture variations, a collapse happens. One can thus introduce collapse by setting β to be sufficiently
small. When 1−β < 0, the augmentations push the weights away from the origin along its direction,
resulting in no collapse at all: When one really wants to avoid collapse, one can use a rather large
β; β = 1 is thus at the boundary of this bifurcating behavior. We note that existing loss functions
often do not have a parameter that is directly controlling the collapse behavior (see Table 1). The β
parameter here directly controls the level of difficulty of collapse.

Achieving invariance with dimensional collapse. Here, we closely study an illustrative minimal
example to demonstrate how collapses can be beneficial. Consider the following structured data
generating process where the input features can be separated into two sets: (1) a task-relevant set
with dimension dc < d0 and (2) a task-irrelevant set: x = (x1, ..., xdc , ..., xd0). Our result suggests
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a precise way to remove the irrelevant features from the learned representation. For the purpose of
causing a robust collapse, we use the β-InfoNCE with β = 1/2. For illustration, we consider the
simple case dc = 1 and d0 = 2. For any input x = (x1, x2), the label is generated as a linear function
of x1: y = cx1.

Correspondingly, we consider a structured data augmentation x = x̂ + σRξ, where R ∈ Rd0×d0 is
R = diag(

√
1 − θ,

√
θ), where θ ∈ [0,1]. The parameter σ controls the overall strength of the aug-

mentation, and θ controls the orientation of the strength. When θ = 0.5, we have an uninformative
isotropic noise that has often been used in practice. When θ = 1, the augmentation is only on the
task-irrelevant feature, and when θ = 0, the augmentation is only on the content. Since the predic-
tion target only depends on the content, we want to learn a representation invariant to the style. For
the downstream regression task, we use the learned representations z ∶= f(x̂) to train a ridge linear
regressor that minimizes minGEx̂[∣∣Gz − y(x̂)∣∣2]+ 0.001∣∣G∣∣2. See Figure 3. The top panel shows
the phase diagram of this problem with different combinations of the augmentation strengths and
orientations. The bottom panel shows that collapses introduce phase-transition-like behaviors in the
generalization performance and that a data augmentation aligning with the task-irrelevant dimension
improves performance.

4.3 ROBUSTNESS TO DATA IMBALANCE
Spectral 

Contrastive

InfoNCE

Without Projector With Projector

InfoNCE

Data Imbalance Data Imbalance

Te
st

 a
cc

ur
ac

y

Spectral 
Contrastive

Figure 4: Spectral Contrastive loss (SCL) is more
robust against data imbalance than InfoNCE. We
train SimCLR and SCL ResNet-12 models on imbal-
anced versions of CIFAR-10. We see that SCL is more
robust than SimCLR, as suggested by our theory. These
results are especially pronounced when there is no pro-
jector head.

Our theory is not only relevant for understand-
ing collapses but can also be used to under-
stand how an SSL model encodes the feature.
Liu et al. (2021) recently showed that compared
with supervised learning, SSL techniques are
relatively more robust to imbalanced datasets
that have disproportionately represented minor-
ity subgroups. As another application of our
analysis, we illustrate the robustness of differ-
ent techniques is not equal. As we have seen,
the learned model WTW has eigenvalues that,
to the leading order, are proportional to the Hes-
sian B, which is different for each loss function.
As previously summarized in Table 1, for In-
foNCE and SimCLR, the learned model aligns
with the eigenvalues of the data covariance A0, which varies hugely as different classes of a dataset
become more and more imbalanced. In comparison, the model trained with SCL aligns purely with
the augmentation covariance C, which is independent of the data imbalance. This suggests that the
SCL landscape can be less dependent on data and thus more robust against data imbalance. See
Figure 4. More experimental details are given in Appendix C.

5 CONCLUSION

In this work, we approached the problem of collapses in SSL from a loss landscape perspective. We
analytically solved an effective landscape that can be extended to understand the effect of normaliza-
tion. Our result suggests that dimensional collapse can be well understood in the minimal setting and
is something neutral to learning on its own. With the help from the theory, we also showed that when
task-irrelevant dimensions are targeted, dimensional collapse can result in improved performance,
whereas an uninformative noise will (without good luck) leads to collapses in the dimensions that
are relevant to the task. It is thus important for practitioners to devise targeted data augmentation
mechanisms that incorporate the correct domain knowledge. Also, we advocated the thesis that the
local geometry of the loss landscape around the origin is an essential component for understanding
collapses, and this should invite more future work to understand the landscape around the origin.

The limitation of our work is clear; our result only identifies the causes of the collapse that can
be directly attributed to the low-rank structure of the local minima of the landscape. One possible
alternative cause of the collapse is dynamics. For example, having a large learning rate and small
batch can sometimes cause a convergence towards the saddle points in the landscape (Ziyin et al.,
2022b), which, as we have shown, are the collapsed solutions. Investigating the role of dynamics in
the collapse is thus a crucial future problem.
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A ADDITIONAL NUMERICAL RESULTS

In this section, we validate our theory with numerical results. Unless specified otherwise, the di-
mension of the learned representation is set to be equal to the input dimension: d0 = d1.

No Collapse for InfoNCE. We showed that there is no collapse at all for the vanilla InfoNCE, no
matter how strong the augmentation is. Our result implies that the smallest singular of the model
W scales as σ4 where σ2 is the strength (namely, the variance) of the augmentation. See the left
panel of Fig. 5. We use the vanilla InfoNCE loss defined in (1) with a linear model. The training
set is sampled fromN (0, I32). The training proceeds with Adam with a learning rate of 6e− 4 with
full batch training for 5000 iterations. We use a simple diagonal Gaussian noise with variance σ2

for data augmentation. We see that the singular values scale as σ4 and never vanishes, as the theory
predicts.

Nonrobust Collapses of Weighted InfoNCE. We now demonstrate that, as the theory predicts,
collapses of weighted InfoNCE depend strongly on the dataset size. We use the same dataset and
training procedure as the previous experiment. We set α = 0.1 and change the size of the training
set. Theory suggests that for a collapse in the i−th subspace to happen, the size of the dataset needs
to obey

N > ai
ci(1 − α)

∶= Ncrit. (17)

See the middle panel of Figure 5. We show the smallest three eigenvalues of WTW (roughly
having similar magnitudes), and the critical dataset size for the smallest eigenvalue. We see that the
theoretical threshold of collapse agrees well with where the collapse actually happens.

Collapses in β-InfoNCE. With β < 1, one can cause collapses in a predictable and controllable
way. In this experiment, we let d0 = 5 and we plot all five eigenvalues of WTW as we increase the
strength of an isotropic augmentation. As the numerical results show, collapses happen at the points
predicted by the theory.

Normalization Causes Dimensional Collapse. We also plot the three smallest eigenvalues of
WTW when we apply the standard representation normalization in practice: f(x)→ f(x)/∣∣f(x)∣∣.
To facilitate comparison, we also use the same dataset and training procedure as before. See Fig-
ure 6. We see that normalization does cause a collapse in the smallest eigenvalues at an augmentation
strength much smaller than the feature variation.

B LANDSCAPE OF A NONLINEAR MODEL

In this section, we plot the landscape of the layer of nonlinear models on the same synthetic dataset
we outlined in the previous section. We train a three-layer nonlinear network with output dimension
2 with SGD until convergence. We then rescale the optimized weight of the last by a factor a:
Wlast → aWlast and plot the loss function along this direction. See the top panel of Figure 7 for

Figure 5: The three smallest singular values of WTW as a function of the augmentation strength. We
see that our effective landscape theory around the origin accurately captures collapses in learning.
Left: Vanilla InfoNCE . As the theory suggests, the singular values scale as σ4 and do not vanish for
any finite value of σ. Mid: Weight InfoNCE. α = 0.1, σ = 5. Collapse happens at the critical dataset
size predicted by the theory. Right: (Sqrt) Eigenvalues of WWT in β-InfoNCE. The collapses can
be well controlled.
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Figure 6: A collapse happens easily when the learned representation is normalized. The smallest
eigenvalues of A0 are roughly 0.2, and the collapse happens much before the noise reaches this
strength.

Figure 7: The Landscape of nonlinear models is very similar to the landscape of linear models (cf.
Figure 1). Top: 1d projection of the landscape of a two-layer tanh and ReLU network. Bottom Left:
the landscape of a 2D projection of the last layer of a nonlinear model with a weak augmentation.
Middle: with intermediate augmentation. Right: with strong augmentation.

both the tanh and the ReLU nonlinearity. We then rescale the two rows of the weight matrix of the
model by r1 and r2 respectively: W = (w1,W2)T → (r1w1, r2w2). We see that the landscape of
the model is qualitatively the same as that of the linear models, shown in Figure 1.

C SETUP FOR IMBALANCED DATA EXPERIMENTS

Creating an Imbalanced Dataset: For our experiments measuring the influence on imbalanced
datasets on SSL training, we use CIFAR-10 by sampling 20000 samples out of the 50000 train-
ing samples. The sampling process is described by a Dirichlet distribution and is often used to
analyze effects of heterogeneity and data imbalance in Federated Learning problems (Hsu et al.,
2019). Specifically, a small value of the distribution parameter yields a highly imbalanced dataset,
while a large value yields a perfectly balanced dataset. We evaluate our models in three scenarios,
for which we report below the number of samples per class:

• High imbalance: [4890, 87, 5000, 0, 74, 0, 0, 212, 4788, 4947]
• Medium imbalance: [4268, 4296, 1741, 420, 945, 161, 4633, 1015, 131, 2386]
• No imbalance: [2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000]

Training Setup: We use ResNet-12 models as the backbone for all experiments due to computational
constraints. SimCLR augmentations (Chen et al., 2020a) are followed, except for a reduced strength
of resized cropping from 0.2 to 0.5. All training involves a standardly used cosine decay learning
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rate schedule, starting at 0.03 and decaying to 0.001. When a projector module is used, it involves
a two-layer MLP with hidden dimension of 512 and BatchNorm layer in between. We use SGD for
optimization and perform the standardly used linear evaluation protocol for measuring the quality of
the final representation. For training the linear layer, we use an initial learning rate of 10 and decay
it to 0.01 with a cosine schedule. We note linear evaluation is used for supervised models as well,
following the practice advocated by Liu et al. (2021).

D ADDITIONAL THEORETICAL CONCERNS

D.1 COLLAPSE CONDITION FOR NORMALIZATION

The important condition for collapse in Eq. (13) can be better understood by considering the extreme
cases. First of all, note that the eigenvalues of ΣBM are bounded between −1 and 1

− 1 ≤ ai − ci
ai + ci

≤ 1, (18)

and −1 is achieved when ci ≫ ai, and 1 is achieved when ai ≫ ci.

When the augmentation is negligibly small, Σ−1BM ≈ M , and λi ≈ λ̄ = 1, the condition thus
becomes

2

dM
> 0, (19)

which always holds. Thus, a sufficiently small augmentation will never cause collapse. Next, when
we apply very strong augmentation to the j-th subspace and zero augmentation to the others, the
condition for the non-augmented spaces becomes

1 + 2

dM
> dM − 2

dM
, (20)

meaning that the collapse will not happen. For the j-th space, the condition is

− 1 + 2

dM
> dM − 2

dM
(⇐⇒) 4

dM
> 2, (21)

which is only possible when dM = 1, namely, the strongly augmented space is the only space that
does not collapse. This is reasonable when the original data is rank-1 because the normalization
will ensure that this space does not collapse, but when the original data is not rank-1, this stationary
point will be a saddle and will not be preferred by gradient descent. In different word, a strong
enough augmentation will cause a collapse in the corresponding subspace, as is the case without
normalization.

It is also interesting to note that having ci ≥ ai is no longer sufficient to cause a collapse. For
example, let c1 = 0 and cj = aj for j ≠ 1. The condition for j ≠ 1 becomes

2

dM
> 1

dM
, (22)

which always holds. At the same time, it does not mean that collapsing has become harder in general.
For example, it is also possible for ci < ai to cause a collapse. Suppose we add a weak augmentation
only to the first subspace such that ai − ci = ϵ > 0, the condition for this dimension to not to collapse
is

ϵ

ai + ci
+ 2

dM
> dM − 1 + ϵ

dM
, (23)

which can be violated whenever ϵ < (ai+ci)(dM−3)
ai+ci+dm

. Namely, in some cases, normalization can in
fact facilitate collapse.
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E PROOFS

E.1 PROOF OF PROPOSITION 1

Proof. The second term in Eq. (3) can be written as

Var[∣W (x − χ)∣2] = E [(Tr[W (x − χ)(x − χ)TWT ])2] −E [Tr[W (x − χ)(x − χ)TWT ]]2

(24)

= [first term] − 4Tr[W (A0 +C)WT ]2 (25)

= [first term] − 4Tr[WΣWT ]2, (26)

where we have used the definition Σ = A0 +C. The first term is

[first term] = E [(Tr[W (x − χ)(x − χ)TWT ])2] = 4Tr[WΣWT ]2 + 8Tr[WΣWTWΣWT ].
(27)

Combining the above expressions, we see that Eq. (3) can be written as

L = −Tr[WBWT ] + 1

8
Var[∣W (x − χ)∣2] (28)

= −Tr[WBWT ] +Tr[WΣWTWΣWT ]. (29)

This finishes the proof. ◻

E.2 PROOF OF THEOREM 1

Proof. All stationary points have a zero gradient:

− 2WB + 4WΣWTWΣ = 0. (30)

Multiplying by WT on the left and B−1 on the right,

WTW = 2WTWΣWTWΣB−1 (31)

(⇐⇒) Σ1/2WTWΣ1/2 = 2Σ1/2WTWΣWTWΣB−1Σ1/2 (32)

Defining H ∶= Σ1/2WTWΣ1/2, we obtain

H = 2H2Σ1/2ΣB−1Σ1/2, (33)

(⇐⇒) H(I − 2HΣ1/2B−1Σ1/2) = 0. (34)

Because both H and Σ1/2ΣB−1Σ1/2 are symmetric, one can take the transpose of Eq. (33) to find
that H and Σ1/2B−1Σ1/2 commute with each, which implies that H has the same eigenvectors as
Σ1/2B−1Σ1/2/2.

Eq. (34) then implies that the eigenvalues of H is either the inverse of that of Σ1/2B−1Σ1/2 or zero.
This implies that any stationary point of H can be written in the form

H = 1

2
UMΛUT , (35)

where U is a unitary matrix, Λ is diagonal matrix containing the eigenvalues of Σ1/2B−1Σ1/2, and
M is an arbitrary (masking) diagonal matrix containing only zero or one such that (1) Mii = 0 if
Λii < 0 and (2) contain at most d∗ nonzero terms. This then implies that the weight matrix W
satisfies

WTW = 1

2
Σ−1/2UMΛUTΣ−1/2. (36)

Lastly, when Σ and B commute, we can compactly write the result as

WTW = 1

2
Σ−1BMΣ−1, (37)

where BM denotes the matrix obtained by masking the eigenvalues of B with M . This finishes the
proof. ◻
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E.3 PROOF OF PROPOSITION 2

Proof. For all stationary points, WTW commutes with B and Σ, which means that at these sta-
tionary points, one can simultaneously diagonalize all the matrices and the loss function (3) can be
written as

L = −
d∗

∑
i=1

λibi + λ2
i s

2
i (38)

where λi, bi, si are the eigenvalues of WTW , B, and Σ respectively.

We can thus consider each i separately. When bi > 0, λi = 0 cannot be a local minimum because the
local Hessian is −bi < 0. When bi ≤ 0, the only stationary point is λi = 0. This sum covers at most
d∗ summands, and so, at the local minima, λi ≠ if and only if bi > 0, and so the number of non-zero
eigenvalues of WTW is min(m,d∗). ◻

E.4 PROOF OF PROPOSITION 3

Proof. The regularization can be written as

R = [(Ex∣∣Wx∣∣2 − c)2] (39)

= Tr[WΣWT ]2 − 2cTr[WΣWT ] + c2. (40)

By Proposition 1, Eq. (10) reads

L = −Tr[WBWT ] +Tr[WΣWTWΣWT ] + κ(Tr[WΣWT ]2 − 2Tr[WΣWT ] + 1) (41)

= −Tr[W (B + 2κcΣ)WT ] +Tr[WΣWTWΣWT ] + κρ2. (42)

The derivative of ρ is
d

dW
ρ = 4ρWΣ. (43)

The zero-gradient gradient is thus

− 2W (B + 2κcΣ − 2κρΣ) + 4WΣWTWΣ = 0. (44)

We can define B′ ∶= B + 2κcΣ − 2κρΣ to see that this condition is the same as Eq. (30) in the proof
of Theorem 1. The rest of the proof thus follows from the arguments. We thus arrive at the theorem
statement:

WTW = 1

2
Σ−1B′MΣ−1. (45)

We are done. ◻

E.5 PROOF OF PROPOSITION 4

Proof. Recalling that ρ = Tr[WΣWT ], we multiply Σ from the right to both sides of the solution in
Proposition 3 and take trace:

1

2
Tr[Σ−1B′M ] =

1

2
Tr[Σ−1(BM + 2κ(c − ρ)ΣM)] (46)

= Tr[WTWΣ] (47)

= Tr[WΣWT ] = ρ. (48)

The first line further simplifies to
1

2
Tr[Σ−1BM ] + κ(c − ρ)Tr[Σ−1ΣM ] =

1

2
Tr[Σ−1BM ] + κ(c − ρ)dM , (49)

where dM ∶= Tr[M] is the number of nonzero eigenvalues of B′M .

This gives an equation of ρ that solves to

c − ρ =
c − 1

2
Tr[Σ−1BM ]
1 + κdM

. (50)

This proves the proposition. ◻
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F ADDITIONAL THEORETICAL CONCERNS

F.1 CASE OF DATA-INDEPENDENT NON-GAUSSIAN AUGMENTATION

In the main text, we mainly considered the case when the noise is Gaussian. In this section, we
consider a case where the noise is data-dependent and non-Gaussian. We show that the results we
discussed in the main text still hold qualitatively. The general form of the loss function in Eq. (3)
still applies:

L = −Tr[WBWT ] + 1

8
Var[∣W (x − χ)∣2]. (51)

We consider a global rescaling augmentation for each datum x:

x = sx̂, (52)

where s ∼ exp(b) obeys an exponential distribution with mean b and variance b2. Note that even
if x̂ is Gaussian, the augmented data is no longer Gaussian. In particular, the augmentation now
becomes data-dependent. This augmentation can also be seen as a structured, biologically plausible
data augmentation that encourages the model to be scale-invariant, which is what Wien’s law for
biological perception demands (Dayan and Abbott, 2005): no matter whether an image is dark or
bright, the content of the image is the same.

Under this augmentation, the noise covariance is dependent on x and no longer Gaussian:

E[xxT ] = 2b2A0. (53)

We also obtain that
C = E[(b − s)2xxT ] = b2A0. (54)

The second term in Eq. (3) can be written as

Var[∣W (x − χ)∣2] = E [(Tr[W (x − χ)(x − χ)TWT ])2] −E [Tr[W (x − χ)(x − χ)TWT ]]2

(55)

= [first term] − 4Tr[W (A0 +C)WT ]2 (56)

= [first term] − 4Tr[WΣWT ]2, (57)

where we have used the definition Σ = A0 +C. The first term is

[first term] = E [(Tr[W (x − χ)(x − χ)TWT ])2] . (58)

However, for fixed rescaling factor sx and sχ, each W (x − χ) obeys a multivariate Gaussian distri-
bution with variance 2(s2x + s2χ)WA0, and so we have

[first term] = Esx,sχ[(s2x + s2χ)2](4Tr[WA0W
T ]2 + 8Tr[WA0W

TWA0W
T ]), (59)

where Esx,sχ[(s2x + s2χ)2] = 56b4. Combining terms, we obtain that

Var[∣W (x − χ)∣2] = 48b2 × 4Tr[WA0W
T ]2 + 56b4 × 8Tr[WA0W

TWA0W
T ]. (60)

The loss function is thus:

L = −Tr[WBWT ] + 24b2Tr[WA0W
T ]2 + 56b4Tr[WA0W

TWA0W
T ]. (61)

Note that this loss function is a special case of the loss function in Eq. (10) where c = 0 and κ = 24b2
(and with a rescaled fourth-order term). As in the main text, B is different according to different
choices of loss functions. Because B commute with A0 by construction, one expects collapses to
happen at locations predicted by Proposition 3 and 4 under suitable choices of parameters. Also
note that the odd terms vanish as discussed, and so the local stability of the origin should decide the
collapsing behavior of this situation.

This shows that collapse can also happen when the data augmentation is structured. We comment
that the analysis in this section is minimal, and one important future direction is to provide more
precise and insightful conditions of collapse under structured data augmentation.

18


	Introduction
	Related Works
	A Landscape Theory of Self-Supervised-Learning
	Landscape of a Linear Model
	Landscape with Normalization

	Implications
	Relevance to Nonlinear Models
	Robustly inducing good collapses
	Robustness to Data Imbalance

	Conclusion
	Additional Numerical Results
	Landscape of a Nonlinear Model
	Setup for Imbalanced Data Experiments
	Additional Theoretical Concerns
	Collapse condition for normalization

	Proofs
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4

	Additional Theoretical Concerns
	Case of Data-Independent Non-Gaussian Augmentation


