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ABSTRACT

Recent advancements in deep generative models have significantly facilitated
protein-ligand structure design, which is crucial in protein engineering. However,
recent generative approaches based on diffusion models in this field usually start
sampling from a unified distribution, failing to capture the intricate biochemical
differences between receptors. This may limits their capacity to generate reliable
ligands for the corresponding receptors. Moreover, the current sampling process
incurs a heavy computational burden and inefficiency, which further escalates the
training demands on the model. To this end, we introduce a novel diffusion model
with customized perturbing and sampling for the protein-ligand design targeting
the specific receptor, named as Receptor-Specific Diffusion Model (RSDM). In
particular, the receptor-specific information is used to tailor fine-grained sampling
distributions via changing the noise for customized perturbing. Meantime, we
refine the sampling process using a predefined schedule to perform stepwise de-
noising and gradually decrease the influence of the receptor’s guidence in the lig-
and generation for customized sampling. The experimental reaults indicate that
RSDM is highly competitive with state-of-the-art learning-based models, includ-
ing the latest models like ElliDock and DiffDock-PP. Additionally, RSDM stands
out for its faster inference speed compared with all baseline methods, highlighting
its potential for generating dependable protein-ligand.

1 INTRODUCTION

Protein design is essential in biomedical research, particularly for targeting specific proteins, by
facilitating the development of highly specific drugs and deepening our understanding of biological
mechanisms. Protein-ligand structure design complements protein design by providing insights into
how a designed protein will interact with its receptor, such as drugs or substrates. To accurately
predict protein-ligand structures for a given protein-receptor, researchers need to determine ligand-
bound conformations that are specific to the receptor while ensuring the stability and functionality
of the resulting complex. Traditional search-based methods (Chen et al., 2003; De Vries et al., 2010;
de Vries et al., 2015) employ a scoring function paired with search techniques to identify the most
plausible predicted pose of a ligand matching experimental data. While these methods can yield
satisfactory results, they are computationally intensive and time-consuming.

Recently powerful learning-based methods (Gainza et al., 2019; Ganea et al., 2021; Yu et al., 2024;
Ketata et al., 2023; Guan et al., 2024; Evans et al., 2021) aim to predict the final pose of the input
ligand directly, prioritizing an end-to-end, data-driven approach. Deep learning generation meth-
ods based on diffusion are gaining increasing attention due to their global 3D structure generation
capability and ability to rapidly produce multiple conformations simultaneously. These methods
formulate protein-ligand structure design as a generative problem: given an interacting protein pair,
the goal is to estimate the distribution over all potential poses using a diffusion model. For example,
DiffDock-PP (Ketata et al., 2023) aims to directly predict the structure of the protein-ligand while
comprehensively considering both the ligand pose and the protein-receptor structure.

However, we have identified issues in the current diffusion process that may limit its performance
for ligand structure design. In the forward process, applying noise sampled from a unified distri-
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Figure 1: Diagram of RSDM. (A) The overall workflow of the receptor-specific diffusion process,
refined through customized perturbing and sampling. (B) The forward process of the receptor-
specific diffusion process, where random noise is sampled from a personalized sampling distribution
N (x̄(r), I), based on the corresponding receptor, and added to x

(l)
0 to obtain x

(l)
T . (C) The reverse

process of the receptor-specific diffusion process, where EGNN gradually recovers a realistic struc-
ture x

(l)
0 from initial random noise x

(l)
T conditioned on the receptor.

bution to each ligand fails to identify the inherent differences between receptors, overlooking their
unique structural and chemical properties. In the reverse process, most canonical diffusion-based
models require predicting the noise-free data from its current noisy version and then estimating its
noisy version at the previous time step. This two-step estimation process complicates the training
process and fails to account for the specific receptor’s guiding role in ligand generation, neglecting
its influence on producing accurate ligand structures.

To optimize the diffusion process mentioned above, as shown in Figure 1, we propose a novel
receptor-specific diffusion model (RSDM) towards generating ligand structures with customized
perturbing in the forward process and customized sampling in the reverse process. Specifically,
RSDM refines the diffusion process using two targeted strategies to enhance both the accuracy and
computational efficiency of diffusion-based approaches. In the forward process, personalized sam-
pling distribution applies customized noise perturbation for each ligand by tailoring the noise ac-
cording to receptor-specific information. In the reverse process, the RSDM employs customized
sampling via step-by-step data purification to iteratively refine the model’s output based on a prede-
fined schedule that incorporates receptor-specific information. This schedule enables the model to
directly predict the noise-perturbed sample from the previous time step based on the current sam-
ple while gradually reducing the receptor’s influence on ligand generation. This refined diffusion
process offers two key benefits: First, customized perturbing ensures that the generated ligand is
strongly influenced by its corresponding receptor during the initial phases of the sampling process,
which is crucial for maintaining receptor-ligand specificity. Second, customized sampling prevents
over-reliance on receptor guidance, allowing the model to generate a independent ligand structure
that is more biologically accurate and functional. Our experimental results demonstrate that RSDM
exhibits robust competitiveness against state-of-the-art learning-based models, while significantly
reducing inference times compared to all baseline methods.

2 RELATED WORK

2.1 PROTEIN-PROTEIN DOCKING

The existing complex structures capture merely a fraction of the vast number of interactions believed
to occur within living organisms. Manually collecting and labeling a sufficient amount of protein
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complexes data is impractical due to its time-consuming and labor-intensive property. Thus it is
highly necessary to discover effective and novel protein complexes to development protein-protein
docking experimental efforts with computational approaches. Traditional docking methods (Chen
et al., 2003; De Vries et al., 2010; de Vries et al., 2015; Yan et al., 2020) follow the scheme that
typically begins by sampling from the geometric space of the two interacting proteins, then use a
scoring function to assess binding affinity, and finally refine the structures obtained in earlier stages
using an energy model. Recently deep learning methods for protein-protein docking task can be
roughly classified into two groups, i.e., single-step and multi-step methods. The former (Ganea
et al., 2021; Sverrisson et al., 2022; Watson et al., 2023) predicts the complex structure directly in
one step, while the latter (Evans et al., 2021; McPartlon & Xu, 2023; Guan et al., 2024) iteratively
refines a set of proposed structures to produce its final predictions.

2.2 EQUIVARIANT GRAPH NEURAL NETWORKS (EGNNS).

Due to any problems exhibit 3D translation and rotation symmetries, such as point clouds (Uy et al.,
2019) and 3D molecular structures (Ramakrishnan et al., 2014), it is often desired that predictions
on these tasks are either equivariant or invariant with respect to different coordinate transformation.
Recent works (Fuchs et al., 2020; Jiao et al., 2023; Jing et al., 2021; Satorras et al., 2021; Yim et al.,
2023) are proposed from geometric first-principles to improve the ability of traditional GNNs on
achieving equivariance from E(3) transformations. SE(3)-Transformers (Fuchs et al., 2020) employs
the equivariance constraints on the self-attention to ensure the output of model is invariant to global
rotations and translations. EGNN (Satorras et al., 2021) computes the weight coefficient via the
relative squared distance between particles to guarantee equivariance, without requiring the spherical
harmonics (Fuchs et al., 2020; Thomas et al., 2018). FrameDiff (Yim et al., 2023) implements the
proposed theory as a SE(3) invariant diffusion model for protein backbone generation.

2.3 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) are increas-
ingly powerful tools to generate novel and effective samples by iteratively denoising data points
sampled from a prior noise distribution, which have shown unprecedented success in images (Dhari-
wal & Nichol, 2021; Nichol et al., 2021) and texts (Ramesh et al., 2022). Considering the great
potential of diffusion models in generating data, several recent works (Dhariwal & Nichol, 2021;
Ho & Salimans, 2022) have proposed expanding diffusion models to generate protein structures.
ProteinSGM (Lee et al., 2023) implements the diffusion process via learning inter-residue 6D co-
ordinates in an amino acid chain based on the idea of the score-based diffusion model (Song et al.,
2020). FoldingDiff (Wu et al., 2024) implements the diffusion model on the inter-residue angles
in protein backbones instead of 3D coordinates. Due to the primary objective of the initial dif-
fusion model is to understand the data distribution, some researchers incorporate classifier-based
guidance to implement controllable generation. DiffSBDD (Schneuing et al., 2022) employs the
diffusion model to design small-molecule ligands while keeping SE(3)-equivariance. DiffAb (Luo
et al., 2022) develops a deep learning model to generate antibodys explicitly by considering the 3D
information from antigens.

3 PRELIMINARIES

Denoising diffusion probabilistic models (DDPM) involves analyzing a real data distribution q(x)
and a sample x0 taken from it. During the forward process, Gaussian noise is incrementally in-
troduced to the sample over T steps, which is akin to a Markov chain. This process generates a
sequence of noisy samples x1, · · · ,xT , with the subscript t representing the diffusion timestep and
a pre-defined variance schedule β1, · · · , βT :

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1). (1)

The reverse process attempts to invert the forward process by learning a parameterized model on a
conditional distribution pθ(xt−1|xt). It is also a Markov chain, but it runs in the opposite direction,
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from the noise distribution back to the original data distribution:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)), pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), (2)

where p(xT ) ∼ N (0, I). The parameter θ is optimized by maximizing the evidence lower bound,
defined as Eq

[
ln pθ(x0:T )

q(x1:T |x0)

]
(Jordan et al., 1999; Blei et al., 2017). Sampling from the diffusion

model involves first drawing a sample from p(xT ) and then running the reverse diffusion process,
transitioning step-by-step from t = T to t = 0. Additionally, diffusion models can be easily
extended to conditional models by conditioning the reverse process on some context c, resulting in
pθ(xt−1|xt, c).

4 METHODS

4.1 DEFINITIONS AND NOTATIONS

In this work, our proposed model aims to generate a protein-ligand that can bind to a given protein-
receptor. Both the generated ligand and the receptor are modeled at the residue level. We define
a graph denoted as G = (V, E) to represent a protein. Each node vi ∈ V denotes the i-th residue
with a tuple (hi,xi), where hi ∈ Rd denotes the SE(3)-invariant embedding and xi ∈ R14×3 is the
3D coordinate of all atoms in the i-th residue. The collection of all nodes yields H(l) ∈ Rn×d and
X(l) ∈ Rn×14×3 for representing the ligand, composed of n residues. Similarity, H(r) ∈ Rm×d and
X(r) ∈ Rm×14×3 are used to represent the receptor, composed of m residues. We fix the receptor
X(r) and leverage it to predict the structure of the ligand with respect to this receptor. In this way,
the task of generating ligand structures can be formulated as a 3D point cloud completion task. The
ground-truth X(l)∗ is leveraged to evaluate the docking performance via comparing it with X̃(l),
where X̃(l) denotes the model’s prediction.

4.2 PROTEIN DIFFUSION MODEL IN 3D

Our proposed model is based on DDPM, which employs a Markov process to introduce random
noise to a sample x0 across T discrete time steps until it becomes indistinguishable denoted as xT .
Recent advancements in modeling 3D data have demonstrated that neural networks built to follow
geometric invariances can introduce meaningful biases, thereby enhancing model generalizability
and training efficiency (Batzner et al., 2022). Motivated by this insight, we incorporate an equiv-
ariant graph neural network (EGNN) (Satorras et al., 2021) into the diffusion model as fθ, which
demonstrates equivariance to transformations within the Euclidean group when handling 3D data.

Before generating ligand structures, we need to encode the input point cloud with atoms to cap-
ture the underlying structural dependencies between the ligand and the receptor. Specifically, we
construct a two-level encoder (Jin et al., 2022) to capture ligand-receptor interactions, including an
atom-level encoder and a residue-level encoder.

• The atom-level encoder takes atom types as model input and constructs a K nearest neighbor
graph for each atom. The edge embeddings between two atoms are derived from two perspec-
tives: radial basis function and position embedding. e(0)uv = RBF(||xu − xv||) denotes the edge
embedding derived according to the radial basis computed based on the distance between two
atoms u and v. While e

(1)
uv = Pe(posu, posv) represents the edge embedding learned from the

position embedding (Vaswani et al., 2017). Subsequently, the final edge embedding euv can be
obtained by: euv = e

(0)
uv ⊕ e

(1)
uv , where ⊕ signifies the concatenation operation.

• The residue-level encoder constructs a K nearest neighbor graph for each residue. After pooling
all atom embeddings belonging to the same amino acid and concatenating the resulting embedding
with the dihedral angle embedding obtained by calculating the angles between the backbone atoms
(N, Cα, C) with cosine function, a residue-level structure embedding is derived. Additionally, the
residue-encoder learns the semantic embedding of each residue based on chemical properties such
as polarity, hydropathy and so on. Considering the edge embedding between a pair of residues,
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the key distinction from the atom-level encoder lies in the incorporation of orientation feature
Oi ∈ SO(3).

The outputs of the two-level encoder are leveraged in the message passing process of EGNN to
update SE(3)-invariant embeddings h and predict 3D atom coordinates x. To enable EGNN to
predict the ligand structure given the corresponding receptor, we identify the Z nearest neighbor
residues of the receptor to determine the binding sites P = (hi,xi)i∈1,...,Z . The number of binding
sites Z is a hyper-parameter. Subsequently, EGNN is employed to encode and predict the structure
of the ligand based on the binding sites, thereby realizing the conditional prediction.

4.3 RECEPTOR-SPECIFIC DIFFUSION POLICY

Most canonical diffusion-based models for protein design aim to reconstruct corrupted (noised)
protein structures and generate new ones by reversing the corruption process. This is achieved
through iterative denoising xT , transforming initial random noise xT into a realistic protein x0. Our
receptor-specific diffusion model (RSDM) employs a tailored diffusion policy that adapts both the
forward and reverse processes for more accuracy and efficient ligand structure generation.

Personalized sampling distribution (PSD).

Figure 2: RMSD loss curves of Cα for
different methods on SAbDab dataset.

The use of noise sampled from a unified distribution, with-
out accounting for receptor differences, poses a significant
challenge for receptor-specific ligand generation. To ad-
dress this, we propose modifying the sampling process by
introducing a receptor-specific personalized noise distri-
bution. The motivation behind this refinement is to en-
sure that the receptor plays a dominant role in shaping the
noise at the initial timestep of sampling, thereby maintain-
ing receptor-specificity. The experimental results obtained
using RMSD (Root Mean Square Deviation) loss on Cα,
as shown in Figure 2, validate our above-mentioned mo-
tivation. Specifically, we adjust the traditional diffusion
model’s sampling from xT ∼ N (0, I) to xT ∼ N (x̄(r), I)
to create a personalized sampling distribution for each ligand, where x̄(r) ∈ R1×3 denotes the mean
value of the 3D atomic coordinates of the corresponding receptor associated with the binding sites
P . To implement this, in the forward process, we incorporate the receptor-specific information as
additional context in the forward process, extending the forward diffusion process described in Eq. 1
as follows:

q(x
(l)
t |x(l)

t−1, x̄
(r)) := N (x

(l)
t ;

√
1− βtx

(l)
t−1 +

γt
T
x̄(r), βtI), (3)

where βt denotes a pre-defined variance schedule and γt represents the impact coefficient at the
timestep t. Since we aim to adjust the original sampling distribution of the diffusion model from
N (0, I) to N (x̄(r), I), x(l)

t =
√
ᾱtx

(l)
0 +

√
1− ᾱtϵ is extended as:

x
(l)
t =

√
ᾱtx

(l)
0 +

√
1− ᾱtϵ+

t∑
i=1

(

t∏
j=i+1

√
αj)

γi
T
x̄(r), (4)

where αj = 1−βj and ᾱt :=
∏t

s=1 αs. Refer to Appendix A for a detailed derivation of Eq. 4. The
schedule of traditional diffusion models is updated to incorporate γ in the formulation of x(l)

t . This
update serves the purpose of integrating receptor-specific information into the diffusion process,
providing better control over its impact on the generated outputs. The schedule of γt is defined as:

γt =
1∏T

j=t+1

√
αj

=
1√
ᾱT

ᾱt

. (5)

When t = T , we have ᾱT := 0,
∏T

j=T+1

√
αj = 1 and

∑T
i=1(

∏T
j=i+1

√
αj)

γi

T x̄(r) = x̄(r).

Therefore, x(l)
t ∼ N (x̄(r), I) since ϵ ∼ N (0, I).

Step-by-step data purification (SDP). After the forward process, we next discuss the reverse pro-
cess, which goes from t = T to 0. In most existing diffusion models designed for proteins (Trippe

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

et al., 2022; Watson et al., 2023), the reverse process often proceeds with the model predicting x0

from the input xt and then deriving xt−1, which can be formulated as:

µθ(x
(l)
t , t) =

1
√
αt

(x
(l)
t − βt√

1− ᾱt
ϵ̃), (6)

ϵ̃ = (x
(l)
t −

√
ᾱtfθ(x

(l)
t , t))/

√
1− ᾱt, (7)

where fθ denotes the EGNN introduced in Subsection 4.2. Such the reverse process poses a chal-
lenge to the model’s predictive ability and complicates the training process. Therefore, in our
RSDM, the schedule of traditional diffusion models is updated not only to follow the progressive de-
noising process from xT to x0, but also to systematically diminish the influence of receptor-specific
information throughout the schedule of γ. Specifically, when given x

(l)
t and current time t, we

utilize fθ(x
(l)
t , t) to directly predict x(l)

t−1 under the guidance of x̄(r): x
(l)
t−1 = fθ(x

(l)
t , t, x̄(r)) ∼

pθ(x
(l)
t−1|x

(l)
t , t, x̄(r)), where pθ(xt−1|xt) from Eq. 2 can be extended as:

pθ(x
(l)
t−1|x

(l)
t , t, x̄(r)) := N (xt−1;µθ(x

(l)
t , t)− γt

T
x̄(r),Σθ(x

(l)
t , t)), (8)

This gradual and sequential denoising process iteratively refines the denoising results, reducing the
reliance on the model’s strong predictive capabilities for producing satisfactory results. Meantime,
this refined reverse process enables the model to gradually shift its focus away from the receptor
and towards refining the ligand structure independently. It’s important to note that such step-by-
step data purification may increase computational overhead compared to typical generative diffu-
sion—requiring computation T times in a training epoch. However, incorporating receptor-specific
information can effectively guide ligand generation, allowing for fewer diffusion steps. The results
shown in Tables 1 and 2 demonstrate that our model achieves satisfactory performance even with a
single-digit value for T . This indicates that the refined diffusion process can significantly reduce the
computational burden of the model during sampling, thereby improving its computational efficiency.

4.4 MODEL OPTIMIZATION

We design two loss functions, namely the reconstructed structure loss and the reconstructed coordi-
nate loss, as the objective function for model parameter optimization.

Reconstructed structure loss. Reconstructed structure loss comprises five distinct types of loss
designed to ensure the reliability of the generated ligands: (1) Llocal calculates the spatial distances
among all atoms within the same amino acid; (2) Lglobal computes the spatial distances among all
atoms between a ligand and a receptor; (3) LCα

local measures the distances between all Cα atoms
across all amino acids in the ligand; (4) LCα

global evaluates the distances between all Cα atoms be-
tween a ligand and a receptor; and (5) Langle quantifies the disparity between the predicted and the
gound-truth dihedral angles. The objective function used to compute Langle is an expected MSE
loss:

LMSE(V, Ṽ) =
1

n

n∑
i=1

(vi − ṽi)
2, (9)

where V denotes the ground-truth dihedral angles and Ṽ denotes the predictions of the model.
The vector vi signifies the predicted dihedral angles for the i-th residue. Other above-mentioned
four types of loss Llocal, Lglobal, LCα

local, and LCα

global are computed with Huber loss, which can be
formulated as:

LHuberLoss(y, ỹ) =

{
1
2 (y − ỹ)2 if |y − ỹ| ≤ δ

δ(|y − ỹ| − 1
2δ) otherwise,

(10)

where y and ỹ represent the ground-truth and model predictions, respectively. δ is a hyper-parameter
used to control the balance between the squared loss and the absolute loss.

Reconstructed coordinate loss. The objective of the reconstructed coordinate loss is to minimize
the expected KL divergence between the distribution of Eq. 3 and Eq. 8:

Lcoordinate = Eq

[
T∑

t=1

DKL(q(x
(l)
t−1|x

(l)
t ,x

(l)
0 , x̄(r))||pθ(x(l)

t−1|x
(l)
t , x̄(r)))

]
(11)

The training process of RSDM is summarized as Algorithm 1 in Appendix B.
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

▷ Datasets. We evaluate RSDM on two datasets:

Docking benchmark version 5 (DB5.5). DB5.5 (Vreven et al., 2015) is recognized as a gold stan-
dard dataset for its high-quality data, encompassing 253 high-quality complex structures. Following
the data partitioning approach of EquiDock (Ganea et al., 2021), DB5.5 is divided into training,
validation, and test sets with sizes of 203, 25, and 25, respectively.

The Structural Antibody Database (SAbDab). SAbDab (Dunbar et al., 2014) is a specialized
database curated for ligand-receptor complexes. The data is partitioned based on sequence similarity
assessed by MMseqs2 (Steinegger & Söding, 2017), resulting in a training set and a validation set
with sizes of 1781 and 300, respectively. For performance evalution, we employ an independent
test set with 54 ligand-receptor complexes curated from the RAbD (Adolf-Bryfogle et al., 2018)
database. The setting of the evaluation tests on SAbDab in this work aligns with that of Ellidock (Yu
et al., 2024).

▷ Baselines. To verify the effectiveness of RSDM, we compare it with five state-of-the-art meth-
ods for protein-protein docking, including the alphafold-based protein complex prediction model
Alphafold-Multimer (Evans et al., 2021), the template-based docking server HDock (Yan et al.,
2020), the regression-based docking model EquiDock (Ganea et al., 2021), the diffusion-based
docking model DiffDock-PP (Ketata et al., 2023) and interface-fitting approach docking model
Ellidock (Yu et al., 2024). The recommended hyperparameters of EquiDock, DiffDock-PP, and
Ellidock are applied in our evaluation tests. The original pre-trained models are used for HDock and
Alphafold-Multimer.

▷ Implementation. Our models are trained and tested on NVIDIA A40 GPUs, each with 48GB of
memory. The hierarchical encoder consists of four message passing layers to update the target node
embedding with a hidden dimension of 256. We utilize the Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 1×10−3. The dropout ratio is set to 0.1. The number of nearest neighbors K
is set to 9. RSDM is trained with β1 = 1× 10−4, βT = 0.7, and T = 8 for 500 epochs. We save the
model with the lowest loss evaluated on the validation set. The ligand structure generated by RSDM
is refined using OpenMM (Eastman et al., 2017) and then be utilized for performance evaluation.

▷ Evaluation metrics. To ensure a fair comparison, we follow the evaluation metrics used in
Ellidock (Yu et al., 2024), containing Complex Root Mean Squared Deviation (CRMSD), Interface
Root Mean Squared Deviation (IRMSD) and DockQ (Basu & Wallner, 2016). The details of these
evaluation metrics are introduced in Appendix C.

5.2 COMPARISONS OF THE DOCKING PERFORMANCE

Q: Whether RSDM can outperform the baseline methods that do not rely on searching mech-
anisms? Yes, RSDM has shown promising results compared to the baseline methods that do not
rely on searching mechanisms. The key advantage of RSDM lies in integrating receptor-specific
information directly into the diffusion process, enabling it to capture complex interactions more
effectively—a limitation present in many current diffusion processes.

We assess the docking performance of different methods on two datasets DB5.5 and SAbDab.
Experimental results are shown in Tables 1 and 2 for each respective dataset. From Tables 1
and 2, we observe that ❶ RSDM outperforms all the baseline methods without searching, includ-
ing EquiDock, DiffDock-PP, and Ellidock, across almost all evaluation metrics on both DB5.5 and
SAbDab datasets. These results demonstrate our model’s efficacy in tackling protein-protein dock-
ing challenges. By excelling across multiple evaluation metrics, our model ensures a holistic advan-
tage, offering a dependable solution for addressing complex protein-protein docking tasks. ❷ It is
notable that the mean scores of some models surpasses the corresponding median scores, whereas
our model exhibits mean scores lower or closer in comparison with its median scores. This dis-
crepancy suggests that while other models may excel in specific scenarios, our model showcases a
more robust overall performance, less susceptible to the influence of extreme values. This observa-
tion indicates the superior adaptability of our model’s adaptability across diverse docking scenarios,

7
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Table 1: Complex prediction results (DB5.5 test). Note that * means we use the pre-trained model
for testing, otherwise we train the model from scratch on the corresponding training set before
testing. The best results for methods without searching are in bold, and the second-best results are
underlined.

Metric
Method With Searching Without Searching

HDock* Multimer* EquiDock DiffDock-PP ElliDock Ours

CRMSD(↓)
median 0.327 1.987 14.136 14.109 12.995 10.044
mean 3.745 7.081 14.726 15.419 14.413 10.626

std 7.139 7.258 5.312 8.160 6.780 4.331

IRMSD(↓)
median 0.289 1.759 11.971 15.060 11.134 8.282
mean 3.548 7.141 13.233 16.881 12.480 8.550

std 6.842 7.889 4.931 11.397 4.966 1.955

DockQ(↑)
median 0.981 0.629 0.036 0.025 0.037 0.166
mean 0.791 0.482 0.044 0.035 0.060 0.159

std 0.386 0.418 0.034 0.033 0.060 0.049

Inference time 11478.4 56762.5 60.1 2103.1 36.7 5.2

thus it can provide consistent and reliable outcomes. ❸ For the comparison with the search-based
methods, although HDock yields the best results, there might be potential data leakage issues due
to its predictive template-based modeling approach (Yu et al., 2024). Similarly, Multimer extends
AlphaFold to support multiple chains, inheriting its powerful representation capabilities achieved
through the integration of various methods, such as multiple sequence alignments (MSAs) of ho-
mologous sequences. Moreover, our method is significantly more efficient than these two methods.
Further details on this efficiency can be found in Subsection 5.3.

To provide a more intuitive comparison, we visualize the distributions of CRMSD and IRMSD for
each method in Figure 3. Additionally, to illustrate the superiority of RSDM in prediction accuracy,
scatter plots of data distribution using DockQ as the evaluation metric on the SAbDab dataset are
presented in Figure 4. Additional scatter plots on the DB5.5 dataset are presented in Figure 5. As
depicted in Figures 3 and 4, we observe that ❶ RSDM exhibits a relatively symmetric distribution
with a moderate spread, suggesting a balanced performance across different docking scenarios. In
contrast, other models present narrower and taller distributions, implying higher consistency but
potentially limited adaptability to diverse protein-protein interactions. ❷ RSDM displays a shorter
tail, suggesting its more consistent docking performance. While other models exhibit relatively
elongated tails, indicating that these method can fail to provide reasonable results in certain specific
docking scenarios. ❸ The results in Figure 4 show that most data points are consistently clustered in
the lower right quadrant of the dashed line, demonstrating a higher level of precision and reliability
of RSDM in protein-protein docking compared to baseline methods.

(a) CRMSD of SAbDab (b) IRMSD of SAbDab (c) CRMSD of DB5.5 (d) IRMSD of DB5.5

Figure 3: Comparative performance of CRMSD and IRMSD on two test sets.

5.3 COMPARISONS OF THE INFERENCE TIME

Q: Whether RSDM’s inference time is competitive with all baseline methods? Yes, RSDM’s
inference time is superior to that of the baseline methods. The receptor-specific information en-
hances the guidance for ligand generation, allowing the model to converge more quickly and effi-
ciently during inference.
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Table 2: Complex prediction results (SAbDab test). Note that * means we use the pre-trained
model for testing, otherwise we train the model from scratch on the corresponding training set before
testing. The best results for methods without searching are in bold, and the second-best results are
underlined.

Metric
Method With Searching Without Searching

HDock* Multimer* EquiDock DiffDock-PP ElliDock Ours

CRMSD(↓)
median 0.323 13.598 14.301 11.764 11.541 14.811
mean 2.792 14.071 15.032 12.560 13.402 14.743

std 6.798 6.091 5.548 6.241 6.306 3.301

IRMSD(↓)
median 0.262 12.969 12.700 12.207 11.319 11.132
mean 2.677 12.548 12.712 12.401 11.550 11.546

std 6.803 5.435 5.390 6.353 4.681 2.258

DockQ(↑)
median 0.982 0.050 0.034 0.045 0.054 0.179
mean 0.861 0.104 0.055 0.076 0.082 0.176

std 0.310 0.172 0.067 0.090 0.084 0.064

Inference time 37328.8 197503.1 274.5 8308.7 91.2 15.8

(a) ElliDock (b) DiffDock-PP (c) EquiDock (d) Multimer

Figure 4: Comparative performance of DockQ on SAbDab test set.

(a) ElliDock (b) DiffDock-PP (c) EquiDock (d) Multimer

Figure 5: Comparative performance of DockQ on DB5.5 test set.

The evaluation of inference time in protein-protein docking models holds significant importance in
real-world applications. A efficient inference time enables researchers and practitioners to rapidly
screen vast libraries of potential protein-protein interactions. Here we compare the performance of
different protein-protein docking methods in terms of inference time on two test sets and results are
shown in Tables 1 and 2, accordingly.

As shown in Tables 1 and 2, several key observations emerge: ❶ the traditional search-based dock-
ing method HDock exhibits an exceedingly lengthy runtime, owing to the intricate template search
process and high computational demands. ❷ Despite being a deep learning model, Multimer still
requires additional time for database search to identify similar sequences based on input protein
sequences for constructing multiple sequence alignments. Therefore, Multimer is also significantly
slower than learning-based methods. ❸ Baseline learning-based models are 10 ∼ 1, 000 times faster
than HDock and Multimer. Notably, DiffDock-PP is relatively slower among these learning-based
method due to the requirement of numerous diffusion steps. ❹ RSDM achieves a notable improve-
ment in inference time in compare with all the baseline methods. The reason for this is that RSDM
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simplifies the complexity of model training and enhances the receptor guidance during generation,
enabling RSDM to achieve competitive performance with single digit diffusion steps.

5.4 ABLATION STUDIES

Figure 6: Coverage (% of full test set)
of complexes with a Dockq score < q
on the SAbDab dataset.

Q: Whether the personalized sampling distribution and
the step-by-step data purification are effective strategies
for enhancing the performance of the improved diffu-
sion process? In this subsection, we carry out an ablation
study to analyze the effect of each refinement of RSDM.
We consider two variants of RSDM and use DockQ for
performance evaluation. The comparison results are shown
in Figure 6. From the results, we find that ❶ Considering
that higher DockQ scores indicate better performance. The
slower convergence of the curve implies superior docking
performance. It’s evident that RSDM yields the best ex-
perimental results. ❷ Between 0 and 0.1, RSDM shows a
slower slope compared to RSDM w/o SDP and RSDM w/o PSD, indicating a slower rate of change in
coverage for smaller fractions of the test set. This suggests that RSDM achieves poor docking per-
formance less easily, emphasizing the importance of individual refinements in the RSDM. ❸ While
RSDM w/o SDP and RSDM w/o PSD converge similarly at DockQ fractions of 0.15-0.2, RSDM w/o
PSD has a significantly steeper slope between 0.0-0.1, suggesting that personalized sampling dis-
tribution effectively guides ligand prediction by tailoring the noise to maintain receptor specificity.
These observations collectively demonstrate the specific contributions of each refinement of RSDM.

5.5 HYPER-PARAMETER ANALYSIS

Figure 7: Impact of binding sets quan-
tity Z on average DockQ performance.

Q: How is the sensitivity of RSDM to the number of
binding sets Z? We evaluate the sensitivity of RSDM to
the number of binding sets Z ∈ {20, 40, 60, 80, 100} for
training 100 epochs. Figure 7 shows the performance of
RSDM with different value of Z on the SAbDab dataset.
The results indicate a clear trend of increasing average
DockQ performance with the increasing number of bind-
ing sites. This result is likely due to the greater number
of binding sites providing more interaction points, which
enhances the stability and accuracy of the docking process.
More binding sites can lead to a stronger and more precise
binding between the receptor and ligand, thus reflecting in higher DockQ scores.

6 CONCLUSION

We develop a novel model for protein-ligand structures generation based on the diffusion model,
which is strongly competitive with state-of-the-art learning-based methods. Crucial to the success
of the proposed model is to tailor an customized sampling distribution for each ligand and sim-
plify model prediction of raw ligand data through stepwise denoising. RSDM outperforms existing
learning-based models and performs competitively against search-based methods at the inference
time level. Experimental results on two benchmark datasets and ablation study demonstrate the
effectiveness of our proposed model.

In the future, we look forward to explore more sophisticated strategies for incorporating more do-
main knowledge to refine the reverse process of the protein diffusion model via tailoring customized
sampling distributions or investigating additional contextual information. Meantime, the limitation
of our model is that RSDM only considers ligand generation without considering the variations in
the binding sites, which can affect the ligand generation and binding capabilities. We hope the
protein-protein docking paradigm can provide an insight to enhance the flexibility, adaptability, and
robustness of our approach to better handle a wider range of receptor-ligand interaction scenarios.
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A DERIVATION

Below is a derivation of Eq. 4:
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B ALGORITHM

Algorithm 1 Training
1: // Forward diffuse
2: x

(l)
(1:T ) ∼ q(x

(l)
(1:T )|x

(l)
0 , x̄(r)) := N (x

(l)
t ;

√
1− βtx

(l)
t−1 +

γt

T x̄(r), βtI)
3:
4: // Reverse diffuse
5: x

(l)
T ∼ N (x̄(r), I)

6: for t = T, · · · , 1 do
7: x

(l)
t−1 ∼ pθ(x

(l)
t−1|x

(l)
t , x̄(r)) := N (xt−1;µθ(x

(l)
t , t)− γt

T x̄(r),Σθ(x
(l)
t , t)),

8: Take gradient descent step on
9: 1

n

∑n
i=1(vi − ṽi)

2 ▷ Compute the MSE loss
10: 1

2 (y− ỹ)2 if |y− ỹ| ≤ δ, else δ(|y− ỹ| − 1
2δ) ▷ Compute the Huber loss

11: Eq

[∑T
t=1 DKL(q(x

(l)
t−1|x

(l)
t ,x

(l)
0 , x̄(r))||pθ(x(l)

t−1|x
(l)
t , x̄(r)))

]
▷ Compute the KL di-

vergence
12: end for
13: return x0

C EVALUATION METRICS

We evaluate all models via Complex Root Mean Squared Deviation (CRMSD), Interface Root Mean
Squared Deviation (IRMSD) and DockQ (Basu & Wallner, 2016). Specifically, when given both the
ground-truth and predicted complex structures, CRMSD is calculated by aligning them with the
Kabsch algorithm (Kabsch, 1976) and subsequently computing the CRMSD. Similarly, IRMSD is
determined by aligning their interface residues and calculating the RMSD over the interface. DockQ
serves as a common metric for protein-protein docking models, represented as a weighted average
of three components: contact accuracy, interface RMSD, and ligand RMSD.
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D VISUALIZATION OF CDR-H3

CDR (Complementarity Determining Region) refers to specific regions within antibodies located in
the variable regions, primarily responsible for antigen binding. The CDR comprises six variable re-
gions: CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3, where ”H” stands for heavy
chain and ”L” for light chain. While all CDR regions contribute to antigen binding, CDR-H3 is
often considered the most critical. This is because CDR-H3 exhibits the highest variability and ac-
counts for much of the specificity, while other CDRs are relatively conserved. In this subsection,
we demonstrate the effectiveness of our model by predicting the CDR-H3 region, further highlight-
ing its significance in predicting antibody structures. HERN (Jin et al., 2022) is a recent generative
model designed for antibody structure prediction on the CDR-H3 region. We compare our model
with HERN and present the comparative performance in Figure 8.

(a) HERN DockQ=0.397 (b) RSDM DockQ=0.528 (c) 5MES Ground-Truth

(d) HERN DockQ=0.494 (e) RSDM DockQ= 0.512 (f) 1FE8 Ground-Truth

(g) HERN DockQ=0.382 (h) RSDM DockQ=0.532 (i) 3NID Ground-Truth

Figure 8: Comparison of visualization results between the structures predicted by HERN and
RSDM.
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