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Abstract
We study multi-agent reinforcement learning (RL) where agents cooperate through1

asynchronous communications with a central server to learn a shared environ-2

ment. Our first focus is on the case of multi-agent contextual bandits with general3

function approximation, for which we introduce the Async-NLin-UCB algorithm.4

This algorithm is proven to achieve a regret of Õ(
√

T dimE(F) logN(F)) and a5

communication complexity of Õ(M2 dimE(F)), where M is the total number of6

agents and T is the number of rounds, while dimE(F) and N(F) are the Eluder7

dimension and the covering number of function space F respectively. We then8

progress to the more intricate setting of multi-agent RL with general function ap-9

proximation, and present the Async-NLSVI-UCB algorithm. This algorithm enjoys10

a regret of Õ(H2
√
K dimE(F) logN(F)) and a communication complexity of11

Õ(HM2 dimE(F)), where H is the horizon length and K the number of episodes.12

Our findings showcase the provable efficiency of both algorithms for collaborative13

learning within nonlinear environments and minimal communication overhead.14

1 Introduction15

Multi-agent reinforcement learning (RL) is an important paradigm in RL, and has been successfully16

applied to real-world tasks such as robotics [Williams et al., 2016, Liu et al., 2019, Ding et al., 2020,17

Liu et al., 2020, Na et al., 2022], games [Vinyals et al., 2017, Berner et al., 2019, Jaderberg et al.,18

2019, Ye et al., 2020], and control systems [Bazzan, 2009, Yu et al., 2014, 2020, Min et al., 2022, Xu19

et al., 2023]. By learning cooperatively, agents benefit from sharing learning experiences, enabling20

them to collectively enhance their decision-making capabilities. This collaborative process is usually21

accomplished through the utilization of a central server, whose task is to aggregate local data and22

deliver feedback for the agents.23

There has been an excellent line of work establishing provably efficient algorithms for multi-agent24

bandits and RL. However, most existing works are restricted to the synchronous setting, where com-25

munications between all agents and the server must happen simultaneously. This is impractical since26

in many scenarios the availability of agents may vary and be unpredictable. Ideally, communication27

should be allowed to happen asynchronously to offer the agents more flexibility. He et al. [2022] and28

Min et al. [2023] studied this setting respectively for linear contextual bandits and linear Markov29

Decision Processes (MDPs), both of which assumes linearity in the environment, and introduced30

algorithms with low regret and communication cost. Yet the linear function class is quite limited, and31

does not encompass practical reinforcement learning scenarios where nonlinearity is prevalent.32

To address the aforementioned drawback, in this work, we tackle environments with general function33

approximation, broadening the applicability of the algorithm to more realistic and complex scenarios.34

We first delve into multi-agent contextual bandits with general function approximation, where multiple35

agents interact with homogeneous environments in parallel to solve a common objective. Notably,36

the communication protocol is designed to be flexible and asynchronous, allowing agents to initiate37

communication with the server and acquire new policy functions whenever the need arises. The38

primary objective is to minimize total regret while reducing communication cost as much as possible.39
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We propose an algorithm Async-NLin-UCB, which adapts a fully asynchronous communication40

protocol, and leverages various methods for tackling nonlinear function approximation. Despite the41

flexibility of communication, our algorithm performs almost as well as a single agent, in terms of a42

regret that is mostly independent of the number of agents and a low communication cost.43

We then progress to multi-agent RL with general function approximation under similar requirements44

and objectives. We propose an algorithm named Async-NLSVI-UCB based on Least-Squares Value45

Iteration (LSVI) to learn the underlying Markov decision processes (MDPs), which demonstrates46

similar advantages with provably low regret and communication cost.47

Our main contributions are summarized in the following:48

• For asynchronous multi-agent nonlinear contextual bandits, we propose the algorithm49

Async-NLin-UCB, which enjoys an Õ(
√
T dimE(F) logN(F) + dimE(F)) regret and an50

Õ(M2 dimE(F)) communication complexity, where dimE(F) and N(F) are respectively the51

Eluder dimension and the covering number of function space F .52

• For asynchronous multi-agent nonlinear MDPs, we propose the algorithm Async-NLSVI-UCB,53

which enjoys an Õ(H2
√
K dimE(F) logN(F) + H2 dimE(F)) regret and a communication54

complexity of Õ(HM2 dimE(F)).55

• At the core of our algorithm, we design a communication criterion in order to tackles the challenges56

posed by both asynchronous communication and the nonlinearity of function approximation. To57

guarantee a low communication cost, we propose a low switching communication criterion that58

allows the agent to trigger communication rounds.59

• We carefully design our download content from server to local agents, which consist only of60

decision and bonus functions, with no mention of any specific historical data. This effectively61

protects user data against exposure by disallowing local users from obtaining the data of others.62

Notation. We use lower case letters to denote scalars. We denote by [n] the set {1, . . . , n}. For63

two positive sequences {an} and {bn} with n = 1, 2, . . . , we write an = O(bn) if there exists an64

absolute constant C > 0 such that an ≤ Cbn holds for all n ≥ 1. We use Õ(·) to further hide the65

polylogarithmic factors. For two non-negative integers a, b satisfying a < b and a sequence {si}66

indexed by integers i, we use s[a:b] to denote the subsequence {sa, sa+1, · · · , sb}.67

2 Related Work68

2.1 Multi-Agent Bandits69

First, there is a multitude of previous work on distributed or federated multi-armed bandits and70

stochastic linear bandits [Liu and Zhao, 2010, Szorenyi et al., 2013, Landgren et al., 2016, Chakraborty71

et al., 2017, Landgren et al., 2018, Martínez-Rubio et al., 2019, Sankararaman et al., 2019, Wang et al.,72

2020a,c, Zhu et al., 2021, Huang et al., 2021]. For the more realistic setting of contextual bandits, most73

previous work are within the scope of linear contextual bandits with synchronized communication.74

Korda et al. [2016] introduced two novel distributed confidence ball (DCB) algorithms for linear75

bandit problems in peer-to-peer networks. Wang et al. [2020c] considered both P2P and star-shaped76

communication, achieving near-optimal regret and low communication cost that is largely independent77

of the time horizon in their algorithm DisLinUCB. Dubey and Pentland [2020] proposed FedUCB,78

an algorithm focusing on differential-privacy.79

Li and Wang [2022] first considered an asynchronous communication protocol and proposed the80

algorithm Async-LinUCB with near-optimal regret, yet the algorithm contains a download step81

for all agents triggered by the central server. Their results are flexible and contains a parameter to82

control the trade-off between regret and communication cost. He et al. [2022] improved the setting83

to a fully asynchronous communication, proposing the algorithm FedLinUCB with near-optimal84

regret of Õ(d
√
T ) and low communication cost of Õ(dm2), comparable to the benchmark in single-85

agent contextual linear bandits [Abbasi-Yadkori et al., 2011]. We consider the same communication86

protocol in our results. A summary of these results along with ours can be found in the first four rows87

of Table 1.88

2.2 Multi-Agent RL89

Multi-agent reinforcement learning is decidedly more challenging than contextual bandits. There is90

also a vast literature on this setting, with many works discussing different aspects of multi-agent RL91

2



Algorithm Regret Communication Fully
asynchrnous

DisLinUCB
d
√
MT log2 T d3M3/2 ✘

[Wang et al., 2020c]
Async-LinUCB

dM (1−γ)/2
√
T log T dM1+γ log T ✘

[Li and Wang, 2022]
FedLinUCB

d
√
T log T dM2 log T ✓

[He et al., 2022]
Async-NLin-UCB √

dimE logNT log T dimE M2 log2 T ✓
(ours)

Coop-LSVI
d3/2H2

√
MK logK dHM3 ✘

[Dubey and Pentland, 2021]
Async-Coop-LSVI-UCB

d3/2H2
√
K logK dHM2 logK ✓

[Min et al., 2023]
Async-NLSVI-UCB √

dimE logNH2
√
K logK dimE HM2 log2 K ✓

(ours)

Table 1: Comparison of our result against baseline methods for multi-agent contextual bandits and
MDPs. Note that the first four rows are for contextual bandits, and the last three are for reinforcement
learning. Only our algorithms are in the general function approximation setting. We abbreviate
dimE = dimE(F) and N = N(F), and hide logarithmic factors. For algorithms with synchronized
communication, each communication round actually corresponds to M rounds in asynchronous
settings, which explains the extra M terms.

than ours. For example, there are works focusing on convergence guarantees [Zhang et al., 2018b,a,92

Wai et al., 2018], non-stationary or heterogeneous environments [Lowe et al., 2017, Yu et al., 2021,93

Dubey and Pentland, 2021, Kuba et al., 2022, Liu et al., 2022, Jin et al., 2022], and deep federated RL94

[Clemente et al., 2017, Espeholt et al., 2018, Horgan et al., 2018, Nair et al., 2015, Zhuo et al., 2019],95

to name a few. We refer to a recent survey on federated reinforcement learning Qi et al. [2021] for a96

more comprehensive summary.97

Narrowing it down to multi-agent RL with function approximation, the benchmark is the LSVI-UCB98

algorithm in the single-agent setting [Jin et al., 2020], with an Õ(d3/2H2
√
K) regret. Dubey and99

Pentland [2021] proposed CoopLSVI for multi-agent linear MDPs, which requires a synchronized100

communication through central server, and proves a regret of Õ(d3/2H2
√
MK). They also extended101

their result to the heterogeneous setting. Min et al. [2023] considered the fully asynchronous setting102

and introduced the Async-Coop-LSVI-UCB algorithm, with a Õ(d3/2H2
√
K) regret not dependent103

on the number of agents M , as well as a low communication cost. A summary of these results along104

with ours can be found in the last three rows of Table 1.105

2.3 General function approximation106

Reinforcement learning with general function approximation extends the well-studied case of linear107

MDPs to more general classes of MDPs, and has gained a lot of traction in recent years [Wang et al.,108

2020b, Jin et al., 2021, Foster et al., 2023, Du et al., 2021, Agarwal and Zhang, 2022, Agarwal109

et al., 2023]. Previous works focus on different measures of complexity for the function classes, for110

example the Bellman rank proposed by Jiang et al. [2017], the Bellman Eluder dimension introduced111

in Jin et al. [2021], the Decision-Estimation Coefficient in Foster et al. [2023], and generalized Eluder112

dimension in Agarwal et al. [2023]. Our work considers the Eluder dimension with the introduction113

of uncertainty estimators D2, which has been widely utilized to establish results in RL with general114

function approximation [Agarwal et al., 2023, Zhao et al., 2023, Ye et al., 2023, Di et al., 2023].115

3 Preliminaries116

In this section, we introduce the formal definition of both multi-agent nonlinear contextual bandits117

and MDPs and some related concepts, and discuss the asynchronous communication protocol.118

3.1 Multi-Agent Contextual Bandits with General Function Approximation119

We assume a global action set A that is known to all agents. At each round t ∈ [T ], a single arbitrary120

agent mt ∈ [M ] is chosen to participate. The agent receives a contextual decision set At ⊆ A and121

chooses from the set an action at ∈ At to perform, and subsequently receives a random reward rt.122
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The assumption of general function approximation is that the reward is generated according to123

rt = f∗(at) + ηt, (1)

where f∗ is the ground truth objective function, and ηt is a random noise variable. We assume the124

the objective function lies within a known function class F . In addition, we also make the following125

assumptions regarding the function class and noise variables, which are standard assumptions for126

contextual bandits [Abbasi-Yadkori et al., 2011, He et al., 2022]:127

Assumption 3.1. Suppose the following conditions hold for the contextual bandits environment:128

• For any f ∈ F and a ∈ A, |f(a)| ≤ 1;129

• ηt is R-sub-Gaussian conditioned on data history: E
[
eληt

∣∣a1:t,m1:t, r1:t−1

]
≤ exp(R2λ2/2),∀λ.130

Learning Objective. The primary goal of contextual bandits is to minimize the cumulative regret131

Reg(T ) =
∑T

t=1[f
∗(at)−maxa∈At

f∗(a)].

Notice that this summation is across all time steps does not depend on agent participation order,132

as should be the case for the resulting regret bound. To achieve this goal, agents are allowed to133

communicate with the server to upload their interaction history and update their policy. The secondary134

learning objective is to reduce communication overhead. We will explain the communication protocol135

further in Section 3.4.136

3.2 Multi-Agent Episodic MDPs with General Function Approximation137

We consider episodic MDPs, which are a classic family of models in reinforcement learning [Sutton138

and Barto, 2018]. It is characterized by the following elements, which we assume to be homogeneous139

across all agents: a state space S, an action space A, the horizon length H , transition probability140

functions P = {Ph(·|·, ·)}Hh=1 and reward functions {rh(·, ·)}Hh=1). Similar to the bandit case,141

for each episode k = 1, · · · ,K, a single agent m = mk is chosen to participate. An episode142

k begins with an initial state sk1 , which is drawn from an unknown fixed distribution. Then for143

steps h = 1, · · · , H , the participating agent m selects an action akh based on the observed state144

skh. After each action, the agent receives a reward rkh = rh(s
k
h, a

k
h), where rh : S × A → R is the145

reward function at step h. Here for the sake of convenience, we assume the reward function to be146

deterministic, but it is not difficult to generalize our result to stochastic rewards. We also assume147

rh(s, a) ∈ [0, 1] for all (s, a) ∈ S ×A without loss of generality. The environment then transitions148

to the next state according to skh+1 ∼ Ph(·|skh, akh), where Ph is the transition probability at step h.149

The episode terminates when rH is observed.150

The strategy an agent employs to interact with the environment is called the agent’s policy, which can151

be described by a set of decision functions π = {πh}Hh=1, where πh : S → A is the decision function152

at level h, mapping the current state to an action to select.153

Value Functions. For any policy π = {πh}, we define Q-value functions and V -value functions:154

Qπ
h(sh, ah) := E

[∑H
h′=hrh′(sh′ , ah′)

∣∣∣∣sh, ah], V π
h (sh) := E

[∑H
h′=hrh′(sh′ , ah′)

∣∣∣∣sh], (2)

where the expectation is taken over the trajectory (s1, a1, · · · , sh, ah), determined by the transition
probability functions P and policy π. The optimal strategy π∗ is the maximizer of the value functions:

π∗ := argmaxπ V
π
1 (s1),∀s1.

We also have optimal value functions Q∗
h := Qπ∗

h and V ∗
h := V π∗

h , which satisfy Bellman equations155

Q∗
h(sh, ah) = rh(sh, ah) + E

[
V ∗
h+1(sh+1)

∣∣sh, ah], V ∗
h (sh) = maxa∈A Q∗

h(sh, a). (3)

Function Approximation. We approximate Q-value functions with function classes {Fh}Hh=1,
which contain real value functions with domain S ×A. One basic assumption is that Q∗

h ∈ Fh for
all steps h ∈ [H]. Now with the convention that functions at level H + 1 are uniformly zero, i.e.,
fH+1 = 0, we define the Bellman operator Th:

(Thfh+1)(sh, ah) := E
[
rh(sh, ah) + fh+1(sh+1)

∣∣sh, ah],
and we expect Th to map any function in Fh+1 to a function in Fh, i.e., ThFh+1 ⊆ Fh. This is156

called the completeness assumption, which is a fundamental assumption in RL with general function157

approximation [Wang et al., 2020b, Jin et al., 2021].158
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Learning Objective. The primary goal in multi-agent MDPs is to minimize the cumulative regret
over K episodes

Reg(K) =
∑K

k=1

[
V ∗
1 (s

k
1)− V

πm,k

1 (sk1)
]
,

where πm,k is the policy of agent m = mk at round k, while the secondary objective is to minimize159

the communication cost.160

3.3 Eluder Dimension and Covering Number161

To measure the complexity of the learning objective, Russo and Van Roy [2013] first proposed the162

concept of Eluder dimension, which we define below.163

Definition 3.2 (ϵ-dependence). For a function class F on domain D, a point z ∈ D is ϵ-dependent164

on Z ⊆ D if, for any f1, f2 ∈ F satisfying
√∑

z′∈Z
(
f1(z′)− f2(z′)

)2 ≤ ϵ, it must hold that165

|f1(z)− f2(z)| ≤ ϵ. Accordingly, z is ϵ-independent of Z if it is not ϵ-dependent on Z .166

Definition 3.3 (Eluder dimension). The ϵ-Eluder dimension dimE(F , ϵ) is the length of the longest167

sequence of elements in D satisfying that, for some ϵ0 > ϵ, each element is ϵ0-independent of the set168

consisting of its predecessors.169

It has been demonstrated that the Eluder dimension roughly corresponds to regular dimension170

concepts in linear and quadratic cases [Russo and Van Roy, 2013], and that the Eluder family is171

strictly larger than the generalized linear class [Li et al., 2022]. Note that our Eluder definition can be172

applied to either the contextual bandit case with D = A or the MDPs case with D = S ×A.173

We also introduce covering number for function classes [Wainwright, 2019] in the following:174

Definition 3.4 (Covering number). An ϵ-cover of F is any subset Fϵ ⊆ F such that for any f ∈ F ,175

there exists f ′ ∈ Fϵ that ∥f − f ′∥∞ ≤ ϵ. The covering number of F , denoted by N(F , ϵ), is the176

minimal cardinality of its ϵ-cover.177

3.4 Communication Protocol178

We consider a star-shaped communication model [He et al., 2022, Min et al., 2023], where the agents179

communicate through a central server to collaborate. To ensure asynchronous communication, we180

mandate that all communications must be initiated by a participating agent. Specifically, at the end of181

a time step / episode, the agent will decide whether or not to trigger a communication round. If so,182

the agent uploads its local data history and receives some global data for future decision making. The183

communication cost is the total number of communication rounds initiated by the agents.184

One variability is the form of global data that the communicating agent downloads from server. It185

may be tempting to have the server send all its stored trajectories to the agent for future decision186

making, but this will unnecessarily expose other agents’ data to the current participating agent. We187

will come back to this issue and our solution in Section 4.2.188

4 Multi-Agent Contextual Bandits189

In this section, we introduce the Asynchronous Nonlinear UCB (Async-NLin-UCB) algorithm190

designed for multi-agent contextual bandits with general function approximation, and provide a191

theoretical result for its regret and communication cost.192

4.1 Algorithm: Async-NLin-UCB193

Algorithm 1 takes as input the total number of time steps T , regularization parameter λ, communica-194

tion parameter α and exploration radii {βt}Tt=1.195

In the algorithm, there are some variables that go through different versions as t progresses through196

1, · · · , T . For clarity, here we give them an extra subscript t to denote the version of that variable197

before (not included) the least squares calculation on Line 12 at round t.198

Throughout the learning process, the server maintains a global history set Zser
t that stores action-199

reward pairs (a, r) ∈ A× [0, 1], initialized on Line 2 and updated only during communication rounds.200

Each local agent m maintains a decision function fm,t for taking action, a bonus function bm,t for201

checking communication criterion, and a local data history set Z loc
m,t, all initialized on Line 3. Each202

step of Algorithm 1 contains two parts: local exploration and server updates.203

Part I: Local Exploration. At step t a single agent m = mt is active (Line 5). It receives a decision204

set, finds the greedy action according to its decision function fm,t, receives a reward, and updates its205

local dataset Z loc
m,t (Lines 5 - 7).206
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Algorithm 1 Async-NLin-UCB
1: Input: total number of rounds T , parameters λ, α, βt for t = 1, . . . , T .
2: Server init: Set Zser = ∅.
3: Local init: For all m ∈ [M ], set fm = 1, bm = BA(∅,F ;λ, β0) and Z loc

m = ∅.
4: for t = 1, . . . , T do
5: Agent m = mt ∈ [M ] is active.
6: Receive decision set At ⊆ A and take action at ∈ argmaxa∈Dt

fm(a) and receive reward rt.
7: Update local history Z loc

m = Z loc
m ∪ {(at, rt)}.

8: if switch condition (4) is met then
9: Send new data Z loc

m to server.
10: on server:
11: Update Zser = Zser ∪ Z loc

m .
12: Calculate f̂ according to (5) and the bonus function b = BA(Z

ser,F ;λ, βt).
13: Send f̂ + b and b to agent m.
14: end of server
15: Agent m receives decision and bonus functions fm = f̂ + b, bm = b, then set Z loc

m = ∅.
16: end if
17: end for

After exploration, the agent checks if the switch condition is true using its bonus function:207 ∑
(a,r)∈Z loc

m,t
b2m,t(a)/

(
β2
t′ + λ

)
≥ α, (4)

where t′ is the last time step when agent m communicated with the server. If so, the agent initiates a208

communication round and uploads its local data (Line 9), prompting the server to begin global policy209

updates. We will discuss the reasons behind this switch condition in Section 4.2.210

Part II: Server Updates. After receiving a new local data history from an agent, the server merges211

the data into its global dataset Zser
t (Line 11), and calculate a function f̂t+1 ∈ F which minimizes212

the sum of squares error according to the current dataset Zser
t (Line 12):213

f̂t+1 = argminf∈F
∑

(a,r)∈Zser
t

(
f(a)− r

)2
. (5)

The next step is to obtain a bonus function bt+1 from the oracle BA from Definition 4.1 (Line ??).214

We discuss the specifics of this construction in detail up next in Section 4.2. Finally, the server sends215

the optimistic value function f̂t+1 + bt+1 and the bonus function bt+1 back to agent m for future216

exploration and updates; agent m also resets its local data history to an empty set (Lines 13 and 15).217

4.2 Uncertainty Estimators and Bonus Functions218

In this section, we introduce uncertainty estimators and bonus functions, and give a detailed explana-219

tion for our communication criterion (4). Most of these apply to the MDPs setting as well.220

Uncertainty Estimators. First we define the uncertainty estimator of new data a against data history221

Z, which is considered in many works on bandits and RL with general function approximation222

[Gentile et al., 2022, Agarwal et al., 2023]:223

Dλ,F (a;Z) = supf1,f2∈F |f1(a)− f2(a)|
/√

λ+
∑

(a′,r)∈Z |f1(a′)− f2(a′)|2, (6)

here λ is the regularization parameter, F is a function class. Intuitively, the uncertainty estimator224

measures the difference between functions on new data a against the difference on historical data Z.225

Switch Condition Based On Uncertainty Estimators. The determinant-based criterion is a226

common technique used in contextual bandits and RL with linear function approximation to reduce227

policy switching or communication cost [Abbasi-Yadkori et al., 2011]. For nonlinear function228

approximation, one can use uncertainty estimators to formulate a new form of switch condition:229 ∑
(a,r)∈Znew

t
D2

λ,F (a;Z
old
t ) ≥ α. (7)

where we use Znew
t and Zold

t to denote newly accumulated data and old historical data. This criterion230

has a similar function as the determinant-based criterion in linear settings. Parameter α controls231

communication frequency: smaller α indicates more frequent communication, more accurate decision232

functions and smaller regret, thus implying a trade-off between regret and communication cost.233

Bonus Function Oracle. Next, we introduce bonus functions obtained through oracles that234

approximate the uncertainty estimators.235
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Definition 4.1 (Bonus Function Oracle BD). Given domain D, the oracle BD(Z,F ;λ, β) takes the236

following as inputs: a dataset Z consisting of a series of data points (z, e), where z ∈ D and e is some237

additional data content; function class F with functions f : D → R≥0; regularization parameter λ238

and exploration radius β. It returns a function b ∈ WD : D → R≥0 satisfying for any z ∈ D that239

• b(z) ≥ max
{∣∣f1(z)− f2(z)

∣∣ : f1, f2 ∈ F ,
∑

(z,e)∈Z

(
f1(z)− f2(z)

)2 ≤ β2
}

;240

• Dλ,F (z;Z) ≤ b(z)/
√
β2 + λ ≤ CBDλ,F (z;Z),241

where CB is an absolute constant.242

Remark 4.2. Similar bonus function oracles have been proposed in previous works (Definition 3243

in Agarwal et al. [2023]). The accessibility of these oracles is also supported by previous works244

that proposed methods to compute bonus functions [Kong et al., 2023, Wang et al., 2020b]. In this245

definition, we leave the domain and data format to be variable so the oracle can be applied to both246

contextual bandits and MDPs. For bandits, the domain is A, and the data format has z = a and e = r.247

The first property of the bonus function guarantees the optimism of decision functions f̂t+1 + bt+1248

(see Lemma 6.1 for MDPs or Lemma A.2 for bandits), while the second property links bonuses to249

uncertainty estimators.250

Switch Condition Based On Bonus Functions. If we try to adapt the switch condition (7) in our251

setting, a local agent will require access to historical data Zold
t to calculate uncertainty estimators252

D2
λ,F (a;Z

old
t ). For multi-agent learning, this dataset consists of the collective data from all agents,253

and giving local agent access is a clear violation of data privacy. Our solution is to let local agents254

download bonus functions and set communication criterion to (4), using bonus functions instead of255

uncertainty estimators.256

Decision Functions Based On Bonus Functions. Another benefit of introducing the bonus function257

is evident from our exploration method in line 6. A common practice for nonlinear RL algorithms is258

to construct confidence sets of functions during policy update, and find the optimal function within the259

confidence sets during exploration [Agarwal et al., 2023, Ye et al., 2023]. However, in a multi-agent260

setting, this would involve the download of confidence sets, which is impractical due to the complex261

nature of function classes. With the bonus function, local agents need only download the decision262

function from the server for future exploration, which for contextual bandits is simply f̂t+1 + bt+1.263

4.3 Theoretical Results264

Our main results for Algorithm 1 are summarized in the following theorem, which provides a regret265

upper bound and communication complexity order.266

Theorem 4.3. By taking γ = O(1/T ), βt = Cβ,1

(√
λ + RC(M,α) log(3MN(F , γ)/δ)

)
and267

C(M,α) =
√
1 +Mα

(√
1 +Mα+M

√
α
)
, the regret of Algorithm 1 within T rounds is268

O
(√

T β̃1

√
(1 +Mα) dimE log(T/min{1, λ}) + (1 +Mα) dimE log2(T/min{1, λ})

)
,

where we abbreviate dimE := dimE(F , λ/T ); the total communication complexity is269

O
(
(1 +Mα)2/α dimE log2(T/min{1, λ})

)
Remark 4.4. When reduced to linear contextual bandits, where dimE(F , λ/T ) = Õ(d) and270

logN(F , γ) = Õ(d), our result on regret correspond exactly to Theorem 5.1 of He et al. [2022],271

except for an extra 1 + Mα term in the communication cost, an unimportant term when taking272

α = 1/M2 that comes from the complication of communication cost analysis in nonlinear settings.273

5 Multi-Agent Reinforcement Learning274

In this section, we introduce the Asynchronous Nonlinear Least Squares Value Iteration UCB275

(Async-NLin-UCB) algorithm for multi-agent MDPs with general function approximation, and a276

corresponding theoretical result.277

5.1 Algorithm: Async-NLSVI-UCB278

To better represent the elements in the datasets, we sometimes use oh to represent the tuple279

(sh, ah, rh, sh+1) and zh to represent (sh, ah) when there is no confusion. Similar to the ban-280

dit case, we give some variables an extra subscript k here for clarity, which denotes the version of the281

variable before (not included) Line 14 at episode k.282
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Algorithm 2 Federated Nonlinear MDPs
1: Input: total number of rounds K, parameters λ, α, βk,h for k = [K] and h ∈ [H]
2: Server init: Set Zser

h = ∅ for all h ∈ [H].
3: Local init: ∀m ∈ [M ] and h ∈ [H], set Qm,h = 1, bm,h = B(∅,Fh;λ, β0,h), Z loc

m,h = ∅.
4: for k = 1, . . . ,K do
5: Agent m = mk ∈ [M ] is active and receives initial state sk1 ∈ S.
6: for h = 1, . . . ,H do
7: Take action akh = argmaxa∈A Qm,h(s

k
h, a), receive reward rkh and next state skh+1.

8: Update Z loc
m,h = Z loc

m,h ∪ {(skh, akh, rkh, skh+1)}.
9: end for

10: if switch condition (8) is met then
11: Send new data {Z loc

m,h}h∈[H] to server.
12: on server:
13: Update Zser

h = Zser
h ∪ Z loc

m,h.
14: Initialize QH+1 = VH+1 = 0.
15: for h = H,H − 1, · · · , 1 do
16: Calculate f̂h according to (9) and bonus function bh = BS×A(Z

ser
h ,Fh;λ, βk,h).

17: Calculate Qh and Vh according to (11).
18: end for
19: Send {Qh}Hh=1 and {bh}Hh=1 to agent m.
20: end of server
21: Agent m receives Qm,h = Qh, bm,h = bh and resets Z loc

m,h = ∅ for all h ∈ [H].
22: end if
23: end for

The server maintains global historical datasets Zser
k,h containing sequences of tuples (sh, ah, rh, sh+1),283

initialized in Line 2. Each local agent m maintains optimistic value functions {Qm,k,h}Hh=1, bonus284

functions {bm,k,h}Hh=1, and local datasets {Z loc
m,k,h}Hh=1, all initialized in Line 3.285

Each episode k of Algorithm 2 also consists of the two parts local exploration and server updates.286

Part I: Local Exploration. At step k an agent m = mk is active (Line 5). It interacts with287

the environment by executing the greedy policy according to {Qm,k,h}Hh=1, obtaining a trajectory288

{(skh, akh, rkh, skh+1)}Hh=1, which is then stored into the local historical datasets Z loc
m,k,h (lines 6 - 9).289

After exploration, the agent checks for the following switch condition: there exists h ∈ [H] so that290 ∑
oh∈Z loc

m,k,h
b2m,k,h(sh, ah)/

(
β2
k′,h + λ

)
≥ α, (8)

where k′ is the last communication round for m. If so, the agent triggers communication (Line 11).291

Part II: Server Updates. After receiving new data, the server merges it with its global datasets Zser
k,h292

(Line 13) and calculates value function estimates {Qk+1,h}Hh=1 and {Vk+1,h}Hh=1 using LSVI.293

Suppose we already have Q- and V -value function estimates Qk+1,h+1 and Vk+1,h+1 at level h+ 1.294

We solve the least squares problem for f̂h to minimize the Bellman error (Line 16):295

f̂k+1,h = argminfh∈Fh

∑
oh∈Zser

k,h

(
fh(zh)− rh − Vk+1,h+1(sh+1)

)2
. (9)

We now also define the uncertainty estimator of a new pair of data z = (s, a) against data history Z296

with normalization parameter λ and function class F as297

Dλ,F (z;Z) = supf1,f2∈F |f1(z)− f2(z)|
/√

λ+
∑

o′∈Z |f1(z′)− f2(z′)|2. (10)
Similar to the bandits setting, the uncertainty can be approximated with the bonus function acquired298

from an oracle BS×A in Definition 4.1. In this case, the domain D = S × A, and the data format299

corresponds to z = (s, a) and e = (r, s′). Despite these definitions not depending on the step h, we300

expect the parameters z, Z,F to always come from same step h. Finally, we allow the bonus function301

classes Wh = Wh,S×A to vary between different levels.302

After calling oracle for bk+1,h (Line 16), we can obtain value function estimates (Line 17):303

Qk+1,h(s, a) = f̂k+1,h(s, a) + bk+1,h(s, a), Vk+1,h(s) = supa∈A Qk+1,h(s, a). (11)
Iterating through h = H, · · · , 1, the server calculates a set of updated Q-value functions304

{Qk+1,h}Hh=1 and bonus functions {bk+1,h}Hh=1, and send them back to agent m for future ex-305

ploration and updates (lines 19 and 21).306
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5.2 Theoretical Results307

We summarize the regret and communication cost of Algorithm 2 in the following theorem:308

Theorem 5.1. Taking γ = O(1/HK), βh,k = Cβ,2

[√
λ+HC(M,α)

√
log(3HMN(γ)/δ)

]
and309

N(γ) := maxh N(Fh, γ)N(Fh+1, γ)N(Wh+1, γ), the regret within K rounds is bounded by310

O
(
Hβ̃2

√
(1 +Mα) dimE K log(K/min{1, λ}) +H2(1 +Mα) dimE log2(K/min{1, λ})

)
.

where we abbreviate dimE := dimE(F , λ/K); the total communication complexity is
O
(
H(1 +Mα)2α dimE(F , λ/K) log2(K/min{1, λ})

)
.

Remark 5.2. This result when reduced to linear MDPs correspond well to Theorem 5.1 in Min311

et al. [2023]. Taking α = 1/M2, we get a regret of Õ
(
H2

√
K dimE logN + H2 dimE

)
and a312

communication cost of Õ
(
HM2 dimE

)
, where N = maxh{N(Fh, γ), N(Wh, γ)}.313

6 Proof Sketch314

In this section, we provide an outline for the proof of Theorem 5.1, while a more detailed proof can315

be found in Appendix B, and the full versions of the following lemmas are in Appendix B.1.316

6.1 Regret Upper Bound317

For the regret upper bound, the first lemma establishes optimism of value function estimates.318

Lemma 6.1. Taking βk,h as in Theorem 5.1, with probability at least 1− δ, for all k, z ∈ S ×A and319

h ∈ [H], |ThQk+1,h+1(z)− f̂k+1,h(z)| ≤ bk+1,h(z).320

This allows us to decompose regret into a sum of bonuses:321

Reg(K) =
∑K

k=1

[
V ∗
1 (s

k
1)− V

πm,k

1 (sk1)
]

≤
∑K

k=1

∑H
h=1 Eπm,k

[
Qm,k,h − ThQm,k,h+1

]
(skh, a

k
h) ≤

∑K
k=1

∑H
h=12bm,k,h(s

k
h, a

k
h). (12)

The sum of bonuses is equal to the sum of uncertainty up to a constant, which we bound in the322

following lemma corresponding to the elliptical potential lemma [Abbasi-Yadkori et al., 2011].323

Lemma 6.2. Define universal datasets as Zall
k,h = {ok′

h }k′∈[k]. Then we have for any h ∈ [H]:324 ∑K
k=1D

2
λ,F (z

k
h;Z

all
k−1,h) = O

(
dimE(F , λ/K) log2(K/min{1, λ})

)
.

Careful examination exposes a problem: the uncertainty Dλ,F (z;Z
ser
k,h) corresponding to bonuses are325

based on server data Zser
k,h instead of universal data Zall

k,h. The next lemma bridges this gap:326

Lemma 6.3. For any z ∈ S ×A, k ∈ [K], h ∈ [H], D2
λ,F (z;Z

ser
k,h) ≤ (1 +Mα)D2

λ,F (z;Z
all
k,h).327

With these, we can deduce the regret bound from (12).328

6.2 Communication Cost329

For communication cost, we employ an epoch segmentation scheme, which defines N epochs330

segmented by episodes {ki}Ni=1, with ki being the smallest episode satisfying331 ∑
oh∈Zser

ki,h
\Zser

ki−1,h

∑H
h=1 D

2
λ,Fh

(zh;Z
ser
ki−1,h

) ≥ 1. (13)

This is a generalization of epoch segmentation based on doubling determinants in linear settings, yet332

the lack of determinant in the nonlinear case dramatically increases its complexity. Intuitively, switch333

condition (8) suggests an agent must gather a substantial amount of data to trigger communication,334

yet a careful analysis according to (13) yields a maximum of M+C/α communication rounds within335

one epoch. With this we only need an upper bound for the number of epochs N . This is derived by336

summing (13) over all epochs, then using Lemma 6.1 and Lemma 6.3 to bound the left hand side.337

7 Conclusions338

We propose the algorithms Async-NLin-UCB and Async-NLSVI-UCB to tackle multi-agent nonlinear339

contextual bandits and MDPs with asynchronous communication. We prove that our algorithms enjoy340

low regret and communication cost, which are comparable to previous results.341

Our algorithms employ a communication criterion that allows the agents to trigger communication342

rounds, effectively controlling communication cost while promoting the asynchronous protocol.343

Moreover, we carefully design the contents of server download to guard against data exposure.344
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A The Bandit Case: Proof of Theorem 4.3526

Before we begin the analysis of Algorithm 1, we reiterate and add some notations for clarity and
convenience. Define the data collected by agent m that has already been uploaded to the server
by round t as Zup

m,t, and the universal data at round t as Zall
t . Apart from these we also have from

the algorithm the datasets Z loc
m,t and Zser

t . It is not difficult to check that they satisfy the following
relation:

Zall
t =

M⋃
m=1

(
Zup
m,t ∪ Z loc

m,t

)
.

Furthermore, when t is not a communication round, we also have

Zser
t =

M⋃
m=1

Zup
m,t,

and when it is a communication round that

Zser
t =

[ M⋃
m=1

Zup
m,t

]
∪ Z loc

mt,t,

which will be useful in our proof of Lemma A.1 and B.1 in Section C.1.527

Next, we assume that at rounds 0 = t0 < t1 < · · · < tL < tL+1 = T + 1, the participating agent528

communicates with the server, where t0 and tK+1 are dummy rounds. The subscripts will be denoted529

as l = 1, · · · , L in the future.530

We now describe a participant reordering trick for our asynchronous multi-agent setting, which we will531

use multiple times in the proof. The basic idea is that, as long as the communication order remains the532

same, and for any given agent, the number of rounds between two consecutive communication rounds533

remains the same, one can switch the episodes around and change the order of agent participation to534

a certain degree. For example, we may assume that mt = mtl for all t ∈ (tl−1, tl] by reordering the535

participants, which means all participation of any given agent happens immediately before a certain536

communication round; as another example, we may assume mt = mtl−1
for all t ∈ [tl−1, tl), which537

means all participation happen immediately after communication rounds. It should be noted that one538

needs to be careful when utilizing this argument, since switching the participation order changes the539

values of tl and many associated elements, so applying this trick twice in succession would lead to540

contradictions.541

For a dataset Z, we define the Z-norm on function set F as ∥f∥2Z :=
∑

(a,r)∈Z f2(a) for any f ∈ F .
Then we have the shortened notation

Dλ,F (a;Z) = sup
f1,f2∈F

|f1(a)− f2(a)|√
λ+ ∥f1 − f2∥2Z

.

Finally, we define the confidence set of functions at round t+ 1 as:542

Ft+1 =

{
f ∈ F :

∑
(a,r)∈Zser

t

(
f(a)− f̂t+1(a)

)2 ≤ β2
t

}
, (14)

which is a common construction in reinforcement learning.543

A.1 Auxiliary Lemmas544

In this section we present some auxiliary lemmas that will be used in the proof of Theorem 4.3. Note545

these lemmas correspond well to the lemmas presented in 6, only that these are for the contextual546

bandit case. The proofs for these lemmas can be found in Section C.547

Lemma A.1. For any t ∈ [T ], m ∈ [M ] and f1, f2 ∈ F , as long as agent m does not communicate
with the server at time step t, we have

λ+
∑

m′∈[M ]

∥f1 − f2∥2Zup
m′,t

≥ 1

α
∥f1 − f2∥2Z loc

m,t
.

Furthermore, for any t ∈ [T ] and f1, f2 ∈ F ,

λ+ ∥f1 − f2∥2Zser
t

≥ 1

1 +Mα

(
λ+ ∥f1 − f2∥2Zall

t

)
,
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and as a corollary, for any a ∈ A,

D2
λ,F (a;Z

ser
t ) ≤ (1 +Mα)D2

λ,F (a;Z
all
t )

This lemma describes the discrepancy between different datasets. Crucially, it provides a worst case548

ratio between uncertainty measured on the server dataset and universal dataset. This is an important549

tool for bridging between the different uncertainty estimators in the following proofs. The proof can550

be found in Section C.1.551

Lemma A.2. By taking γ = O(1/T ) and

βt = β̃1 := Cβ,1

[√
λ+

√
(γ2 + γR)T +RC(M,α) log(3MN(F , γ)/δ)

]
,

with Cβ,1 = 6, where C(M,α) :=
√
1 +Mα+M

√
α, we have f∗ ∈ Ft+1 for all t ∈ {tl}Ll=1 with552

probability at least 1− δ. As a corollary, we also have |f∗(a)− f̂t+1(a)| ≤ bt+1(a) for any a ∈ At553

and t ∈ {tl}Ll=1.554

This is the central optimism lemma present in all provably efficient reinforcement learning literature.555

It states that the confidence function set contains the ground truth function f∗ with high probability,556

and in our case, that the decision function f̂t + bt is optimistic. With this, we define the good event557

ET = {f∗ ∈ Ft+1,∀t ∈ {tl}Ll=1}. Then according to A.2, P(ET ) ≥ 1− δ. The proof can be found558

in Section C.2.559

Lemma A.3. The sum of squared uncertainty estimators of new data over all historical data can be
bounded as follows with some absolute constant CD:

T∑
t=1

D2
λ,F (at;Z

all
t−1) ≤ CD dimE(F , λ/T ) log2(T/min{1, λ})

This lemma corresponds to the elliptical potential argument from the linear setting [Abbasi-Yadkori560

et al., 2011]. In the nonlinear setting, this lemma essentially reveals the relationship between the sum561

of Eluder-like confidence quantities and the Eluder dimension. The proof can be found in Section562

C.3.563

A.2 The Epoch Segmentation Scheme564

In this section, we introduce an epoch segmentation scheme, which is needed for both the regret and565

communication cost proofs presented in the next two sections. It is a generalization of the epoch566

segmentation scheme based on doubling determinant in the linear bandits / MDPs setting [He et al.,567

2022, Min et al., 2023], but the lack of a Gram matrix (used for linear regression) in the nonlinear568

case complicates matters significantly.569

We segment the entire run of t = 1, · · · , T into N epochs as follows. Define iteratively 0 = l0 <
l1 < · · · < lN ≤ L as

li = min

{
l > li−1 :

l∑
l′=li−1+1

∑
(a,r)∈Z loc

m,t
l′

D2
λ,F (a;Z

ser
tli−1

) ≥ 1

}
,

where for a given l′ in the summation, m = mtl′ is the participating agent at tl′ . In the iterative570

process, if the above minimum does not exist, simply define N = i− 1 and end the process there.571

Correspondingly, the i-th epoch is defined by the time steps [tli−1 , tli).572

The following sections will make use of this epoch scheme as befit their needs, but here we shall give573

an upper bound for the total number of epochs N . Based on the definition of li, we have for any574
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li−1 ≤ l < li that575

1 ≥
l∑

l′=li−1+1

∑
(a,r)∈Z loc

mt
l′

,t
l′

D2
λ,F (a;Z

ser
tli−1

)

=

l∑
l′=li−1+1

∑
(a,r)∈Zser

t
l′
\Zser

t
l′−1

sup
f1,f2∈F

[f1(a)− f2(a)]
2

λ+ ∥f1 − f2∥2Zser
tli−1

≥ sup
f1,f2∈F

∑
(a,r)∈Zser

tl
\Zser

tli−1

[f1(a)− f2(a)]
2

λ+ ∥f1 − f2∥2Zser
tli−1

= sup
f1,f2∈F

λ+ ∥f1 − f2∥2Zser
tl

λ+ ∥f1 − f2∥2Zser
tli−1

− 1,

which gives λ+ ∥f1 − f2∥2Zser
tl

≤ 2
(
λ+ ∥f1 − f2∥2Zser

tli−1

)
for any f1, f2 ∈ F . Then we have576

D2
λ,F (a;Z

ser
tli−1

) ≤ 2D2
λ,F (a;Z

ser
tl
) (15)

for any a, and so577

1 ≤
∑

(a,r)∈Zser
tli

\Zser
tli−1

D2
λ,F (a;Z

ser
tli−1

)

=

li∑
l=li−1+1

∑
(a,r)∈Zser

tl
\Zser

tl−1

D2
λ,F (a;Z

ser
tli−1

)

≤ 2

li∑
l=li−1+1

∑
(a,r)∈Zser

tl
\Zser

tl−1

D2
λ,F (a;Z

ser
tl−1

),

and summing over i = 1, · · · , N − 1 that:578

N − 1 ≤ 2

L∑
l=1

∑
(a,r)∈Zser

tl
\Zser

tl−1

D2
λ,F (a;Z

ser
tl−1

).

If we apply the participant reordering trick and let mt = mtl for all t ∈ (tl−1, tl] and l ∈ [L], we get579

Zser
tl
\Zser

tl−1
= {(at, rt)}tlt=tl−1+1, and so applying Lemma A.1 and Lemma A.3, we get580

N − 1 ≤ 2

L∑
l=1

tl∑
t=tl−1+1

D2
λ,F (at;Z

ser
tl−1

)

≤ 2(1 +Mα)

L∑
l=1

tl∑
t=tl−1+1

D2
λ,F (at;Z

all
t−1)

≤ 2(1 +Mα)

T∑
t=1

D2
λ,F (at;Z

all
t−1)

≤ C(1 +Mα) dimE(F , λ/T ) log(T/λ) log T,

which gives the order of total number of epochs:581

N = O

(
(1 +Mα) dimE(F , λ/T ) log2(T/min{1, λ})

)
. (16)

Notice that the participant reordering trick is only used to bound the number of epochs, which itself582

does not depend on the specific order of participation. This is crucial since it suggests this reordering583

does not change anything essential, and is in fact not necessary for the proof - it just made the proof584

easier to read. Therefore we can still reorder participants as we see fit in other parts of our proof.585
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A.3 Proof of Regret Upper Bound586

Now we are ready to prove the first part of Theorem 4.3 concerning the regret upper bound. We587

begin by applying the participation reordering trick to assume, without loss of generality, that the588

same agent is active within the rounds [tl, tl+1 − 1], i.e. mtl = mtl+1 = · · · = mtl+1−1. Under this589

assumption, we have t1 = 1.590

Let a∗t := argmaxa∈Dt
f∗(a) be the best arm at time t. Then by Lemma A.2, f∗(a∗t ) ≤

(
f̂mt,t +591

bmt,t

)
(a∗t ) ≤

(
f̂mt,t + bmt,t

)
(at), where the second inequality is due to the choice of at at round t.592

Hence we get593

Reg(T ) =
T∑

t=1

[
f∗(a

∗
t )− f∗(at)

]
≤ min

{ T∑
t=1

(
f̂mt,t + bmt,t − f∗)(at), 4}

≤
T∑

t=1

min{2bmt,t(at), 4}

= 2

L∑
l=1

tl+1−1∑
t=tl+1

btl(at) + 2

L∑
l=1

min{bmtl
,tl(atl), 2}, (17)

where the first inequality is due to |f | ≤ 1 from Assumption 3.1, and the second inequality again594

uses Lemma A.2. We first bound the second term here using the epoch scheme in Section A.2. We595

start by converting the bonus term to uncertainty:596

bmtl
,tl(atl) = btl−1

(atl)

≤ CB

√
β2
tl−1 + λ ·Dλ,F (atl ;Z

ser
tl−1

). (18)

Now consider the episodes in an epoch i, specifically {tli−1
, tli−1+1, · · · , tli}. For any li−1 < l < li,597

since Zser
tli−1

⊆ Zser
tl−1

, we can deduce that598

D2
λ,F (ztl ;Z

ser
tl−1

) ≤ D2
λ,F (ztl ;Z

ser
tli−1

) ≤ 2D2
λ,F (ztl ;Z

ser
tl
),

where the second inequality is borrowed from (15) from Section A.2. Therefore continuing from599

(18),600

L∑
l=1

min{bmtl
,tl(ztl), 2} ≤

∑
l ̸∈{li}N

i=1

[√
2CB

√
β2
tl−1 + λ ·Dλ,F (ztl ;Z

ser
tl
)

]
+

N∑
i=1

2

≤
√
2CB

L∑
l=1

Dλ,F (ztl ;Z
ser
tl
)
√

β2
h + λ+ 2N. (19)

Now combine this result with the first term in (17) and use again (18), we get601

Reg(T ) ≤ 2CB

L∑
l=1

tl+1−1∑
t=tl+1

Dλ,F (at;Z
ser
tl
)
√
β2
tl
+ λ+ 2

√
2CB

L∑
l=1

Dλ,F (ztl ;Z
ser
tl
)
√

β2
h + λ+ 4N

≤ 2
√
2CB

L∑
l=1

tl+1−1∑
t=tl

Dλ,F (at;Z
ser
tl
)
√

β2
tl
+ λ+ 4N

≤ 2
√
2CB

[ L∑
l=1

tl+1−1∑
t=tl

D2
λ,F (at;Z

ser
tl
)

]1/2[ T∑
t=1

(
β̃2
1 + λ

)]1/2
+ 4N

where

β̃1 = Cβ

[√
λ+RC(M,α)

√
log(3N()M/δ)

]
.
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According to Lemma A.1 and Lemma A.3, the term602

L∑
l=1

tl+1−1∑
t=tl

D2
λ,F (at;Z

ser
tl
) ≤ (1 +Mα)

L∑
l=1

tl+1−1∑
t=tl

D2
λ,F (at;Z

all
t−1)

= (1 +Mα)

T∑
t=1

D2
λ,F (at;Z

all
t−1)

≤ C(1 +Mα) dimE(F , λ/T ) log2
(
T/min{1, λ}

)
.

combining this with (16), we get603

Reg(T ) ≤ C
[
(1 +Mα) dimE(F , λ/T ) log2

(
T/min{1, λ}

)]1/2[ T∑
t=1

(β2
t + λ)

]1/2
+ 4N

= O

(√
T β̃1

√
(1 +Mα) dimE(F , λ/T ) log(T/min{1, λ})

+ (1 +Mα) dimE(F , λ/T ) log2(T/min{1, λ})
)
.

A.4 Proof of Communication Cost604

In this section we prove the second part of Theorem 4.3, by calculating the communication com-605

plexity. First, for each communication round tl, assume the last time before tl when the agent mtl606

communicated with the server was tl′ , then607 ∑
(a,r)∈Z loc

m,tl

D2
λ,F (a;Z

up
m,tl

) ≥
∑

(a,r)∈Z loc
m,tl

[
btl′ (a)/C

]2
β2
tl′

+ λ
≥ α

C2
,

Now employing the epoch segmentation scheme from section A.2, for the i-th epoch consisting of608

the time steps [tli−1 , tli), we have the inequality609

1 ≥
li−1∑

l=li−1+1

∑
(a,r)∈Z loc

m,tl

D2
λ,F (a;Z

ser
tli−1

)

≥
li−1∑

l=li−1+1

∑
(a,r)∈Z loc

m,tl

D2
λ,F

(
a;Zup

m,tl
∪ Zser

tli−1

)
.

For m ∈ [M ], assume the agent m communicated with the server a total of nm times within [tli−1
, tli).

Then except for the first of these communication rounds, for each l ∈ [li−1+1, li− 1] with mtl = m,
there exists l′ ∈ [li−1, l) with mtl′ = m, thus we have Zup

m,tl
⊃ Zup

m,tl′+1 = Zser
tl′

⊃ Zser
tli−1

. With this
we have the corresponding term∑

(a,r)∈Z loc
m,tl

D2
λ,F (a;Z

up
m,tl

∪ Zser
tli−1

) =
∑

(a,r)∈Z loc
m,tl

D2
λ,F (a;Z

up
m,tl

) ≥ α

C2
B
,

therefore610

1 ≥
M∑

m=1

(nm − 1) · α

4C2
⇒

M∑
m=1

nm ≤ M +
C2

B
α

Notice that
∑M

m=1 nm = li − li−1 is the number of communication rounds within [tli−1
, tli), hence

summing over i the total number of communication rounds is upper bounded by N(M + C2
B/α).

Combine this with (16), we have the total number of communication rounds throughout the algorithm
is

O

(
(1 +Mα)2

α
dimE(F , λ/T ) log2

(
T/min{1, λ}

))
.
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B The MDPs Case: Proof of Theorem 5.1611

Similar to the bandit case, we define Z loc
m,k,h, Zup

m,k,h, Zser
k,h, and Zall

k,h to be the local, uploaded, server612

and universal data, with corresponding subscripts of agent m ∈ [M ], episode k ∈ [K], h ∈ [H].613

Suppose at rounds 0 = k0 < k1 < · · · < kL < kL+1 = T +1, the participating agent communicates614

with the server, where k0 and kL+1 are dummy rounds.615

For a dataset Zh in the MDPs setting, we again define the Zh-norm on function set Fh as ∥f∥2Z :=∑
oh∈Z f2(zh) for any f ∈ F . As a reminder, the tuples oh = (sh, ah, rh, sh+1) and zh = (sh, ah).

Then we have the shortened notation

Dλ,Fh
(zh;Zh) = sup

f1,f2∈Fh

|f1(zh)− f2(zh)|√
λ+ ∥f1 − f2∥2Zh

.

Finally, we define the confidence set of functions at round k + 1 and step h as:616

Fk+1,h =

{
f ∈ Fh :

∑
oh∈Zser

k,h

(
f(zh)− f̂k+1,h(zh)

)2 ≤ (βk,h)
2

}
. (20)

B.1 Auxiliary Lemmas617

In this section we present some auxiliary lemmas that will be used in the proof of Theorem 5.1. These618

lemmas are generalizations / restatements to the lemmas presented in 6, and their detailed proofs can619

be found in Section C.620

Lemma B.1 (Restatement of Lemma 6.3). For any k ∈ [K], m ∈ [M ], h ∈ [H] and f1, f2 ∈ F , as
long as agent m does not communicate with the server at episode k, we have

λ+
∑

m′∈[M ]

∥f1 − f2∥2Zup
m′,k,h

≥ 1

α
∥f1 − f2∥2Z loc

m,k,h
.

Furthermore, we have for any k ∈ [K] and f1, f2 ∈ F ,

λ+ ∥f1 − f2∥2Zser
k,h

≥ 1

1 +Mα

(
λ+ ∥f1 − f2∥2Zall

k,h

)
,

and as a corollary, for any z = (s, a) ∈ S ×A,

D2
λ,F (z;Z

ser
k,h) ≤ (1 +Mα)D2

λ,F (z;Z
all
k,h)

Similar to Lemma A.1, this lemma provides a worst case ratio between uncertainty measured on the621

server dataset and universal dataset. The proof can be found in Section C.1.622

Lemma B.2 (Restatement of Lemma 6.1). By taking γ = 1/(CγKH) with Cγ ≥ 20, as well as623

βk,h = β̃2 := Cβ,2

[√
λ+HC(M,α)

√
log(3HMNh(γ)/δ)

]
,

with Cβ,2 = 12 for all k ∈ [K] and h ∈ [H], where Nh(γ) = N(Fh, γ) ·N(Fh+1, γ) ·N(Wh+1, γ),624

we have with probability at least 1−δ that ThQk+1,h+1 ∈ Fk+1,h for all k ∈ {kl}Ll=1 with probability625

at least 1 − δ. As a corollary, we also have |ThQk+1,h+1(s, a) − f̂k+1,h(s, a)| ≤ bk+1,h(s, a) for626

any (s, a) ∈ S ×A, k ∈ {kl}Ll=1 and h ∈ [H].627

This is the central optimism lemma. It states that the Bellman operator of Q-value function at level628

h + 1 is within the confidences set at level h. The conclusion immediately gives the optimism629

inequality ThQk+1,h+1(s, a) ≤ Qk+1,h(s, a), which we will use at the start of the regret upper630

bound prove. The proof of the lemma can be found in Section C.2.631

With this, we define the good event ET = {ThQk+1,h+1 ∈ Fk+1,h,∀k ∈ {kl}Ll=1, h ∈ [H]}. Then632

according to Lemma B.2, P(ET ) ≥ 1− δ.633

Lemma B.3. For some absolute constant CD, the following holds for all level h ∈ [H]:
K∑

k=1

D2
λ,F (z

k
h;Z

all
k−1,h) ≤ CD dimE(F , λ/T ) log2(T/min{1, λ})

This lemma is essentially the same as Lemma A.3. It reveals the relationship between the sum of634

Eluder-like confidence quantities and the Eluder dimension. The proof can be found in Section C.3.635
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B.2 The Epoch Segmentation Scheme636

In this section, we introduce the epoch segmentation scheme for MDPs, which is again needed for637

both the regret and communication cost proofs presented in the next two sections. All of this is638

quite similar to the bandit case in Section A.2, but the introduction of multiple levels h ∈ [H] does639

complicate things a bit.640

We segment the entire run of episodes k = 1, · · · ,K into N epochs as follows. Define iteratively
0 = l0 < l1 < · · · < lN ≤ L as

li = min

{
l > li−1 :

l∑
l′=li−1+1

H∑
h=1

∑
oh∈Z loc

m,k
l′ ,h

D2
λ,Fh

(zh;Z
ser
kli−1

,h) ≥ 1

}
,

where for a given l′ in the summation, m = mkl′ is the participating agent at kl′ . In the iterative641

process, if the above minimum does not exist, simply define N = i− 1 and end the process there.642

Correspondingly, the i-th epoch is defined by the episodes [kli−1
, kli).643

The following sections will make use of this epoch scheme as befit their needs, but here we shall give644

an upper bound for the total number of epochs N . Based on the definition of li, we have for any645

li−1 ≤ l < li that646

1 ≥
l∑

l′=li−1+1

H∑
h=1

∑
oh∈Z loc

m,k
l′ ,h

D2
λ,F (zh;Z

ser
kli−1

,h)

=

l∑
l′=li−1+1

H∑
h=1

∑
oh∈Zser

k
l′ ,h

\Zser
k
l′−1

,h

sup
f1,f2∈F

[f1(zh)− f2(zh)]
2

λ+ ∥f1 − f2∥2Zser
kli−1

,h

≥
H∑

h=1

sup
f1,f2∈Fh

∑
oh∈Zser

kl,h
\Zser

kli−1
,h
[f1(zh)− f2(zh)]

2

λ+ ∥f1 − f2∥2Zser
kli−1

,h

=

H∑
h=1

[
sup

f1,f2∈Fh

λ+ ∥f1 − f2∥2Zser
kl,h

λ+ ∥f1 − f2∥2Zser
kli−1

,h

− 1

]
,

which gives λ+ ∥f1− f2∥2Zser
kl,h

≤ 2
(
λ+ ∥f1− f2∥2Zser

kli−1
,h

)
for any h ∈ [H] and f1, f2 ∈ Fh. Then647

we have648

D2
λ,F (zh;Z

ser
kli−1

,h) ≤ 2D2
λ,F (zh;Z

ser
kl,h

) (21)

for any h ∈ [H] and zh ∈ S ×A, and so649

1 ≤
li∑

l=li−1+1

H∑
h=1

∑
oh∈Z loc

m,kl,h

D2
λ,Fh

(zh;Z
ser
kli−1

,h)

≤ 2

li∑
l=li−1+1

H∑
h=1

∑
oh∈Zser

kl,h
\Zser

kl−1,h

D2
λ,Fh

(zh;Z
ser
kl−1,h

),

and summing over i = 1, · · · , N − 1 that:650

N − 1 ≤ 2

H∑
h=1

L∑
l=1

∑
oh∈Zser

kl,h
\Zser

kl−1,h

D2
λ,Fh

(zh;Z
ser
kl−1,h

).
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If we apply the participant reordering trick and let mk = mkl
for all k ∈ (kl−1, kl] and l ∈ [L], we651

get Zser
kl,h

\Zser
kl−1,h

= {okh}
kl

k=kl−1+1, and so applying Lemma 6.3 and Lemma 6.2, we get652

N − 1 ≤ 2

H∑
h=1

L∑
l=1

kl∑
k=kl−1+1

D2
λ,Fh

(zkh;Z
ser
kl−1,h

)

≤ 2(1 +Mα)

H∑
h=1

L∑
l=1

kl∑
k=kl−1+1

D2
λ,Fh

(zkh;Z
all
k−1,h)

≤ 2(1 +Mα)

H∑
h=1

K∑
k=1

D2
λ,Fh

(zkh;Z
all
k−1,h)

≤ CH(1 +Mα) dimE(F , λ/T ) log(T/λ) log T,

which gives the order of total number of epochs:653

N = O

(
H(1 +Mα) dimE(F , λ/T ) log2(T/min{1, λ})

)
. (22)

B.3 Proof of Regret Upper Bound654

In this section, we prove the first half of Theorem 5.1, which gives an upper bound for the cumulative655

regret of Algorithm 2.656

Using the participant reordering trick, assume without loss of generality that the same agent is active657

within the rounds [kl, kl+1 − 1], i.e. mkl
= mkl+1 = · · · = mkl+1−1. Under this assumption, we658

have k1 = 1.659

We first prove via induction that Q∗
h ≤ Qm,k,h for any m ∈ [M ], k ∈ [K] and h ∈ [H+1]. This holds

true for h = H +1 trivially since both value functions at H +1 are uniformly 0. Suppose we already
have Q∗

h+1 ≤ Qm,k,h+1, we have from Lemma B.2 that for the last communication round k′ for agent
m, the server functions satisfy ThQk′+1,h+1(s, a) ≤ f̂k′+1,h(s, a) + bk′+1,h(s, a) = Qk′+1,h(s, a).
Couple this with the fact that Qm,k,h = Qk′+1,h, we can prove that

Q∗
h = ThQ∗

h+1 ≤ ThQm,k,h+1 ≤ Qm,k,h,

which finishes the induction process.660

Now let ak∗h := argmaxa∈A Q∗
h(s

k
h, a) be the best action at time t, then V ∗

h (s
k
h) = Q∗

h(s
k
h, a

k∗
h ) ≤661

Qm,k,h(s
k
h, a

k∗
h ) ≤ Qm,k,h(s

k
h, a

k
h), where the second inequality is due to the choice of akh at round662

k. Hence we get663

Reg(K) =

K∑
k=1

[
V ∗
1 (s

k
1)− V πk

1 (sk1)
]

≤
K∑

k=1

min
{
Vm,k,1(s

k
1)− V πk

1 (sk1), 2H
}

=

K∑
k=1

H∑
h=1

min
{
Eπk

[
Qm,k,h(s

k
h, a

k
h)− ThQm,k,h+1(s

k
h, a

k
h)
]
, 2
}

=

K∑
k=1

H∑
h=1

min
{
Eπk

[
f̂k′+1,h(s

k
h, a

k
h) + bk′+1,h(s

k
h, a

k
h)− ThQm,k,h+1(s

k
h, a

k
h)
]
, 2
}

≤
K∑

k=1

H∑
h=1

min
{
2bk′,h(s

k
h, a

k
h), 2

}
= 2

L∑
l=1

kl+1−1∑
k=kl+1

H∑
h=1

bkl+1,h(z
k
h) + 2

L∑
l=1

H∑
h=1

min{bmkl
,kl,h(z

kl

h ), 1}. (23)

where the second equality uses the Value-decomposition Lemma from Jiang et al. [2017], the second664

inequality uses again Lemma B.2, and from the third inequality onward we let k′ be the last time665

agent m communicated with the server.666
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We now bound the second term here using the epoch scheme in Section B.2. We start by converting667

the bonus term to uncertainty:668

bmkl
,kl,h(z

kl

h ) = bkl−1,h(z
kl

h )

≤ CB

√
β2
kl−1,h + λ ·Dλ,Fh

(zkl

h ;Zser
kl−1,h

). (24)

Now consider the episodes in an epoch i, specifically {kli−1 , kli−1+1, · · · , kli}. For any li−1 < l < li,669

since Zser
kli−1

,h ⊆ Zser
kl−1,h

, we can deduce that670

D2
λ,Fh

(zkl

h ;Zser
kl−1,h

) ≤ D2
λ,Fh

(zkl

h ;Zser
kli−1

,h) ≤ 2D2
λ,Fh

(zkl

h ;Zser
kl,h

),

where the second inequality is borrowed from (21) from Section B.2. Therefore continuing from671

(24),672

L∑
l=1

H∑
h=1

min{bmkl
,kl,h(z

kl

h ), 1} ≤
∑

l ̸∈{li}N
i=1

H∑
h=1

[√
2CB

√
β2
kl−1,h + λ ·Dλ,Fh

(zkl

h ;Zser
kl,h

)

]
+

N∑
i=1

H∑
h=1

1

≤
√
2CB

L∑
l=1

H∑
h=1

Dλ,Fh
(zkl

h ;Zser
kl,h

)
√
β2
h + λ+NH. (25)

Now combine this result with the first term in (23) and use again (24), we get673

Reg(K) ≤ CB

L∑
l=1

kl+1−1∑
k=kl+1

H∑
h=1

[
Dλ,Fh

(zkh;Z
ser
kl,h

)
√
β2
h + λ

]
+
√
2CB

L∑
l=1

H∑
h=1

[
Dλ,Fh

(zkl

h ;Zser
kl,h

)
√

β2
h + λ

]
+NH

≤
√
2CB

L∑
l=1

kl+1−1∑
k=kl

H∑
h=1

[
Dλ,Fh

(zkh;Z
ser
kl,h

)
√

β2
h + λ

]
+NH

≤
√
2CB

[ L∑
l=1

kl+1−1∑
k=kl

H∑
h=1

D2
λ,Fh

(zkh;Z
ser
kl,h

)

]1/2[ K∑
k=1

H∑
h=1

(
β2
h + λ

)]1/2
+NH.

According to Lemma 6.3 and Lemma 6.2, the term674

L∑
l=1

kl+1−1∑
k=kl

H∑
h=1

D2
λ,Fh

(zkh;Z
ser
kl,h

) ≤ (1 +Mα)

L∑
l=1

kl+1−1∑
k=kl

H∑
h=1

D2
λ,Fh

(zkh;Z
all
k−1,h)

≤ (1 +Mα)

K∑
k=1

H∑
h=1

D2
λ,Fh

(zkh;Z
all
k−1,h)

≤ H(1 +Mα) dimE(F , λ/T ) log(T/λ) log T.

Now with γ = O(1/KH), we have675

βh = O(1)βh+1 + Cβ

[√
λ+H

(√
(1 +Mα) log(3HNh(γ)/δ) +M

√
α log(3HMNh(γ)/δ)

)]
therefore, with C(M,α) =

√
1 +Mα +M

√
α and the upper bound for number of epochs N in676

(22), we have677

L∑
l=1

kl+1−1∑
k=kl+1

H∑
h=1

bkl,h(z
k
h)

≤ O

([
H(1 +Mα) dimE(F , λ/K) log2(K/min{1, λ})

]1/2[
K

H∑
h=1

(β2
h + λ)

]1/2
+HN

)
= O

(
H
√
Kβ̃2

√
(1 +Mα) dimE(F , λ/K) log(K/min{1, λ})

+H2(1 +Mα) dimE(F , λ/K) log2(K/min{1, λ})
)
,
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where β̃2 = Cβ,2

[√
λ + HC(M,α) log

(
HMN(F , γ)N(W, γ)/δ

)]
is the choice of βk,h in the678

algorithm.679

B.4 Proof of Communication Cost680

Next up, we calculate the communication complexity of Algorithm 2 and prove the second half of681

Theorem 5.1. For each communication round kl, assume the last time before kl when the agent682

m = mkl
communicated with the server was kl′ , then by the communication rule there exists683

hl ∈ [H] such that
∑

ohl
∈Z loc

m,kl,hl

b2kl′ ,hl
(zhl

)/(β2
kl′ ,hl

+ λ) ≥ α,684

∑
ohl

∈Z loc
m,kl,hl

D2
λ,Fhl

(zhl
;Zup

m,kl,hl
) ≥

∑
ohl

∈Z loc
m,kl,hl

[
bkl′ ,hl

(zhl
)/C

]2
β2
kl′ ,hl

+ λ
≥ α

C2
,

Next we will make use of the epoch segmentation scheme in Section B.2. For the i-th epoch consisting685

of the time steps [kli−1
, kli), we have the inequality686

1 ≥
li−1∑

l=li−1+1

H∑
h=1

∑
oh∈Z loc

m,kl,h

D2
λ,Fh

(zh;Z
ser
kli−1

,h)

≥
li−1∑

l=li−1+1

H∑
h=1

∑
oh∈Z loc

m,kl,h

D2
λ,Fh

(
zh;Z

up
m,kl,h

∪ Zser
kli−1

,h

)
.

For m ∈ [M ], assume the agent m communicated with the server a total of nm times within
[kli−1 , kli). Then except for the first of these communication rounds, for each l ∈ [li−1 + 1, li − 1]

with mkl
= m, there exists l′ ∈ [li−1, l) with mkl′ = m, thus we have Zup

m,kl,h
⊃ Zup

m,kl′+1,h =

Zser
kl′ ,h

⊃ Zser
kli−1

,h for all h ∈ [H]. With this we have

H∑
h=1

∑
oh∈Z loc

m,kl,h

D2
λ,Fh

(
zh;Z

up
m,kl,h

∪ Zser
kli−1

,h

)
=

H∑
h=1

∑
oh∈Z loc

m,kl,h

D2
λ,Fh

(
zh;Z

up
m,kl,h

)
≥ α

4C2
,

therefore687

1 ≥
M∑

m=1

(nm − 1) · α

4C2
⇒

M∑
m=1

nm ≤ M +
4C2

α

Notice that
∑M

m=1 nm = li − li−1 is the number of communication rounds within [kli−1
, kli), hence

summing over i the total number of communication rounds is upper bounded by N(M + 4C2/α).
Combine this with the result in (22), we have the total number of communication rounds throughout
the algorithm is

O

(
H

(1 +Mα)2

α
dimE(F , λ/K) log2(K/min{1, λ})

)
.

C Proof of Auxiliary Lemmas688

In this section we prove all the auxiliary lemmas in Section A.1 and Section B.1. Note that some of689

these lemmas are very similar in nature, for which we will only give the proof for the version for the690

MDPs case, and briefly remark on the version for the bandit case.691

C.1 Proof of Lemma A.1 and Lemma B.1692

Here we prove Lemma B.1 in detail. The proof for Lemma A.1 is very similar, and so we will only693

give a short remark on how to apply this to the bandit case.694

Proof of Lemma B.1. First, for an episode k ∈ [K] and agent m ∈ [M ] such that m does not695

communicate with the server at episode k (either m is not participating or k is not a communication696
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round), from the communication criterion we have697

α ≥
∑

oh∈Z loc
m,k,h

b2m,k,h(a)

β2
k′,h + λ

≥
∑

oh∈Z loc
m,k,h

D2
λ,Fh

(zh;Z
ser
k′,h)

=
∑

oh∈Z loc
m,k,h

sup
f1,f2∈Fh

|f1(zh)− f2(zh)|2

λ+ ∥f1 − f2∥Zser
k′,h

≥ sup
f1,f2∈Fh

∥f1 − f2∥2Z loc
m,k,h

λ+ ∥f1 − f2∥2Zser
k′,h

,

where k′ is the last communication round for agent m. This means that for any f1, f2 ∈ Fh,
(1/α)∥f1−f2∥2Z loc

m,k,h
≤ λ+∥f1−f2∥2Zser

k′,h
. Observing that Zser

k′,h ⊂ Zser
k,h =

⋃M
m′=1 Z

up
m′,k,h proves

the first conclusion that

1

α
∥f1 − f2∥2Z loc

m,k,h
≤ λ+

M∑
m′=1

∥f1 − f2∥2Zup
m′,k,h

.

Second, for any f1, f2 ∈ Fh, from the above conclusion we have for any k ∈ [K]\{kl}Ll=1 that698

λ+ ∥f1 − f2∥2Zser
k,h

= λ+

M∑
m=1

∥f1 − f2∥2Zup
m,k,h

≥ 1

Mα

M∑
m=1

∥f1 − f2∥2Z loc
m,k,h

=
1

Mα
∥f1 − f2∥2Zall

k,h\Z
ser
k,h

,

and when k = kl for some l ∈ [L], we have alternatively699

λ+ ∥f1 − f2∥2Zser
k,h

= λ+
∑

m′ ̸=mt

∥f1 − f2∥2Zup
m′,k,h

+ ∥f1 − f2∥2Zup
mk,k,h∪Z loc

mk,k,h

≥ λ+

M∑
m=1

∥f1 − f2∥2Zup
m,k,h

≥ 1

(M − 1)α

∑
m′ ̸=mk

∥f1 − f2∥2Z loc
m′,k,h

≥ 1

Mα
∥f1 − f2∥2Zall

k,h\Z
ser
k,h

.

Either way, we can deduce for any k ∈ [K] that

(1 +Mα)
(
λ+ ∥f1 − f2∥2Zser

k,h

)
≥ λ+ ∥f1 − f2∥2Zall

k,h
.

Finally, from the above we immediately have700

D2
λ,F (zh;Z

ser
k,h) = sup

f1,f2∈Fh

[f1(zh)− f2(zh)]
2

λ+ ∥f1 − f2∥2Zser
k,h

≤ (1 +Mα) sup
f1,f2∈F

[f1(zh)− f2(zh)]
2

λ+ ∥f1 − f2∥2Zall
k,h

= (1 +Mα)D2
λ,F (a;Z

all
k,h).

701
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Remark C.1. Notice that this prove does not depend on the multi-level structure of episodic MDPs,702

but is a direct result of the communication criterion and protocol. This means the proof can be703

converted to the bandit case of Lemma A.1 without any essential changes: simply change episode k704

into time step t, disregard all mentions of level h, and consider z = a instead of z = (s, a).705

C.2 Proof of Lemma A.2 and Lemma B.2706

We begin with the proof of Lemma A.2, which is an almost direct application of Lemma D.3.707

Proof of Lemma A.2. We invoke Lemma D.3 with ϵ0 = 0, then with probability at least 1− δ, for all
t ∈ {tl}Ll=1,

∑
(a,r)∈Zser

t

(
f̂t+1(a)−f∗(a)

)2 ≤ CERM

[
λ+γ2T+γTR+R2(1+Mα) log(3N/δ)+R2M2α log(3NM/δ)

]
≤ β̃2

1 ,

if we let γ = O(1/T ) be sufficiently small and take β̃1 = Cβ,1

[√
λ +708

RC(M,α) log(3MN(F , γ)/δ)

]
with Cβ,1 =

√
CERM = 6. Thus taking βt = β̃1, accord-709

ing to the definition of Ft+1, this directly implies f∗ ∈ Ft+1.710

With this, since the bonus function satisfy

bt+1(a) ≥ |f1(a)− f2(a)|, ∀f1, f2 ∈ F s.t.
∑

(a,r)∈Zser
t

(
f1(a)− f2(a)

)2 ≤ β2
t ,

which is based on the first property of the bonus oracle in Definition 4.1, by taking f1 = f̂t+1 and711

f2 = f∗ we get for any a ∈ A that bt+1(a) ≥ |f∗(a)− f̂t+1(a)|, which finishes the proof.712

Next we prove Lemma B.2, which is more challenging and requires an analysis on the least squares713

value iteration method.714

Proof of Lemma B.2. Take Fh+1,γ as a γ-cover of Fh+1, and Wh+1,γ as a γ-cover of Wh+1. Select715

f̄k+1,h+1 ∈ Fh+1,γ

⊕
Wh+1,γ so that ∥Qk+1,h+1 − f̄k+1,h+1∥∞ ≤ ϵ̄ := (1 + βk+1,h+1)γ. For716

oh = (sh, ah, rh, sh+1), define the corresponding yh = rh + Vk+1,h+1(sh+1) and ȳh = rh +717

supa∈A f̄k+1,h+1(sh+1, a). Let718

f̃k+1,h = argmin
fh∈Fh

∑
oh∈Zser

k,h

(
fh(sh, ah)− ȳh

)2
.

Then we have719 ( ∑
oh∈Zser

k,h

(
f̂k+1,h(sh, ah)− ȳh

)2)1/2

≤
( ∑

oh∈Zser
k,h

(
f̂k+1,h(sh, ah)− yh

)2)1/2

+ ϵ̄
√
k

≤
( ∑

oh∈Zser
k,h

(
f̃k+1,h(sh, ah)− yh

)2)1/2

+ ϵ̄
√
k

≤
( ∑

oh∈Zser
k,h

(
f̃k+1,h(sh, ah)− ȳh

)2)1/2

+ 2ϵ̄
√
k.

Now notice that Eȳh = Thf̄k+1,h(sh, ah), and the difference ȳh − Thf̄k+1,h(sh, ah) is bounded720

in [−H,H], hence we may apply Lemma D.3 with f∗ = Thf̄k+1,h, rt = ȳh, R = H , ϵ0 = 2ϵ̄721

and δ = δ/3HN(Fh+1, γ) ·N(Wh+1, γ), taking a union bound over f̄ ∈ Fh+1,γ

⊕
Wh+1,γ and722
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h ∈ [H], we have723 ( ∑
oh∈Zser

k,h

(
f̂k+1,h(sh, ah)− ThQk+1,h+1(sh, ah)

)2)1/2

≤
( ∑

oh∈Zser
k,h

(
f̂k+1,h(sh, ah)− Thf̄k+1,h+1(sh, ah)

)2)1/2

+ γ
√
k

≤
√

CERM
√
λ+ (γ + 2ϵ̄)2K + (γ + 2ϵ̄)KH +H2(1 +Mα) log(3HNh(γ)/δ) +H2M2α log(3HMNh(γ)/δ) + γ

√
k

≤
√

CERM

[√
λ+ γ(3 + 2βk+1,h+1)

√
K +

√
γ(3 + 2βk+1,h+1)KH +HC(M,α)

√
log(3HMNh(γ)/δ)

)]
,

where Nh(γ) = N(Fh, γ) ·N(Fh+1, γ) ·N(Wh+1, γ). By taking γ = 1/(CγKH) with sufficiently
large absolute constant Cγ (for example, Cγ = 20), the second and third terms within the bracket
above are both less than (1/2)βk+1,h+1, and hence we can easily prove via induction on h that the
above is no greater than β̃2, where

β̃2 = Cβ,2

[√
λ+HC(M,α)

√
log(3HMN(γ)/δ)

]
with Cβ,2 = 2

√
CERM = 12 and N(γ) = maxh∈[H] Nh(γ).724

725

C.3 Proof of Lemma A.3 and Lemma B.3726

In this section we prove Lemma B.3 in detail. The proof for Lemma A.3 is very similar, and so we727

will again only give a short remark on how to apply this to the bandit case.728

Proof of Lemma B.3. We fix the level h ∈ [H] throughout the proof. For an index set K0 ⊆ [K], we729

denote Z(K0) := {zkh : k ∈ K0}.730

First, let n = ⌈log(K/λ)/ log 2⌉, and we divide the set of episodes K = [K] into n + 1 disjoint
episode sets as follows. For any 1 ≤ l ≤ L and kl ≤ k < kl+1, let

(f̄k,1, f̄k,2) = argmax
f1,f2∈Fh

(
f1(z

k
h)− f2(z

k
h)
)2

λ+ ∥f1 − f2∥2Zall
h,k−1

,

and define Lk : S × A → R as Lk(z) =
(
f̄k,1(z) − f̄k,2(z)

)2
. Now we define Kι := {k ∈ K :731

Lk(z
k
h) ∈ (2−ι−1, 2−ι]} for ι ∈ {0, 1, · · · , n − 1} and Kn := {k ∈ K : Lk(z

k
h) ∈ [0, 2−n]}. We732

note that for k ∈ Kn, Lk(z
k
h) ≤ λ/K.733

Now define the mapping τ : [K] → [K], such that for any k ∈ [K], τ(k) is the last episode when734

agent mk communicated with the server (not including k). We will bound
∑

k∈Kι D2
λ,Fh

(zkh;Z
all
h,k−1)735

for ι ∈ {0, · · · , n− 1}.736

For a fixed ι ≤ n− 1, we now decompose Kι =
⋃nι+1

j=1 Kι
j , where nι =

⌈
|Kι|/dimE(Fh, 2

−ι−1)
⌉
.737

We start off each set Kι
j = ∅, and fill them up gradually by iterating through k ∈ Kι one by one738

in increasing order to decide which subset Kι
j should k belong to. Specifically, we define j(k) to739

be the smallest index j < nι such that is zkh is 2−(ι+1)/2-independent of Z(Kι
j), and assign k to740

the set Kι
j(k). If such a j does not exist, we simply let j(k) = nι + 1 assign k to Kι

nι+1. Finally741

after the assignment process, we define Kι
j,k = Kι

j ∩ [k] for any k ∈ [K]. Then we have the742

elements added into Kι
j(k)−1,k form a sequence where each data corresponding to a new member743

is 2−(ι+1)/2-independent of the old members, and so there are no more than dimE(Fh, 2
−ι−1)744

members within each of them. Moreover, for all k ∈ Kι that zkh is 2−(ι+1)/2-dependent on each of745

Z(Kι
1,k), · · · ,Z(Kι

j(k)−1,k).746

Now for any k ∈ Kι by the definition of Kι, we have
(
f̄k,1(z

k
h)−f̄k,2(z

k
h)
)2 ≥ 2−ι−1. This combined

with the 2−ι−1-dependencies imply that for each j′ = 1, · · · , j(k)−1, ∥f̄k,1−f̄k,2∥2Z(Kι
j′,k)

≥ 2−ι−1.
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Notice that Z(Kι
j′,k) ⊂ Zall

h,k−1 for any j′ ∈ [j(k) − 1], and that Z(Kι
j′,k) for j′ ∈ [j(k) − 1] are

disjoint, therefore

(j(k)− 1)2−ι−1 ≤
j(k)−1∑
j′=1

∥f̄k,1 − f̄k,2∥2Z(Kι
j′,k)

≤ ∥f̄k,1 − f̄k,2∥2Zall
h,k−1

.

It follows that747

D2
λ,Fh

(zkh;Z
all
h,k−1) =

(
f̄k,1(z

k
h)− f̄k,2(z

k
h)
)2

λ+ ∥f̄k,1 − f̄k,2∥2Zall
h,k−1

≤ 2−ι

λ+ (j(k)− 1)2−ι−1

=
2

(j(k)− 1) + 2ι+1λ
,

where the first inequality uses the definition of Kι. Summing over k ∈ Kι, we have748 ∑
k∈Kι

D2
λ,Fh

(zkh;Z
all
h,k−1) =

nι+1∑
j=1

∑
k∈Kι

j

D2
λ,Fh

(zkh;Z
all
h,k−1)

≤
nι∑
j=1

2
∣∣Kι

j

∣∣
(j − 1) + 2ι+1λ

+
2
∣∣Kι

nι+1
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nι + 2ι+1λ

≤ 2 dimE(Fh, 2
−ι−1)

2ι+1λ
+

nι∑
j=2

2 dimE(Fh, 2
−ι−1)

j − 1
+ 2

∣∣Kι
∣∣ · dimE(Fh, 2

−ι−1)∣∣Kι
∣∣

≤ dimE(Fh, 2
−ι−1)

(
2 log nι + 4 + 1/(2ιλ)

)
,

where we used the relation
∣∣Kι

j

∣∣ ≤ dimE(Fh, 2
−ι−1) and the definition of nι in the second inequality.749

Additionally, for ι = n we also have750 ∑
k∈Kn

D2
λ,Fh

(zkh;Z
all
h,k−1) ≤

∑
k∈Kn

Lk(z
k
h)

λ
≤ |Kn| · λ/K

λ
≤ 1,

and so finally we sum over ι = 0, · · · , n to get751

K∑
k=1

D2
λ,Fh

(zkh;Z
all
h,k−1) ≤

n−1∑
ι=0

dimE(Fh, 2
−ι−1)

(
2 log nι + 4 + 1/(2ιλ)

)
+ 1

≤ ndimE(Fh, 2
−n)

(
2 logK + 4 + 1/λ

)
+ 1

≤ C dimE(Fh, λ/K) log(K/min{1, λ}),
where the final step makes the assumption that λ = O(1/ logK), in which case it holds with some752

absolute constant CD.753

Remark C.2. Again, this prove does not depend on the multi-level structure of episodic MDPs. In754

fact, it only relies on the Eluder dimensionality of Fh. This means the proof can be converted to the755

bandit case of Lemma A.3 without any essential changes: simply change episode k into time step t,756

disregard all mentions of level h, and consider z = a instead of z = (s, a).757

D Technical Lemmas758

In this section, we provide a technical concentration lemma that serves as the core of our results. For759

one, this lemma is based on the following concentration inequality:760

Lemma D.1. For a sequence of random variables {Zt}t∈N adapted to the filtration {St}t∈N and761

function f ∈ F , for any λ > 0, with probability at least 1− δ, for all t ∈ N, we have762

− 1

λ

t∑
s=1

logE
[
exp[−λf(Zs)]

∣∣Ss−1

]
−

t∑
s=1

f(Zs) ≤
1

λδ
.
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The proof for this lemma can be found under Lemma 4 of Russo and Van Roy [2013]. Apart from763

this, we need yet another basic concentration lemma:764

Lemma D.2. Suppose {ηt}Tt=1 is a sequence of conditional R-sub-Gaussian random variables
satisfying E

[
eµηt

∣∣Ht−1

]
≤ exp

(
R2µ2/2

)
, where Ht−1 denotes all history before time t, with

probability 1− δ, we have
T∑

t=1

η2t ≤ 2Tσ2 + 3σ2 log(1/δ).

A proof of this lemma can be found under Lemma G.2 of Ye et al. [2023]. With this, we can prove765

the following lemma characterizing the accuracy of least squares solution. Even though we need766

this lemma for both bandit and RL settings, we will follow the notations presented in multi-agent767

contextual bandits. Detailed explanation of how this translates to multi-agent MDPs can be found in768

Section C.2.769

Lemma D.3. Suppose we have a sequence of inputs {(at, rt)}Tt=1 that follow the rule rt = f∗(at)+ηt
for some ground truth f∗ ∈ F , with ηt being conditionally R-sub-Gaussian:

E
[
eµηt

∣∣a1:t, r1:t−1

]
≤ exp(R2µ2/2),∀µ ∈ R.

We also have server datasets Zser
t at different time steps, collected following the communication770

protocol in our settings. Note that strictly speaking, the conditions under which ηt is sub-Gaussian771

should also include the former participants m1:t, but we will omit this dependency for convenience.772

Consider f̂ ser
t+1, the approximate ERM solution to the least squares problem:773 ( ∑

(a,r)∈Zser
t

(
f̂ ser
t+1(a)− r

)2)1/2

≤ min
f∈Ft

( ∑
(a,r)∈Zser

t

(
f(a)− r

)2)1/2

+ ϵ0
√
t,

Then abbreviating N = N(F , γ) and taking CERM = 36, with probability at least 1− δ,774 ∑
(a,r)∈Zser

t

(
f̂ ser
t+1(a)− f∗(a)

)2 ≤ CERM

[
λ+ (γ + ϵ0)

2T + (γ + ϵ0)TR+R2(1 +Mα) log(3N/δ) +R2M2α log(3NM/δ)

]
Proof of Lemma D.3. Let Fγ be a γ-cover of the function class F with respect to the infinity norm
∥ · ∥∞. For f ∈ F and (at, rt) for some t ∈ [T ], let

ϕ(f, at, rt) = −(f(at)− rt)
2 + (f∗(at)− rt)

2,

Since rt = f∗(at) + ηt, we can write ϕ(f, at, rt) as775

ϕ(f, at, rt) = −
(
f(at)− f∗(at) + ηt

)2
+ η2t

= −2
(
f(at)− f∗(at)

)
ηt −

(
f(at)− f∗(at)

)2
Since ηt is R-sub-Gaussian conditional on Zall

t−1, at, we have for any positive parameter µ that776

logE
[
exp(µϕ(f, at, rt))

∣∣Zall
t−1, at

]
≤ 2µ2R2(f(at)− f∗(at))

2 − µ(f(at)− f∗(at))
2

= (2µ2R2 − µ)(f(at)− f∗(at))
2

Using Lemma D.1, we have with probability at least 1− δ/3, for all f ∈ Fγ and t ∈ [T ],777

µall

∑
(a,r)∈Zall

t

ϕ(f, a, r) ≤ (2µ2
allR

2 − µall)
∑

(a,r)∈Zall
t

(f(a)− f∗(a))2 + log(3N/δ), (26)

where µall > 0 is a parameter we will determine later.778

On the other hand, if we consider any local agent m, when mt = m, we have ηt is R-sub-Gaussian779

conditional on Zup
m,t−1 ∪ Z loc

m,t−1 and at, i.e. all the data agent m has received from the environment780

up to this point. Thus we have for any µ > 0 that781

logE
[
exp(−µϕ(f, at, rt))

∣∣Zup
m,t−1 ∪ Z loc

m,t−1, at
]
≤ 2µ2R2(f(at)− f∗(at))

2 + µ(f(at)− f∗(at))
2

= (2µ2R2 + µ)(f(at)− f∗(at))
2
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Then again using Lemma D.1 and taking summation on Z loc
m,t, with probability at least 1− δ/3, the782

following holds for any m ∈ [M ]:783

−µloc

∑
(a,r)∈Z loc

m,t

ϕ(f, a, r) ≤ (2µ2
locR

2 + µloc)
∑

(a,r)∈Z loc
m,t

(f(a)− f∗(a))2 + log(3NM/δ), (27)

where µloc > 0 is a parameter we will determine later.784

Taking the summation of (27) for all m ∈ [M ] and combining (26), while observing that Zser
t =785

Zall
t

∖⋃M
m=1 Z

loc
m,t, we get786
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From Lemma A.1, we have λ+∥f−f∗∥2
Zall

t
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(
λ+∥f−f∗∥2Zser

t

)
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. Plugging this inequality into the above and letting µall = 1/8R2(1 +Mα)788

and µloc = 1/8R2Mα, we get789 ∑
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(28)

Now for f̂ ser
t+1, there exists f̃ ∈ Fγ such that ∥f̃ − f̂ ser

t+1∥∞ ≤ γ. Using Lemma D.2, this gives us the790

following with probability at least 1− δ/3:791

−
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√
2T 2R2 + 3TR2 log(3/δ),

where we used the basic inequality
√∑

(a+ b)2 ≤
√∑

a2 +
√∑

b2 in the first inequality and792

used the property of f̂ ser
t+1 in the second inequality. Finally, taking a union bound and combining this793
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with (28), we have with probability at least 1− δ,794 ∑
(a,r)∈Zser

t

(
f̂ ser
t+1(a)− f∗(a)

)2
≤ 2γ2t+ 2

∑
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≤ 2γ2T + 2(γ + ϵ0)
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]
,

where the first inequality uses again ∥f̃ − f̂ ser
t+1∥∞ ≤ γ, and it can be verified that the last inequality795

holds when CERM ≥ 36.796
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Justification: Our theoretical paper does not present any experimental results, and thus does1026

not feature such data and models.1027

Guidelines:1028

• The answer NA means that the paper poses no such risks.1029

• Released models that have a high risk for misuse or dual-use should be released with1030

necessary safeguards to allow for controlled use of the model, for example by requiring1031

that users adhere to usage guidelines or restrictions to access the model or implementing1032

safety filters.1033

• Datasets that have been scraped from the Internet could pose safety risks. The authors1034

should describe how they avoided releasing unsafe images.1035

• We recognize that providing effective safeguards is challenging, and many papers do1036

not require this, but we encourage authors to take this into account and make a best1037

faith effort.1038

12. Licenses for existing assets1039

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1040

the paper, properly credited and are the license and terms of use explicitly mentioned and1041

properly respected?1042

Answer: [NA]1043

Justification: Our paper does not include any such assets.1044

Guidelines:1045

• The answer NA means that the paper does not use existing assets.1046

• The authors should cite the original paper that produced the code package or dataset.1047

• The authors should state which version of the asset is used and, if possible, include a1048

URL.1049

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1050

• For scraped data from a particular source (e.g., website), the copyright and terms of1051

service of that source should be provided.1052

• If assets are released, the license, copyright information, and terms of use in the1053

package should be provided. For popular datasets, paperswithcode.com/datasets1054

has curated licenses for some datasets. Their licensing guide can help determine the1055

license of a dataset.1056

• For existing datasets that are re-packaged, both the original license and the license of1057

the derived asset (if it has changed) should be provided.1058
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• If this information is not available online, the authors are encouraged to reach out to1059

the asset’s creators.1060

13. New Assets1061

Question: Are new assets introduced in the paper well documented and is the documentation1062

provided alongside the assets?1063

Answer: [NA]1064

Justification: Our theoretical paper does not introduce any new assets.1065

Guidelines:1066

• The answer NA means that the paper does not release new assets.1067

• Researchers should communicate the details of the dataset/code/model as part of their1068

submissions via structured templates. This includes details about training, license,1069

limitations, etc.1070

• The paper should discuss whether and how consent was obtained from people whose1071

asset is used.1072

• At submission time, remember to anonymize your assets (if applicable). You can either1073

create an anonymized URL or include an anonymized zip file.1074

14. Crowdsourcing and Research with Human Subjects1075

Question: For crowdsourcing experiments and research with human subjects, does the paper1076

include the full text of instructions given to participants and screenshots, if applicable, as1077

well as details about compensation (if any)?1078

Answer: [NA]1079

Justification: Our theoretical paper does not present any experimental results.1080

Guidelines:1081

• The answer NA means that the paper does not involve crowdsourcing nor research with1082

human subjects.1083

• Including this information in the supplemental material is fine, but if the main contribu-1084

tion of the paper involves human subjects, then as much detail as possible should be1085

included in the main paper.1086

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1087

or other labor should be paid at least the minimum wage in the country of the data1088

collector.1089

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1090

Subjects1091

Question: Does the paper describe potential risks incurred by study participants, whether1092

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1093

approvals (or an equivalent approval/review based on the requirements of your country or1094

institution) were obtained?1095

Answer: [NA]1096

Justification: Our theoretical paper does not present any experimental results.1097

Guidelines:1098

• The answer NA means that the paper does not involve crowdsourcing nor research with1099

human subjects.1100

• Depending on the country in which research is conducted, IRB approval (or equivalent)1101

may be required for any human subjects research. If you obtained IRB approval, you1102

should clearly state this in the paper.1103

• We recognize that the procedures for this may vary significantly between institutions1104

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1105

guidelines for their institution.1106

• For initial submissions, do not include any information that would break anonymity (if1107

applicable), such as the institution conducting the review.1108
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