
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRACE: LEARNING TO COMPUTE ON GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning to compute—the ability to model the functional behavior of a computa-
tional graph—is a fundamental challenge for graph representation learning. Yet,
the dominant paradigm is architecturally mismatched for this task. This flawed as-
sumption, central to mainstream message passing neural networks (MPNNs) and
their conventional Transformer-based counterparts, prevents models from captur-
ing the position-aware, hierarchical nature of computation. To resolve this, we
introduce TRACE, a new paradigm built on an architecturally sound backbone
and a principled learning objective. First, TRACE employs a Hierarchical Trans-
former that mirrors the step-by-step flow of computation, providing a faithful ar-
chitectural backbone that replaces the flawed permutation-invariant aggregation.
Second, we introduce function shift learning, a novel objective that decouples the
learning problem. Instead of predicting the complex global function directly, our
model is trained to predict only the function shift—the discrepancy between the
true global function and a simple local approximation that assumes input indepen-
dence. We validate this paradigm on electronic circuits, one of the most complex
and economically critical classes of computational graphs. Across a comprehen-
sive suite of benchmarks, TRACE substantially outperforms all prior architec-
tures. These results demonstrate that our architecturally-aligned backbone and
decoupled learning objective form a more robust paradigm for the fundamental
challenge of learning to compute on graphs.

1 INTRODUCTION

Computational graphs provide a fundamental abstraction for modeling computation. As directed
graphs of nodes representing operations and variables, they capture the flow of computation and are
crucial in domains ranging from control data flow graphs (CDFGs) in software engineering to elec-
tronic circuits in hardware design. Accurately modeling the computational behavior of these graphs
is therefore a critical enabler for high-impact applications, including performance prediction (Chen
et al., 2024; Xie et al., 2022; Zhang et al., 2020; Mendis et al., 2019), verification (Li et al., 2023;
Selsam et al., 2018; Zhang et al., 2021), and optimization (Zuo et al., 2023; Mirhoseini et al., 2021).

This need for functional modeling has driven recent work in graph representation learning, with ap-
proaches largely divided into two families: message passing neural networks (MPNNs) and Graph
Transformers. These models have been increasingly applied to capture the functionality of diverse
computational graph modalities, with a significant body of work focusing on the particularly chal-
lenging domain of hardware design, including Register Transfer Level (RTL) graphs (Fang et al.,
2025c;b), And-Inverter Graphs (AIGs) (Shi et al., 2023; 2024; Zheng et al., 2025; Khan et al., 2025;
Wu et al., 2025; Wang et al., 2024; Liu et al., 2024), and post-mapping (PM) netlists (Shi et al.,
2025b). MPNNs provide a general framework (Gilmer et al., 2017) based on a paradigm of aggre-
gating and updating node features:

x′
i = γ

(
xi, □

j∈N (i)
φ (xi,xj , ej,i)

)
, (1)

where □ denotes a permutation-invariant aggregator (e.g., sum, mean, max) and the update function
γ and message function φ are differentiable functions. In contrast, Transformer-based methods
either flatten the graph into a sequence for global self-attention (Fang et al., 2025c;b), or incorporate
graph structure via attention masks (Shi et al., 2024; Zheng et al., 2025; Fang et al., 2025a).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

MPNN Permutation-invariant

Ignore the interaction between inputs

S

MUX

A

MUX

B

MUX

𝜑(𝑆,𝑀𝑈𝑋) 𝜑(𝐴,𝑀𝑈𝑋) 𝜑(𝐵,𝑀𝑈𝑋)

Naïve Aggr. 𝑆𝑢𝑚,𝑀𝑒𝑎𝑛,𝑀𝑎𝑥,…

Ours

S A B

MUX

MUX S A B

Input VariableOperator

Positional Encoding

Transformer
Encoder

Position-aware

Operator-specific interaction among inputs

	𝑴𝑼𝑿(𝑺, 𝑨, 𝑩) = (𝑺 ∧ 𝑩 	∨ (𝑨 ∧ ¬𝑺))

Figure 1: The architectural failure of MPNNs on computational graphs. Left: The permutation-
invariant aggregation in MPNNs cannot distinguish between ordered inputs (e.g., A,B vs B,A),
yielding the same incorrect embedding for a position-aware operator like MUX. Right: Our
approach processes inputs as an ordered sequence, enabling position-awareness and capturing
operator-specific interactions.

Despite their success on general graph domains, we argue that these architectures are fundamentally
ill-suited for computation due to a fundamental mismatch between their properties and the nature
of computational graphs (as shown in Fig. 1):

1. MPNNs Fail to Model Input Interactions: The core architectural flaw of MPNNs is that
their message functions model interactions between an operator and only a single input at
a time. These independent messages are then combined by a permutation-invariant aggre-
gator. This two-stage process makes it architecturally impossible to capture the intricate,
operator-specific relationships between multiple inputs and, as a direct consequence, to
model position-aware operators like the MUX (multiplexer), where input order is critical
(i.e., MUX(S, A, B) ̸= MUX(A, S, B)).

2. Vanilla Transformers are Hierarchy-Agnostic: Fully-connected Transformers flatten the
graph into a sequence, destroying the explicit hierarchy and connectivity crucial for model-
ing computation. For an expression like y = f(g(a, b), c), this architecture fails to capture
the intermediate dependency on g(a, b) and cannot guarantee a correct computational trace.

3. Edge-masked Transformers Inherit MPNN Limitations: Edge-masked transformers,
while respecting connectivity, often reduce to GAT-like attention mechanisms. This is func-
tionally a weighted sum, which still inherits the fundamental limitations of the message-
passing paradigm, failing to model the precise, non-linear interactions required by logical
and algebraic operators.

These architectural flaws highlight a failure to model the step-by-step flow of computation. Beyond
this, however, a deeper challenge lies in capturing global function that emerges from the graph’s
overall topology. Even with simple components (e.g., AND and NOT gates in AIGs), a graph’s
overall functionality can become highly complex due to reconvergent dependencies. For instance,
consider c = a∧b with a = x∧y and b = y∧z, where x, y, z ∼ B(p) (a Bernoulli distribution with
parameter p). Locally, a, b ∼ B(p2), and ignoring reconvergence, one would predict c ∼ B(p4).
However, since y appears in both a and b, a and b are correlated, shifting the true distribution to c ∼
B(p3). This function shift—from B(p4) to B(p3)—demonstrates how dependencies fundamentally
alter functional behavior. Previous works that supervise directly on a node’s final global function
implicitly bundle this effect into the embeddings, making it difficult for the model to distinguish true
functional dependencies from spurious correlations.

Our work addresses these challenges with TRACE, a Transformer for Reasoning about
Algebraic and Computational Expressions, which presents a two-fold solution. First, to re-
solve the local architectural flaws of prior models, TRACE employs a hierarchical Trans-
former. Inspired by prefix notation, we represent each computation step as an ordered sequence,
[operator, input 1, input 2, ...], which is processed by a Transformer encoder with
positional encoding (Figure 1). By applying this process recursively according to the graph’s log-
ical dependencies, TRACE learns a faithful, position-aware representation of each computational
step. Second, to capture the global function, we introduce function shift learning, a novel objective
that explicitly models the discrepancy between local and global functions. This allows the model

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to disentangle a node’s intrinsic behavior from the contextual effects imposed by the wider graph
topology.

We demonstrate the effectiveness of TRACE on electronic circuits—a particularly challenging and
representative class of computational graphs. Our experiments span a broad spectrum of circuit
modalities (RTL, AIG, and PM netlists) and tasks (contrastive and predictive) across several stan-
dard benchmarks, including ITC (Corno et al., 2002), OpenCores (Albrecht, 2005), ISCAS ’89 (Br-
glez et al., 1989), ForgeEDA (Shi et al., 2025a), and DeepCircuitX (Li et al., 2025). The results
are unequivocal: TRACE consistently and substantially outperforms prior approaches across all set-
tings. This establishes TRACE not only as a new state of the art for circuit analysis, but as a more
robust and architecturally sound paradigm for learning on computational graphs.

2 BACKGROUND

A

S

B

S

B 𝑆 ∧ 𝐵

¬𝑆

A

¬𝑆 ∧ 𝐴

Step 1 Step 2

¬(𝑆 ∧ 𝐵)

: AND gate : NOT gate A : Input Variable : Intermediate Variable : Operator

Computational Graph Computation Process

1

2

3

4 5

6 7

1

2

1

2

3

4

Figure 2: Illustration of a Computational Graph and Its Computation Process. This figure demon-
strates the dual role of nodes within a computational graph. Step 1 shows nodes 1 and 2 functioning
as operators to compute the expressions S ∧B and ¬S, respectively. As the computation progresses
to Step 2, these nodes transition to representing the intermediate variables that hold the results of
these operations in step 1, which are then passed to subsequent operators for further computation.

2.1 COMPUTATIONAL GRAPHS

In our work, computational graphs are defined as directed graphs where nodes represent either input
variables or operators, and edges signify the flow of data. As depicted in Figure 2, this structure
allows a single node to serve a dual role: it can be an operator receiving data from its source nodes
and an intermediate variable whose output is consumed by other operators. Specifically, for any
directed edge from a source to a target node, the target always represents an operator, while the
source represents a variable—either an initial input variable or a temporary intermediate variable
resulting from a previous operation. This representation effectively models the data dependencies
and computational flow within the system. We focus on three types of computational graphs from the
front-end of the electronic design automation (EDA) flow: Register-Transfer Level (RTL) graphs,
And-Inverter Graphs (AIGs), and Post-Mapping (PM) netlists. The primary distinction among these
graph types lies in their operators. AIGs are composed of a minimal set of basic operators (AND
and NOT gates), while RTL and PM netlists feature more complex, higher-level operators, such as
multiplexers where MUX(S,A,B) = (S ∧ B) ∨ (A ∧ ¬S). For a more detailed description of the
computational graphs used in this paper, please refer to Appendix B.

A notable property of computational graphs, and one that differentiates them from general graphs, is
the distribution of node in-degrees. Unlike the often long-tailed distribution found in general graphs,
the in-degree of a node in a computational graph is directly related to its operator type, leading
to a stable and predictable distribution. This inherent property, detailed further in Appendix D,
contributes to the substantially reduced padding overhead of our proposed model.

2.2 MESSAGE PASSING NEURAL NETWORKS

Message Passing Neural Networks (MPNNs) are a dominant architectural paradigm for function
learning on circuit graphs. These models can be broadly categorized into two types: synchronous
and asynchronous. Synchronous MPNNs (Wu et al., 2023a; Liu et al., 2024; Wu et al., 2025;

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Deng et al., 2024) process all message-passing updates in parallel, a strategy designed for com-
putational efficiency. In contrast, asynchronous MPNNs (Li et al., 2022; Shi et al., 2023; 2025b;
Khan et al., 2025; Wang et al., 2024) mimic the logic simulation process by updating node rep-
resentations sequentially, following a topological order. This approach aims to capture effective
functional representations by emulating the data flow. However, as illustrated in Figure 1, both syn-
chronous and asynchronous MPNNs rely on the conventional message passing paradigm (Gilmer
et al., 2017), which fundamentally struggles to capture the operator-specific and position-aware in-
teractions among input variables.

2.3 GRAPH TRANSFORMERS

Despite the widespread use of MPNNs, they suffer from inherent limitations, including difficulty in
capturing long-range dependencies and susceptibility to issues like over-smoothing (Li et al., 2018)
and over-squashing (Alon & Yahav, 2020). These drawbacks have motivated a shift towards Graph
Transformers, which leverage global attention mechanisms to address these limitations. Existing
graph transformer models can be classified into two main categories: fully-connected transformers
and edge-masked transformers.

Fully-connected transformers, such as Rampášek et al. (2022); Wu et al. (2023c;b) for general graphs
and Fang et al. (2025c;b) for circuit graphs, treat the graph as a flattened sequence of nodes. While
this enables global self-attention, it inadvertently leads to a loss of the critical hierarchical structure
and intermediate dependencies that are inherent to computational graphs. In contrast, edge-masked
transformers, including DeepGate3 (Shi et al., 2024), DeepGate4 (Zheng et al., 2025), and Net-
TAG (Fang et al., 2025a), integrate the graph’s topology by using the adjacency matrix to mask the
attention mechanism. However, this approach often reduces the model to a Graph Attention Network
(GAT)-like attention mechanism, inheriting the limitations of traditional MPNNs.

3 METHOD

3.1 OVERVIEW

Our framework learns circuit functionality using a Hierarchical Transformer backbone trained with
two objectives: a predictive task and a contrastive task. The Hierarchical Transformer, detailed in
Section 3.2, provides an architectural backbone that mirrors the circuit’s computational flow, replac-
ing the conventional message-passing paradigm. For the predictive task, we introduce Function Shift
Learning (FSL) in Section 3.3, a novel objective that explicitly models the discrepancy between a
circuit’s local and global functions.

3.2 HIERARCHICAL TRANSFORMER

To address the limitations of MPNNs and Graph Transformers discussed in Section 1 and 2, we
propose a new paradigm for encoding the computational graph, with a position-aware Hierarchical
Transformer that enables the operator-specific interaction among input variables, faithfully mirroring
the computational process illustrated in Figure 2.

A computational graph G = (V,E), consists of primary input (PI) nodes, which have an in-degree
of zero, and operator nodes, whose in-degree is determined by their type. We begin by computing
the logic level of each node in topological order1 as follows:

level(v) =

{
0 if v is PI
1 + max

(u,v)∈E
level(u) otherwise (2)

The logic level defines the computational dataflow through the graph. Inspired by asynchronous
MPNNs, we process nodes level by level. First, Primary Input (PI) nodes (level 0) are initialized with
their input distribution, e.g., B(p), a Bernoulli distribution with parameter p. Then, for the nodes

1To handle cyclic graphs, such as sequential AIGs, we follow Khan et al. (2025) by treating all flip-flops or
registers as pseudo Primary Inputs (PIs) and removing the feedback edges to compute the logical level.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1 : Variable Node 2 : Operator Node 3 : Reconvergence Node

Graph View

5

1 2 3 4

6
5

6

1 2 3

2 4

Prefix Notation
Sequence

Transformer
Encoder

5 6

7

7 5 6

Prefix Notation
Sequence

Transformer
Encoder

5

1 2 3 4

6

7

5

1 2 3 4

6

7

Input Variable
Initialization

1 ∼ 	ℬ(𝑝!)
2 ∼ 	ℬ(𝑝")
3 ∼ 	ℬ(𝑝#)
4 ∼ 	ℬ(𝑝$)

Step 1

Step 2

Step 0

Sequence View

5 1 2 3 467 2

5 1 2 3 467 2

5 1 2 3 467 2

7 5 6

7 5 6

7

Functionality Shift Learning

5

1 2 3 4

6

7

5

1 2 3 4

6

7

Global Function

5

1 2 3 4

6

7

Local Function

2

Complicate Dependency

Accurate Function

Ignore Dependency

Fast Computation

 𝒚𝑭𝑺𝑳= 𝒚𝒈𝒍𝒐𝒃𝒂𝒍 − 𝒚𝒍𝒐𝒄𝒂𝒍
Function Shift

Hierarchical Transformer

Input Initialization

Transformer
Encoder

Transformer
Encoder

Contrastive Learning

𝒢!

𝒢"

𝒢#

equivalent

different

Embedding Space

A
B

C

push

pull

Figure 3: Overview of our proposed framework. Left: A circuit graph, represented in both a graph
view and its equivalent prefix notation, is encoded by a Hierarchical Transformer to model the
computation process. Right: For predictive tasks, we introduce Function Shift Learning (FSL).
Instead of directly regressing the global function, the model captures the difference between the
global and local functions: yFSL = yglobal − ylocal. For contrastive tasks, we pull embeddings of
equivalent circuits closer while pushing apart those of functionally different circuits.

vk0 , v
k
1 , . . . , v

k
nk

at subsequent level k > 0, we gather their respective sets of direct predecessors,
N (vk0), . . . ,N (vknk

), where each set is defined as N (vki) = {uj ∈ V | (uj , vki) ∈ E}.

Inspired by prefix notation, we represent each computation at level k as an ordered sequence, vk
i .

This sequence is constructed by placing the operator vki at the head, followed by its ordered input
nodes from N (vki):

vk
i = [vki , uj1 , uj2 , . . . , uj|N(vk

i
)|
], where uj1 , . . . , uj|N(vk

i
)|
∈ N (vki) (3)

To model operator-specific interactions among inputs, we apply a Transformer encoder to the se-
quence vk

i augmented with positional encodings. The updated embedding for the operator node vki
is taken from the Transformer’s output corresponding to the first token:

vki = Transformer(vk
i + pos)[0], (4)

where pos represents the positional encodings. The input sequence vk
i is composed of the initial

embedding of the operator vki (e.g., a one-hot vector of its type) and the embeddings of its input
nodes {ujm}, which have been computed in previous steps. After updating, the embedding of vki
now represents the result of the computation at this node, i.e. an intermediate variable node.

This paradigm offers several key advantages. First, positional encodings enable position-aware
aggregation, a critical feature for order-dependent operations, which contrasts with the permutation-
invariant nature of standard message-passing schemes. Second, the self-attention mechanism fa-
cilitates rich interactions among all source nodes [uj1 , . . . , uj|N(vk

i
)|

], faithfully mirroring the com-
putational dataflow of an operator, as illustrated in Figure 2. Finally, the sequence length for the
Transformer depends only on a node’s in-degree. Unlike general graphs, which often have a long-
tailed degree distributions that incur significant overhead, circuit graphs have small, tightly bounded
in-degrees. This inherent property, detailed further in Appendix D, contributes to the substantially
reduced padding overhead of our proposed model, as we discussed in Section 2 and Appendix D.

An Alternative View: Hierarchical Transformer on Prefix Notation Our proposed method can
also be interpreted as a Hierarchical Transformer operating on prefix notation, in a way that follows
the logical dependencies inherent in the computational graph. This perspective highlights how the
model processes the graph by mirroring the step-by-step evaluation of an expression. A computa-
tional graph can be converted into a prefix notation string through a pre-order traversal on its reversed

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

edges. As illustrated in Figure 3, our proposed Hierarchical Transformer, unlike methods that sim-
ply flatten the graph into a single sequence, inherently preserves the nested, hierarchical structure of
dependencies within each computation step, which allows it to align naturally with the actual flow
of computation. This view also underscores the generalizability of our approach to other sequence-
based problems, such as hardware model-checking, where the problem is often represented in Btor2
format (ArminBiere et al., 2018), a prefix-style representation of bit-vector formulas.

3.3 FUNCTION SHIFT LEARNING ON PREDICTIVE TASK

Logic-1 probability prediction is a task widely studied in prior works (Shi et al., 2023; Khan et al.,
2025; Shi et al., 2024; Zheng et al., 2025; Shi et al., 2025b; Liu et al., 2024), as it serves as a key
indicator of a model’s ability to capture circuit functionality. The logic-1 probability corresponds to
the global function of a circuit, as defined in Definition 1. This function can be highly complex due
to reconvergent dependencies (see Section 1), and computing it directly requires enumerating the
joint distribution of all inputs, which incurs an exponential cost of O(2k).
Definition 1 (Global Function). Given an operator ϕ, input variables x = [x1, x2, . . . , xk] and its
distribution D, the global function is defined as yglobalϕ = Ex∼D[ϕ(x1, x2, . . . , xk)].

By ignoring the dependencies among input, i.e. by assuming they are independent, we can derive
the local function, which is formally stated in Definition 2. Although this approximation is compu-
tationally efficient with an O(1) complexity, it fails to capture the true function of the circuit.
Definition 2 (Local Function). Given an operator ϕ, input variables x = [x1, x2, . . . , xk] and its
distribution D, the local function is defined as ylocalϕ = ϕ(Ex∼D[x1],Ex∼D[x2], . . . ,Ex∼D[xk]) .

Building on these properties, we propose to learn the function shift: yFSL
ϕ = yglobalϕ − ylocalϕ , which

measures the discrepancy between the local function (Definition 2) and the true global function
(Definition 1). This formulation decouples the global function into two components: a simple local
function and a function shift. Rather than predicting the complex global function directly, our model
is trained to predict only the function shift. This isolates the complex contextual effects caused by
reconvergence, allowing the global function to be reconstructed by simply combining the predicted
shift with the local function.
Training Stage. During the training stage, the ground-truth global and local functions for each
node can be pre-computed from the training data, allowing us to determine the true function shift,
yFSL
i . We then train the model to regress this value, optimized with an L1 objective:

min
θ

EG∼D

[∣∣ψ(xi)− yFSL
i

∣∣], (5)

where xi is the final embedding for node i and ψ(·) is a 3-layer MLP regression head.

Inference Stage. At the inference stage, the
true global functions are unknown. Since com-
puting the global function of a node at any
given level depends on the global functions of
its predecessors from previous levels, we can-
not predict them all at once. Therefore, we re-
construct the global functions iteratively, pro-
ceeding level by level through the circuit. For
each node, we first compute its local function
using the already-estimated global functions of
its inputs. The final estimate for the node’s
global function is then obtained by adding the
model’s predicted function shift to this com-
puted local function. This entire iterative pro-
cess is detailed in Algorithm 1.

Algorithm 1 Inference with Function Shift

Input: Circuit graph G = (V,E)
1: x← Hierarchical Transformer(G)
2: ŷFSL ← ψ(x)
3: L← maxv∈V level(v)
4: for l = 1 to L do
5: for v ∈ {u ∈ V : level(u) = l} do

6:

ŷglobalv ← ŷFSL
v +

ϕv(ŷ
global
u1

, . . . , ŷglobalu|N(v)|
)︸ ︷︷ ︸

Local Function
7: end for
8: end for
9: Return ŷglobal for all nodes

3.4 CONTRASTIVE TASK

Contrastive learning is a standard self-supervised strategy for learning representations of circuit
functionality (Wang et al., 2024; Fang et al., 2025b;c; Wu et al., 2025). The fundamental principle is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

to pull embeddings of functionally equivalent circuits closer together in the embedding space while
pushing apart those of functionally different circuits. This process trains the model to identify and
encode the discriminative features that define a circuit’s intrinsic properties, all without needing
explicit labels. Following prior work, we form training instances for each circuit G. A positive
sample, G+, is created by applying a functionally equivalent transformation to G. All other circuits
within the same batch are treated as negative samples, G−. We then optimize the encoder using the
InfoNCE loss (Oord et al., 2018):

min
θ

EG∼D LInfoNCE(G,G+,G−). (6)

The effect of this objective is to structure the embedding space such that functional equivalence
corresponds to proximity, mapping similar circuits to nearby points while separating them from
non-equivalent ones.

4 EXPERIMENT

4.1 IMPLEMENT DETAILS

Dataset In this paper, we conduct experiments on three modalities: RTL, AIG and PM netlist.
For RTL, we follow previous works (Fang et al., 2025b;c) and collect data from ITC (Corno et al.,
2002) and OpenCores (Albrecht, 2005). For combinational AIGs, we use ForgeEDA (Shi et al.,
2025a). For Sequential AIGs, we follow DeepSeq2 (Khan et al., 2025) and extract sub-circuits from
ITC (Corno et al., 2002), OpenCores (Albrecht, 2005) and ISCAS’89 (Brglez et al., 1989). For PM
netlist, we follow previous work (Shi et al., 2025b) and extract sub-circuits from ForgeEDA (Shi
et al., 2025a) and DeepCircuitX (Li et al., 2025). More details are provided in Appendix C.

Evaluation Metrics In this work, we evaluate our model on two types of tasks: contrastive and
predictive. For the first type, the contrastive task, the goal is retrieval. Given a query circuit, the
model must identify its functionally equivalent (positive) counterpart from a pool of N candidate
circuits. For our experiments, we set the pool size to N = 256 for RTL and N = 1024 for AIG and
PM Netlists. We measure performance using the Recall@k (Rec@k) metric, reporting scores for
k ∈ {1, 5, 10}. For the second type, the predictive tasks, we assess the model’s ability to determine
node-level properties. We follow previous works (Shi et al., 2023; Khan et al., 2025; Shi et al.,
2025b) and perform logic-1 probability prediction, similarity prediction and transition probability
prediction (See Appendix E). After encoding a circuit to produce node embeddings, these are used
to predict a target value for each node. We evaluate the accuracy of these predictions using Mean
Absolute Error (MAE) and the R2 score.

Table 1: Comparison of contrastive task across various modalities(%).

Model RTL AIG Netlist
Rec@1 Rec@5 Rec@10 Rec@1 Rec@5 Rec@10 Rec@1 Rec@5 Rec@10

Message Passing Neural Network

GCN 82.90 87.43 91.57 83.01 93.28 96.05 58.03 77.65 85.24
GraphSAGE 86.46 92.87 95.43 88.55 96.41 98.38 86.12 95.82 98.13
GAT 84.98 89.22 94.65 85.68 94.32 97.60 65.21 83.72 89.97
GIN 86.23 91.34 96.95 85.98 93.40 96.52 75.85 91.82 95.90
FGNN2 - - - 88.73 97.03 98.57 - - -
DeepCell - - - - - - 80.99 95.31 97.61

Graph Transformer

GraphGPS 86.94 92.13 96.37 OOM OOM OOM 45.63 61.55 69.57
SGFormer 79.45 86.57 89.50 15.43 30.88 42.19 15.83 37.06 49.73
DIFFormer 88.28 92.97 96.88 37.03 68.87 80.66 25.23 45.52 55.67
CircuitEncoder 88.27 92.97 94.52 - - - - - -

TRACE 94.45 98.74 99.89 92.68 98.65 99.51 90.81 98.48 99.44

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 CONTRASTIVE TASKS

RTL On the RTL modality, traditional message-passing models such as GCN (Kipf, 2016),
GIN (Xu et al., 2018), GAT (Veličković et al., 2017), and GraphSAGE (Hamilton et al., 2017)
achieve moderate performance, with Rec@1 ranging from 82.9% to 86.5%. Graph Transformer
variants like GraphGPS (Rampášek et al., 2022), SGFormer (Wu et al., 2023c), DIFFormer (Wu
et al., 2023b), and the RTL-specialized CircuitEncoder (Fang et al., 2025c) show competitive scores,
with Rec@1 ranging from 79.45% to 88.28%. In contrast, TRACE achieves a substantial improve-
ment, pushing Rec@1 to 94.45% and Rec@10 to 99.89%, outperforming the second-best method
by 6.17% and 2.94% respectively.
AIGs For AIGs, the performance gap between baselines and TRACE becomes even more pro-
nounced. While traditional message-passing networks perform decently (with Rec@1 from 83.01%
to 88.55%) and AIG-specialized architectures like FGNN2 (Wang et al., 2024) reach 88.7%, Graph
Transformer models generally struggle. For instance, performance of SGFormer and DIFFormer
drop to as low as 15.4% and 37.03% Rec@1 respectively, highlighting the drawback of methods
that destroy the explicit hierarchy in a computational graph. GraphGPS even suffers from an Out-
of-Memory (OOM) error due to its dense attention mechanism. Our method, however, consistently
outperforms all baselines, reaching 92.68% at Rec@1 and 99.51% at Rec@10.
PM Netlists The Netlist modality presents the most challenging benchmark, where message-
passing models show varying performance. For instance, GraphSAGE and the netlist-specialized
DeepCell (Shi et al., 2025b) achieve strong results (Rec@1 around 80–86%), while others like
GCN and GAT show a significant performance drop. Graph Transformer models also suffer from
severe performance degradation, with Rec@1 scores below 50% for GraphGPS, SGFormer, and
DIFFormer. Remarkably, TRACE delivers consistent and superior performance, attaining 90.81%
Rec@1 and 99.44% at Rec@10, outperforming both families of baselines by a large margin.

In summary, TRACE consistently outperforms both message-passing and Transformer-based base-
lines across all three modalities. Furthermore, its stable performance across these diverse graph
types highlights its strong capacity for generalization.

Table 2: Comparison of predictive tasks on combinational and sequential AIGs.

Model
Combinational AIG Sequential AIG

Logic-1 Probability Similarity Prediction Logic-1 Probability Transition Probability

R2 MAE R2 MAE R2 MAE R2 MAE

Message Passing Neural Network

GCN 0.644 0.152 0.271 0.090 0.868 0.064 0.744 0.024
GAT 0.618 0.157 0.029 0.090 0.877 0.053 0.831 0.016
GIN 0.669 0.144 0.445 0.076 0.962 0.035 0.790 0.023
GraphSAGE 0.675 0.143 0.438 0.078 0.927 0.048 0.867 0.017
DeepGate2 0.983 0.028 0.502 0.069 - - - -
PolarGate 0.493 0.192 0.021 0.113 - - - -
MGVGA 0.666 0.145 0.418 0.077 - - - -
DeepSeq2 - - - - 0.979 0.025 0.908 0.014

Graph Transformer

GraphGPS OOM OOM OOM OOM 0.971 0.026 0.901 0.012
SGFormer 0.516 0.175 -0.072 0.117 0.878 0.056 0.596 0.026
DIFFormer OOM OOM OOM OOM 0.701 0.097 0.416 0.034
DeepGate4 0.984 0.027 0.464 0.078 - - - -

TRACE 0.989 0.015 0.633 0.055 0.997 0.009 0.976 0.005

4.3 PREDICTIVE TASKS

Combinational AIGs On combinational AIGs, message-passing baselines such as GCN, GIN,
GAT, GraphSAGE, PolarGate (Liu et al., 2024) and MGVGA (Wu et al., 2025) yield poor perfor-
mance, with R2 values ranging from 0.493 to 0.675 for logic-1 probability prediction and from
0.021 to 0.445 for similarity prediction. Graph Transformer baselines either suffer from OOM
or achieve limited performance. AIG-specialized architectures, like DeepGate2 (Shi et al., 2023),

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

DeepGate4 (Zheng et al., 2025) improves results with R2 around 0.98 for logic-1 probability and
around 0.50 for similarity. In contrast, TRACE delivers the best overall performance, achieving an
R2 of 0.989 with MAE 0.015 for logic-1 probability and significantly outperforming all baselines in
similarity prediction with R2 of 0.633 and MAE of 0.055.
Sequential AIGs Sequential circuits pose additional challenges due to temporal dependencies.
Our method again demonstrates substantial gains, reaching an R2 of 0.997 with MAE 0.009 for
logic-1 probability, and 0.976 with MAE 0.005 for transition probability, outperforming the second-
best method, DeepSeq2 (Khan et al., 2025), by 0.018 in R2 on logic-1 probability prediction and
0.068 in R2 on transition probability prediction.

PM Netlists The predictive task on PM netlists further vali-
dates the generalization ability of TRACE. Message-passing
methods achieve moderate performance, with GraphSAGE
and DeepCell reaching R2 above 0.94. Graph Transformer
models show mixed results, with SGFormer performing rela-
tively well (R2 = 0.918) but DIFFormer dropping to 0.696.
TRACE clearly surpasses all baselines, achieving an R2 of
0.994 and a minimal MAE of 0.013. This consistent superi-
ority across modalities emphasizes the adaptability of our ap-
proach to different circuit representations and predictive ob-
jectives.

Overall, across all predictive tasks, TRACE not only sur-
passes both message-passing and Transformer-based models,
but also approaches near-perfect accuracy, demonstrating its
capacity to generalize across combinational, sequential, and
physical design graph domains.

Table 3: Comparison of predictive
task on PM netlists.

Model R2 MAE

Message Passing Neural Network

GCN 0.718 0.112
GraphSAGE 0.946 0.048
GAT 0.902 0.059
GIN 0.734 0.102
DeepCell 0.942 0.053

Graph Transformer

GraphGPS 0.846 0.083
SGFormer 0.918 0.056
DIFFormer 0.696 0.141

TRACE 0.994 0.013

4.4 ABLATION STUDY

Table 4: Ablation study on function shift learning (FSL).

Setting PM Netlist AIG
Logic-1 Probability Logic-1 Probability Similarity Prediction

R2 MAE R2 MAE R2 MAE

TRACE w/o FSL 0.985 0.036 0.980 0.024 0.500 0.066
TRACE 0.994 0.013 0.989 0.015 0.533 0.055

We conducted an ablation study to quantify the contribution of our proposed Function Shift Learn-
ing (FSL) component, which is designed to help our model adapt to different graph types and their
unique functional distributions. The results, summarized in Table 4, demonstrate that FSL is a cru-
cial element for achieving high performance. The model with FSL consistently outperforms its
ablated counterpart (TRACE w/o FSL) across all tasks and datasets. For Logic-1 Probability pre-
diction on PM Netlists, the addition of FSL significantly reduces the MAE from 0.036 to 0.013 and
increases the R2 score from 0.985 to 0.994, indicating more accurate predictions. As for AIGs,
FSL improves the MAE by 0.009 on logic-1 probability prediction and 0.011 on similarity predic-
tion. This confirms that the FSL component is essential for our model’s ability to learn functional
representations, leading to superior performance on diverse computational graphs.

5 CONCLUSION

In this work, we introduced TRACE, a new paradigm for learning on computational graphs that
addresses the architectural limitations of conventional MPNNs and Transformers. By employing a
novel Hierarchical Transformer and a function shift learning objective, TRACE directly models the
position-aware, hierarchical nature of computation. Our extensive experiments on electronic circuits
demonstrate that TRACE substantially outperforms all prior architectures, establishing a new state
of the art. This work provides a proof of principle for a more architecturally sound approach to
learning on computational graphs, offering a powerful framework with potential applications across
various domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Christoph Albrecht. Iwls 2005 benchmarks. In International Workshop for Logic Synthesis (IWLS),
volume 9, 2005.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

ArminBiere, AinaNiemetz, MathiasPreiner, and CliffordWolf. Btor2 , btormc and boolector3.0.
Springer, Cham, 2018.

Franc Brglez, David Bryan, and Krzysztof Kozminski. Notes on the iscas’89 benchmark cir-
cuits. Technical report, Technical report, MCNC, 1989. Online http://www. cbl. ncsu. edu/CBL
Docs . . . , 1989.

Lei Chen, Yiqi Chen, Zhufei Chu, Wenji Fang, Tsung-Yi Ho, Ru Huang, Yu Huang, Sadaf Khan,
Min Li, Xingquan Li, et al. Large circuit models: opportunities and challenges. Science China
Information Sciences, 67(10):200402, 2024.

Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero. Rt-level itc’99 benchmarks and first
atpg results. IEEE Design & Test of computers, 17(3):44–53, 2002.

Chenhui Deng, Zichao Yue, Cunxi Yu, Gokce Sarar, Ryan Carey, Rajeev Jain, and Zhiru Zhang.
Less is more: Hop-wise graph attention for scalable and generalizable learning on circuits. In
Proceedings of the 61st ACM/IEEE Design Automation Conference, pp. 1–6, 2024.

Wenji Fang, Wenkai Li, Shang Liu, Yao Lu, Hongce Zhang, and Zhiyao Xie. Nettag: A multi-
modal rtl-and-layout-aligned netlist foundation model via text-attributed graph. arXiv preprint
arXiv:2504.09260, 2025a.

Wenji Fang, Shang Liu, Jing Wang, and Zhiyao Xie. Circuitfusion: multimodal circuit representa-
tion learning for agile chip design. arXiv preprint arXiv:2505.02168, 2025b.

Wenji Fang, Shang Liu, Hongce Zhang, and Zhiyao Xie. A self-supervised, pre-trained, and cross-
stage-aligned circuit encoder provides a foundation for various design tasks. In Proceedings of
the 30th Asia and South Pacific Design Automation Conference, pp. 505–512, 2025c.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. Pmlr, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Sadaf Khan, Zhengyuan Shi, Ziyang Zheng, Min Li, and Qiang Xu. Deepseq2: Enhanced sequential
circuit learning with disentangled representations. In Proceedings of the 30th Asia and South
Pacific Design Automation Conference, pp. 498–504, 2025.

TN Kipf. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Min Li, Sadaf Khan, Zhengyuan Shi, Naixing Wang, Huang Yu, and Qiang Xu. Deepgate: Learning
neural representations of logic gates. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pp. 667–672, 2022.

Min Li, Zhengyuan Shi, Qiuxia Lai, Sadaf Khan, Shaowei Cai, and Qiang Xu. On eda-driven
learning for sat solving. In 2023 60th ACM/IEEE Design Automation Conference (DAC), pp. 1–6,
2023. doi: 10.1109/DAC56929.2023.10248001.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In AAAI, volume 32, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zeju Li, Changran Xu, Zhengyuan Shi, Zedong Peng, Yi Liu, Yunhao Zhou, Lingfeng Zhou,
Chengyu Ma, Jianyuan Zhong, Xi Wang, et al. Deepcircuitx: A comprehensive repository-level
dataset for rtl code understanding, generation, and ppa analysis. arXiv preprint arXiv:2502.18297,
2025.

Jiawei Liu, Jianwang Zhai, Mingyu Zhao, Zhe Lin, Bei Yu, and Chuan Shi. Polargate: Breaking the
functionality representation bottleneck of and-inverter graph neural network. In 2024 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2024.

Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. Ithemal: Accurate, portable
and fast basic block throughput estimation using deep neural networks. In 36th International Con-
ference on Machine Learning, ICML 2019, 36th International Conference on Machine Learning,
ICML 2019, pp. 7908–7918. International Machine Learning Society (IMLS), 2019.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim M. Songhori, Shen
Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya
Srinivasa, Will Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter,
and Jeff Dean. A graph placement methodology for fast chip design. Nature, 594:207 – 212,
2021. URL https://api.semanticscholar.org/CorpusID:235395490.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo Mendonça de Moura, and
David L. Dill. Learning a sat solver from single-bit supervision. ArXiv, abs/1802.03685, 2018.
URL https://api.semanticscholar.org/CorpusID:3632319.

Zhengyuan Shi, Hongyang Pan, Sadaf Khan, Min Li, Yi Liu, Junhua Huang, Hui-Ling Zhen, Mingx-
uan Yuan, Zhufei Chu, and Qiang Xu. Deepgate2: Functionality-aware circuit representation
learning. In 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp.
1–9. IEEE, 2023.

Zhengyuan Shi, Ziyang Zheng, Sadaf Khan, Jianyuan Zhong, Min Li, and Qiang Xu. Deepgate3:
Towards scalable circuit representation learning. arXiv preprint arXiv:2407.11095, 2024.

Zhengyuan Shi, Zeju Li, Chengyu Ma, Yunhao Zhou, Ziyang Zheng, Jiawei Liu, Hongyang Pan,
Lingfeng Zhou, Kezhi Li, Jiaying Zhu, et al. Forgeeda: A comprehensive multimodal dataset for
advancing eda. arXiv preprint arXiv:2505.02016, 2025a.

Zhengyuan Shi, Chengyu Ma, Ziyang Zheng, Lingfeng Zhou, Hongyang Pan, Wentao Jiang, Fan
Yang, Xiaoyan Yang, Zhufei Chu, and Qiang Xu. Deepcell: Multiview representation learning
for post-mapping netlists. arXiv preprint arXiv:2502.06816, 2025b.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Ziyi Wang, Chen Bai, Zhuolun He, Guangliang Zhang, Qiang Xu, Tsung-Yi Ho, Yu Huang, and Bei
Yu. Fgnn2: A powerful pre-training framework for learning the logic functionality of circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024.

Haoyuan Wu, Haisheng Zheng, Yuan Pu, and Bei Yu. Circuit representation learning with masked
gate modeling and verilog-aig alignment. arXiv preprint arXiv:2502.12732, 2025.

Nan Wu, Yingjie Li, Cong Hao, Steve Dai, Cunxi Yu, and Yuan Xie. Gamora: Graph learning
based symbolic reasoning for large-scale boolean networks. In 2023 60th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6. IEEE, 2023a.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Dif-
former: Scalable (graph) transformers induced by energy constrained diffusion. arXiv preprint
arXiv:2301.09474, 2023b.

11

https://api.semanticscholar.org/CorpusID:235395490
https://api.semanticscholar.org/CorpusID:3632319

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
Junchi Yan. Sgformer: Simplifying and empowering transformers for large-graph representations.
Advances in Neural Information Processing Systems, 36:64753–64773, 2023c.

Zhiyao Xie, Rongjian Liang, Xiaoqing Xu, Jiang Hu, Chen-Chia Chang, Jingyu Pan, and Yiran
Chen. Preplacement net length and timing estimation by customized graph neural network. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(11):4667–4680,
2022. doi: 10.1109/TCAD.2022.3149977.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

He-Teng Zhang, Jie-Hong R. Jiang, Luca Amarú, Alan Mishchenko, and Robert Brayton. Deep
integration of circuit simulator and sat solver. In 2021 58th ACM/IEEE Design Automation Con-
ference (DAC), pp. 877–882, 2021. doi: 10.1109/DAC18074.2021.9586331.

Yanqing Zhang, Haoxing Ren, and Brucek Khailany. Grannite: Graph neural network inference for
transferable power estimation. In 2020 57th ACM/IEEE Design Automation Conference (DAC),
pp. 1–6, 2020. doi: 10.1109/DAC18072.2020.9218643.

Ziyang Zheng, Shan Huang, Jianyuan Zhong, Zhengyuan Shi, Guohao Dai, Ningyi Xu, and Qiang
Xu. Deepgate4: Efficient and effective representation learning for circuit design at scale. arXiv
preprint arXiv:2502.01681, 2025.

Dongsheng Zuo, Yikang Ouyang, and Yuzhe Ma. Rl-mul: Multiplier design optimization with deep
reinforcement learning. In 2023 60th ACM/IEEE Design Automation Conference (DAC), pp. 1–6,
2023. doi: 10.1109/DAC56929.2023.10247941.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, we utilized a large language model (LLM) as an assistive tool to
enhance the quality of our writing and presentation. The LLM’s role was strictly confined to refining
the manuscript’s writing and formatting, without generating any core scientific content or data.

B COMPUTATION GRAPH

Register Transfer Level(RTL) RTL design is a hardware abstraction used in the early stages of
digital chip design, serving as the bridge between high-level behavioral descriptions and gate-level
implementations. To be specific, RTL code captures how data moves between registers (i.e., sequen-
tial registers) and how logic gates operate on that data within each clock cycle (i.e., combinational
logic). Essentially, an RTL design can be viewed as a directed graph. We first convert the RTL code
in Hardware Description Language (HDL) format into an abstract syntax tree (AST) and then extract
the graph structure based on this tree. In this graph, nodes represent word-level register signals and
various operators (e.g., And, Add, Equal, Mux), while the wires in the HDL code form the edges
that denote the paths of data flow.

And-Inverter Graph(AIG) In our work, we use combinational AIG and sequential AIG, which
are widely used for circuit analysis, optimization, and formal verification because of their compact
and canonical representation of Boolean functions.
Combinational AIG is a directed acyclic graph (DAG) composed of three basic elements: Primary
Input(PI), AND gate and NOT gate. Since any Boolean logic expression can be constructed using
only AND and NOT operations, AIG provides a universal and efficient representation. For example,
a simple logic expression ¬A ∧ B can be built as a DAG with 2 PIs(A and B), one NOT gate and
one AND gate. The edges are [(A,NOT), (NOT,AND), (B,AND)]. The AND gate with no
outgoing edges represents the circuit’s final output in this DAG.
Sequential AIG extends this by introducing registers as an additional node type. These registers can
capture the circuit’s state at each clock cycle, enabling sequential AIG to represent more complex
circuits with memory functionality, such as finite state machines.

Post-Mapping Netlist A Post-Mapping Netlist is a gate-level representation obtained after logic
synthesis and technology mapping, where the circuit is expressed using standard cells from a target
technology library and optimized for timing, area, and power. Unlike AIGs, which represent circuits
as abstract DAGs of AND and NOT gates (and optionally registers for sequential circuits) focusing
on low-level function, post-mapping netlists capture high-level implementation details, including
specific gate types and connectivity imposed by the target library. Consequently, the node types and
structures can differ significantly from those in AIGs, which is why we treat AIGs and Post-Mapping
(PM) netlists as distinct modalities in this paper.

C DATASET DETAILS

We summarize the statistics of the datasets used in both contrastive tasks (Table 5) and predic-
tive tasks (Table 6). For each dataset, we report the number of graphs (#Graphs), the number of
nodes (#Nodes), the number of edges (#Edges), and the maximum depth of a graph (Depth). For
#Nodes, #Edges, and Depth, we provide the minimum, average, and maximum values, denoted as
{min, avg,max}.

Table 5: Dataset statistics for contrastive tasks with {min., avg.,max.}.

RTL AIG PM Netlist

#Graphs 1138 67706 67728
#Nodes { 9.0, 102.6, 1987.0} {22.0, 162.2, 2127.0} {16.0, 88.6, 1192.0}
#Edges {10.0, 278.3, 2645.0 } {22.0, 176.0, 2275.0} {20.0, 110.5, 1361.0}
Depth {2.0, 8.9, 27.0} {6.0, 16.7, 29.0} {2.0, 5.9, 12.0}

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Dataset statistics for predictive tasks with {min., avg.,max.}.

Com. AIG Seq. AIG PM Netlist

#Graphs 9800 10007 83042
#Nodes {10.0, 2324.9, 45409.0} {23.0, 236.5, 1281.0} {12.0, 668.1, 4783.0}
#Edges {12.0, 3268.57, 68676.0} {21.0, 260.5, 1915.0} {11.0, 1113.9, 8914.0}
Depth {4.0, 49.1, 2657.0} {4.0, 21.0, 102.0} {1.0, 16.0, 260.0}

(c) CiteSeer(b) PubMed(a) Cora

(d) RTL (e) AIG (f) PM netlist

0 40 80 120 160
100

101

102

103

0 40 80 120 160
100

101

102

104

103

0 20 40 60 80
100

101

102

103

0 1 2
100

102

104

106

0 2 41 3 5
100

102

104

105

103

101

0 2 41 3
100

101

102

104

103

Figure 4: In-degree distribution. The x-axis represents the node in-degree and the y-axis represents
the frequency (number of nodes).

D DEGREE DISTRIBUTION

In this section, we compare the in-degree properties of computational graphs and general graphs, and
analyze the corresponding padding overhead induced by our method. Specifically, we study three
types of computational graphs (RTL, AIG, and PM netlist) and compare them with citation graphs,
a representative class of DAGs. For the latter, we use the Cora, CiteSeer, and PubMed datasets from
Yang et al. (2016).

As shown in Figure 4, the in-degree of a node in a computational graph is largely determined by
its operator type, leading to a stable and bounded distribution across RTL, AIG, and PM netlist. In
contrast, general DAGs such as citation networks exhibit long-tailed in-degree distributions. This
discrepancy is critical for our method (Section 3.2), as sequence length is padded according to
node in-degree. Consequently, long-tailed distributions introduce significant redundancy for general
DAGs, while computational graphs remain more compact.

We quantify the redundancy using the following metric:

padding overhead =
n×maxi(di)−

∑
i di

n×maxi(di)
, (7)

where n denotes the number of nodes in the graph and di is the in-degree of node i.

Table 7: Padding Overhead Across Different Graphs

Metric Computational Graph General Graph
RTL AIG PM Netlist Cora CiteSeer PubMed

Padding Overhead 42.35% 16.29% 38.54% 97.10% 96.22% 96.80%

As summarized in Table 7, citation graphs suffer from severe padding overhead, ranging from
96.22% to 97.10%, which corresponds to nearly 20× additional computation cost. In contrast,
computational graphs exhibit much lower overhead, between 16.29% and 42.35%. These results

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

underscore the structural advantage of computational graphs: their bounded in-degree leads to sub-
stantially reduced padding, thereby improving the efficiency of our proposed method.

E PREDICTIVE TASKS

E.1 LOGIC-1 PROBABILITY PREDICTION

Logic-1 probability prediction is a node-level regression task. In a digital circuit, the logic value
of any node i can be modeled as a binary random variable xi ∼ B(pi), where pi is the probability
of the node being in the logic “1” state. This value, often referred to as the signal probability, is a
crucial indicator of circuit function. The objective of this task is to predict the parameter pi for each
node in the circuit, providing insight into its functional behavior.

E.2 FUNCTIONAL SIMILARITY PREDICTION

The core objective of similarity prediction is to predict the functional similarity between a given
pair of nodes. To establish the ground truth for this task, we first sample a fixed set of input patterns
from the complete input space (exhaustive simulation would require testing all 2n possible input
combinations for n inputs). We sample a set of node pairs Npairs. For each node i in a selected
pair, we generate a partial truth table Ti by recording its state under this shared set of input patterns.
The functional similarity S(i,j) for a pair of nodes (i, j) ∈ Npairs is then calculated based on the
normalized Hamming distance between their respective partial truth tables, Ti and Tj :

S(i,j) = 1− HammingDistance(Ti, Tj)
length(Ti)

(8)

This similarity score S(i,j) ranges from 0 to 1, where 1 indicates that the two nodes have identical
outputs for all simulated input vectors, and 0 indicates they are completely dissimilar.

E.3 TRANSITION PROBABILITY PREDICTION

To analyze the dynamic behavior of sequential circuits, random binary input sequences are ap-
plied to each primary input, and the circuit is simulated. For each input sequence, the output states
si(t) ∈ {0, 1} of standard cells and the sequential outputs of registers are recorded. The number
of transitions from 0 to 1 and from 1 to 0 for each cell or register i is counted as N (i)

0→1 and N (i)
1→0,

respectively. The transition probabilities are then defined as

P
(i)
0→1 =

N
(i)
0→1

Ntotal
, P

(i)
1→0 =

N
(i)
1→0

Ntotal
, (9)

where Ntotal is the total number of input sequences.

Notably, the output of each register changes according to the input sequence and clock cycles, and
the initial value of each register in a simulation step is taken from the output of the previous simula-
tion. These transitions reflect the activity of circuit nodes, which is the primary source of dynamic
power consumption. Therefore, transition probabilities provide a quantitative measure of the dy-
namic switching characteristics of the circuit, and can be used as an indicator for dynamic power
analysis.

15

	Introduction
	Background
	Computational Graphs
	Message Passing Neural Networks
	Graph Transformers

	Method
	Overview
	Hierarchical Transformer
	Function Shift Learning on Predictive Task
	Contrastive Task

	Experiment
	Implement Details
	Contrastive Tasks
	Predictive Tasks
	Ablation Study

	Conclusion
	The Use of Large Language Models
	Computation Graph
	Dataset Details
	Degree Distribution
	Predictive Tasks
	Logic-1 Probability Prediction
	Functional Similarity Prediction
	Transition Probability Prediction

