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ABSTRACT

Despite significant advancements in post-hoc explainability techniques for neural
networks, many current methods rely on approximations and heuristics and do
not provide formally provable guarantees over the explanations provided. Recent
work has shown that it is possible to obtain explanations with formal guarantees by
identifying subsets of input features that are sufficient to determine that predictions
remain unchanged by incorporating neural network verification techniques. Despite
the appeal of these explanations, their computation faces significant scalability
challenges. In this work, we address this gap by proposing a novel abstraction-
refinement technique for efficiently computing provably sufficient explanations of
neural network predictions. Our method abstracts the original large neural network
by constructing a substantially reduced network, where a sufficient explanation
of the reduced network is also provably sufficient for the original network, hence
significantly speeding up the verification process. If the explanation is insufficient
on the reduced network, we iteratively refine the network size (by gradually increas-
ing it) until convergence. Our experimental results demonstrate that our approach
substantially enhances the efficiency of obtaining provably sufficient explanations
for neural network predictions while additionally providing a fine-grained interpre-
tation of the network’s decisions across different abstraction levels. We thus regard
this work as a substantial step forward in improving the feasibility of computing
explanations with formal guarantees for neural networks.

1 INTRODUCTION

Despite the widespread use of deep neural networks, they remain black boxes that are uninterpretable
to humans. Various methods have been proposed to explain neural network predictions. Classic
additive feature attributions like LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017), and
integrated gradients (Sundararajan et al., 2017) assume that neural networks exhibit near-linear
behavior in a local region around the interpreted instance. Following these works, methods like
Anchors (Ribeiro et al., 2018) and SIS (Carter et al., 2019) aim to compute a subset of input features
that is (nearly) sufficient to determine the prediction. We refer to this subset of features as an
explanation of the prediction. A common assumption in the literature is that a smaller explanation
provides a better interpretation, and for this reason, the minimality of the explanation is also a desired
property (Ignatiev et al., 2019; Carter et al., 2019; Darwiche & Hirth, 2020; Ribeiro et al., 2018;
Barceló et al., 2020).

Methods like Anchors and SIS rely on probabilistic sampling of the input space and lack formally
provable guarantees for the sufficiency of the subsets they identify. In contrast, recent approaches
have demonstrated that incorporating neural network verification tools can produce explanations that
are provably certified as sufficient (Bassan & Katz, 2023; Wu et al., 2024; La Malfa et al., 2021).
This makes such explanations more suitable for safety-critical domains where formally certifying the
reliability of the explanation is vital (Marques-Silva & Ignatiev, 2022).

Despite the appeal of such explanations, the computational complexity of producing them limits
their feasibility for large neural networks (Barceló et al., 2020). Verifying a single query on a
neural network is NP-Complete (Katz et al., 2017), with exponentially increasing complexity based
on the number of nonlinear activations. Consequently, larger and deeper neural networks are
significantly harder to verify. While there have been rapid advances in the scalability of neural
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(a) Original image (b) ρ ≤ 10% (c) ρ ≤ 30% (d) ρ ≤ 50% (e) ρ ≤ 80% (f) Original network

Network size ρ = 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Explanation size increases Network size ρ and computation time increases

Figure 1: Demonstration of an abstraction-based explanation process. As the size of the abstract
network ρ increases, the size of the explanation (uncolored pixels) decreases. Notably, the majority
of the explanation can be derived using only a small percentage of the network (b)-(e), reducing
the time required to compute the explanation and offering more insight compared to using only the
original network (f). Further visualizations are provided in appendix C.

network verification techniques in recent years (Wang et al., 2021; Brix et al., 2023), scalability
remains a major challenge. Furthermore, providing minimal sufficient explanations (with respect
to their sizes) requires invoking not one but multiple verification queries: for example, methods
suggested by previous research (Bassan & Katz, 2023; Wu et al., 2024) dispatch a linear number of
such queries relative to the input dimension, making these tasks particularly difficult for large input
spaces.

Our Contributions. In this work, we propose a novel algorithm that significantly enhances the
efficiency of generating provably sufficient explanations for neural networks. Our algorithm is based
on an abstraction refinement technique (Clarke et al., 2000; Wang et al., 2006; Flanagan & Qadeer,
2002), which is widely used to improve the scalability of formal verification and model checking. In
abstraction-refinement, a complex model with many states is efficiently optimized through two steps:
(i) abstraction, which simplifies the model by grouping states, and (ii) refinement, which increases
the precision of the abstraction to better approximate the model.

In the context of explainability, we propose an algorithm that constructs an abstract neural network
— a substantially reduced model compared to the original. This reduction is achieved by merging
neurons within each layer that exhibit similar behavior. The key component of this approach is
to design the reduction such that a sufficient explanation for the abstract network is also provably
sufficient for the original network. Hence, we define an explanation for the abstract neural network
as an abstract explanation. Verifying the sufficiency of explanations for an abstract neural network
is much more efficient than for the original model due to its reduced dimensionality. However, if a
subset is found to be insufficient for the abstract network, its sufficiency for the original model is
undetermined. Consequently, while sufficient explanations for the abstract network will be sufficient
for the original network, minimal sufficient explanations for the abstract network, though sufficient,
may not be minimal for the original network.

To address this issue, we incorporate a refinement component as typical in abstraction-refinenemt
techniques: We construct an intermediate abstract network, which is slightly larger than the initial
abstract network but still significantly smaller than the original. The explanations computed for
this refined network are still provably sufficient for the original network and are also guaranteed
to be a subset of the explanation from the initial abstract network. Hence, this phase produces a
refined explanation based on the refined network. After several refinement steps, the sizes of the
neural networks will gradually increase while the sizes of the explanations will gradually decrease
until finally converging to a minimal explanation for some reduced network, which is also provably
minimal for the original neural network. An illustration of this entire process is shown in Fig. 1.

We evaluate our algorithm on various benchmarks and show that it significantly outperforms existing
verification-based methods by producing much smaller explanations and doing so substantially
more efficiently. Additionally, we compare our results to heuristic-based approaches and show
that these methods do not provide sufficient explanations in most cases, whereas the explanations
of our approach are guaranteed to be sufficient. An additional advantage of our method is that it
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enables the progressive convergence of the refined explanations to the final explanation, as illustrated
in Fig. 1. This approach allows practitioners to observe minimal subsets across various reduced
networks, offering a fine-grained interpretation of the model’s prediction. Additionally, it provides
the possibility of halting the process once the explanation meets some desired criteria.

Besides these practical aspects, we view this work as a novel proof-of-concept for using abstraction-
refinement-based techniques in explainability, by obtaining formally provable explanations over
abstract neural networks, which allow significantly more efficient verification, and a fine-grained
interpretation over abstracted and refined networks. We hence consider this work as a significant step
in the exploration of producing explanations with formal guarantees for neural networks.

2 PRELIMINARIES

2.1 NEURAL NETWORK VERIFICATION

We specify a generic neural network classifier architecture that can utilize any element-wise nonlinear
activation function. For an input x ∈ Rn, the neural network classifier is denoted as f : Rn → Rc.
Numerous tools have been proposed for formally verifying properties of neural networks, with
adversarial robustness being the most frequently examined property (Brix et al., 2023). The neural
network verification query can be formalized as follows:

Neural Network Verification (Problem Statement):
Input: A neural network f , such that f(x) = y, with an input specification ψin(x), and and unsafe
output specification ψout(y).
Output: No, if there exists some x ∈ Rn such that ψin(x) holds and for y = f(x) : ψout(y) holds, and
Yes otherwise.

There exist many off-the-shelf neural network verifiers (Brix et al., 2023). If the input specifications
ψin(x), output specifications ψout(y), and model f are piecewise-linear (e.g., f uses ReLU activa-
tions), this task can be solved exactly (Katz et al., 2017). For non-piecewise-linear activations like
sigmoid, the output is usually enclosed by bounding all approximation errors (Singh et al., 2018).

2.2 FORMALLY PROVABLE MINIMAL SUFFICIENT EXPLANATIONS

In this study, we concentrate on local post-hoc explanations for neural network classifiers. Specifically,
for a neural network classifier f : Rn → Rd and a given local input x ∈ Rn that has been assigned to
class t := argmaxj f(x)j , our objective is to explain why f(x) was classified as class t.

Sufficient Explanations. A common method for interpreting the decisions of classifiers involves
identifying subsets of input features S ⊆ [n] such that fixing these features to their specific values
guarantees the prediction remains constant. Specifically, these techniques guarantee that the clas-
sification result remains consistent across any potential assignment within the complementary set
S̄, thereby allowing for the formal validation of the explanations’ soundness. While in the classic
setting approaches, the complementary set S̄ := [n] \ S is allowed to take on any possible feature
values (Ignatiev et al., 2019; Darwiche & Hirth, 2020; Bassan & Katz, 2023), a more feasible and
generalizable version restricts the possible assignments for S̄ to a bounded ϵp-region (Wu et al., 2024;
La Malfa et al., 2021; Izza et al., 2024). We use (xS ; x̃S̄) ∈ Rn to denote an assignment where the
features of S are set to the values of the vector x ∈ Rn and the features of S̄ are set to the values of
another vector x̃ ∈ Rn. Formally, we define a sufficient explanation S as follows:

Definition 1 (Sufficient Explanation) Given a neural network f , an input x ∈ Rn, a perturbation
radius ϵp ∈ R, and a subset S ⊆ [n], we say that S is a sufficient explanation concerning the query
⟨f, x, S, ϵp⟩ on an ℓp-norm ball Bϵp

p of radius ϵp around x iff it holds that:

∀x̃ ∈ Bϵp
p (x) : [argmax

j
f(xS ; x̃S̄)(j) = argmax

j
f(x)(j)],

with Bϵp
p (x) := {x̃ ∈ Rn | ∥x− x̃∥p ≤ ϵp}.

We define: suff(f, x, S, ϵp) = 1 iff S constitutes a sufficient explanation with respect to the query
⟨f, x, S, ϵp⟩; otherwise, suff(f, x, S, ϵp) = 0.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Def. 1 can be formulated as a neural network verification query. This method has been proposed by
prior studies, which employed these techniques to validate the sufficiency of specific subsets (Wu
et al., 2024; Bassan & Katz, 2023; La Malfa et al., 2021).

Minimal Explanations. Clearly, if the subset S is chosen as the entire input set, i.e., S := [n], it
is a sufficient explanation. However, a common view in the literature suggests that smaller subsets
are more meaningful than larger ones (Ribeiro et al., 2018; Carter et al., 2019; Barceló et al., 2020;
Ignatiev et al., 2019). Therefore, there is a focus on identifying subsets that not only are sufficient but
also meet a criteria for minimality:

Definition 2 (Minimal Sufficient Explanation) Given a neural network f , an input x ∈ Rn, and a
subset S ⊆ [n], we say that S is a minimal sufficient explanation concerning the query ⟨f, x, S, ϵp⟩
on an ℓp-norm ball Bϵp

p of radius ϵp iff S is a sufficient explanation, and for any i ∈ [n], S \ {i} is
not a sufficient explanation. We define min-suff(f, x, S, ϵp) = 1 if S satisfies both sufficiency and
minimality concerning ⟨f, x, S, ϵp⟩, and min-suff(f, x, S, ϵp) = 0 otherwise.

Minimal sufficient explanations can also be determined using neural network verifiers. Unlike simply
verifying the sufficiency of a specific subset, this process requires executing multiple verification
queries to ensure the minimality of the subset. Alg. 1 outlines such a procedure (similar methods are
discussed in (Ignatiev et al., 2019; Wu et al., 2024; Bassan & Katz, 2023)). The algorithm begins
with S encompassing the entire feature set [n] and iteratively tries to exclude a feature i from S , each
time checking whether S \ {i} remains sufficient. If S \ {i} is still sufficient, feature i is removed;
otherwise, it is retained in the explanation. This process is repeated until a minimal subset is obtained.

Algorithm 1 Greedy Minimal Sufficient Explanation Search
Input: Neural network f : Rn → Rc, input x ∈ Rn, perturbation radius ϵp ∈ R

1: S ← [n] ▷ Current sufficient explanation
2: for each feature i ∈ [n] by some ordering do ▷ The invariant suff(f, x, S, ϵp) holds
3: if suff(f, x, S \ {i}, ϵp) then ▷ Validated by a neural network verifier
4: S ← S \ {i}
5: end if
6: end for
7: return S ▷ min-suff(f ,x,S,ϵp) holds

3 FROM ABSTRACT NEURAL NETWORKS TO ABSTRACT EXPLANATIONS

A primary challenge in obtaining minimal sufficient explanations in neural networks is the high
computational complexity involved. Verifying the sufficiency of a subset through a neural network
verification query is NP-Complete (Katz et al., 2017), with complexity increasing exponentially
with the number of activations, making it especially difficult for larger networks (Brix et al., 2023).
Obtaining a minimal subset also requires a linear number of verification queries relative to the input
size (Ignatiev et al., 2019; Wu et al., 2024), making the process computationally intensive for large
inputs. One potential solution is to replace the original neural network f with a much smaller, abstract
neural network f ′, and then run verifying queries on f ′ instead of f . However, a key challenge here is
to ensure that a sufficient explanation for f ′ is also a sufficient explanation for f . Although abstraction
techniques have been applied to improve the efficiency of adversarial robustness verification (Elboher
et al., 2020; Liu et al., 2024; Ladner & Althoff, 2023), to our knowledge, we are the first to use such
an approach to obtain provable explanations for neural networks.

Abstract Neural Networks. When abstracting a neural network, rather than using a traditional
network f : Rn → Rc, it is common to employ an abstract neural network f ′ that outputs a set
that encloses the actual output of f (Ladner & Althoff, 2023; Prabhakar & Rahimi Afzal, 2019;
Boudardara et al., 2022). This approach facilitates a more flexible propagation of the network’s inner
bounds capturing the error due to the abstraction. More formally, we define the domain of our abstract
network f ′ : Rn → 2(R

c), where 2(R
c) denotes the power set of Rc. In the simplest case, this means

that our abstract network outputs a c-dimensional interval rather than a c-dimensional vector.

4
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Since our abstract network f ′ now outputs a set, we must define a sufficient explanation for an
abstract network. Specifically, we define a sufficient explanation for f ′ and a target class t ∈ [c] as a
subset S ⊆ [n] such that when the features in S are fixed to their values in x, the lower bound for the
target class t consistently exceeds the upper bound of all other classes j ̸= t:

Definition 3 (Sufficient Explanation for Abstract Network) S ⊆ [n] is a sufficient explanation of
an abstract network f ′ concerning the query ⟨f ′, x, S, ϵp⟩ iff

∀j ̸= t ∈ [c], ∀x̃ ∈ Bϵp
p (x) : [min(f ′(xS ; x̃S̄)(t)) ≥ max(f ′(xS ; x̃S̄)(j))],

with Bϵp
p (x) := {x̃ ∈ Rn | ∥x− x̃∥p ≤ ϵp}.

Neuron-Merging-Based Abstraction. Various strategies can be employed to abstract a neural
network to reduce its size. In this work, we use a fully-automatic abstraction technique (Ladner
& Althoff, 2023), which involves merging neurons that exhibit similar behavior within the neural
network for some bounded input set. For instance, numerous sigmoid neurons may become fully
saturated, producing outputs close to 1. Hence, the corresponding abstraction approach involves
merging these saturated neurons and establishing corresponding error bounds for the given input set.
This can be realized without large computational overhead to a desired reduction rate ρ ∈ [0, 1] such
that the overall verification time, including abstraction, mainly depends on the remaining number of
neurons. For convenience, we also say that setting ρ = 1 produces the original network. We give
details about the construction of the abstract network in Appendix A.

We are now prepared to establish the following claim concerning sufficient explanations concerning
the query ⟨f ′, x, S, ϵp⟩:

Corollary 1 (Explanation Under Abstraction) Given a neural network f , an input x, a pertur-
bation radius ϵp, a subset S ⊆ [n], let f ′ be an abstract network constructed by neuron merging
concerning the query ⟨f, x, S, ϵp⟩. Then, it holds that:

suff(f ′, x, S, ϵp) =⇒ suff(f, x, S, ϵp).

Proof. The proof can be found in Appendix A. □

However, while a sufficient explanation S for the query ⟨f ′, x, S, ϵp⟩ is also provably sufficient
for the query ⟨f, x, S, ϵp⟩, if S is insufficient for ⟨f ′, x, S, ϵp⟩, it does not necessarily mean it is
insufficient for ⟨f, x, S, ϵp⟩. To more clearly highlight the explanation S within the context of the
abstract network f ′, we introduce an intermediate type of explanation, termed an abstract sufficient
explanation. This is a provably sufficient explanation for ⟨f ′, x, S, ϵp⟩ and, by extension (Cor. 1),
also provably sufficient for ⟨f, x, S, ϵp⟩:

Definition 4 (Abstract Sufficient Explanation) We define a sufficient explanation S concerning the
query ⟨f ′, x, S, ϵp⟩ as an abstract sufficient explanation concerning the query ⟨f, x, S, ϵp⟩.

However, despite the fact that we now have a framework to obtain sufficient explanations S for a
neural network f much more efficiently as any query on the smaller abstract network is faster, there
still remains a problem that the explanation S produced over the abstract network f ′ may not be
minimal over the original network f even if it is minimal with respect to ⟨f ′, x, S, ϵp⟩. We show how
to address this issue through a refinement process for both the neural network and the explanation,
which is carried out iteratively until convergence.

4 FROM REFINING NEURAL NETWORKS TO REFINING EXPLANATIONS

In order to produce an explanation that is both sufficient and minimal, we apply an iterative refinement
process. In each step, we construct a slightly larger refined network f ′′ than the previously constructed
abstract network f ′ by splitting some of the merged neurons, resulting in a larger reduction rate
ρ′′ > ρ′. The refined abstract network f ′′ is still substantially smaller than the original network f but
slightly larger than f ′, allowing us to generate a smaller explanation:

Proposition 1 (Refined Abstract Network) Given a neural network f , an input x, a perturbation
radius ϵp ∈ R, a subset S ⊆ [n], and an abstract network f ′ with reduction rate ρ′ ∈ [0, 1], we can
construct a refined abstract network f ′′ from f, f ′ with reduction rate ρ′′ > ρ′, for which holds that:

∀x̃ ∈ Bϵp
p (x) : f(xS ; x̃S̄) ∈ f ′′(xS ; x̃S̄) ⊂ f ′(xS ; x̃S̄).
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Proof. The proof can be found in Appendix A. □

Considering a refined abstract network f ′′ in relation to f and f ′ with ρ′′ > ρ′, the following property
holds for the explanations generated for these networks:

Corollary 2 (Intermediate Sufficient Explanation) Let there be a neural network f , an abstract
network f ′, and a refined neural network f ′′. Then, it holds that:

suff(f ′, x, S, ϵp) =⇒ suff(f ′′, x, S, ϵp) and

suff(f ′′, x, S, ϵp) =⇒ suff(f, x, S, ϵp).

Proof. The proof can be found in Appendix A. □

We observe that any sufficient explanation S for the query ⟨f ′′, x, S, ϵp⟩ is also sufficient for the
query ⟨f, x, S, ϵp⟩ and might not be for ⟨f ′, x, S, ϵp⟩ (Cor. 2). Thus, the intermediate explanation
of a refined network is a subset of the explanation of the abstract network. Consequently, we define,
in a manner akin to abstract sufficient explanations, an intermediate category termed refined sufficient
explanations:

Definition 5 (Refined Sufficient Explanation) We define a sufficient explanation S concerning
⟨f ′′, x, S, ϵp⟩ as a refined sufficient explanation, where the refined abstract network f ′′ is con-
structed with respect to ⟨f, f ′, x, S, ϵp⟩ for a neural network f , and an abstract network f ′.

The observation that a sufficient explanation for ⟨f ′′, x, S, ϵp⟩ is a subset of the one for ⟨f ′, x, S, ϵp⟩
suggests the following characteristic about the minimality of sufficient explanations:

Corollary 3 (Intermediate Minimal Sufficient Explanation) Let there be a neural network f , an
abstract network f ′, and a refined neural network f ′′. Then, if S is a sufficient explanation concerning
f , f ′, and f ′′, it holds that:

min-suff(f, x, S, ϵp) =⇒ min-suff(f ′′, x, S, ϵp) and

min-suff(f ′′, x, S, ϵp) =⇒ min-suff(f ′, x, S, ϵp).

Proof. The proof can be found in Appendix A. □

We note that the implication chain in Cor. 3 is in reverse order compared to the implication chain
in Cor. 2. Intuitively, refining the abstract network f ′ to f ′′ incrementally produces larger neural
networks, which in turn generates progressively smaller explanations, until ultimately converging to a
minimal explanation for some refined network as it converges to the original network. We harness this
iterative process and propose an abstraction-refinement approach to produce such minimal subsets.
The pseudo-code is given in Alg. 2.

The algorithm starts with a coarse abstract network f ′ and derives an abstract sufficient explanation S
by progressively removing features from S , akin to the method described in Alg. 1. All following line
numbers are with respect to Alg. 2. While the abstract sufficient explanation is provably sufficient for
the original network (Cor. 2), it is not necessarily provably minimal (Cor. 3). If we cannot be certain
whether a subset S is sufficient for the abstract network (lines 9 to 18), we check if feature i is indeed
not in the explanation by extracting a counterexample and checking its output of the original network
(lines 10 to 11). If the counterexample is spurious due to the abstraction in f ′, we refine the abstract
neural network and thus produce a slightly larger network f ′′ (line 15). Using this refined network
f ′′, we acquire a refined sufficient explanation relative to it, which allows us to remove more features
from the explanation as the abstraction error is smaller (Prop. 1). As we remove more features from
the explanation, the verification query to test whether the current subset is a sufficient explanation
becomes harder as more features can be perturbed. Thus, it is sensible to only abstract the network in
line 4 to a level for which the verification query was still successful, i.e., use the reduction rate of f ′′.
This process continues, with each iteration slightly enlarging the abstract network through refinement
and consequently reducing the size of the sufficient explanation.

Proposition 2 (Greedy Minimal Sufficient Explanation Search) Alg. 2 produces a provably suffi-
cient and minimal explanation S concerning the query ⟨f, x, S, ϵp⟩, which converges to the same
explanation as obtained by Alg. 1.

Proof. The proof can be found in Appendix A. □
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Algorithm 2 Greedy Minimal Abstract Sufficient Explanation Search
Input: Neural network f : Rn → Rc, input x ∈ Rn, perturbation radius ϵp ∈ R

1: S ← [n] ▷ Current sufficient explanation
2: F ← [n] ▷ Features left to iterate on
3: for each feature i ∈ F by some ordering do ▷ The invariant suff(f, x, S, ϵp) holds
4: Abstract f w.r.t suff(f, x, S \ {i}, ϵp) to get f ′
5: do
6: if suff(f ′, x,S \ {i}, ϵp) then ▷ Def. 3
7: S ← S \ {i} ▷ Feature i is not in the explanation
8: break
9: else

10: Extract counterexample x̃ w.r.t suff(f ′, x, S \ {i}, ϵp)
11: if argmaxj f(x̃)(j) ̸= argmaxj f(x)(j) then ▷ Def. 1
12: F ← F \ {i} ▷ Feature i is in the explanation
13: break
14: else ▷ Abstraction too coarse
15: f ′′ ← Refine f ′ w.r.t suff(f ′, x, S \ {i}, ϵp) ▷ Prop. 1
16: f ′ ← f ′′ ▷ Use this reduction rate in future interations
17: end if
18: end if
19: while true ▷ Repeat with refined network
20: end for
21: return S ▷ min-suff(f, x, S, ϵp) holds

5 EXPERIMENTAL RESULTS

Experimental Setup. We implemented the algorithms using CORA (Althoff, 2015) as the backend
neural network verifier. We performed our experiments on three image classification benchmarks:
(a) MNIST (LeCun, 1998), (b) CIFAR-10 (Krizhevsky et al., 2009), and (c) GTSRB (Stallkamp et al.,
2012). Comprehensive details about the models and their training are provided in Appendix C.

5.1 COMPARISON TO STANDARD VERIFICATION-BASED EXPLANATIONS

In our initial experiment, we aimed to evaluate the abstraction-refinement method proposed in Alg. 2
against the traditional approach described in Alg. 1 for deriving provably sufficient explanations
for neural networks, as implemented in previous studies (see (Wu et al., 2024; Bassan & Katz,
2023; La Malfa et al., 2021)). Complete details about the implementation of the refinement process
are available in Appendix B. We assessed the effectiveness of both approaches using the two most
prevalent metrics for evaluating sufficient explanations, as documented in (Wu et al., 2024; Ignatiev
et al., 2019; Bassan & Katz, 2023): (i) the size of the explanation, with smaller sizes indicating higher
meaningfulness, and (ii) the computation time.

Fig. 2 illustrates the reduction in explanation size over time for each of the three benchmarks. We
observed a notable improvement in computation time using the abstraction-refinement approach
compared to the standard greedy search method (−41% for MNIST,−36% for CIFAR-10, and−56%
for GTSRB). We also implemented a timeout for each dataset and assessed the explanation size for
each method under the timeout. These results are presented in Tab. 1 and demonstrate the substantial
gains in explanation size achieved with our abstraction-refinement approach.

5.2 MINIMAL EXPLANATIONS AT DIFFERENT ABSTRACTION LEVELS

Besides improving computation time and reducing explanation size, the abstraction-refinement
method allows users to observe the progressive decrease in explanation size at each abstraction level.
Although networks with significant reductions initially provide larger explanations, refining these
networks yields explanations of decreasing size. This transparency, from deriving abstract to refined
explanations, may provide users with deeper insights into the prediction mechanism. Furthermore, it
offers flexibility to halt the process when the explanation is provably sufficient, even if not provably
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Figure 2: The explanation size over cumulative time for MNIST, CIFAR10, and GTSRB, throughout
the entire abstraction-refinement algorithm, or using the standard verification algorithm on the original
network. The standard deviation is shown as a shaded region.

Table 1: Mean explanation size with standard deviation using a timeout of 100s, 1, 000s, and 10, 000s
for MNIST, CIFAR-10, and GTSRB, respectively.

Explanation size
Method MNIST CIFAR-10 GTSRB

Abstract+refine (ours) 204.41± 129.25 308.24± 236.64 230.60± 234.29
Original network 408.73± 36.57 448.68± 138.40 502.44± 101.69

ρ = 10% 507.33± 141.33 850.60± 28.86 502.44± 101.69
ρ = 20% 420.58± 149.36 806.44± 57.37 704.64± 168.85
ρ = 30% 340.05± 144.96 687.12± 130.83 604.96± 203.07
ρ = 40% 291.55± 126.95 502.52± 196.47 491.12± 230.24
ρ = 50% 285.47± 98.01 346.28± 219.37 392.60± 240.07
ρ = 60% 302.33± 77.50 314.24± 232.13 323.60± 237.85
ρ = 70% 325.58± 64.54 311.48± 233.04 292.64± 225.22
ρ = 80% 350.12± 53.22 310.24± 233.54 308.80± 201.25
ρ = 90% 372.69± 46.78 310.56± 233.08 333.72± 188.43
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Figure 3: Examples of explanations at varying reduction rates for MNIST, CIFAR-10, and GTSRB.
More examples can be found in appendix C.
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Figure 4: The percentage of processed features—identified as either included or excluded from the
explanation—over cumulative time for all benchmarks, segmented by reduction rate, throughout the
abstraction-refinement algorithm, or using the standard verification algorithm on the original network.

Table 2: Comparison with heuristic-based approaches, measuring sufficiency and average compu-
tation time over 100 images. Heuristic methods are faster but lack sufficiency, while our method
consistently provides sufficient explanations (Prop. 2).

MNIST CIFAR-10 GTSRB
Method Suff. Time Suff. Time Suff. Time

Anchors (Ribeiro et al., 2018) 25% 0.56s 3% 1.17s 17% 0.14s
SIS (Carter et al., 2019) 22% 322.72s 0% 553.92s 6% 95.13s

Original network 100% 207.80s 100% 1, 838.2s 100% 23, 504s
Abstract+refine (ours) 100% 121.95s 100% 1, 180.5s 100% 10, 235s

minimal. This fine-grained process is illustrated in Fig. 3. Across all three benchmarks, small
explanations can be obtained at low reduction rates (using less than 50% of the neurons).

5.3 EFFECT OF REDUCTION RATES

For a more detailed analysis of our findings, we present additional results on the computation
of explanations at varying reduction rates within our abstraction process. In Fig. 4, we illustrate
the percentage of processed features verified to be included or excluded from the explanation per
reduction rate for MNIST, CIFAR-10, and GTSRB. These results highlight that the majority of the
explanation processing occurs at coarser abstractions, i.e., smaller network sizes ρ, which accounts
for the marked improvement in computation time.

5.4 COMPARISON TO HEURSTIC-BASED APPROACHES

In our final experiment, we compared the results of our explanations with those obtained from
non-verification-based methods. Specifically, we evaluated our explanations against two widely used
approaches that compute sufficient explanations: (i) Anchors (Ribeiro et al., 2018) and (ii) SIS (Carter
et al., 2019). Although these methods operate relatively efficiently, they do not formally verify the
sufficiency of the explanations, relying instead on a heuristic sampling across the complement. We
depicted the comparisons between our verified explanations and those generated by Anchors and
SIS in Tab. 2. These results highlight that while faster, these methods produce far fewer provably
sufficient explanations (≤ 25%).
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6 RELATED WORK

Our work is closely related to formal explainable artificial intellicene (XAI) (Marques-Silva &
Ignatiev, 2022), which aims to provide explanations with formal guarantees. Previous research has fo-
cused on deriving provable sufficient explanations for simple models like decision trees (Huang et al.,
2021; Izza et al., 2022), linear models (Marques-Silva et al., 2020), monotonic classifiers (Marques-
Silva et al., 2021; El Harzli et al., 2022), and tree ensembles (Izza & Marques-Silva, 2021; Ignatiev
et al., 2022; Boumazouza et al., 2021). More closely related to our work are methods that derive
minimal sufficient explanations for neural networks (Bassan & Katz, 2023; La Malfa et al., 2021;
Wu et al., 2024). These explanations often rely on neural network verification tools, which are
rapidly improving in scalability (Katz et al., 2017; Wang et al., 2021; Brix et al., 2023), though their
scalability remains a key challenge, as they require executing multiple verification queries (Barceló
et al., 2020; Ignatiev et al., 2019; Wu et al., 2024).

Additionally, our algorithm uses abstraction-refinement, a technique predominantly used to improve
the efficiency of symbolic model checking (Clarke et al., 2000; Wang et al., 2006). This approach
has also been successfully applied in software (Jhala & Majumdar, 2009; Flanagan & Qadeer, 2002),
hardware verification (Andraus et al., 2007), and hybrid systems verification (Alur et al., 2000). More
recently, techniques have been proposed to use abstraction-refinement by abstracting neural network
sizes to improve the efficiency of certifying adversarial robustness (Elboher et al., 2020; Ladner &
Althoff, 2023; Liu et al., 2024; Siddiqui et al., 2024). However, to the best of our knowledge, we are
the first to adopt such an abstraction-refinement-based technique to reduce neural network sizes for
providing provable explanations of neural network predictions.

7 LIMITATIONS AND FUTURE WORK

The primary limitation of our framework is its reliance on neural network verification queries, which
currently face scalability challenges. While verification techniques are still limited in applying to
state-of-the-art models, their scalability is improving rapidly (Wang et al., 2021; Brix et al., 2023).
Our method adds an orthogonal step in using these tools to derive provable explanations for neural
network decisions. Hence, as the scalability of verification tools improves, so will that of our approach.
Additionally, our focus is on obtaining minimal sufficient explanations for predictions, but other
methods exist for explaining model decisions. Future work could explore abstraction-refinement
strategies for scaling various explanation types with formal guarantees by reducing the network size.
If a formal explanation holds for a smaller network f ′, it should apply to the original model f . For
example, one could construct a smaller network where a minimal counterfactual explanation for f ′
is also minimal for f (Mothilal et al., 2020). Other approaches might study attributes of Shapley
values, such as symmetry and efficiency (Sundararajan & Najmi, 2020), or properties like infidelity
or consistency (Yeh et al., 2019) of feature attributions. Each property might necessitate distinct
methods of abstraction between f and f ′, presenting compelling avenues for future research.

8 CONCLUSION

Obtaining minimal sufficient explanations for neural networks offers a promising way to provide
explanations with formally verifiable guarantees. However, the scalability of generating such ex-
planations is hindered by the need to invoke multiple neural network verification queries. Our
abstraction-refinement approach addresses this by starting with a significantly smaller network and
refining it as needed. This ensures that the explanations are provably sufficient for the original net-
work and, ultimately, both provably minimal and sufficient. The method also produces intermediate
explanations, allowing for an early stop when sufficient but non-minimal explanations are reached,
while also offering a more fine-grained interpretation of the model prediction. Our experiments
demonstrate that our approach generates minimal sufficient explanations substantially more efficiently
than traditional methods, representing a significant step forward in producing explanations for neural
network predictions with formal guarantees.
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Appendix
The appendix includes supplementary experimental results, implementation details, and proofs.

Appendix A contains all proofs of this paper.
Appendix B contains implementation details.
Appendix C contains supplementary results.

A PROOFS

In this section, we provide the missing proofs in the order they appear in the main paper.

A.1 PROOFS OF SEC. 3: “FROM ABSTRACT NEURAL NETWORKS TO ABSTRACT
EXPLANATIONS”

To prove Cor. 1, we define both a neural network and an abstract neural network layer-by-layer, as
described in Sec. 3.

Definition 6 (Neural Network) Let x ∈ Rn0 be the input of a neural network f with κ layers, its
output y := f(x) ∈ Rnκ is obtained as follows:

h0 := x, hk := Lk (hk−1) , y = hκ, k ∈ [κ],

where Lk : Rnk−1 → Rnk represents the operation of layer k and is given by Lk (hk−1) :=
σ(Wkhk−1 + bk) with weight matrix Wk ∈ Rnk×nk−1 , bias bk ∈ Rnk , activation function
σ : Rnk → Rnk , and number of neurons nk ∈ N.

Given a set S and a function f : Rn → Rm, we define f(S) := {f(s) | s ∈ S}. An abstract network
is then described by:

Definition 7 (Abstract Neural Network) Let x ∈ Rn0 be the input of an abstract neural network
f ′ with κ layers, its output y := f ′(x) ⊂ Rnκ is obtained as follows:

H′
0 := {x}, H′

k := L′
k

(
H′

k−1

)
, y = H′

κ, k ∈ [κ],

where L′
k : 2

(Rn′
k−1 ) → 2(R

n′
k ) represents the operation of the abstract layer k and is given by

L′
k

(
H′

k−1

)
= σ(W′

kH′
k−1 ⊕ b′

k) with weight matrix W′
k ∈ Rn′

k×n′
k−1 , bias b′

k ∈ Rn′
k , activation

function σ : Rn′
k → Rn′

k , number of neurons n′k ∈ N, n′0 := n0, n
′
κ := nκ, and ⊕ denoting the

Minkowski sum.

Let X ⊂ Rn be the set of points satisfying the input specification ψin(x) for a point x ∈ Rn (Sec. 2.1).
As mentioned in Sec. 2.1, the exact output Y∗ := f(X ) is often infeasible to compute, and an
enclosure Y ⊃ Y∗ is computed instead by bounding all approximation errors. This is realized by
iteratively propagating X through all layers and enclosing the output of each layer. For example,
given an input set Hk−1 ⊂ H∗

k−1 to layer k, we obtain the output Hk ⊃ Lk (Hk−1) = H∗
k, with

H∗
0 = H0 = X and Y = Hκ. Let Hk, Y and H′

k, Y ′ denote the enclosures of the sets H∗
k, Yk

using the original network f and the abstract network f ′, respectively. In this work, we use a
neuron-merging construction defined by Ladner & Althoff (2023):

Proposition 3 (Neuron-Merging Construction (Ladner & Althoff, 2023, Prop. 4)) Given a
layer k ∈ [κ − 1] of a network f , output bounds Ik ⊂ Rnk , a set of neurons to merge Bk ⊆ [nk],
and the indices of the remaining neurons Bk := [nk]\Bk, the layer k and k + 1 are constructed as
follows:

W′
k := Wk(Bk,·), b′k := bk(Bk)

, W′
k+1 = Wk+1(·,Bk)

, b′k+1 = bk+1 ⊕Wk+1(·,Bk)Ik(Bk),

where Wk+1(·,Bk)Ik(Bk) is the approximation error. The construction ensures thatH∗
k+1 ⊆ H′

k+1.
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Given a neural network f , an input x, a perturbation radius ϵp, and a subset S ⊆ [n], we say that
f ′ is an abstract network constructed by neuron merging with respect to the query ⟨f, x, S, ϵp⟩ if
we define the input set X := Bϵpp (xS ; x̃S̄) and recursively apply the neuron-merging construction
as described in 3 for any two layers Lk−1 and Lk. We can now provide an explicit proof of our
corollary:

Corollary 1 (Explanation Under Abstraction) Given a neural network f , an input x, a pertur-
bation radius ϵp, a subset S ⊆ [n], let f ′ be an abstract network constructed by neuron merging
concerning the query ⟨f, x, S, ϵp⟩. Then, it holds that:

suff(f ′, x, S, ϵp) =⇒ suff(f, x, S, ϵp).

Proof. We prove this statement by contradiction: Assume that S is a sufficient explanation for the
abstract network, i.e., for ⟨f ′, x, ϵp⟩, but not for the original network, i.e., for ⟨f, x, ϵp⟩. Given that S
is a sufficient explanation for ⟨f ′, x, ϵp⟩, the following holds (Def. 3):

∀j ̸= t ∈ [c], ∀x̃ ∈ Bϵp
p (x) : [min(f ′(xS ; x̃S̄)(t)) ≥ max(f ′(xS ; x̃S̄)(j))], (1)

where t := argmaxj f(x)(j) is the target class. Moreover, since S is not a suffcient explanation
concerning ⟨f, x, ϵp⟩ it follows that (Def. 1):

∃x̃′ ∈ Bϵp
p (x) : [argmax

j
f(xS ; x̃′

S̄)(j) ̸= argmax
j

f(x)(j) = t]. (2)

Since Eq. (1) is valid for any x̃ ∈ Bϵp
p (x), it explicitly applies to x̃′ ∈ Bϵp

p (x) as well. Specifically,
we have:

∀j ∈ [c]\{t}, [min(f ′(xS ; x̃′S̄)(t)) ≥ max(f ′(xS ; x̃′S̄)(j))]. (3)

We now assert that to establish the correctness of the corollary, it suffices to demonstrate that:

f(xS ; x̃′S̄) ∈ f
′(xS ; x̃′S̄) (4)

The rationale is as follows: if Eq. (4) holds, it would directly contradict our initial assumption. To
begin, observe that Eq. (4) directly leads to:

∀j ∈ [c], [min(f ′(xS ; x̃′
S̄)(j)) ≤ f(xS ; x̃′S̄)(j) ≤ max(f ′(xS ; x̃′S̄)(j))], (5)

and therefore, based on Eq. (3), it will directly follow that:

∀j ∈ [c]\{t}, [f(xS ; x̃′S̄)(t) ≥ min(f ′(xS ; x̃′S̄)(t)) ≥ max(f ′(xS ; x̃′S̄)(j)) ≥ f(xS ; x̃′S̄)(j)]. (6)

Now, specifically, given that the following condition is satisfied:

∀j ̸= t ∈ [c], [f(xS ; x̃′S̄)(t) ≥ f(xS ; x̃′S̄)(j)]. (7)

This indicates that argmaxj f(xS ; x̃′S̄)(j) = t, which contradicts the assumption stated in Eq. (2).

We are now left to prove that f(xS ; x̃′
S̄) ∈ f ′(xS ; x̃′

S̄). Let hk and H′
k be as defined in Def. 6 and

Def. 7, respectively, for the input (xS ; x̃′
S̄) ∈ X , where X := B

ϵp
p (xS ; x̃′

S̄). Recall that this is defined
since the merging is performed with respect to the query ⟨f, x,S, ϵp⟩. We show by induction that the
statement f(xS ; x̃′S̄) ∈ f ′(xS ; x̃′S̄) holds:

Induction hypothesis. k ∈ [κ]: The condition hk ∈ H′
k is satisfied if a neuron merging operation was

performed between any two layers up to and including layer k − 1.

Induction base. k = 0: Trivially holds (Def. 7).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Induction step. k → k + 1: We need to show that hk+1 ∈ H′
k+1. Let Bk, Ik be as in Prop. 3 andH′

k

the output set of layer k before merging. Thus, Ik ⊃ H′
k holds. From the induction hypothesis, we

know that hk ∈ H′
k holds. Recall from Def. 6 that hk+1 = σ(Wk+1hk + bk+1). Doing the same for

H′
k (Def. 7) and applying the neuron merging construction (Prop. 3) gives us:

hk+1 ∈ σ(Wk+1H′
k ⊕ bk+1) = σ(Wk+1(·,Bk)H

′
k(Bk)

⊕Wk+1(·,Bk)
H′

k(Bk)
⊕ bk+1)

⊆ σ(Wk+1(·,Bk)Ik(Bk) ⊕Wk+1(·,Bk)
H′

k(Bk)
⊕ bk+1)

= H′
k+1,

which proves the induction step. As the induction hypothesis holds for k = κ, we con-
clude that f ′(xS ; x̃′S̄) ∈ f ′(xS ; x̃′

S̄) must be true. This, as previously explained, implies that
argmaxj f(xS ; x̃′S̄)(j) = t, which contradicts our assumption in Eq. (2).

□

A.2 PROOFS OF SEC. 4: “FROM REFINING NEURAL NETWORKS TO REFINING
EXPLANATIONS”

Proposition 1 (Refined Abstract Network) Given a neural network f , an input x, a perturbation
radius ϵp ∈ R, a subset S ⊆ [n], and an abstract network f ′ with reduction rate ρ′ ∈ [0, 1], we can
construct a refined abstract network f ′′ from f, f ′ with reduction rate ρ′′ > ρ′, for which holds that:

∀x̃ ∈ Bϵp
p (x) : f(xS ; x̃S̄) ∈ f ′′(xS ; x̃S̄) ⊂ f ′(xS ; x̃S̄).

Proof. The containment of f(xS ; x̃S̄) follows using an analogous proof as for Cor. 1. While the
subset relation does not hold in general when applying the abstraction (Prop. 3) using ρ′′ instead of
ρ′ as different neurons might be merged, one can restrict the neurons that are allowed to be merged to
the subset of neurons N ′ = ∪k∈[κ−1]Bk that were merged to obtain f ′. Using this restriction and
as ρ′′ > ρ′ holds, N ′′ ⊂ N ′ holds. Then, as all additionally merged neurons N ′ \ N ′′ in f ′ induce
outer approximations and everything else is equal, the subset relation holds. □

Corollary 2 (Intermediate Sufficient Explanation) Let there be a neural network f , an abstract
network f ′, and a refined neural network f ′′. Then, it holds that:

suff(f ′, x, S, ϵp) =⇒ suff(f ′′, x, S, ϵp) and

suff(f ′′, x, S, ϵp) =⇒ suff(f, x, S, ϵp).

Proof. We show the first implication by contradiction: Let us assume that S is a sufficient
explanation for f ′ but not for f ′′. Thus, the query ⟨f ′′, x, S, ϵp⟩ does not fulfill Def. 3. However,
as f ′′(xS ; x̃S̄) ⊂ f ′(xS ; x̃S̄) holds due to Prop. 1, the query ⟨f ′, x, S, ϵp⟩ can also not fulfill Def. 3,
which contradicts our assumption. The proof for the second implication is analogous. □

Corollary 3 (Intermediate Minimal Sufficient Explanation) Let there be a neural network f , an
abstract network f ′, and a refined neural network f ′′. Then, if S is a sufficient explanation concerning
f , f ′, and f ′′, it holds that:

min-suff(f, x, S, ϵp) =⇒ min-suff(f ′′, x, S, ϵp) and

min-suff(f ′′, x, S, ϵp) =⇒ min-suff(f ′, x, S, ϵp).

Proof. The statement is shown by contradiction for the relation of f and f ′′: Let us assume that the
explanation S is minimal for f but not for f ′′. Thus, there must be a S ′ ⊂ S which is minimal for f ′′.
However, this cannot be an explanation for f as S is already minimal for f , From Cor. 1 follows that
S ′ is also a minimal explanation for f , which contradicts our assumption that S is already minimal.
Analogous holds for f ′′ and f ′. □

Proposition 2 (Greedy Minimal Sufficient Explanation Search) Alg. 2 produces a provably suffi-
cient and minimal explanation S concerning the query ⟨f, x, S, ϵp⟩, which converges to the same
explanation as obtained by Alg. 1.
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Proof. All line numbers are with respect to Alg. 2: The invariant described in line 3 holds due to
Cor. 2. Thus, the final explanation S is sufficient concerning the original network f .

We show the minimality by contradiction: Let us assume the final explanation S is not minimal:
There exists a feature i ∈ [n] such that S \ {i} is still sufficient (Def. 2). It follows that we cannot
have found a counterexample in lines 10 to 10, Thus, to break the do-while loop, the sufficiency
check in line 6 must have passed either on an abstract network or eventually after all refinement steps
on the original network. However, this would remove feature i from the explanation, which violates
our assumption.

We converge to the same explanation as Alg. 1, as we process the features in the same order, Cor. 2
holds, and if removing a feature results in a non-sufficient explanation and no counterexample on
the original network can be found, we refine the abstract networks until we converge to the original
network. □

B IMPLEMENTATION DETAILS

In this section, we offer further technical details about the implementation of our algorithms and
provide specifics on the model architectures and training methods used in this study.

B.1 IMPLEMENTATION DETAILS OF ALGORITHM 1 AND ALGORITHM 2

Both Alg. 1 and Alg. 2 iterate over the features in a specified order. This approach aligns with the
methodologies used in (Wu et al. (2024); Izza et al. (2024); Bassan & Katz (2023)), where a sensitivity
traversal over the features is employed. We prioritize iterating over features with the lowest sensitivity
first, as they are most likely to be successfully freed, thus leading to a smaller explanation. As we
refine the abstract network following Prop. 1, we define a series of reduction rates used during each
refinement step. For simplicity, we start with a coarsest abstraction at a reduction rate ρ = 10% of
the original network’s neurons and increase ρ by 10% at each subsequent refinement, until ρ = 100%
is reached, which restores the original network.

We also note that while MNIST utilizes grayscale images, both CIFAR-10 and GTSRB use RGB
images. Following standard practices (Wu et al. (2024); Ribeiro et al. (2018); Carter et al. (2019;
2021)) for colored images, we provide explanations for CIFAR-10 and GTSRB on a per-pixel basis,
rather than at the neuron level; this means we either include/exclude all color channels of a pixel
within the explanation or none. Consequently, the maximum size of an explanation, |S|, is 32 · 32
instead of 32 · 32 · 3. For MNIST, which has only one color channel, the maximum size is always
|S| = 28 · 28.

B.2 TRAINING AND MODEL IMPLEMENTATION

For MNIST and CIFAR-10, we utilized common models from the neural network verification
competition (VNN-COMP) (Brix et al., 2023), which are frequently used in experiments related to
neural network verification tasks. Specifically, the MNIST model architecture is sourced from the
ERAN benchmark within VNN-COMP, and the CIFAR-10 model is derived from the “marabou”
benchmark. Since GTSRB is not directly utilized in VNN-COMP, we trained this model using a batch
size of 32 for 10 epochs with the ADAM optimizer, achieving an accuracy of 84.8%. The precise
dimensions and configurations of the models used for both VNN-COMP (MNIST and CIFAR-10)
and GTSRB are provided: Table 3 for MNIST, Table B.2, and Table B.2 for GTSRB. For MNIST and
GTSRB, we use a perturbation radius ϵ∞ = 0.01 as commonly used in VNN-COMP benchmarks,
and for CIFAR-10, we use a smaller perturbation radius ϵ∞ = 0.001 as we have found this network
to be not very robust.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 3: Dimensions for the MNIST classifier.
Layer Type Paramater Activation
Input 784× 200 Sigmoid
Fully-Connected (6 layers) 200× 200 Sigmoid
Fully-Connected 200× 10 Softmax

Table 4: Dimensions for the CIFAR-10 classifier.
Layer Type Paramater Activation
Input 32× 32× 3 ReLU
Convolution 32× 3× 4× 4 ReLU
Convolution 64× 32× 4× 4 ReLU
Fully-Connected 32768× 128 ReLU
Fully-Connected 128× 64 ReLU
Fully-Connected 64× 10 Softmax

Table 5: Dimensions for the GTSRB classifier.
Layer Type Paramater Activation
Input 32× 32× 3 Sigmoid
Convolution 16× 3× 3× 3 Sigmoid
AveragePool 2× 2 —
Convolution 32× 16× 3× 3 Sigmoid
AveragePool 2× 2 —
Fully-Connected 4608× 128 Sigmoid
Fully-Connected 128× 43 softmax

C SUPPLEMENTRY RESULTS

In this section, we present further experimental results to complement those discussed earlier. We
begin by expanding on Fig. 2, which illustrates the change in explanation size over time for the
standard verification method versus the abstraction-refinement approach. In Fig. 5, we offer a similar
comparison, this time focusing on the number of processed features, i.e., features that have been
selected to be included or excluded from the explanation. It is evident that the abstraction-refinement
method processes features more efficiently than the standard approach, leading to enhanced scalability.
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Figure 5: The percentage of features successfully processed—identified as either included or excluded
from the explanation—over cumulative time for MNIST, CIFAR10, and GTSRB, throughout the
entire abstraction-refinement algorithm, or using the standard verification algorithm on the original
network. The standard deviation is shown as shaded region.

We continue to build on the findings presented in Fig. 4, which illustrates the number of features
processed at various reduction rates. In Fig. 6, we similarly demonstrate the change in explanation
size over time across different reduction rates. As lower reduction rates ρ initially have a much steeper
curve than larger ones; thus, the explanation size is reduced faster. However, these lower reduction
rates converge to higher explanation sizes than larger reduction rates. Our approach benefits from
both worlds by initially using the steepest curve to reduce the explanation size, and automatically
switching to the next steeper curve if no features can be freed anymore using the current rate.
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Figure 6: The explanation size over cumulative time for MNIST, CIFAR10, and GTSRB, segmented
by reduction rate, throughout the entire abstraction-refinement algorithm, or using the standard
verification algorithm on the original network. The standard deviation is shown as shaded region.

Lastly, we provide extra figures that depict the iterative abstraction-refinement process in the explana-
tions across different reduction rates. Fig. 7 displays the initial images paired with a colored grid,
where each color represents a specific reduction rate. These images are selected from the MNIST,
CIFAR10, and GTSRB datasets. In the last row, we show some explanations on GTSRB images with
unexpected explanations. For example, for the first image in the last row, the red circle surrounding
the sign does not seem to be very important, as these pixels could be removed from the explanations
using the coarsest abstraction (ρ = 10%).
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Figure 7: Original images compared to images featuring the complete abstraction-refinement grid at
various abstraction rates for MNIST, CIFAR10, and GTSRB.

Additionally, to provide a more detailed visualization of the entire abstraction-refinement explanation
process, which allows users to halt the verification at any stage, we include visualizations of both
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abstract and refined explanations at various steps and reduction rates. These visualizations are shown
for all three benchmarks — MNIST, CIFAR-10, and GTSRB — in Fig. 8.

Network size ρ = 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(a) Original image (b) ρ ≤ 10% (c) ρ ≤ 30% (d) ρ ≤ 50% (e) ρ ≤ 80% (f) Original network

Explanation size increases Network size ρ and computation time increases

Figure 8: A step-by-step visualization of the different abstraction levels for both the network and
explanation across MNIST, CIFAR-10, and GTSRB.
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D ADDITIONAL EXPERIMENTS AND ABLATIONS

D.1 SUFFICIENCY-COMPUTATION TIME TRADE-OFF

In this subsection, we will examine the impact of varying perturbation radii ϵp on our experimental
results. Larger ϵp perturbations make each query more challenging but provide stronger sufficiency
guarantees. However, as the sufficiency conditions become more stringent, the total number of
queries decreases, leading to larger explanation sizes. We conducted an experiment on MNIST using
different perturbation radiuses, with the results presented in Tab. 6.

Table 6: Impact of perturbation radius ϵp on explanation size and computation size.

Perturbation Radius Explanation Size Computation Time

0.012 219.450±142.228 110.111±33.712
0.011 186.970±140.435 101.881±41.625
0.010 153.240±135.733 94.897±46.244
0.009 119.040±127.271 81.889±52.578
0.008 87.530±113.824 62.607±58.084
0.007 59.420±95.607 53.072±56.709

D.2 FEATURE ORDERING

We illustrate the impact of different feature orderings on the explanations generated by our method.
While we adopt the approach proposed by Wu et al. (2024), which orders features by descending
sensitivity values, we also present results for explanation sizes and computation times using alternative
feature orderings in our MNIST configuration. These alternatives include ordering by descending
Shapley value attributions (Lundberg & Lee, 2017) and, for comparison, a straightforward in-order
traversal that results in larger subsets. The results are summarized in Tab. 7.

Table 7: Impact of feature order on computation time and explanation size.
Method Feature Order Computation Time Explanation Size

Ours Sensitivity 90.26±44.54 153.24±135.73
Ours Shapley 93.10±45.39 175.70±150.09
Ours In-order 98.10±46.42 231.46±160.73

D.3 EXTENSION TO ADDITIONAL DOMAINS

Although our method primarily targets classification tasks in image domains, it is model-type agnostic.
Furthermore, it can be easily adapted to regression tasks by defining the sufficiency conditions for a
subset S for a model f : Rn → R and some given input x ∈ Rn as:

∀x̃ ∈ Bϵp
p (x) : || f(xS ; x̃S̄)− f(x)||p ≤ δ, δ ∈ R+.

Comparison to results over Taxinet ((Wu et al., 2024)): We aimed to compare our results over
regression tasks to those conducted by Wu et al. (2024) which ran a “traditional” computation of a
provably sufficient explanation for neural networks over the Taxinet benchmark, which is a real-world
safety-critical airborne navigation system (Julian et al., 2020). The authors of Wu et al. (2024) obtain
minimal sufficient explanations over three different benchmarks of varying sizes, two of which are
relatively small, and one which is larger (the CNN architecture). We performed experiments using this
architecture. Our abstraction refinement approach obtained explanations within 35.71± 3.71 seconds
and obtained explanations of size 699.30± 169.34, which provides a substantial improvement over
the results reported by Wu et al. (2024) (8814.85 seconds, and explanation size was not reported).
We additionally provide visualizations for some of our obtained explanations:
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Figure 9: An autonomous aircraft taxiing scenario (Julian et al., 2020), where images captured by a
camera mounted on the right wing are cropped (red box) and downsampled

Figure 10: Varying results of explanations across different abstraction levels for the Taxinet bench-
mark.

Extension to language tasks. We present results from experiments conducted on the safeNLP
benchmark Casadio et al. (2024), trained on the medical safety NLP dataset sourced from the
annual neural network verification competition (VNN-COMP) (Brix et al., 2023). Notably, this
benchmark is the only language-domain dataset included in the competition. The ϵ perturbations
are applied within a latent space that represents an embedding of the input, thereby ensuring that
the perturbations preserve the meaning of the sentence. Our findings are as follows: the traditional
(non-abstraction-refinement) approach executed in 0.71± 0.24 seconds with an explanation size of
6.67± 5.06, while the abstraction-refinement approach completed in 0.66± 0.22 seconds, achieving
the same explanation size of 6.67± 5.06. The performance improvement here is relatively modest,
as the benchmark contains few non-linear activations. However, as emphasized in our study and the
experimental analysis, the benefits of the abstraction-refinement method become significantly more
pronounced in models with a higher prevalence of non-linear activations.
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Figure 11: (a) The percentage of features successfully processed—identified as either included or
excluded from the explanation—over cumulative time and (b) the explanation size over cumulative
time for safeNLP, throughout the entire abstraction-refinement algorithm, or using the standard
verification algorithm on the original network. The standard deviation is shown as shaded region.

22


	Introduction
	Preliminaries
	Neural Network Verification
	Formally Provable Minimal Sufficient Explanations

	From Abstract Neural Networks to Abstract Explanations
	From Refining Neural Networks to Refining Explanations
	Experimental Results
	Comparison to Standard Verification-Based Explanations
	Minimal Explanations at Different Abstraction Levels
	Effect of Reduction Rates
	Comparison to Heurstic-Based Approaches

	Related Work
	Limitations and Future Work
	Conclusion
	Proofs
	Proofs of sec:abstracting-networks: ``From Abstract Neural Networks to Abstract Explanations''
	Proofs of sec:refining-networks: ``From Refining Neural Networks to Refining Explanations''

	Implementation Details
	Implementation details of algorithm 1 and algorithm 2
	Training and Model Implementation

	Supplementry results
	Additional experiments and ablations
	Sufficiency-Computation time trade-off
	Feature Ordering
	Extension to additional domains


