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Figure 1: Learning personalized representations from limited real data. In this paper we explore
whether and how synthetic data can be used to train a personalized representation. Given a few
real images of an instance, we generate novel images and contrastively fine-tune a general-purpose
pretrained model to learn a personalized representation, useful for diverse downstream tasks.

ABSTRACT

Modern vision models excel at general purpose downstream tasks. It is unclear,
however, how they may be used for personalized vision tasks, which are both fine-
grained and data-scarce. Recent work has successfully applied synthetic data to
general-purpose representation learning, while advances in T2I diffusion models
have enabled the generation of personalized images from just a few real exam-
ples. Here, we explore a potential connection between these ideas, and formalize
the challenge of using personalized synthetic data to learn personalized represen-
tations, which encode knowledge about an object of interest and may be flexi-
bly applied to any downstream task relating to the target object. We introduce
an evaluation suite for this challenge, including reformulations of two existing
datasets and a novel dataset explicitly constructed for this purpose, and propose
a contrastive learning approach that makes creative use of image generators. We
show that our method improves personalized representation learning for diverse
downstream tasks, from recognition to segmentation, and analyze characteristics
of image generation approaches that are key to this gain.

1 INTRODUCTION

Representation learning in computer vision seeks to learn general-purpose encodings for objects or
semantic concepts that may be flexibly applied to downstream tasks such as recognition and semantic
segmentation. In recent years we have seen a surge of interest in personalized vision – where a user
can easily develop customized models for objects of their personal interest, e.g., a model capable
of detecting their pet dog in personally-collected images (Zhang et al., 2023; Cohen et al., 2022;
Nitzan et al., 2022). Among other benefits, personalized systems can keep data private; preferably
these models are trained locally, without needing to share user data to a centralized repository, or
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access other users’ data. The personalized setting has two critical challenges. First, it is data-scarce:
Curated data collection is time-consuming and expensive; a user would ideally need only provide
a few examples of their object to obtain a personalized model. Second, it can be extremely fine-
grained; e.g., recognizing an individual dog as opposed to recognizing the category “dog”.

While modern vision models have proven successful for general-purpose tasks, adapting their rep-
resentations to fine-grained problems with scarce labeled data remains challenging (Zhang et al.,
2024; Radford et al., 2021; Cohen et al., 2022; Stevens et al., 2023). As shown in Figure 1, we con-
trast general-purpose representations with the notion of a personalized representation: a specialized
representation space that encodes the knowledge about an instance of interest needed for a variety
of downstream personalized tasks. In this paper, we ask: Is it possible to learn a personalized
representation from only a few real images of a single instance?

Works such as (Tian et al., 2023b) have shown that, when intelligently paired with contrastive objec-
tives, synthetic data can enable learning strong general-purpose visual representations. Other works
have investigated personalized generation (Gal et al., 2023; Ruiz et al., 2022), but do not extend to
representation learning. Our work targets the combination of these ideas: can personalized gener-
ation provide effective synthetic data for training personalized representations? We explore what
makes for useful generative data augmentation for personalized representation learning and how to
best learn from that data. We evaluate our learned representations for four downstream tasks: clas-
sification, retrieval, detection, and segmentation, and find that performance universally improves.

In summary, our contributions are the following:

• Personalized representations trained with synthetic data, using only three real examples
of an instance, significantly outperform pretrained counterparts across datasets, back-
bones, and downstream tasks.

• We introduce new mechanisms for evaluating personalized representations, including
PODS – Personal Object Discrimination Suite – a new dataset of 100 personal objects
under specific distribution shifts, and reformulations of existing instance-level datasets.

• Leveraging additional resources can significantly improve personalized representations.
While pretrained T2I models are key to achieving the best performance, comparable results
can be obtained with fewer computational resources.

• Different generators introduce unique biases/limitations that affect learned representa-
tions.

2 RELATED WORKS

Personalized visual generation. Early efforts to personalize generated images attempted to edit
specific people or styles given user inputs with Generative Adversarial Networks (GANs) (Bau et al.,
2019; Roich et al., 2021; Alaluf et al., 2021; Dinh et al., 2022; Nitzan et al., 2022). Recent efforts
focus on T2I diffusion models, usually learning a unique identifier for a target object given a few im-
ages. Textual Inversion (Gal et al., 2023) freezes a pretrained generative model then learns a unique
and personal text token for the object, which can be conditioned on for generation. NeTI (Alaluf
et al., 2023) enhances expressivity and editability by learning different token embeddings for each
diffusion timestep and U-Net layer. DreamBooth (Ruiz et al., 2022) fine-tunes the entire T2I model
to produce more accurate images of the target concept. CustomDiffusion (Kumari et al., 2022)
instead fine-tunes a subset of model weights, and enables joint training over multiple concepts.
Follow-up works to these have sought to improve the efficiency and accuracy of personalized gen-
erations (Ruiz et al., 2023; Arar et al., 2023; Wei et al., 2023; Han et al., 2023; Guan et al.), e.g.,
finetuning-free personalization methods that reduce computational cost (Shi et al., 2024; Chen et al.,
2024; Huang et al., 2024; Ma et al., 2024).

Personalized recognition and representations. Personalized vision involves tailoring vision
models to user-specific concepts and preferences. PerSAM (Zhang et al., 2023) extends the
Segment-Anything Model (Kirillov et al., 2023a) to segment user-specified objects with a few ex-
ample images and masks. Personalization has also been explored for image captioning (Wang et al.,
2023; Chunseong Park et al., 2017; Park et al., 2018), pose estimation (Nguyen et al., 2024b), and
image retrieval via textual inversion: finding a mapping of images to text tokens (Saito et al., 2023;
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Karthik et al., 2023; Baldrati et al., 2023; Cohen et al., 2022; Yeh et al., 2023). Among the tex-
tual inversion works, PALAVARA (Cohen et al., 2022) enables personalization for both global and
dense vision tasks but relies on large-scale captioned data for the inversion process. In contrast,
our approach requires only a few images, without annotations, from the user. Recent concurrent
works have also personalized vision-language models for tasks like VQA and object recognition
(Nguyen et al., 2024a; Alaluf et al., 2024). Unlike these prior methods, we personalize general-
purpose vision backbones using a self-supervised framework over generated data, achieving strong
performance across both image-level tasks (e.g., retrieval) and dense prediction tasks (e.g., detection
and segmentation) without the need for large-scale data.

Re-Identification. Personalized recognition is closely related to re-identification, in which a
model is tasked with recognizing objects (Sun et al., 2004) or faces (Turk & Pentland, 1991) of
the same identity. Early works in Re-ID explored metric learning on hand-crafted features (Ojala
et al., 2002; Gray & Tao, 2008; Zhao et al., 2017);later methods learned deep metrics with super-
vised/unsupervised signals (He et al., 2021; Taigman et al., 2014; Schroff et al., 2015). Recent
metric learning works use large curated datasets to train on thousands of unique instances of a cer-
tain category (typically humans (Zheng et al., 2015; Yadav & Vishwakarma, 2024) or vehicles (Liu
et al., 2016; Amiri et al., 2024)). While our work involves training features with contrastive losses,
we focus on personalizing pre-trained features for a single instance with a few images.

Training on synthetic data. Training on synthetic data has been extensively investigated to tackle
issues like privacy preservation, data imbalance, and data scarcity (Sakshaug & Raghunathan, 2010;
Tanaka & Aranha, 2019; Khan et al., 2019; Jahanian et al., 2021; Tucker et al., 2020). Diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have further unleashed such potential in zero-
shot settings (He et al., 2022b), few-shot settings (He et al., 2022b; Trabucco et al., 2023; Lin et al.,
2023), out-of-distribution scenarios (Sariyildiz et al., 2023; Bansal & Grover, 2023; Jung et al.,
2024), and supervised classification (Yeo et al., 2024; Kupyn & Rupprecht, 2024). These works
note the importance of the classifier-free guidance scale (Sariyildiz et al., 2023; Tian et al., 2023b)
and prompt selection (Lei et al., 2023), and propose post-processing filtering (He et al., 2022b) when
using off-the-shelf T2I models. Alternatively, (Azizi et al., 2023) and (Yuan et al., 2023) fine-tune
diffusion models on ImageNet and show improved classification performance when supplementing
real with synthetic data. Similarly, (Zhou et al., 2023; Trabucco et al., 2023) invert training images
as conditions for generating new synthetic images. Other studies address data-imbalance (Shin et al.,
2023), domain shifts (Yuan et al., 2022), scaling synthetic data (Fan et al., 2023), and applications
to various tasks, including segmentation (Wu et al., 2023), general-purpose representation learning
(Tian et al., 2023b;a), and CLIP training (Hammoud et al., 2024).

3 METHODS

This paper tackles two questions: how to achieve personalized visual representation by leveraging
generative models, and what factors are essential to producing highly effective training data. In Sec-
tion 3.1 we formalize the personalized representation task. Our three-stage method is then illustrated
in Figure 2. We prepare a personalized generator from a few target instance images (Section 3.2)
and produce synthetic personalized data (Section 3.3). We then train a personalized representation
on the generated data with a contrastive objective (Section 3.4). Lastly, we consider scenarios with
additional annotations and data, and how to incorporate them to enhance personalization.

3.1 FORMALIZING THE PERSONALIZED REPRESENTATION CHALLENGE.

We assume access to a small dataset of real images DR of a specific object c, and the generic category
cpr of the object. We use a generative model gθ(x) to synthesize a novel dataset DS of images of c
and train a personalized representation by adapting a general purpose vision encoder fϕ.

We assume we are only provided images c (which we also denote as an instance) for training our per-
sonalized representation. We evaluate on global and local downstream tasks. Note that we evaluate
instance performance (e.g., one v. all classification, detection, etc). This differs from many previous
works that focus on generating synthetic data for closed-set k-way classification (Shin et al., 2023;
He et al., 2022b).
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3.2 PERSONALIZED SYNTHETIC DATA GENERATION

𝒈𝜽

𝒈𝜽

Real Images (~3)

Generator

𝒇

𝒇

𝒇

Personalized Training

Stage 1 Stage 2 Stage 3

Figure 2: Personalized Representa-
tion Training Pipeline. Our three-stage
training method: 1) Generative Model
Training 2) Synthetic Data Generation
3) Contrastive LoRA Fine-Tuning.

We generate personalized data from DR using Stable Dif-
fusion 1.5, a T2I model, as our generator gθ. We adapt gθ
using DreamBooth (Ruiz et al., 2022) to generate novel
images of c when conditioned on an identifier token.

A T2I diffusion model gθ generates images given an ini-
tial noise latent ϵ ∼ N (0, 1) and a conditioning text em-
bedding ŷ = Γω(y) where Γω is a text encoder, and y is a
user-provided prompt. Given a ground-truth image x and
the text embedding ˆcpr of the generic semantic category
cpr, DreamBooth fine-tunes gθ using the loss:

Ex,ŷ,ϵ,ϵ′,t[wt||gθ(αtx+ σtϵ, ŷ)− x||22]
+λwt′ ||gθ(αt′xpr + σt′ϵ

′, ˆcpr)− xpr||22],

where xpr is an image synthesized with the pre-trained
generator conditioned on ˆcpr, t is the timestep, and vari-
ables αt, σt, and wt relate to the noise schedule and sam-
pling quality. The first loss term is a reconstruction loss
on x, and the second term is a prior preservation loss on
xpr. The two loss terms are weighted by λ. Following
standard implementations, we also fine-tune Γω with the
same loss. For further details, refer to (Ruiz et al., 2022).

While there are several alternative methods for personalized generation (Gal et al., 2023; Alaluf
et al., 2023), we focus on DreamBooth, which has been shown to maintain highest fidelity to fine
details (Alaluf et al., 2023).

3.3 CONTROLLING GENERATED DATASET ATTRIBUTES

Prior work has observed that fidelity to the target subject and diversity of generated data are both
important factors (Sariyildiz et al., 2023). T2I models offer several mechanisms of injecting diver-
sity into generated outputs, allowing us to explore the relationship between these attributes and the
quality of learned personalized representations.

Classifier-Free Guidance (CFG). A common way of injecting diversity for diffusion models is
modifying the CFG (Ho & Salimans, 2022) at inference, which controls how strongly the generation
adheres to the conditioning prompt. We experiment with CFG ∈ {4.0, 5.0, 7.5}.

LLM-generated captions. As seen in (He et al., 2022b) and (Dunlap et al., 2023), off-the-shelf
Large Language Models such as T5 (Raffel et al., 2023) can be leveraged to generate text-prompts
for each object. Following prior works, we generate image captions with GPT-4 (OpenAI, 2023),
ensuring that they introduce rich context descriptions in addition to describing the target object.
For example, if the object is a shirt, an LLM-generated prompt could be "a shirt on a coat
hook", or "a person wearing a shirt at a street market". For further details,
refer to the Appendix.

3.4 REPRESENTATION LEARNING FROM SYNTHETIC DATA.

Given (DR, DS) of instance c, we personalize fϕ via fine-tuning. Critical to representation learning
is having both positive and negative examples. We obtain positives from DS . We generate negatives
D̃S by prompting the pretrained gθ (Stable Diffusion 1.5) with the generic object category: "a
photo of cpr".

Given (x, x+, x0, ..., xN ) where x ∈ DR, x+ ∈ DS , xi ∈ D̃S for i = 0, . . . , N , we extract fϕ
features as a concatenation of the CLS token and average-pooled final-layer patch-embeddings. We
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then finetune fϕ using the infoNCE loss,

LInfoNCE = − log
exp(sim(x0,x+)/τ)∑N
i=1 exp(sim(x0,xi)/τ)

.

This loss pushes together the representations of real and synthetic images of c, and pushes apart
representations of c and other objects. We also experiment with alternate contrastive/non-contrastive
losses in the Appendix. We fine-tune via Low-Rank Adaptation (LoRA), which is more parameter-
efficient than full fine-tuning (Hu et al., 2021).

3.5 ALTERNATIVES TO DREAMBOOTH

Real data baseline. A simple baseline is to contrastively fine-tune using only the available real
data DR as positives. Here, we still use a large pool of negatives.

Comparisons enabled by extra resources. With so few real images, there may be benefit in
expending “upfront effort” to collect further labels and data. A user might annotate their images,
download internet-available data, or even capture more images of the target object. We aim to
understand if, in such settings with extra annotations and real data, there are still benefits to using
generated data versus computationally cheaper alternatives.

Segmentation masks: First, we consider collecting segmentation masks of DR. This enables a sim-
ple, cheap generative model: Cut-and-Paste. Here the generator samples independently from fore-
grounds containing the target object (carved from DR) and generic backgrounds from a T2I model.
Details in A.3.3.

With masks, we can also improve DreamBooth generations by enabling masked DreamBooth train-
ing and filtering. Fine-tuning gθ can be affected by signals such as shared backgrounds. To minimize
such overfitting, we mask out the gradients for background pixels during DreamBooth training, as
in (Zhang et al., 2023). This enables more diverse generations with better prompt adherence. We
also use masks to filter generated datasets. Using a perceptual metric (Fu et al., 2023) and perSAM
Zhang et al. (2023) we predict a mask for the generated image and measure the similarity to masked
training images, filtering out those below a threshold. Details in A.3.2.

Internet-available real data: In a second case, a user may download open-source real datasets; these
can provide a source of real negatives and real backgrounds for Cut/Paste, avoiding the computa-
tional cost of image generation and enabling comparison to real-only approaches.

Extra real positives: Finally, a user may expand DR by physically collecting extra real target images.
This also provides an expanded set of images for Cut/Paste and DreamBooth generation.

4 EXPERIMENTS

4.1 DATASETS

Evaluating our personalized representations necessitates instance-level datasets with multiple tasks,
across various real-world scenarios. To satisfy this criteria, we reformulate two existing datasets
– DeepFashion2 (Ge et al., 2019) (focused on shirts) and DogFaceNet (Mougeot et al., 2019)
(focused on dogs) – and introduce a new dataset, PODS (Personal Object Discrimination Suite).
PODS features common personal and household objects, enabling instance-level evaluation across
classification, retrieval, detection, and segmentation tasks. To assess robustness and generalization,
DF2 and Dogs provide in-the-wild test images, and DF2 and PODS include test sets designed with
distribution shifts. All datasets are split such that for each object there are exactly 3 training images
and at least 3 test images. We summarize our datasets and procedures below; for additional details
and qualitative examples of the datasets, refer to the Appendix.

DeepFashion2 (DF2) is a large-scale fashion dataset with 873K Commercial-Consumer clothes
pairs for instance-level retrieval, detection, and segmentation. We use the Consumer-to-Shop
Clothes retrieval benchmark, which matches gallery images of clothing items to in-the-wild con-
sumer images, thus encoding a train-test distribution shift. Out of 13 clothing categories, we select

5
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Shoe

Mug

Tote

Bottle

Screw-
driver

Train
Test 
ID Pose Distractors Both

PODS Dataset Generated Images

Test OOD DreamBooth
Personalized Negatives

Figure 3: (left) Examples of instances from our new PODS dataset. We showcase one example
instance from each of the five object categories, displaying images from both the training and var-
ious test splits. We dim the surrounding scene, highlighting the instance of interest. This masking
technique is not applied to our dataset images or during training. (right) We show example gen-
erated images from Dreambooth (LLM, cfg 5), which we use as positives in our representation
learning finetuning.

the shirts category as our focus. We subselect a set of 169 shirts, after filtering out categories which
lack sufficient numbers of gallery images.

DogFaceNet (Dogs) is a dog identification dataset, containing 8600 images of 209 dogs. Dog-
FaceNet includes multiple unique dogs of the same breed, making the dataset more challenging. We
subselect 80 dogs with sufficient numbers of images, and split the images into a train and test set.
To support evaluation of segmentation and detection, we manually annotate the dataset with masks.

Our new dataset: PODS contains 100 unique objects across 5 every-day categories (mugs, screw-
drivers, shoes, bags, waterbottles). Each object is captured in four scenes with varying conditions
and vantage points. The train set contains 3 images of each object, displayed in a canonical pose
with full visibility of key identifying features such as logos. The test set contains 80-100 images of
each object, captured in four scenes: one in-distribution (ID) and three out-of-distribution (OOD).
We show examples of each type of scene in Figure 3. The ID scene is taken in the same conditions as
the training images. OOD scenes include one scene with pose variation, one scene with distractor
objects, and one scene with both variations. All OOD scenes are against differing backgrounds from
the ID scenes.

The dataset supports evaluation across 4 tasks: classification, retrieval, detection, segmentation.
Each test image is associated with the target instance label. From each test scene, 3 randomly-
selected images are additionally annotated with the bounding box and segmentation mask of the
displayed object. Masks are manually annotated using TORAS (Kar et al., 2021) and SAM (Kirillov
et al., 2023b); detection bounding boxes are extracted from the masks. We expect the PODS dataset
to be a meaningful benchmark for personalized representation and instance-level detection research,
and a valuable resource for the personalized generation community.

4.2 TRAINING

We fine-tune a vision backbone fϕ on sets of (x, x+, x0, ...xN ) where the anchor x is drawn from the
3 real positive images, the positive x+ is drawn from the pool of synthetic positives, and xi for i =
0, . . . , N are drawn from the synthetic negatives. We apply the following data augmentations to all
images: random rotations, horizontal flips, and resized crops. We experiment with several state-of-
the-art backbones: DINOv2-ViT B/14 (Oquab et al., 2023), CLIP-ViT B/16, (Radford et al., 2021),
and MAE-ViT B/16 (He et al., 2022a).

Each dataset is randomly divided class-wise into a validation set (30 classes), and test set (size de-
pending on the dataset). Using the validation set we sweep over key training parameters: # synthetic

6
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Global Task Inference
Reference 

Set Test Images

Local Task Inference
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Images
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Test 
Image

𝑻𝒊 = 𝒇𝝓 𝒙𝒄𝒊 ⋅ 𝑴𝒊

𝑭 = 𝒇𝝓(𝒙))

Binarize
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Confidence 
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Mask Agg Conf 
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Figure 4: Inference Pipelines. We visualize the global (classification, retrieval) and local (detection,
segmentation) evaluation pipelines. Global inference uses cosine similarity between CLS embed-
dings, while local inference extracts patch features with spatial information.

positives, # anchor-positive pairs, and the choice of loss function. Based on our validation exper-
iments, we LoRA finetune with the infoNCE loss for 2 epochs over 4500 anchor-positive pairs,
drawn from 450 synthetic positives and 1000 synthetic negatives. For validation results and further
training details, refer to the Appendix.

4.3 EVALUATION

We evaluate personalized representations across one v. all tasks that require global understanding,
and the ability to localize with respect to the target object. Due to the few-shot nature of our task,
we evaluate representations directly, without training task-specific heads. We summarize our evalu-
ations below and in Figure 4.
Classification. For a particular instance c, given a test image x̃, a frozen encoder fϕ, and training
images xc

i ∈ DR we compute the maximum cosine similarity between the CLS tokens of fϕ(x̃) and
fϕ(x

i
c); this is taken as the prediction confidence. Samples with confidence above some threshold t

are taken as positives. Thus we report the Area under the Precision-Recall Curve (PR-AUC), which
is a threshold-free metric.
Retrieval. We use our test set as the “query” set, and DR as the “retrieval” set. We compute the
cosine similarity between the CLS token of fϕ(x̃) and those of the images in DR. We score the
resultant ranking with the NDCG metric (Jeunen et al., 2024).
Segmentation. We compute the average cosine similarity between the patch embeddings of fϕ(x̃)
and those of fϕ(xi

c) to generate a local confidence map, where xi
c are masked to the target, follow-

ing the procedure of (Zhang et al., 2023). We then apply binarization directly to the confidence map
using Otsu’s thresholding method (Otsu et al., 1975) and upscale to the image dimensions to yield a
segmentation prediction. We report the standard mask AP metric (Deng et al., 2024) and F1 scores,
given the high imbalance between positives and negatives in the test sets.
Detection. We apply the same procedure as segmentation, and extract a bounding box prediction by
drawing a box around the predicted mask. We obtain a confidence score for the box by averaging
over the confidence map within the box region. We report the standard AP metric and the F1 score.

For each task, we compare the performance of our learned personalized representations to pre-
trained models. Note that we do not train prediction heads, due to the lack of real training data in
our setting – rather, we use these evaluations to probe what our personalized features learn about the
target object, compared to pretrained features.

5 RESULTS AND DISCUSSION

5.1 PERSONALIZED REPRESENTATIONS IMPROVE OVER PRETRAINED REPRESENTATIONS

We LoRA-tune three backbones (DINOv2, CLIP, MAE) and evaluate the personalized representa-
tions on four tasks. We sweep over synthetic datasets with different levels of diversity by varying the
CFG and usage of LLM-generated prompts as described in Section 3.3, and select the best for each

7
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Classification Retrieval Detection Segmentation

PODS
DF2

Dog
s

PODS
DF2

Dog
s

PODS
DF2

Dog
s

PODS
DF2

Dog
s

DINOv2 31.0 14.4 83.1 71.7 36.3 89.4 13.0 4.4 12.0 11.8 5.1 11.4
DINOv2-P (DB) 42.9 34.9 81.9 76.8 64.4 94.9 13.7 8.2 16.5 13.0 8.7 16.8

CLIP 28.7 12.7 36.5 64.4 34.7 58.0 0.2 2.8 7.4 0.1 3.0 6.7
CLIP-P (DB) 44.2 25.6 65.4 72.2 51.3 80.4 1.6 4.0 10.6 0.6 4.4 10.2

MAE 8.4 5.2 11.3 35.0 25.8 33.6 0.0 0.2 0.1 0.0 1.1 1.1
MAE-P (DB) 15.8 12.1 30.3 30.3 23.2 42.9 0.1 0.3 0.2 0.1 1.2 1.2

Table 1: Performance of personalized v. pretrained representations across backbones, tasks,
and datasets. We compare personalized and pretrained backbones with access to only 3 real images,
and no extra data/annotations. For each backbone we report results for the best-performing synthetic
dataset (chosen using the validation set), averaged over 4 seeds. Personalized representations (-P)
largely outperform pretrained representations across all tasks. Full results across synthetic datasets,
and error over seeds, are in the Appendix.

Classification Retrieval Detection Segmentation

Method Real
Backgrounds Real Negs PODS

DF2
Dog

s
PODS

DF2
Dog

s
PODS

DF2
Dog

s
PODS

DF2
Dog

s

Real Imgs - ✗ 35.9 27.6 82.2 65.6 50.8 92.9 12.5 6.4 14.5 11.6 7.2 14.3
- ✓ 33.7 27.6 82.1 61.6 50.7 92.8 13.1 6.5 15.0 11.5 7.6 14.9

Cut/Paste ✗ ✗ 57.1 48.2 84.3 83.1 68.4 93.9 17.5 11.0 15.5 14.8 12.5 15.3
✓ ✓ 58.8 46.3 88.0 78.2 65.5 95.7 19.5 10.3 14.2 15.9 11.5 13.4

Masked DB - ✗ 55.8 47.1 83.8 82.2 69.2 94.3 18.5 11.0 16.5 16.6 12.6 16.5
- ✓ 55.1 43.1 84.9 76.5 68.1 94.2 19.1 10.7 14.1 15.8 12.6 13.3

Combined ✗ ✗ 59.4 51.1 85.3 85.5 71.8 95.0 18.4 12.2 17.3 15.3 14.0 17.6
✓ ✓ 61.5 49.3 88.7 81.0 70.5 96.2 21.1 12.1 15.1 17.6 13.9 14.3

Table 2: Comparisons across data augmentation methods. We compare DINOv2-P trained with
different augmentation strategies, including those requiring extra annotations/data. Training with
synthetic data improves performance significantly over training with the limited real-image dataset;
combined Masked DreamBooth + Cut/Paste performs best in all cases. Significant boosts are also
achievable more cheaply when incorporating internet-available real data with Cut/Paste.

backbone based on validation performance. In Table 1 we compare the performance of pretrained
and personalized backbones on DF2, Dogs, and PODS, using the best synthetic dataset for each
backbone (full results in the Appendix).

Personalized models (-P in Table 1) boost performance in 33/36 cases. We observe improvements
– often substantial – in nearly every combination of backbone and task besides MAE retrieval. For
example, averaged across datasets, DINOv2 detection improves by 44%, DINOv2 retrieval by 30%,
and CLIP classification by 88% relative to pretrained models. Across all three datasets, personalized
models boost performance both for global tasks requiring semantic understanding, and dense tasks
requiring localization. We also visualize dense prediction maps for multi-object images in Figure 5
and the Appendix, showing that personalized patch features better localize the target object.

5.2 WHAT MAKES FOR THE BEST TRAINING DATA?

In the previous section, we show that personalizing representations significantly boost personal-
ized task performance. Here, we compare data generation approaches, some leveraging additional
resources, to investigate tradeoffs between computational cost and performance.

We examine incorporating segmentation masks of DR (see Section 3.4). This enables a cheap base-
line method, Cut-and-Paste (CP), and improvements to DreamBooth via masked training and fil-
tering (Masked DB). We also test sampling from a combined pool of CP and Masked DB images
(Combined). Our CP, Masked DB, and Combined pools are each 450 images for fair comparison.
We also ablate the use of generated negatives and generated CP backgrounds by using open-source
images as real alternatives; this enables comparison to cheap methods that use only real data. Our
results are shown in Table 2.
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Input Pretrained Personalized Input Pretrained Personalized

Figure 5: Qualitative Results. Each triplet shows the test image (left), dense prediction maps for
pretrained DINOv2 (center), and personalized (right). Prediction maps are computed via patchwise
embedding similarity between the test and localized train images following Figure 4. Personalized
representations distinctly localize the target instance, unlike pretrained embeddings. For visualiza-
tion only, the personalized instance is highlighted in the test images but this is not applied during
training or inference.

Are these 
the same 
object?

CP predictions fail on pose DB predictions fail on visual similarity

Different Different CP
Pred

CP
Pred

Same SameDB
Pred

Different Different

DB
Pred

Same Same

Figure 7: DreamBooth vs Cut and Paste Model Fail-
ures. We show object pairs where DB-personalized and
CP-personalized models differ most in predictions.

Cut and Paste Masked DreamBooth

Figure 8: (left) CP limitations include
pose and realism. (right) Masked DB
struggles with fine-grained details.

Performance improves significantly from incorporating masks; results in Table 2 out-perform
DINOv2-P results in Table 1, obtained without masks. However, incorporating real negatives and
real Cut/Paste backgrounds does not consistently improve performance over their generative coun-
terparts. Moreover, the best synthetic data methods outperform all real-image-only methods, with
the Combined pool performing best across all datasets/tasks. Comparing Tables 2 and 3 also show
some tradeoff between efficiency and performance. The high performance of the Combined pool in-
dicates that learned models provide valuable knowledge for personalized data augmentation. How-
ever, sampling CP with real backgrounds performs similarly to Masked DB alone, showing that
strong performance can still be achieved with an efficient alternative.

3 5 10 15 20
Number of Real Images

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

# of Real Data Scaling Curve

Real
Synthetic

Figure 6: Real and synthetic
data scaling curve for a sub-
set of PODS.

Scaling real positives. We manually capture additional training
images for 25 PODS instances (5 per category) with different back-
grounds, poses, and lighting. We compare training DINOv2-P on
DR, and on synthetic DS generated from DR at sizes |DR| = 3 and
|DR| = 20 using the Combined method. Performance increases as
|DR| increases, saturating at |DR| = 15, likely due to limitations
in the diversity of the additional real data. Expanding diversity fur-
ther could improve scaling but requires significant manual effort.
Synthetic augmentation remains effective as |DR| scales (27% gain
with 3 real images, 8% gain with 20). As generative models im-
prove, the ability to complement real datasets is expected to grow.
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5.3 HOW DO DIFFERENT DATASETS AFFECT REPRESENTATIONS?

As seen in Table 2, Masked DB and CP achieve similar performance. Here, we show that they exhibit
distinct strengths and limitations. We analyze divergence cases in high-confidence predictions of
DB- and CP-trained representations, revealing consistent failure patterns. DB-trained models excel
at pose generalization but often confuse visually similar instances. Conversely, CP models are more
robust to distractors but falter when encountering unfamiliar poses. We show examples in Figure
6. This trend is also quantitatively shown (Figure 9). In the PODS Distractors split, CP models
outperform DB models by 7%, whereas in the Pose split, DB models surpass CP models by 6.4%.

In Figure 6 we trace these attributes of learned representations to biases/limitations in DB and CP
generations. The main DB limitation is difficulty in preserving fine-grained object details, resulting
in images that only loosely resemble the target characteristics, even with filtering. These inaccu-
racies likely propagate to the learned representation, compromising its fine-grained discriminative
ability. Conversely, CP maintains perfect object fidelity but restricts pose variability, potentially
leading to pose overfitting.

ID Pose Distractors Both
Classification (PR-AUC)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

PO
DS

 Te
st

 S
pl

it

Real Imgs
Cut/Paste
Masked DB
Combined

Figure 9: DB, CP, and Combined per-
formance on PODS test splits. DB out-
performs CP on the Pose split, and un-
derperforms it on the Distractors split,
whereas Combined performs best on both.
These results support our qualitative obser-
vations.

We also study how fidelity and diversity affect perfor-
mance in Figure 12. Without filtering, DB datasets lie
at extremes (high-diversity, low-fidelity or vice versa).
Both the Masked DB and CP datasets, achieve a better
balance, and thus higher performance.

5.4 APPLICATIONS

Our thresholding evaluation for dense tasks allows di-
rect probing of personalized patch features, however
does not achieve state-of-the-art results. We show that
our personalized representations can be easily inte-
grated into perSAM – a practical existing pipeline –
to improve its performance (Zhang et al., 2023). In-
stead of using a pretrained backbone to extract key-
point proposals and generate confidence scores, we
use our personalized backbone. Segmentation per-
formance improves from 5.6% F1 score (DINOv2)
to 10.9 % (DINOv2-P) on DF2, 19.8% to 24.4% on
Dogs, and 21.6% to 25.3% on PODS. Full results in the Appendix.

6 LIMITATIONS AND CONCLUSIONS

6.1 LIMITATIONS

Our pipeline has a potential for high computational cost, as seen in Table 3, particularly due to fine-
tuning and T2I generation stages. We defer this limitation to future research in generative model
efficiency. Furthermore, by training on data generated by T2I models we may inherit their biases
and limitations, as shown in 5.1. When employing them for data generation, we must be mindful of
the relevant ethical concerns around deployment and equitable use.

6.2 CONCLUSIONS

We leverage generative models to adapt general-purpose representation spaces to personalized ones,
using very few real examples of a single instance. We quantitatively and qualitatively show that
personalized representations consistently boost performance across downstream tasks. Moreover,
we also study computationally cheaper alternatives that leverage additional resources, and show that
combining different generation methods may enable further improvements. We release our new
dataset, PODS, and new splits and annotations for two existing instance-level datasets, offering
comprehensive benchmarks for future work.

In the future, generative models will continue to get faster, cheaper, more accurate, controllable and
potentially less biased. Our work is not limited to existing generation techniques. We are excited
by the potential of learning personalized representations in this way, and envision a possibility that
allows users to have ownership over their own models and data.
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CODE OF ETHICS

The authors have read the code of ethics and we acknowledge that we adhere to the code presented.

ETHICS STATEMENT

Research into personalized representations has the potential for both positive and negative societal
impacts, which we discuss below.

One potential application of such an approach, and more broadly of all instance-level recognition
and re-identification work, is surveillance technology. Surveillance has the potential to infringe
upon human right to privacy depending on it’s use and intent. In this work we choose focus on non-
human instance recognition applications and datasets, as opposed to human facial re-identification
or vehicle re-identification applications.

Personalized representation learning also has potential positive impacts on human privacy. By re-
moving the need for access to real images from other instances, we can build methods for people
to have personalized AI models without having to share their data to a central repository or to have
access to other’s data during personalization, beyond what is already contained in a pretrained T2I
model. This could enable users to choose to keep personal data siloed, similar to motivation for
federated learning settings, while still benefiting from personalized training. However, it does not
overcome current challenges around lack of informed consent for personal data to be used during the
training of large-scale T2I models in the first place, alongside potential copyright infringement for
created content, which is of increasing concern and debate within our community Li et al. (2024);
Duan et al. (2023).

Additionally, this has the potential to make progress on the democratization of representation learn-
ing by give more power to a user. By removing the requirement to have access to external data, we
reduce data storage and access resources to benefit from such a system. Because as few as three
positive examples are all that is needed for a user to hand-select, this empowers users to develop
personalized representations for instances of their own interest simply and with minimal effort.
However, as discussed in the limitations section 6.1, the current computational overhead of our pro-
posed method makes it infeasible for most people to easily make use of. This points to the potential
for future work in increasing the efficiency of such methods, and will also benefit from progress in
efficient deep learning hardware.

The current computational cost of the method has an additional negative dimension, which is the
power and water usage by the GPUs needed to train and run inference with our current method.
AI has become an increasingly large portion of global power use, water use, and carbon emmis-
sions Luccioni et al. (2023). Inefficient methods exacerbate this effect.

REPRODUCIBILITY

We have uploaded an anonymized zip file containing the source code for our work, in-
cluding the necessary metadata to reproduce our results, such as the LLM-generated
captions used for dataset creation. The codebase features an end-to-end pipeline for
data generation, training personalized models, and conducting inference and evaluation:
https://drive.google.com/file/d/1eZpNe00YL4FoOG2RGSmdKtlZquGlsidD/view?usp=sharing. In
the appendix, we provide detailed hyperparameters and outlines for data generation (DreamBooth
finetuning, Cut and Paste) and personalization training (parameters for LoRA and other model train-
ing hyperparameters), Additionally, we include a reproducible description of our evaluation pipeline.
We also present extensive ablations and full results in the appendix for transparency, justifying each
design choice so that other researchers can replicate our findings. We also intend to release our
dataset, PODS, and the reformulated DeepFashion2 and DogFaceNet datasets.
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A DATASETS

A.1 DF2 AND DOGS REFORMULATION

In the paper, we reformulate two datasets: DeepFashion2 and DogFaceNet.

DeepFashion2. In this section, we identify the training split that we subselected from DeepFash-
ion2 to enable reproducibility of our results. DeepFashion2 is a large-scale retrieval dataset with
a public train-validation-test split. Each split contains its own query/customer and gallery set. We
sample our training set from the gallery set of the validation split, and we sample our test set from
the consumer set of the validation split. Each image in validation split has a six-digit identifier and
an annotation file containing the information. We organize the data into instance categories; we de-
fine the training and testing images for an instance as gallery/consumer images depicting the same
clothing item of the same style.

Below we provide metadata of our subselected dataset and include in our submission the exact
training and test data split.

• Clothing Item Category: Short-Sleeve Tops, category id 1
• Unique Instances Selected: 169
• Total # Training Images: 507
• # of Training Images per Instance: 3
• Total # Test Images: 2924
• Range of Test Images per Instance: [4, 24]

Dogs. Our Dogs dataset reformulates the DogFaceNet large split from the datasets released with
DogFaceNet for dog re-identification studies. Since the original dataset was published with instance-
level splits, we perform our own splitting of the dataset to fit our personalized learning setting. Due
to the nature of data collection (images of dogs collected from sequential footage), we had to pay
careful attention to the possibility of data poisoning between the train and test set. The procedure
we followed for data splitting is as follows:

1. Filtered DogFaceNet dog classes to keep classes with above 10 images per instance
2. Performed a random train-test split for every instance, keeping 3 images for train and rest

for test
3. Manually inspected every instance in the dataset to remove data poisoning. This entailed

looking through the training and test data and making sure that no test images were from
the same sequential footage as the train data. When such images were discovered, they
were removed from the test set.

4. After data-cleanup, we removed instances with less then 4 remaining test images.

The above procedure resulted in 80 total dog classes. Below is the metadata of our subselected
dataset. Similar to DF2, we include in our submission the exact training and test data split.

• Unique Instances Selected: 80
• Total # Training Images: 240
• # of Training Images per Instance: 3
• Total # Test Images: 1218
• Range of Test Images per Instance: [6, 38]

Dataset Examples. In Fig. 10 and 11 we show examples of training and test images for the
Dogs and DF2 datasets. Notably, the test sets cover a wide range of diverse in-the-wild scenarios,
including different contexts, positions, backgrounds, camera angles, occlusions, and lightings.
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Figure 10: DF2 train/test examples. Training images are of models wearing clothes, and test
images are from consumers. Images and classes are randomly sampled.

Figure 11: Dogs train/test images. Images and classes are randomly sampled.
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Licenses for existing assets The datasets we use are released under the following licenses:

DeepFashion2: MIT
DogFaceNet Dataset: Non-Commercial, Research-Only

A.2 PODS

A.2.1 PODS OVERVIEW

• Unique Instances: 100

• Total # Training Images: 300

• # of Training Images per Instance: 3

• Total # Test Images: 10991

• Range of Test Images per Instance: [72, 202]

• Total # Test Images with Dense Annotations: 1200

• Range of Test Images per Instance with Dense Annotations: [12, 12]

A.2.2 PODS CREATION

PODS includes images of 100 objects; 20 each from five categories: mugs, screwdrivers, tote bags,
shoes, and water bottles. We choose these categories to cover a range of personal, everyday objects,
both rigid and deformable.

Scenes. Every object is captured in 4 scenes. We describe each scene through 4 attributes: the
background of the scne, the pose of the target object, the presence of distractor objects, and the
visibility of the object’s key identifying features (such as a mug’s logo).

Below is a detailed description of each scene.

• Train/In-distribution:
– Background: The object is against a plain office background.
– Pose: The object is located on a flat surface, upright in its ”canonical pose”.
– Distractors: No similarly-sized distractor objects are nearby, or in the clear fore-

ground.
– Identifying features: Key identifying features (i.e. logo, handles, etc) clearly visible.

• Distractors:
– Background: The object is against different background from the Train scene.
– Pose: Object is upright in its ”canonical” pose.
– Distractors: Object is surrounded by 2-5 distractor objects of varying sizes, located

in both the foreground and background. These can act as potential occluders.
– Identifying features: Key identifying features may not be fully visible (for instance, a

mug may be occluded by distractors such that the logo is only partially visible.)

• Pose:
– Background: The object is against different background from the Train scene.
– Pose: Object is in a different pose from the training scene.
– Distractors: No similarly-sized distractor objects nearby, or in the clear foreground.
– Identifying features: Key identifying features may not be fully visible (for instance, a

mug may be turned so that its logo is only partially visible.)

• Both:
– Background: The object is against different background from the Train scene.
– Pose: Object is in a different pose from the training scene.
– Distractors: Object is surrounded by 2-5 distractor objects of varying sizes, located in

both the foreground and background. These can act as potential occluders.
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– Identifying features: Key identifying features may not be fully visible (for instance, a
mug may be turned or occluded so that its logo is only partially visible.)

• Multi-object:
– Background: The objects are against a different background from the Train. scene.
– Distractors: The 20 objects are randomly split into 4 groups of 5 objects; the objects

themselves serve as distractors.
– Pose: Half of the objects in the scene are not in their canonical poses.
– Identifying features: Key identifying features may not be fully visible (for instance, a

mug may be turned or occluded so that its logo is only partially visible.)

For the final (hardest) scene, we attempt to capture images that mimic expected in-the-wild settings
for each category. For instance, ”Both” scenes for shoes are captured outdoors, with sports equip-
ment as distractors. Similarly mugs are captured on a drying rack, with other wares as distractors.

Capture. We capture all images on an iPhone 15 Pro. For each scene, we use the PolyCam app
to capture a video. The app automatically extracts 2̃0 frames to be exported. We capture each video
in three 120-180 degree views, each at a different vantage point: Level with the object, above the
object (camera looking down), below the object (camera looking up). Note that this results in images
where the object is not centered, occluded by distractor objects, or out of focus in the background;
these are useful as hard positives.

Splits and annotation. For each object, we manually inspect the Training scene and extract three
training images, taken at level with the target object, and roughly equally spaced throughout the
camera trajectory. The rest of the Training scene images are relegated to the test set, and serve as the
in-distribution split. Images from the other three scenes serve as the three out-of-distribution (OOD)
splits.

Annotation. We record a unique identifier for each object, and label every test image with the
identifier of the object in that image. These image-level labels are used for classification and re-
trieval.

For each object, we randomly choose 3 images from each test scene to annotate with segmentation
masks and bounding boxes. Thus there are 12 images total per object with dense annotations. To an-
notate with masks, we first use Grounding-SAM Kirillov et al. (2023a) to generate mask proposals.
We then manually inspect every image. For images with incorrect generated masks, we manually
annotate using TORAS (Kar et al., 2021).

A.3 SYNTHETIC DATA GENERATION

A.3.1 LLM-GENERATED CAPTIONS

We generated 100 instance-relevant prompts for image generation, which we used at inference time
for all generated images. Here we present 30 caption examples from the caption that we used for
each dataset. We attach the full caption set to our supplement.

PODS Dataset

• Mugs

1. A <new1> mug on a wooden desk
2. A <new1> mug in a cozy living room
3. A <new1> mug on a windowsill
4. A <new1> mug in a breakfast nook
5. A <new1> mug on a bedside table
6. A <new1> mug in a sink full of dishes

• Bottles

1. A <new1> bottle on a picnic table
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2. A <new1> bottle in a backpack pocket
3. A <new1> bottle on a yoga mat
4. A <new1> bottle in a car cup holder
5. A <new1> bottle on a nightstand
6. A <new1> bottle in a bicycle holder

• Screwdrivers

1. A <new1> screwdriver in a toolbox
2. A <new1> screwdriver on a wooden workbench
3. A <new1> screwdriver in a carpenter’s tool belt
4. A <new1> screwdriver on a garage shelf
5. A <new1> screwdriver in a utility drawer
6. A <new1> screwdriver on a metal shelf

• Totes (Bags)

1. A <new1> bag in a car trunk
2. A <new1> bag on a park bench
3. A <new1> bag in a shopping cart
4. A <new1> bag on a library shelf
5. A <new1> bag in a gym locker
6. A <new1> bag on a wooden table

• Shoes

1. A <new1> shoe in the rain
2. A <new1> shoe on a sandy beach
3. A <new1> shoe in a gym locker
4. A <new1> shoe on a staircase
5. A <new1> shoe in a laundry basket
6. A <new1> shoe on a wooden floor

DF2 Dataset

1. A person wearing a <new1> shirt at a park

2. A <new1> shirt on a mannequin

3. A person wearing a <new1> shirt at a party

4. A <new1> shirt on a clothesline

5. A person wearing a <new1> shirt at a concert

6. A <new1> shirt on a chair

7. A person wearing a <new1> shirt at a café

8. A <new1> shirt on a laundry basket

9. A person wearing a <new1> shirt at a stadium

10. A <new1> shirt on a hook

11. A person wearing a <new1> shirt at a bus stop

12. A <new1> shirt on a drying rack

13. A person wearing a <new1> shirt at a gym

14. A <new1> shirt on a shelf

15. A person wearing a <new1> shirt at a picnic

16. A <new1> shirt on a table

17. A person wearing a <new1> shirt at a restaurant

18. A <new1> shirt on a suitcase
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19. A person wearing a <new1> shirt at home
20. A <new1> shirt on a couch
21. A person wearing a <new1> shirt at a school
22. A <new1> shirt on a man’s back
23. A person wearing a <new1> shirt at a train station
24. A <new1> shirt on a floor
25. A person wearing a <new1> shirt at a wedding
26. A <new1> shirt on a counter
27. A person wearing a <new1> shirt at a library
28. A <new1> shirt on a washing machine
29. A person wearing a <new1> shirt at work
30. A <new1> shirt on a clothes rack

Dogs Dataset

1. A <new1> dog in the park
2. A <new1> dog at the vet
3. A <new1> dog in a car
4. A <new1> dog at the groomer
5. A <new1> dog on a walk
6. A <new1> dog in the snow
7. A <new1> dog at the lake
8. A <new1> dog in the backyard
9. A <new1> dog at the <new1> dog park

10. A <new1> dog in a sweater
11. A <new1> dog in a bed
12. A <new1> dog at the farm
13. A <new1> dog in the woods
14. A <new1> dog in a kennel
15. A <new1> dog at a barbecue
16. A <new1> dog on a hike
17. A <new1> dog in a crate
18. A <new1> dog at a birthday party
19. A <new1> dog in a puddle
20. A <new1> dog at the groomer
21. A <new1> dog in a costume
22. A <new1> dog in a car ride
23. A <new1> dog at the beach
24. A <new1> dog in the city
25. A <new1> dog in a training class
26. A <new1> dog in the mountains
27. A <new1> dog at the playground
28. A <new1> dog in the backyard
29. A <new1> dog in a pool
30. A <new1> dog at a picnic
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A.3.2 MASKED DREAMBOOTH - FILTERING

We apply automatic filtering to the Masked DreamBooth pipeline as an additional data-processing
step that we can take when masks are available, to ensure high-quality generated data. We use the
masks to extract a bounding box for the object of interest in the training image, and embed it using
DreamSim (Fu et al., 2023), a perceptual similarity metric. Similarly, at every test-image prediction,
we apply perSAM to generate a test-mask, and embed the masked test image with DreamSim. A
cosine similarity is computed between the train masked embedding and the test masked embedding,
and an empirically chosen threshold is used to filter out the data below a certain threshold value. For
DF2 and PODS, the threshold was 0.6 and for Dogs it was 0.55.

A.3.3 CUT AND PASTE

To generate cut and paste images, we first require a small subset of training images and their corre-
sponding masks, which we use to extract the foreground object. For the background, we generate
600 unique background scenes following the same set of LLM-prompts used to generate the diverse
DreamBooth images. To use them for background generation, we removed the "<new1>" specifi-
cation from every prompt: e.g. "photo of a <new1> at the beach" becomes "photo
of a beach" and addressed proposition inconsistencies afterwards. We then randomly resized
the masked foreground image to a scale between 0.3 and 1.3 times the original image size, and
pasted it onto the background-generated images at a randomly selected location within the image.

A.3.4 RUNTIMES

We report the wall-clock runtimes of synthetic data generation methods, using a single NVIDIA
A100 GPU, in Table 3. Per-Image generation times are taken as an average over 50 generations.
Per-Dataset times indicate the time to generate a 450-image dataset with a batch size of 1. We do not
take into account the time to download open-source datasets (e.g., real backgrounds for Cut/Paste),
as this is highly context dependent.

Method Fine-tuning (min) Generation per-Image (sec) Generation per-Dataset (min)

DreamBooth (no filtering) 3.8 0.98 7.35
DreamBooth (w/ filtering) 3.8 1.83 13.7-152.5

Cut/Paste (real BG) - 0.06 0.45
Cut/Paste (generated BG) - 1.04 7.8

Table 3: Runtime for synthetic data generation. The fastest method is Cut/Paste with real back-
grounds, which does not require a T2I model.

B METHODS

B.1 TRAINING

We use the following hyperparameters to LoRA fine-tune each backbone:

• Learning rate: 0.0003
• Batch size: 16
• LoRA rank: 16
• LoRA alpha: 0.5
• LoRA dropout: 0.3

B.2 EVALUATION

Classification: We take all the available test examples for each instance of interest as our test set.
We evaluate each trained personalized embedding space in a one-vs-all binary classification setting
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with respect to the rest of our test data, using a standard few-shot learning setup. Given a test image
x̃ we use a frozen vision encoder, f , to obtain embeddings of x̃. We then compute the maximum
cosine similarity between f(x̃) and any real image in DR, and take this as the prediction confidence.
Samples with a confidence above some threshold t are taken as positives; our evaluation metric is
thus the Area under the Precision-Recall Curve, which is a threshold-free metric. The performance
for a dataset is computed as an average over the PR-AUC for each learned embedding space. We
compare performance between our learned personalized embedding spaces and non-personalized
models (i.e. pretrained DINOv2).

Retrieval: We take text images as a query set and all available reference training images as a
retrieval set. Given a test image x̃ we use a frozen vision encoder, f , to obtain embeddings of x̃.
We then compute the maximum cosine similarity between f(x̃) and every image in the retrieval set,
DR, and take this as the prediction ranking for the retrieval task. We score the resultant ranking with
the standard NDCG metric, as it considers both relevant and position of all retrieved items, unlike
F1 and MRR metrics.

Segmentation: To be able to perform localization, we use the encoder’s patch embeddings. First,
we obtain target local features by computing the masked embedding of a training image. We then
compute the cosine similarity between the target local features and the patch embeddings of the
target test image to generate a local confidence map, where high confidence regions correspond to
localization probability of the object. We then apply binarization directly to the local confidence map
with Otsu’s thresholding method, and upscale it to the image dimensions to yield a segmentation
prediction. We score this prediction by taking the aggregate local confience map values in the
predicted mask region. We evaluate our segmentation task using the standard mask AP metric, and
also report f1 scores given the fact that our test sets are highly imbalanced (there are significantly
more negatives than objects of interest in the test set).

Detection: For detection, we apply the same pipeline as segmentation to obtain a local confidence
map and a binarized mask. We extract the bounding box prediction from the prediction by drawing
a box around the boundaries segmentation mask. We score this prediction by taking the aggregate
local confience map values in the predicted bounding box region. We evaluate our detection task
using the standard AP metric, and also report f1 score.

C ADDITIONAL EXPERIMENTS

C.1 HYPERPARAMETER AND LOSS FUNCTION ABLATIONS

We conduct ablations of the key training parameters of our method: # anchor-positive pairs, total #
generated positives, and choice of loss function. We do so on the validation set of DF2, using the
Masked Dreambooth dataset (without filtering); these were chosen arbitrarily, and intended to be
representative of trends that we might expect to see across other datasets.

# Synthetic Imgs # Anchor-Pos Pairs Classification Retrieval
DINOv2 - - 12.0 35.9

DINOv2-P
300 300 27.2 51.2
300 600 35.9 58.7
300 1500 38.0 61.1
300 3000 38.1 62.1
300 6000 38.5 61.7
300 15000 37.7 61.3
300 30000 36.9 60.0

Table 4: Ablation on the number of generated positives.

Number of anchor-positive pairs. Given a fixed number of synthetic and real images, we can
potentially sample many combinations of anchors and positives for contrastive learning. We thus
sweep over different ratios of generated positives to sampled anchor-positive pairs. We fix the size
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of DS , the pool of generated positives, to 300 (arbitrarily chosen) and sample increasing numbers
of anchor-positive pairs from this pool for training. We find that performance on the DF2 validation
set plateaus at a 1:10 ratio, and subsequently use this ratio in all of our main experiments. Results
are shown in Table 4.

# Synthetic Imgs # Anchor-Pos Pairs Classification Retrieval
DINOv2 - - 12.0 35.9

DINOv2-P
3 30 12.8 36.0

30 300 28.6 35.9
150 1500 36.8 60.8
300 3000 38.1 62.1
450 4500 38.7 61.9
600 6000 38.3 60.8

Table 5: Ablation on the number of anchor-positive pairs.

Number of generated positives. We ablate the size of DS , the pool of generated positives. To
isolate the effect of the positive pool size, we fix ratio between the size of DS and the number of
anchor-positive pairs that are sampled from (DR, DS). We fix this ratio to 1:10, as this was found to
be best in the previous ablation. We find that performance plateaus at 450 generated positives and
thus use 450 as the size of DS in all of our main experiments. Results are shown in Table 5.

Loss function. We evaluate DINOv2-P trained on the Masked DreamBooth dataset (CFG 5) with
three contrastive loss functions, and one non-contrastive loss. For the Cross-Entropy experiment, we
add a linear layer with a sigmoid that projects the output feature vector to a single prediction scalar
(1 indicating the target object, 0 for any negative). We evaluate on the validation set of DF2 and
find that InfoNCE leads to the best results, and that contrastive losses overall perform better than
Cross-Entropy. Results are shown in Table 6.

Loss Function Classification Retrieval
DINOv2 - 12.0 35.9

DINOv2-P

InfoNCE 36.5 63.3
InfoNCE (Multi-Positive) 27.5 28.0
Hinge 29.4 48.4
Cross-Entropy 24.9 37.0

Table 6: Loss function ablation.

C.2 FULL EVALUATIONS ACROSS SYNTHETIC DATASETS

We ablate components of our method that contribute to the diversity of generated datsets, in particu-
lar the CFG parameter, and the use of LLM-generated prompts. In Tables 7-8 we show results across
all tested synthetic datasets, backbones, and downstream tasks. We highlight the synthetic datasets
that lead to the best performance for each backbone (as determined by average performance across
the PODS/DF2/Dogs validation sets). For these, we report the minimum/maximum performance
across four seeds, with the averages shown in Table 1. Notably, LLM-generated prompts signifi-
cantly improve performance on global tasks, however have little impact on dense task performance.

C.3 EVALUATION ON PERSAM

Here, we show that our personalized representations can be plugged into state-of-the-art pipelines
for personal tasks. We experiment with PerSAM Zhang et al. (2023). In the PerSAM method, an
image encoder is used to extract patch features of one or more training images, which are compared
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Classification Retrieval

Model CFG LLM PODS
DF2

Dog
s

PODS
DF2

Dog
s

DINOv2 - - 28.1 14.4 83.1 69.6 36.3 89.4

DINOv2-P

4 × 41.6 33.8 80.0 71.4 59.3 91.9
5 × 41.9 32.8 80.2 70.9 58.6 91.7
7.5 × 40.8 32.2 81.6 70.2 57.6 92.3
4 ✓ 45.7 36.4 81.0 78.9 63.1 94.2
5 ✓ (46.4, 47.5) (35.2, 36.1) (81.3, 82.0) (79.1, 80.46 (62.3, 63.1) (93.9, 94.5)

7.5 ✓ 42.6 36.0 81.7 68.8 61.9 94.1

CLIP - - 26.7 12.7 36.4 61.4 34.7 58.1

CLIP-P

4 × 41.1 25.0 57.6 59.6 45.7 72.1
5 × 40.0 24.0 57.7 59.2 44.5 71.6
7.5 × 38.2 24.2 57.6 58.1 43.7 72.0
4 ✓ (45.2, 45.9) (27.2, 27.4) (62.1, 63.3) (69.9, 70.6) (51.1, 51.4) (79.8, 80.4)

5 ✓ 45.9 26.4 64.6 70.5 50.4 80.3
7.5 ✓ 42.9 24.9 66.0 60.3 48.7 81.0

MAE - - 8.7 5.2 11.2 34.6 25.8 33.6

MAE-P

4 × 11.7 12.5 25.6 27.4 23.9 36.7
5 × 11.3 12.4 26.3 27.1 23.4 36.8
7.5 × 11.1 12.2 27.0 26.9 22.9 37.3
4 ✓ (13.5, 14.0) (10.9, 11.1) (30.1, 30.3) (29.5, 30.0) (23.1, 23.6) (42.5, 42.8)

5 ✓ 12.9 10.8 20.8 29.1 22.3 34.3
7.5 ✓ 10.1 9.7 32.2 26.2 21.4 44.8

Table 7: Performance of personalized v. pretrained representations on global tasks. We re-
port results for all generated synthetic datasets, ablating both CFG and the use of LLM-generated
prompts. The best dataset for each backbone (selected using validation performance) is highlighted
in yellow, with the min/max performance over 4 seeds reported.

Detection (mAP) Detection (F1) Segmentation (mAP) Segmentation (F1)

Model CFG LLM PODS
DF2

Dog
s

PODS
DF2

Dog
s

PODS
DF2

Dog
s

PODS
DF2

Dog
s

DINOv2 - - 11.3 5.2 11.0 11.6 6.6 12.8 13.2 4.3 11.8 15.1 5.6 15.1

DINOv2-P

4 × 12.9 8.7 16.0 12.8 11.0 18.1 14.6 7.8 16.1 15.9 9.5 19.7
5 × 12.8 8.5 15.3 12.7 10.6 17.5 14.5 7.8 15.5 15.8 9.3 19.3
7.5 × 13.0 8.5 15.6 12.9 10.5 17.7 14.3 7.5 15.7 15.7 9.0 19.0
4 ✓ 12.5 9.1 15.9 11.8 11.0 18.4 13.2 8.7 16.0 14.0 10.3 19.8
5 ✓ (12.3, 13.3) (9.1, 9.4) (15.7, 16.6) (12.0, 12.9 (11.0, 11.5) (18.6, 19.3) (13.9, 14.1) (8.8, 9.2) (16.0, 16.7) (14.6, 14.9 (10.4, 10.9) (20.2, 20.7)

7.5 ✓ 12.8 9.6 16.1 12.7 11.7 18.5 14.9 8.8 16.3 16.3 10.5 20.2

CLIP - - 0.1 3.1 6.5 0.1 3.8 7.0 0.3 3.2 7.6 0.3 3.9 8.6

CLIP-P

4 × 0.4 4.4 7.3 0.2 5.3 8.1 1.0 4.7 8.7 0.5 5.2 9.9
5 × 0.5 4.2 7.3 0.2 5.1 8.1 1.0 4.6 8.7 0.6 5.0 9.8
7.5 × 0.5 4.2 7.8 0.2 5.1 8.5 1.0 4.4 9.1 0.6 4.9 10.2
4 ✓ (0.4, 0.6) (4.4, 4.5) (8.4, 8.8) (0.2, 0.3) (5.2, 5.4) (9.3, 9.7) (0.9, 1.0) (4.4, 4.6) (9.5, 10.0) (0.6, 0.6) (5.0, 5.2) (10.9, 11.3)

5 ✓ 0.6 4.4 9.2 0.3 5.3 10.0 0.9 4.6 10.4 0.5 5.2 11.7
7.5 ✓ 0.2 4.5 9.7 0.1 5.3 10.5 0.6 4.7 10.6 0.4 5.3 11.9

MAE - - 0.1 1.0 1.1 0.1 1.6 1.7 0.1 0.2 0.2 0.0 0.4 0.3

MAE-P

4 × 0.2 1.1 1.1 0.2 1.8 1.5 0.0 0.3 0.2 0.0 0.5 0.3
5 × 0.2 1.1 1.0 0.2 1.7 1.5 0.0 0.3 0.2 0.0 0.4 0.3
7.5 × 0.2 1.1 1.0 0.2 1.7 1.5 0.1 0.3 0.2 0.0 0.4 0.3
4 ✓ (0.2, 0.2) (1.2, 1.3) (0.9, 1.0) (0.2, 0.2) (1.8, 2.0) (1.5, 1.6) (0.0, 0.0) (0.3, 0.3) (0.2, 0.3) (0.0, 0.0) (0.5, 0.5) (0.4, 0.4)

5 ✓ 0.3 1.2 1.0 0.3 1.8 1.6 0.1 0.3 0.2 0.0 0.5 0.3
7.5 ✓ 0.2 1.2 0.9 0.2 1.9 1.5 0.0 0.3 0.2 0.0 0.5 0.4

Table 8: Performance of personalized v. pretrained representations on dense tasks. We re-
port results for all generated synthetic datasets, ablating both CFG and the use of LLM-generated
prompts. The best dataset for each backbone (selected using validation performance) is highlighted
in yellow, with the min/max performance over 4 seeds reported.
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to the patch features of a test image to extract a confidence map. The confidence map is then used to
generate keypoint proposals to prompt SAM, and guide the attention map of the SAM decoder (refer
to Zhang et al. (2023) for details). We evaluate PerSAM with DINOv2, and DINOv2-P as the image
encoder, across DF2, Dogs, and PODS. Our results are shown in Table 9; we find that DINOv2-P
improves personalized segmentation performance over DINOv2 over all datasets. Note that we use
DINOv2-P trained with the best-performing dataset for the DINOv2 backbone, highlighted in Tables
7-8.

Segmentation (mAP) Segmentation (F1)

PODS DINOv2 17.1 21.6
DINOv2-P 21.5 25.3

DF2 DINOv2 5.2 6.8
DINOv2-P 10.9 12.8

Dogs DINOv2 15.4 19.8
DINOv2-P 19.5 24.4

Table 9: Application to PerSAM

C.4 DIVERSITY AND FIDELITY ANALYSIS
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Figure 12: Diversity and fidelity plot colored by accuracy across PODS, DF2 and Dogs synthetic
datasets. Note that the fidelity metric may be influenced by the background features appearing in
the cropped image, resulting in a reduced fidelity score for some samples.

To better understand the characteristics of our generated datasets, we perform a diversity and fidelity
analysis in Figure 12. We measure fidelity by computing the DreamSim cosine similarity between
synthetic images and the mean embedding of the reference real images, both cropped around the
object of interest. To measure diversity, we compute the pairwise similarity between DreamSim
features of the synthetic images in each dataset.

Notably, optimal accuracy is achieved when both fidelity and diversity are sufficiently balanced—too
much fidelity at the expense of diversity, or too much diversity with low fidelity, both lead to de-
graded performance. Maintaining appropriate levels of both results in the best performance, and this
can be achieved in our work through Masked DreamBooth or Cut and Paste generative methods.

D QUALITATIVE RESULTS

D.1 DENSE PREDICTION VISUALIZATIONS
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Figure 13: DF2 Dense Predictions Images and classes are randomly sampled

Figure 14: Dogs Dense Predictions Images and classes are randomly sampled

Figure 15: PODS Dense Predictions Images and classes are randomly sampled
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D.2 CHALLENGING EXAMPLES

We visualize examples of hard negatives and hard positives from the Dogs dataset to better under-
stand the capabilities of personalized representations. For a given query image x of a target object,
we identify hard positives as the k positives with the lowest DINOv2 cosine similarity to x (often
the dog in a very different setting or position), and hard negatives as the k negatives with the highest
DINOv2 cosine similarity to x (often different dogs of the same breed). We denote DINOv2-P as
successful on a hard negative (positive) if it has a lower (higher) cosine similarity to x than DINOv2.

We show randomly selected examples of hard positives/negatives in the Dogs dataset in Figures
16 and 17 respectively. DINOv2-P is typically successful on hard positives; the cosine similarity
between positive pairs nearly always increases, even in cases with significant differences (lighting,
pose, etc) from the query image. However, we also identify several cases in which the cosine
similarity between query images and hard negatives also increases. This is a failure case that may be
induced by noisy positives in the synthetic training dataset, leading the personalized representation
to associate the target object with spurious features.

Figure 16: Dogs Hard Positives. Given images of a target dog (leftmost of each row) we identify
the positive test images with the lowest DINOv2 similarity to the query. DINOv2-P cosine similarity
typically increases, even for cases with significant differences in setting, camera angle, occlusion,
etc.

D.3 DREAMBOOTH GENERATED DATA

We present qualitative examples for the following datasets:

• PODS DreamBooth without LLM 18, PODS DreamBooth with LLM 19, PODS Masked
DreamBooth with LLM + Filtering 19, PODS negatives 21

• Dogs DreamBooth without LLM 22, Dogs DreamBooth with LLM 23, Dogs Masked
DreamBooth with LLM + Filtering 24 and Dogs negatives 25
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Figure 17: Dogs Hard Negatives. Given images of a target dog (leftmost of each row) we identify
the negative test images with the highest DINOv2 similarity to the query. In some cases DINOv2-P
cosine similarity decreases (top row) however we also identify failure cases where cosine similarity
increases (second/third rows).
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PODS Generated Images

Figure 18: PODS Generated Images - DreamBooth without LLM prompting. Images and
classes are randomly sampled

Figure 19: PODS Generated Images - DreamBooth with LLM prompting. Images and classes
are randomly sampled
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Figure 20: PODS Generated Images - DreamBooth with LLM, Masking and Filtering. Images
and classes are randomly sampled

Figure 21: PODS Generated Negatives Images and classes are randomly sampled. Each row are
sampled negatives for each object category.
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Dogs Generated Images

Figure 22: Dogs Generated Images - DreamBooth without LLM prompting. Images and classes
are randomly sampled

Figure 23: Dogs Generated Images - DreamBooth with LLM prompting. Images and classes are
randomly sampled
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Figure 24: Dogs Generated Images - DreamBooth with LLM, Masking and Filtering. Images
and classes are randomly sampled

Figure 25: Dogs Generated Negatives Images and classes are randomly sampled
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