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ABSTRACT

Estimating the importance of input tokens and their activations in auto-regressive
models is a fundamental requirement in many applications, such as key-value
(KV) cache compression and attribution. Prior work computes token importance
using attention weights, which are obtained by normalizing the raw attention log-
its (query-key inner products) with a softmax operation. However, the softmax
normalization suppresses the rich information within the attention logits. We intro-
duce RCSTAT, a statistical framework that harnesses the raw attention logits via
Relative Contextualization (RC)—a random variable measuring contextual influence
from one subset of tokens to another. We derive computationally efficient bounds
on the expected RC and demonstrate its utility in two applications: (i) KV compres-
sion, where RC-based adaptive thresholding evicts substantial portions of the KV
cache with minimal quality loss in token generation; and (ii) Aftribution, where
attention heads with high expected RC yield accurate span-level attribution. Across
QA, summarization, and attribution benchmarks, RCStat achieves state-of-the-art
performance, improving generation quality by 15-40% and attribution accuracy by
2-16%, all without any model retraining.

1 INTRODUCTION

The transformer’s attention (Vaswani et al., [2017) mechanism encodes contextual relationships
between tokens into internal state representations. This involves the raw dot-product similarity scores
(q, k) of the query and key vectors, followed by a softmax normalization. Post-softmax attention
weights are widely used for tasks such as attribution (Yue et al., [2023; [Phukan et al., 2024) and
memory optimization through Key-Value (KV) cache compression (Ge et al., 2024} [Liu et al.| 2024a}
2023; [Li et al.} 2024c)). However, such transformation introduces structural bias: it sharpens attention
toward dominant tokens while flattening mid-range scores, thereby discarding subtle yet potentially
meaningful contextual signals. Fig. Visualizes pre-softmax attention logits ({g, k)) from generated
tokens to the prompt. Prompt tokens that are semantically relevant to the generation, i.e., carrying
contextual alignment, consistently obtain higher logit values, while unrelated prompt tokens obtain
lower logits. These meaningful differences are evident pre-softmax but are obscured post-softmax,
where normalization flattens intermediate scores and skews attention (Xiao et al., [2023)) toward
a few dominant or structurally favored positions (e.g., <s>, </s>), referred to as attention sink
phenomenon (Gu et al., 2024} Xiao et al., [2023)).

Such information loss becomes consequential in applications requiring fine-grained relevance esti-
mation use-cases, leading to inaccurate token attribution (Li et al., 2024b), sub-optimal KV-eviction
(Ren & Zhu, [2024)), etc. While post-softmax weights represent localized attention at a specific layer,
we posit that raw logits carry a dual role: they encode not only what the current layer attends to but
also preserve upstream interactions, offering a richer statistical substrate for analysis.

Despite this potential, the usage of pre-softmax attention remains largely underexplored, primarily
due to the lack of statistical tools and frameworks to extract structured insights from unnormalized
logits. This work addresses that gap. We propose a probabilistic formalism that models relevance
directly in the logit space, at different levels of granularity, enabling actionable and generalizable
utilities across multiple downstream tasks.

The informativeness of pre-softmax logits may not be the same across all attention heads. In fact, it is
observed in literature that certain heads—often in the middle layers—demonstrate stronger contextual
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Figure 1: Attribution between generated text (right) and input prompt (left) is analyzed using pre-
softmax attention logits vs. post-softmax values. The bottom histogram highlights pre-softmax logits,
separating prompt tokens (cross-(q,k)) from generated tokens (self-(q,k)), at 13" layer 23" head from
Llama-3B-instruct. Tokens in the overlapping region signify common content, a detail suppressed in
the post-softmax histogram above. Using logit distributions, we can attribute (§ #.2): (1) prompt parts
not contextualized during generation (blue arrow), (2) generation parts uninfluenced by the prompt
(green arrow), and (3) generation heavily contextualized by the prompt (red dashed arrows).

activity than others (Phukan et al., 2024). Recent interpretability efforts (Dunefsky et al.,[2024)), such
as circuit tracing (Ameisen et al.| 2025), offer valuable but often qualitative insights into attention
behavior. We take a complementary approach: quantifying how different attention heads behave
and using that for KV-cache compression and attribution. For instance, we find most heads have
compressible KV-caches, while the few resistant ones provide useful attribution signals.

By operating in the logit space, our goal is to provide a principled and interpretable method for
identifying such important heads, facilitating deeper insights into their functional roles. In other
words, we propose a method for head-aware attention-logit analysis.

‘We summarize our contributions as follows:

1. We formalize the notion of contextualization as a set of random variables that capture the relation-
ship between two portions of a text, e.g, a part of prompt and a part of generated tokens, within an
attention head. Armed with these random variables, we introduce the relative contextualization
(RC) to assign relevance scores at different granularity levels: token-, chunk- and entire text.

2. To estimate the statistics of RC, we derive a easy to compute practical intuitive upper bound
and provide an efficient algorithm to compute it, which enables quantitative use of pre-softmax
attention logits in downstream tasks.

3. In doing so, we propose RCSTAT, which to the best of our knowledge, is the first unified framework
that brings different relevance assignment applications, such as KV-cache compression and token
attribution, under one formalism.

4. We demonstrate that RC-based KV compression improves generation quality by 15-40% and
achieves 2—-5% higher compression over prior SOTA on LLaMa. We also reduce KV cache error
by up to 36% on Qwen3 for summarization and QA tasks. For RC-guided attribution, selecting
just 2% of attention heads increases span-level attribution accuracy by 2—3% on LLaMa and
13-16% on Qwen3, all without any model retraining.

2 RELATED WORK

Interpretability links generation outputs to the input and model internals. Compression and attribution
translate this insight into action: the former prunes low-value signals; the latter assigns credit.

Mechanistic Interpretability of LLMs: Mechanistic interpretability (Anonymous, [2024) aims to
reverse-engineer the internal workings of large language models. Circuit-tracing techniques (Ameisen
et al.| [2025; Lindsey et al.,[2025), such as those from Anthropic, have revealed neuron-level pathways
and interpretable MLP circuits. Complementary efforts dissect self-attention heads (Voita et al.,
2019), uncovering roles such as induction copying (McDougall et al., 2023} |Olsson et al.| [2022])
and positional tracking (Dufter et al.,|2022). Beyond this, representation-level probes in BERT and
GPT leverage attribution (Rahimi et al.| 2025)) and linear classifiers (Du et al., 2025 Rogers et al.,
2021};|Chanin et al.| 2023) to map hidden activations to semantic features. While insightful, these
methods often rely on heuristics (Gu et al.,2024) and remain largely qualitative. They lack a unified,



quantitative framework and offer limited direct utility (Zhao et al.,[2024)). In contrast, our method
analyzes the raw attention logits across heads via the statistical lens of Relative Contextualization
(RC), to identify which heads are responsible for context-grounding and by how much.

KV Compression: KV cache can occupy up to 84% of inference memory for long contexts (Hooper
et al.,|2024). Prior reduction methods include quantization (Hooper et al.,2024; Liu et al.| 2024bj Lin
et al.| 2024), low-rank approximation (Chang et al.| 2024} |Dong et al.,|2024), state merging (Wang
et al. [2024; |Agarwal et al., 2025)), and eviction (Li et al., 2024a). We focus on eviction, dis-
carding low-value key—value pairs, which can be fixed-size or variable-size. Fixed-size methods
enforce uniform budgets per head and layer; early approaches like K-norm (Devoto et al., [2024)
and Streamingl.ILM (Xiao et al., [2023) use vector norms, while attention-based methods, such as
SnapKV (Li et al., [2024c), TOVA (Oren et al., 2024), H20 (Zhang et al., 2023), rank tokens by
post-softmax weights. QFilter (Godey et al.,2025)) isolates signal entries via matrix decompositions,
and KVPress (Jegou et al.,|2024)) applies probabilistic heuristics. Variable-size strategies allow hetero-
geneous budgets: PyramidKV (Cai et al., [2024) uses a fixed pyramid schedule, and Ada-KV (Feng
et al 2024) adjusts per-layer budgets by token relevance. Manual budgets risk degradation; in
contrast, our method sets per-head budgets adaptively via RC.

Attribution: Performing attribution is critical for trustworthy generation. Existing methods rely on
either gradient signals or post-softmax attention weights. Gradient- and perturbation-driven methods
such as Integrated Gradients (Miglani et al.,[2023; |Sundararajan et al.,[2017), LIME/SHAP (Ribeiro
et al., 2016} Lundberg & Leel [2017), and masking/occlusion (Schinagl et al., [2022) trace output
sensitivity back to inputs but are computationally expensive. Attention-based methods aggregate
post-softmax weights across heads and layers (Abnar & Zuidema, 2020) or formulate attribution
metrics (Chefer et al., 2021). However, averaging suppresses medium-strength token associations
due to softmax normalization and the presence of sink tokens (Phukan et al.,[2024). The learned
explainer (Cohen-Wang et al.,[2025)) mitigates this by training a model to assign reliability scores
to heads using labeled data. In contrast, RC computes per-head reliability scores without labels,
adapting per example without any extra training.

3 SELF AND RELATIVE CONTEXTUALIZATION IN LM

To motivate our framework, we represent (g, k) as a random variable. This abstraction enables
statistical reasoning in scenarios where decisions must be made at a chunk level rather than per
token. For example, in KV-compression, eviction decisions must be made prior to generating an
entire segment of text, not just individual tokens. Similarly, in attribution tasks, we aim to explain the
influence of input tokens over contiguous output spans.

3.1 PROBABILISTIC FORMALISM OF CONTEXTUALIZATION

Let V be a vocabulary of tokens and €2 C V* the sample space of all finite token sequences.
Let (©2,29, P) be a probability space, where the probability measure P(s) of a token sequence
s=(t1,...,t,) € Qis defined by an auto-regressive pre-trained transformer. For a sequence s, let
the attention logit be the function f" : [n] x [n] — R, that maps a pair of tokens at positions i, j to
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where q;’h and kﬁ’h are the query and key vectors of 2" head in I layer. Our framework develops
characteristics for individual heads, but we drop the superscript “" for brevity henceforth.

A sequence has two parts, s = p @ g, where @ denotes concatenation, p = {t1,-- ,t,,} is the
sequence of prompt tokens and g = {t,,41, - ,t,} is the sequence of generated tokens. The
demarcation between p and g need not be rigidly associated with their names, prompt, and generation.
The p could be a user-given prompt, a conversation history between the user and the language model,
or a text that the language model is expected to continue. Similarly, g could be LLM-generated tokens
or a portion of an existing text that needs to be analyzed with respect to its previous text p. If there is
a user question between p and g, one may choose to place it at the end of p or the start of g.
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Figure 2: Illustration of the pre-softmax attention logits Q7 K € R!*/*Is| where s is sequence s with
prompt p and generated tokens g, as they appear in the last |g| rows the the Q7 K matrix. Fig.
shows how the logits in the last |g| rows are partitioned to construct the cross-contextualization
(CC) and self-contextualization (SC) random variables. Fig.[2bland [2c|show the logits that construct
conditional CC and conditional SC. Fig. @] shows their respective probability density function.

Next, we define four random variables (RVs), all illustrated in Fig. Q], that capture the notion of
contextualization at an attention-head level, a sequence level, and a sub-sequence level.

Definition 3.1 (Cross-Contextualization). We define cross-contextualization of an attention head as
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where 1(-) is the indicator function. The|CC|random variable captures the notion of contextualization
between the prompt sequence and the generated sequence at a head-level.

Definition 3.2 (Self-Contextualization). We define self-contextualization of an attention head as
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The (SC) random variable captures the contextualization within the generated tokens at a head-level.
Beyond CC and SC, we define conditional counterparts (§A.T)) that restrict attention to subsequences
of prompt and generated tokens. For p; C p and ¢’ C g, conditional CC denoted as X(p1, g’) in (O)
captures the influence of p; on ¢’, while for g1, ¢’ C g, conditional SC denoted as Y;(g1, ¢’) in (I0)
measures the influence of g; on subsequence g'.

3.2 RELATIVE CONTEXTUALIZATION

Due to position embeddings and the auto-regressive nature of generation, self-contextualization
values are generally higher than cross-contextualization. Yet some influential prompt tokens also
receive higher softmax attention, implying their (g, k) values exceed those of certain generated tokens,
since softmax is order-preserving. This motivates a third type of variable, relative contextualization,
designed to isolate prompt-specific influence by subtracting out internal generation bias. Formally, if
Xs(p1,9) > Ys(g1,g) with high probability, then the (next-layer) value embeddings of the tokens in
g1 become heavily affected by the prompt tokens in p;.

Definition 3.3 (Relative Contextualization). Assuming a sequence s = p & g is given, and two
subsets p; C p, g1 C g, whose complementary tokens p\p; and ¢\ g; are given, we define the relative
contextualization (RC) random variable as

Zs(p1, 1) = max (X,(p1,9) — Ys(91,9),0) . (RC)

Similar to conditional CC (9) and conditional SC (T0) in the random variable Z(p, g) can be
written as Z|s = max(X|s — Y|s,0). Estimating the central statistics of[RC|requires an operation
over the joint distribution of X and Y. If there are a large number of prompt and generated tokens,
then computing any statistics of Z could become prohibitively expensive, as discussed in §3.3] Note,
X and Y are not independent random variables since the key and query vectors of different tokens
are intricately dependent on each other.

In the following, we derive a computationally efficient and practical upper bound for[RC] without
making any distributional assumptions on X or Y,. We refer to this upper bound as RC score.
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Figure 3: Illustration of the upper and lower bounds stated in Theorem for two types of relative
contextualization: max(X — Y, 0) and max(Y — X, 0).

Theorem 3.4 (Area Under CDFs). The expected relative contextualization Z is upper bounded by
the overlap area A between, a) the area under the marginal CDF Fy of self-contextualization Y, and
b) the area under the marginal survival function Sx of cross-contextualization X :

]E[Zs(plagl)] S AS(plvgl) = / min (FYS(ghg)(t% SXs(pl,g)(t)) dtv (2)

— 00

where Sx (t) =1 — Fx(t), and lower bounded by the area a, under Fy but over Fx:

as(phgl) = / maX(FYS(!h,g)(t) - FXs(p1,g)’ O)dt S ]E[ZG(plagl)] (3)

Our proof of TheoremBZf]in §[A;2]is inspired by (Angelis & Grayl, 2021}, |Vallender, |1974) and uses
copula (Durante & Sempi, 2010). Intuitively, the upper bound in (2)) captures the area under the
overlap region between the values of X and Y, as illustrated in Fig Fig. The upper bound in
is tight for continuous CDFs F'x and Fy (discussed in the proof). However, in our case, they are
discrete. An alternative relative contextualization can be defined as Z.(p1, g1) := max(Ys(g1,9) —
Xs(p1,9),0) that captures by how much the conditional SC is more than that of the conditional CC.
The lower and upper bounds of Z! can be formulated similar to Z as in Theorem and illustrated

in Fig.[3cJand 3d}
3.3 COMPUTATIONAL COMPLEXITY

We analyze the complexity of directly computing expected RC|and computing its upper bound A,
for all the prompt and generated tokens and a given attention head. For direct computation, if we
make a simplifying assumption that the joint distribution of X and Y is a uniform distribution over
its discrete support, the expected RC can be calculated as

BIZ, ()] = EIZ1) = s S0 3 Y max(filind) ~ £i(D.0). (@
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using O(|p||g|®) computations. Similarly, computation of E[Z,(p1, g1)] requires O(|p1||g1||g|*)
computations. An even simpler approximation is to use conditional expectation by assuming output
tokens are independent of each other and uniformly distributed: E[Z|s| =~ E,~4[E[Z]s, {t;}] =

Eting[Elmax (X (p, {t;}) = Ys(g: {1}, 0)]].

Although the complexity with this i.i.d. ap-
proximation is O(|p||g|?), which is less than
(@), we observe that it performs poorly in
downstream tasks such as KV-compression (see
§C.6). Hence, we do not use this approxima-

Algorithm 1 Area under min(Fy,,1 — Fx,)

Require: Samples of X and Y
Ensure: Overlap area A,

tion. I: X + sort(X;),Y « sort(Y;)

On the other hand, the upper bound A; can
be calculated in O(|p||g| + |g|*) computations,
where O(n) = O(nlog(n)), with the Lebesgue
integration approach in Algorithm[I] It involves
sorting the samples of X and Y, individually
in Algorithm[T|and jointly in Algorithm[I]to ob-
tain the unique breakpoints B. With appropriate
indexing, the complexity of computing CDFs
and the minimum values in Lines [7} [8] and [9]
becomes linear with respect to the number of
midpoints M in Algorithm T}

B + unique(sort(X UY))

L<—BI:€_1,R<—B2:Z D£:|B|
M+ (L+ R)/2 > Midpoints
W« R-L > Widths

for each midpoint m; € M do

Fy(m) < o5 30, 1[Y; < mj]

v; < min(Fy (m;), 1 — Fx(m;))
A+ >, v;-W; > ~ Lebesgue Integral
return A

S B A A

—_—




Similarly, the complexity of computing As(p1, 91) is O(|p1]lg| + |91]]g|). Algorithm|l|can be easily
extended to compute upper (2)) and lower bound (3) for both types of RC in Fig. |3[by modifying
Algorithm|I] Although the direct computation of RC in (4) becomes expensive when the number of
generated tokens is high; it can be effective when |g| is small. It offers the advantage of computing
conditional RC for multiple prompt parts in parallel, which we leverage in the KV-compression task.

4  APPLICATIONS OF RELATIVE CONTEXTUALIZATION

Depending on the chosen subsets of the prompt and generated tokens, p; C p and g1 C g, Equa-
tion[RC|can support different applications. In this work, we explore two specific use cases.

4.1 KV CACHE COMPRESSION

In an attention head, the value vector v; € R? for a generated token ¢; is computed, using the full
KV-cache and under eviction, as:

e<qj)ki> e<qj)k">
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where p. C p denotes the set of prompt tokens whose key and value vectors are evicted. An ideal,
but combinatorially hard to solve, eviction policy minimizes the degradation in value vector fidelity
across all generated tokens g by finding an evictable token set p}; such that:

ps = arg min Tl Z [v; — jl2- (6)

€2r
Pe tj€g

However, g is unknown during decoding. Following SnapKV (Li et al.| 2024c)), we approximate g
by using a window of the last few tokens in the prompt as a proxy §. By treating expected RC as a
score of significance, we decide whether to evict the KV of a token ¢;, by comparing the scores for
the singleton set p; = {¢;} with that of the entire prompt, i.e., evict if

E[Zp(pi, )] = Elmax(X, (i, §) — Y5(9,9))] < cE[Zp(p\ §,9)], )

where Z, is defined similar to but using the prompt p instead of the entire sequence s, and ¢
is a compression hyperparameter. Eviction is adaptive: for a fixed ¢, each head selects a different
pe depending on its contextual load. We observe that a small-sized § achieves better performance
(see hence, use @) to compute the expected RC, instead of the upper bound (2))). We leave the
exploration of other RC formulations in Fig. [3|for score assignment as a future work.

4.2 ATTRIBUTION TO CONTEXT TOKENS

Unlike KV-compression, the full token sequence s = p @ ¢ is known a priori in the attribution task.
In general, the task is to find the spans in S that is most attributable to ¢/, given a generation token
span g’ = [tj,, - ,t;,] and a set of spans S = {p1,--- ,p|s} from the prompt. A prompt token
span p; could be: a chunk retrieved in the RAG setup, one of the few-shot examples for in-context
learning, or a singleton token p; = {¢;} in the input prompt. Our attribution method has three steps.

Step 1: Compute the expected RC score E[Z"] over the full token sequence s for each head h across
all layers, then select the top-k heads Hy.

Step 2: For each p; € S and h € Hy, compute E[Z”(p;, ¢')], the expected RC from span p; to
generation span g'.

Step 3: Assign a normalized attribution score RC(p;) to each span p; € S as:

Z > ]E[Zh(p“ )] . 8)

hEM, plfether E[Z(pi.g')]

Finally, we select the span p; with the highest RC(p;). For long generations, we substitute the
expected RC with its efficient upper bound (Eq.[2] visualized in Fig.[3b) computed via Algorithm
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Figure 4: All plots are generated using the mentioned datasets with LLaMA-3B model: 28 layers, 24
heads in each layer. Fig. 4b|plots the E[RC in (@) and its upper bound RC score (2), i.e., the overlap
area in Fig. for all the heads. Fig.[dc|and [Ad|plot the RC scores of all the heads across datasets,
and the heads are sorted by their median RC score. Fig.[da]shows how the head-level compression
ratio is anti-correlated with the RC score: each point corresponds to a head.

5 EXPERIMENTS

We first study the behavior of RC by analyzing its expected scores and upper bounds across attention
heads, and then evaluate its utility on two tasks: (i) KV-cache compression and (ii) attribution.

Datasets and LMs: For head analysis and KV-cache compression, we use 3 benchmarks: 2000
SQuAD v2.0 (Rajpurkar et al., 2018) (span QA with unanswerable queries), 200 QMSum (Zhong
et al.l [2021) (query-focused meeting summarization), and 2000 2WikiMultiHop (Ho et al., [2020)
(multi-hop RC over linked Wikipedia). For attribution, we use 1300 QuoteSum (Schuster et al., [2023)
(summaries with annotated source spans) and 200 VERI-GRAN (Phukan et al.l [2024)) (grounded-
generation attribution). We evaluate 3 LMs from two families: LLaMA-3.2-3B and LLaMA-3.1-8B
Instruct (LLaMA; |Grattafiori et al.,[2024), and Qwen3-8B (Qwen;|Yang et al., 2025)). (Ref. for
details).

5.1 ROLES OF ATTENTION HEADS ACROSS TASKS

We analyze whether Relative Contextualization (RC) can distinguish relevant from irrelevant context,
differentiate complex summarization from simple QA, and reveal how the number of contextualizing
heads varies with the difficulty of the task.

Two Contrasting Examples: We provide two examples in each with a prompt as the context
and the generation as a question-answer pair. In Example 1, the context supports the question; in
Example 2, it does not. Fig. @] shows that head-level RC scores, i.e., the relative contextualization
(overlap) between prompt and generation, are uniformly lower for Example 2 with the irrelevant
context across all heads and layers. This is reflected in the count of heads whose overlap upper bound
exceeds a threshold 7 = 1.5; only 12 heads are responsible for contextualization for Example 2,
compared to 130 heads for Example 1.

Sensitivity towards Task Complexity: Comparing Figures dc|and[fd] we observe that the RC scores
are substantially higher for QMSum, complex multi-sentence summarization tasks, than for SQuAD,
simple single-hop QA tasks. On average, QMSum requires 9 x more heads (p < 0.05) than SQuAD,
with RC scores higher than 7, indicating that complex tasks recruit a broader ensemble of attention
heads. We analyze this phenomenon further in §B.2]

Consistency of Heads Across Examples: Figures [fc|andd]also presents the distribution of overlap-
area (min—max, Sth-95th, 25th—75th, median) for all 24x28 head-layer pairs on QMSum and SQuAD
datasets respective, revealing a pronounced long-tail behavior: a handful of heads exhibit persistently
large overlap across inputs, while most heads remain low. In we provide detailed head-wise RC
distribution plots and heat maps for each dataset and model.

5.2 KV CACHE COMPRESSION

Baselines: We compare our approach, RCSTAT, against state-of-the-art methods: Knorm (Liu et al.,
2024a)), SnapKV (Li et al.,[2024c]), Streamingl.LM (Xiao et al.,|2023)), and TOVA (Liu et al., 2023).
Notably, both SnapKV and TOVA operate on post-softmax attention scores.
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Figure 5: KV-cache compression performance on QMSum using LLaMA-3.2-3B and LLaMA-3.1-
8B. We report Value Error Rate (VER]) and generation quality (RL-F17) across different strategies.
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Figure 6: KV-cache compression results on 2WikiMultiHop and SQuAD v2.0 using LLaMA-3.1-8B.
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Metrics: The primary metric is the overall compression ratio: the ratio between the evicted KV-cache
size and total KV-cache size across all layers and heads. We evaluate the performance using ROUGE-
1/L (Lin}, [2004) and Value Error Rate (VER), the objective in Eq. (@) normalized by v} inside the
summation. For VER, we use the last layer’s value vectors of LLM and average across all heads
and samples in the dataset. In §C.1] we discuss how VER is more robust to variations in decoding
strategies compared to ROUGE, making it a suitable metric for KV-compression. We compare the
computational efficiency of our KV compression in §C.4]

Experimental Setup: We build upon the baseline implementations provided in the KVPress pack-
age (Jegou et al.,|2024)), using default values for all method-specific hyperparameters. All baselines
are evaluated at compression ratios of 0.4,0.5,--- ,0.8. For RCSTAT, the compression ratio is
controlled via the parameter c in (7), where larger values of ¢ result in more aggressive eviction and
thus higher compression. We vary c over 0.2,0.7,0.8,1.0, 1.2, 1.3, 1.8, with the default setting c=1
highlighted using a circle in all plots. Here, we evaluate our method with window sizes of the last
few tokens (see §4.1), with w € 8,16. §C.5|shows results of further window size variation.

Generation-Compression Tradeoff: We present some of our results in Figures[5|and[6] All results
for LLaMA models are in §C.2]and for Qwen model in §C.3] We show the results for VER metric in
Figures [5a] [5¢] [6a]and [6c} Across all datasets and models, our method incurs the least VER for all
compression ratios. These results show that the fidelity of the internal representation of generated
tokens is best preserved in our method. Similarly, results in Figures[5b] [5d] [6b] and [6d} our method
achieves the best solution frontier in the trade-off between compression ratio and RougeL F1 score.
We notice that, although a lower VER implies higher RougeL, its inverse is not necessarily true: the
ordering of solution frontiers of baselines for VER is not the same in RougeL-F1. This is expected,
since Rougel measures n-gram output text overlap. In fact, even at 80 ~ 90% compression the an
LLM generates answers, not from grounding in the context, but internal model weights learnt during
pre-training (Chuang et al.| 2024} Feldman et al., 2023} |Xu et al., 2024)).

Adaptive Head-wise Eviction: Our method adaptively evicts KV-caches at the level of individual
attention heads. To analyze this, we examine the correlation between head-wise compression ratios
and RC scores in Fig. ffa] using the same examples as §5.1] We report only means; variances and
other statistics are provided in As expected, heads with higher RC scores face less eviction,
reflecting their importance for context-grounded generation. In other words, such heads are highly
informative and thus less compressible. We leverage these informative heads for attribution.

5.3 CHUNK-LEVEL PROMPT ATTRIBUTION

Baselines: We focus on training-free, inference-only attribution methods that are computationally
efficient for deployment in real production systems. To the best of our knowledge, the zero-train
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methods include the hidden state (HS) approach (Phukan et al.,|2024) and retrieval-based methods,
such as BM25 (sparse) (Robertson et al.,[2009), GTR (dense) (N1 et al.,[2022), and MonoT5 (Nogueira
et al.| 2020). We also compare against GPT based attribution as done by |Phukan et al.|(2024).

Quantitative Results: We report results for LLaMA3.1-8B in Table |l On QuoteSum, using the
top-k heads improves attribution accuracy by 3% over using all heads, while bottom-k causes a 61%
drop. On VERI-GRAN, top-k heads provide a 2% gain, whereas bottom-k heads fall to 2.8% (near
random) for LLaMa-3.1-8B. These results confirm the importance of heads with high RC scores
computed from pre-softmax attention logits. Interestingly, selecting heads based on post-softmax RC
scores performs worse than all heads. We further demonstrate the impact and genaralizability of our
technique in identifying top-K RC heads in Table[I|with two more models - a smaller LLaMA-3.2-3B
and Qwen3-8B with different architecture. Attribution using top-k RC heads consistently outperforms
baselines, achieving 5.9-13.2% gains over HS on QuoteSum and 7.4-16.0% gains on Veri-Gran.
Least-RC heads perform near chance. This effect is particularly pronounced in Qwen3-8B, where
attribution drops from 92.8% (most-RC) to 39.1% (all heads), approaching the 31.9% of least-RC
heads. LLaMA models show smaller drops (e.g., 93.9—90.5).

Head-Selection Robustness: To dive deeper, Fig. [§] shows attribution accuracy as a function of & for
LLama-3.1-8B in (a) and Qwen3-8B in (b). When using the top-k heads, accuracy remains near its
peak even for small k. In contrast, accuracy plummets as more bottom-% heads are included, even
up to 800 (out of 1024) heads. This behavior is even more prominent in the Qwen3-8B model as
shown in Fig. This clearly shows that selecting more heads beyond the optimal set, as identified
by our technique, can significantly degrade the accuracy. We provide qualitative examples of RC
based attribution improvements in §D]

6 CONCLUSION

We present RCSTAT, a statistical framework that computes Relative Contextualization (RC) from pre-
softmax attention logits with an efficient upper bound, enabling practical KV-cache compression and
attribution without retraining; empirically, it achieves state-of-the-art accuracy on both while reducing
compute. Analysis shows (1) RC quantifies an LLM’s contextualization effort (task difficulty), (2)
attention heads exhibit stable, example-agnostic specialization, and (3) the most influential heads
cluster in middle layers, consistent with prior work. Explaining why and how these patterns arise
remains future work.
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8 REPRODUCIBILITY STATEMENT

Code and Assets. We use publicly available code, models, and datasets, citepd and listed below
with corresponding licenses and versions.

* Codebase: We build upon [KVPresslhttps://github.com/NVIDIA/kvpress.
Version: 3dbf8f4 License: Apache 2.0

¢ Models: We use two families of LLMs.

1. LLaMA-3 models from (Grattafiori et al., [2024) of two sizes: 3B, URL: https:
//huggingface.co/meta-llama/Llama—-3.2-3B-Instruct;
and 8B, URL: https://huggingface.co/meta—llama/Llama—3.
1-8B-Instruct, License: Llama 3.1 and Llama 3.2 Community License

2. Qwen model of 8B size from (Yang et al., [2025). URL: https://huggingfacel
co/Qwen/Qwen3—8B| License: Apache 2.0.

e Datasets: We use datasets as follows:

— QMSum (Zhong et al., 2021) Version: Latest GitHub release (accessed 2025-05) URL:
https://github.com/Yale-LILY/QOMSuml License: MIT License

— 2WikiMultihopQA (Ho et al., [2020) Version: Latest GitHub release (accessed
2025-05) URL: https://github.com/Alab-NII/2wikimultihop License:
Apache 2.0

— SQuAD v2.0 (Rajpurkar et al.,|2018)) Version: Hugging Face release (accessed 2025-
05) URL: https://huggingface.co/datasets/rajpurkar/squad_v2
License: CC BY-SA 4.0

— QuoteSum (Schuster et al.l [2023) Version: GitHub release (accessed 2025-05)
URL: https://github.com/google-research-datasets/QuoteSum
License: CC BY-SA 4.0

— Verifiability-Granular (Phukan et al., [2024) Version: GitHub release (ac-
cessed 2025-05) URL: https://github.com/Anirudh-Phukan/
verifiability—-granular License: CC BY-SA 4.0

Environment. Experiments were conducted using PyTorch 2.1, CUDA 12.1 on
A100 80GB, with code and instructions available at|[https://anonymous.4open.
science/r/RCStat-289B/README .md] for reproducibility.
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A  FORMALISM OF RELATIVE CONTEXTUALIZATION

A.1 CONDITIONAL CONTEXTUALIZATION

The RV captures the notion of contextualization between the prompt sequence and the generated
sequence at a head-level. The same for a given sequence s can be formalized as a conditional RV
X s, whose Cumulative Distribution Function (CDF) does not include the outermost summation of
The following definition further qualifies CC to a sub-sequence level.

Definition A.1 (Conditional Cross-Contextualization). Assuming a sequence s = p @ g with prompt
tokens p and generated tokens g is given, and two subsets p; C p and ¢’ C g, whose complementary
tokens p\p; and g\ ¢’ are given, we define the conditional CC random variable X, (p1, g’) as

1(fs(i,j) <=
FXs(pl,g’)(Xs(plvg/) < 'T) = FX(X <z | S, p\pla g\g Z Z | || /l ) (9)
tieprt;eg’ pillg

The conditional CC (9) represents the influence of prompt tokens in p; for generating tokens in g’.
Note, if p1 = {t;} and ¢’ = {t;} are singleton sets, then the conditional CC X(p1, ¢’) is simply
a degenerate random variable at z = f,(i,j) = (g;, k;). Similarly, if p; = p and ¢’ = {¢;}, the
conditional CC corresponds to the values in quK , where K € R¥*Il is the matrix of key vectors of
prompt tokens. Trivially, X, (p, g) = X|s.

We define conditional SC similar to conditional CC in Theorem [A 1]

Definition A.2 (Conditional Self-Contextualization). Assuming a sequence s = p & ¢ is given, and
two subsets of the generated tokens g1,g9" C g, whose complementary tokens g\ g; and g\ g’ are
given, we define the conditional SC random variable Y;(g1,9’) as

Z 1(i <j A fs(i, )

Fy.(g9)Ysl91,9) <v) = Fy (Y <y[5,9\91.9\9") > 1(i
ti€g1,t; €9’ t;€g1,t;€9’

<)
<5 (10)

The conditional SC (I0) represents the influences of tokens in g; for generating the tokens in ¢’ that
appear after g. Trivially, Y;(g,9) = Ys.

A.2 THEORETICAL RESULTS

Theorem [3.4] (Area Under CDFs). The expected relative contextualization Z is upper bounded by
the overlap area A between, a) the area under the marginal CDF Fy of self-contextualization Y, and
b) the area under the marginal survival function Sx of cross-contextualization X :

(oo}

E[Zs(plagl)] < As(plvgl> = / min (FYS(gl,g)(t)a SXS(pl,g) (t)) dt7 (1 1)

— 00

where Sx (t) = 1 — Fx(t), and lower bounded by the area a, under Fy but over Fx:

as(plvgl) = / maX<FYS(gl,g)(t) - FX (p1,9)> )dt < E[ (plagl)]- (12)

Proof. Following (Vallender, |1974), k = E[max(X — Y, 0)] can be written as

n:/oo P(X >tandY < t)dt (13)
= /Oo (P(Y <t)— P(X <tandY <t))dt. (14)

Applying Sklar’s theorem (Durante & Sempil, |2010), the joint CDF P(X < tand Y < t) can be
written as a copula C' distribution of marginal CDF values:

-~ (B (t) - C(Fx (1), Fy (1)) dt. (15)

— 00
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Let u= Fx (t) and v= Fy (t). Applying Fréchet-Hoeffding bound (Durante & Sempi, 2010),

max(u+v—1,0) < C(u,v) < min(u,v) (16)

= v — min(u,v) < v —C(u,v) <v—max(u+v—1,0) (17)
=v—(min(u—v,0)+v) <v —C(u,v) <v—(maz(u—1, —v)+v) (18)

= max(v — u,0) <v—C(u,v) <min(l — u,v). (19)

We complete the proof by integrating all sides of (T9) w.r.t. ¢. O

Note, since our CDFs are for discrete random variable, Iy and Fy are not continuous. Therefore,
Sklar’s theorem doesn’t guarantee a unique coppula C' for the P(X < ¢t and Y < t). Moreover, since
joint distribution will also be discrete, it will not be invertible. Therefore, we cannot guarantee that
the upper bound in Fréchet—-Hoeffding bound to be tight.

Corollary A.3. For any small 6 > 0, the relative contextualization is upper bounded as

As(pl,gl) (20)

Z <
s(p1,91) = 5

with probability at least 1 — 0.

Proof. Let Z := Z(p1,g1) and A := A(p1, g1). From Theorem [3.4|we know that E[Z] < A.
Now, by Markov’s inequality, for any § > 0, we have:

A\ _E[z] _ A
Pr(ZZ(S)SA/aSA/(;—(S.

Therefore, with probability at least 1 — J, we have:

A
7z < —.
<3
Hence,
As(p1,
Zs(p1,91) < w
with probability at least 1 — §, as claimed. O
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B ANALYSIS OF RC SCORES OF ATTENTION HEADS

B.1

TWO CONTRASTING EXAMPLES

In the coastal village of Maravilla, a unique tradition called the Harvest of Echoes
takes place every October. The event, though relatively unknown outside the
region, holds deep cultural meaning for the villagers. The tradition begins with a
sunrise walk along the cliffs, where villagers carry woven bells filled with dried
lavender. As they walk, they release the scent and sound into the wind, believing
it will carry memories of their ancestors across the sea. Later in the day, children
gather at the central square to paint river stones with symbols from their family
histories. These stones are later placed around the village well, meant to "anchor
personal stories to the land." In the evening, the village elders tell oral histories by
the fire, including tales of migration, war, lost siblings, and recovered friendships.
These stories are not written down but are expected to be retold from memory by
the youth in coming years, emphasizing the importance of intergenerational
memory. Visitors are welcomed to observe, but only those born in Maravilla may
participate fully. The community believes that participation requires a personal
connection to the land, the well, and the stories passed down.

QWhat symbolic meanings are attached to the different parts of the Harvest of
Echoes tradition?

G: Following are the symbolic meanings:
« Sunrise walk with bells: Sends ancestral memories into the sea.
* Painting stones: Anchors personal stories to shared land.

« Oral histories: Preserves intergenerational memory through spoken tradition.

Figure 9: Example 1: Relevant context

In the modern software development landscape, programming languages serve as essential tools that enable developers to create everything
from simple scripts to complex systems and applications. Over the years, several programming languages have gained significant popularity
due to their versatility, ease of use, performance, and applicability across different domains. Understanding the characteristics and use cases of
these languages provides a strong foundation for anyone entering the field of computer science or software engineering.

Below is a detailed overview of some of the most popular and widely-used programming languages in the industry today:

Python: Python is a high-level, interpreted programming language renowned for its simplicity and readability, which makes it particularly
appealing to beginners. Its clear and concise syntax mimics natural language, allowing developers to write logical code with fewer lines.
Python supports multiple programming paradigms, including procedural, object-oriented, and functional programming. One of its key
strengths lies in its vast ecosystem of libraries and frameworks, which extend its functionality into areas such as web development (e.g,
Django, Flask), data analysis (e.g, Pandas, NumPy), machine learning and artificial intelligence (e.g, TensorFlow, PyTorch), and automation.
Its platform independence and active community support have contributed to its rapid rise in popularity, making it one of the most in-
demand languages across both academia and industry.

JavaScript: JavaScript is a dynamic, high-level scripting language primarily used for client-side web development. Originally developed to
enhance interactivity in web browsers, JavaScript has evolved into a powerful and versatile language capable of running on both the client
and server sides. Through modern frameworks and libraries such as React, Angular, and Vuejs, JavaScript enables developers to build rich,
responsive user interfaces. On the backend, JavaScript is widely used with environments like Node js, which allow it to be used for server-side
programming. The language supports event-driven programming and asynchronous processing, making it ideal for developing web
applications that require real-time interaction, such as chat applications and collaborative tools. Its ubiquity across the web and ease of
integration with HTML and CSS make JavaScript an indispensable tool in the modern web development stack.

Java: Java is a statically-typed, object-oriented programming language that is known for its portability, stability, and scalability. It follows the
principle of "write once, run anywhere," meaning compiled Java code can run on any platform that supports the Java Virtual Machine (JVM).
Java is a go-to language for building enterprise-level applications, including financial systems, enterprise resource planning (ERP) software,
and large-scale web services. Additionally, Java is the primary language used for developing Android applications, making it a cornerstone in
the mobile app development ecosystem. Its strong memory management, robust security features, and extensive standard libraries make
Java suitable for high-performance applications and distributed systems. Java's long-standing presence in academia and the corporate world
continues to ensure its relevance in modern software development.

C++: C++ is a powerful, high-performance programming language that extends the C programming language with object-oriented features. It
is widely regarded for its fine-grained control over system resources and hardware, which makes it ideal for developing performance-critical
applications. C++ is commonly used in system/software development, including operating systems, embedded systems, and real-time
systems. It is also prevalent in the game development industry, where low-level memory manipulation and high-speed performance are
crucial. Furthermore, C++ is popular in competitive programming and algorithmic challenges due to its speed and flexibility. The language
supports both procedural and object-oriented programming paradigms and includes features such as classes, templates, exception handling,
and the Standard Template Library (STL), which provides useful data structures and algorithms. While it has a steeper learning curve than
some other languages, C++ remains a fundamental language for understanding core computer science concepts and software design.

In conclusion, these languages—Python, JavaScript, Java, and C++—each offer unique strengths and are suited to different domains and
project requirements. Their widespread use and strong community support make them essential tools in the toolkit of any developer.

Q: How to terraform Mars?

G: | think there may be a bit of a problem here! Terraforming Mars is a hypothetical process of making the planet habitable for humans and
other Earth-like species. While it's an intriguing concept, it's still largely in the realm of science fiction... for now. Currently, there is no known
method or technology that can terraform Mars, and it's unlikely that we'll see significant progress in this area soon. The challenges involved
are enormous, including:

1. Distance and communication: Mars is about 140 million miles away from Earth, making it difficult to send resources and personnel.
2. Harsh environment: Mars has a thin atmosphere, extreme temperatures, and toxic chemicals that make it inhospitable to human life.
3. Radiation: Mars lacks a strong magnetic field, which means that radiation from the sun and deep space can be harmful to humans.
4. Gravity: Mars' gravity is only about one-third of Earth's, which can cause a range of health problems for humans.

While there are some concepts and proposals for terraforming Mars, they are still largely theoretical and require significant scientific and
technological advancements before they can be considered feasible.

Figure 10: Example 2: Irrelevant context
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Figure 11: All plots are generated using the mentioned datasets with LLaMA-3B model: 28 layers,
24 heads in each layer. All plots show the RC score of the heads (upper bound of expected RC).

I

Min-Max

5th — 95th
Bl 25th - 75th
—— Median

w

IS

Min-Max

5th — 95th
Bl 25th - 75th
—— Median

IS

Min-Max

5th — 95th
B 25th —75th
—— Median

Overlap Area
AN
Overlap Area
-~ N
Overlap Area
~ N

Loy

?22,41)(12,12)(3,14) (15,7)
(Layer, Head) Index

(7,1) (18,32)(20,8)(17,28)

0
(7,1) (2,33)(20,31)(7,33)
(Layer, Head) Index

(Layer, Head) Index

(a) QMSum dataset (b) 2WikiMultihopQA dataset (c) SQuAD dataset

Figure 12: All plots are generated using the mentioned datasets with LLaMA-8B model: 32 layers,
32 heads in each layer. All plots show the RC score of the heads (upper bound of expected RC).

6 8 7

© 5 Min-Max o 7 Min-Max c 6 Min-Max
S 5th — 95th o 6 5th — 95th O 5 5th — 95th
< Bl 25th - 75th < 5 B 25th - 75th < 4 BN 25th - 75th
< 3 —— Median < g —— Median 23 —— Median
5 1 % T ?
> 1 > f 21
O o (S O 9

-1 -1 -1

(12,2)16,35)3,33)(10,0)

(12,2(11,37020,24)0,32)
(Layer, Head) Index

(15,9)(15,4(14,38)16,26)
(Layer, Head) Index

(Layer, Head) Index

(a) QMSum dataset (b) 2WikiMultihopQA dataset (c) SQuAD dataset

Figure 13: All plots are generated using the mentioned datasets with Qwen3-8B model: 36 layers,
32 heads in each layer. All plots show the RC score of the heads (upper bound of expected RC).

B.2 SENSITIVITY OF RCSTAT TO TASK COMPLEXITY

To better understand the behavior of RCStat across tasks of varying complexity, we compare the RC
scores of the heads in LLaMA-3B model in Fig.[TT)on single-hop question answering (SQuAD v2),
multi-hop question answering (2WikiMultiHopQA), and multi-sentence summarization (QMSum).
We apply the same 7-threshold analysis (7 = 1.5) to quantify the number of attention heads with RC
> T.

Single-hop QA (SQuAD v2): The median number of heads > 7 is 7. For example, in the question
“Murders were the base for which story that Capote wrote?”, the answer resides in a single span.
Only a small number of heads require high RC, reflecting localized retrieval.

Multi-hop QA (2WikiMultiHopQA): The median rises to 15, approximately 2 x that of single-hop
QA. For instance, in “Where was the place of death of the director of the film Happy Hobos?”, the
model must first identify the director’s name and then locate their place of death—two distinct spans
that must be aggregated. This leads to a greater number of heads with high RC.

Summarization (QMSum): The median further increases to 62, as summarization requires integrat-
ing information across the entire document. A large number of heads exhibit high RC, consistent

with the need for broad contextualization.
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This progression (7 — 15 — 62) highlights that RCStat naturally scales with the breadth of contextual-
ization, ranging from localized lookup (few heads in single-hop), to multi-span aggregation (moderate
number of heads in multi-hop), to full-document comprehension (many heads in summarisation).

Importantly, this also demonstrates how RCStat does not require predefining which or how many
heads are relevant. Instead, it adapts automatically to the input task, calibrating head selection based
on contextual requirements. While RC does not directly measure logical reasoning, it provides a
faithful proxy for quantifying the extent of contextual integration needed across tasks of increasing
complexity.

B.2.1 PERSISTENCE OF TOP RC-INFORMATIVE HEADS ACROSS MODELS

Fig.[12]Fig. [I3|show similar power law pattern of RC scores for LLaMA-8B and Qwen-8B models
across all the datasets, indicating that this a generalizable phenomenon and artifact of model pre-
training.

B.3 RELATIVE CONTEXTUALIZATION DISTRIBUTION: HEAD-WISE ANALYSIS

We show the per-head distribution of relative contextualization, in terms of the upper bound overlap
area, in Figures 20} 21] and 22]for QMSum, Squadv2, and 2WikiMultiHop datasets, respectively.
The percentile values of these distributions are shown in Figures 23] 24] and [23]respectively. These
figures provide empirical evidence of our statement in the conclusion section: “the most influential
contextualization heads consistently reside in the model’s middle layers, corroborating prior findings.’
This can also be observed in Figures 4c and 4d in the main paper, where the high-scoring heads
correspond to the middle layers: layer indices are shown in the x-axis labels.

9

C EXPERIMENTS FOR KV COMPRESSION

C.1 EVALUATION UNDER VARIED DECODING CONDITIONS

Robustness to different decoding strategies (e.g., greedy decoding, top-k sampling with temperature,
or beam search) is an important consideration for evaluating KV-compression. Conventional textual
metrics such as BLEU or ROUGE can be sensitive to these decoding variations.

To address this, our primary metric is VER (Value Error Rate), which directly compares the final-
layer hidden states of the response/generated tokens when they are obtained with and without KV
eviction. It does not perform auto-regressive decoding; instead, it executes a multi-token forward
pass of the ground-truth response tokens, with the KV caches of the prompt tokens evicted. Here,
the error cascades across the layers during the forward pass, and the final layer hidden states are
compared against the final layer hidden states when there is no KV eviction. This approach decouples
compression quality from decoding artifacts, ensuring more reliable comparisons across decoding
settings. To capture the error cascading across the auto-regressive decoding, we resort to conventional
textual metrics, such as ROUGE-1 and ROUGE-L, using the simple greedy decoding strategy.

Note: For the attribution usecase in decoding variations are not relevant. Attribution is
performed post-generation on the fixed prompt tokens and response tokens as provided by different
benchmark datasets.

C.2 KV COMPRESSION RESULTS ON LLAMA MODELS

This appendix presents all evaluation plots across datasets (QMSum, 2WikiMultiHop, SQuAD) and
model sizes (3B, 8B). Each plot compares performance metrics—VER, ROUGE-1 F1, and ROUGE-L
F1- across different configurations. A shared legend is included for clarity, and plots are grouped by
metric and model size for visual consistency.
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Figure 14: VER scores for 3B model on QMSum, 2WikiMultiHop, and SQuAD datasets.
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@~ KNorm

o
9

o
o

Rougel F1

°
'S

I
IS

o

0~ SnapKV

04 05 06 07 08
Compression Ratio

=&~ Streaming A~ TOVA == Ours(w=16) == Ours(w=8)
1.00 1.00
— —
- \\ o075 I - .
— E o - .
[J] 8 8 { 2 ° > 0.50 o o
2 0.50 : 2 3 |
2 i goz25
— $
0.25 — 0.00 ®
0.4 0.5 0.6 0.7 0.8 0.4 0.6 0.8

Compression Ratio

Compression Ratio

Figure 16: ROUGE-1 F1 scores for 3B model on QMSum, 2WikiMultiHop, and SQuAD datasets.

@~ KNorm

o o
o 9

RougelL F1
o
Sy

0~ SnapKV

04 05 06 07 08
Compression Ratio

=&~ Streaming A~ TOVA == Ours(w=16)  =s= Ours(w=8)
1.00 1.00
— —
- ’\“-\\ I 0.75 1 i L
- d a “ |
[9)
8 8 2 'S ° 0.50
20.50 X 3 + g —
& 1 025 \‘\E\r\’
$
025 0.00 -
0.4 0.5 0.6 0.7 0.8 0.4 0.6 0.8

Compression Ratio

Compression Ratio

Figure 17: ROUGE-L F1 scores for 3B model on QMSum, 2WikiMultiHop, and SQuAD datasets.
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Figure 19: ROUGE-L F1 scores for 8B model on QMSum, 2WikiMultiHop, and SQuAD datasets.

Table 2: Value Error Rate (VER) on the QMSum dataset across different compression ratios
(50%, 60%, 70%) for LLaMA-3.2-3B and LLaMA-3.1-8B Instruct models. RCStat (IOT) assumes
Independent Output Tokens, while RCStat (Non-IOT) does not assume any independence. Here,
lower is better.

Model Method 50% 60% 70%
TOVA 0.2408 0.3103 0.3905

3B RCSTAT (I0T) 0.1956 0.2648 0.3402
RCSTAT (Non-IID) 0.1571 0.2295 0.3066
TOVA 0.2177 0.2859 0.3639

8B RCSTAT (I0T) 0.1615 0.2290 0.3007
RCSTAT (Non-1ID) 0.1043 0.2034 0.2836

C.3 GENERALIZABILITY OF RCSTAT ACROSS MODEL FAMILIES

To demonstrate that RCStat is not specific to the LLaMA series, we repeated core evaluations on the
Qwen3-8B model. Results on the QMSum summarization task confirm that Relative Contextualiza-
tion properties hold across different model families. RCStat achieves up to 36 % lower VER than
TOVA and over 70% lower than KNorm/SnapKYV, validating strong generalization. Similar trends
are observed on SQuAD and 2Wiki, where RCStat consistently outperforms all baselines across
compression ratios, further establishing its robustness beyond a single dataset.

Note: RCStat uses an adaptive compression ratio, but interpolated VER scores at fixed CRs are
reported here for comparability with the Figures presented in the main paper.

C.4 KV-COMPRESSION EFFICIENCY ANALYSIS
In addition to accuracy under fixed compression ratios, efficiency is a critical factor in evaluating

KV-compression methods. Efficiency can be viewed along two complementary axes: memory
savings and computational latency.
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Table 3: Value Error Rate (VER) with Qwen3-8B for different KV compression methods across three
datasets. RCStat consistently shows strong performance across Compression Ratios (CR).

\ QMSum \ 2Wiki \ SQuAD v2
Method CR | 040 050 0.60 070 080 | 040 050 060 070 080 | 040 050 060 070 0.80
RCStat (w =16) | 012 016 022 031 047 | 0.13 018 024 032 046 | 0.09 013 018 026 039
RCStat(w =8) | 013 016 021 029 045 | 014 019 025 033 048 | 0.10 014 019 027 041
TOVA 019 021 025 033 049 | 020 024 029 037 053 | 016 0.9 023 030 046
KNorm 039 041 048 061 080 | 040 045 052 065 085 | 032 037 044 058 077
SnapKV 045 055 072 134 233 | 047 058 075 130 225 | 041 052 069 120 210
Streaming 026 031 037 043 054 | 025 030 036 044 056 | 021 027 034 041 05

Memory savings. KV memory footprint is often the dominant bottleneck in real-world deployments.
Compression that maintains answer quality while reducing memory is, therefore, a central challenge.
RCStat achieves significant improvements in this dimension, providing up to 32% higher memory
savings than the best-performing baseline at equivalent accuracy levels (Figure 6c¢).

Computational latency. Latency for compression-based decoding can be decomposed into:

1. Prefill: This step remains unchanged across all methods and dominates runtime ( 3 ms per
layer on Llama-3.2-3B for QMSum with ~1000 average prefill length).

2. Compression decision: RCStat requires 0.68 ms per layer, which is on par with SNAP (0.66
ms) and TOVA (0.65 ms), while remaining only modestly slower than KNorm (0.13 ms) and
STREAM (0.15 ms). Since this step can be pipelined with layer-wise prefill computation,
the effective overhead is negligible.

3. Decode: Latency improvements during decoding scale directly with compression ratio.
Because RCStat maintains higher answer quality even under more aggressive compression,
it enables proportionally greater decoding speed-ups.

Taken together, these results show that RCStat offers the strongest balance of memory efficiency
and computational speed, outperforming prior methods on memory savings while achieving com-
parable per-layer latency to state-of-the-art baselines. We will release a head-wise compression
implementation to support efficient decoding with RCStat in future work.

C.5 EFFECT OF WINDOW SI1ZE ON KV COMPRESSION

In KV cache compression, the “window” refers to the last few prompt tokens used as a proxy for
future tokens during inference. It is important to clarify that this is not a sliding window. We evaluated
window sizes w € {1,2,4,8,16,32,64} on the Llama3.1-8B model across different compression
ratios (CR), measuring Value Error Rate (VER) as in Fig. For each window size, the compression
factor in Equation (/) was varied from 0.02 to 2 to obtain different CRs.

We observe from the results in Table [4| that window sizes w = 8 and w = 16 consistently lie
on the Pareto frontier, achieving a balance between compression and accuracy. Smaller windows
(w = 1, 2) lead to higher VER despite higher compression, while larger windows (w > 32) yield
lower compression ratios. This suggests a “sweet spot” in window size that balances context coverage
and relevance.

Table 4: VER under varying window sizes (w) and compression ratios (CR) for KV cache compression.
Bold numbers indicate Pareto-optimal results.

‘ QMSum ‘ SQuAD v2 ‘ 2WikiMultiHopQA
w | 04 0.5 0.6 0.7 0.8 09 | 04 0.5 0.6 0.7 0.8 09 | 04 0.5 0.6 0.7 0.8 0.9
1 - - - - - 0.74 - 1.00 - - - - - 0.92
2 - - - - 0.60  0.63 - - - - 051  0.63 - - - - - 0.48
4 - - 0.27 0.36 042 052 - - 025 029 044  0.60 - - 0.14 019 024 036
8 012 015 020 028 040 051 013 019 028 042 059 | 005 007 o011 014 020 035

16 | 011 016 022 028 042 054 | 010 015 022 033 045 061 004 008 0.2 017 027 042
32 | 014 019 026 034 043 - 0.21 029 038 047 - - 0.13  0.18 024 031 0.38 -
64 | 013 0.19 026 0.35 - 022 031 0.40 - 0.14 019 025 032 -
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C.6 INDEPENDENCE ASSUMPTION OF GENERATED TOKENS

The result in Table 2] shows that the fidelity of value vectors is higher when RCSTAT is executed
without assuming independence for the random variables corresponding to (g, k) of generated tokens.
Nonetheless, even with the independence assumption, RCSTAT outperforms TOVA, which is the
best-performing method in our experiments for the main paper.

C.7 COMPLETE EXPERIMENTAL STATISTICS FOR KV-COMPRESSION RESULTS

Please find the results of Value Error Rate (VER) inside the VER folder. For the baseline meth-
ods, the mean and standard deviations of VER for different compression ratios are saved in csv
files with the naming format <dataset>_<model>_baseline_df.csv, where the dataset field
can be 2WikiMultiHop, QMSum, or SQuUAD, and the model field can be 3b or 8b. Similarly,
the mean and standard deviations of VER and the mean and standard deviations of the com-
pression ratios for different threshold multipliers are saved in csv files with the naming format
<dataset>_<model>_proposed._df.csv. Similarly, the results for Rougel and RougeL can
be found in the A11 _Rouges folder.

D QUALITATIVE COMPARISON OF ATTRIBUTION STRATEGIES

To better understand the effectiveness of various attention-based attribution strategies, we compare
three different approaches using attention maps from Layer 15 of our model: (1) the mean attention
across all heads, (2) the top-scoring head according to our attribution scoring technique, and (3) the
worst-scoring head by the same measure. All methods were evaluated on the same input setup: a
sales report document with the question “What were the product sales on November 21st?” and the
answer “The product sales on November 21st were $177.00.”

Figure 26| presents the attention heatmaps produced by each of the three strategies. The top-scoring
head (Head 30, Fig. yields a sharply focused attribution map, precisely attending to tokens
corresponding to the correct numerical value. In contrast, the mean attention across all heads
(Figure [26b) produces a reasonable heatmap but also attends to several unrelated tokens, leading
to less interpretable attributions. Finally, the worst-scoring head (Head 16, Fig. demonstrates
diffuse and uninformative attention, highlighting mostly irrelevant tokens.

These observations qualitatively validate our scoring technique for identifying high-quality attribution
heads and demonstrate that selectively using the best attention heads can significantly improve
interpretability.

E PRELIMINARIES

Let X = [z, %9,...,27 ] € RT*be the input sequence of length T', where each z; € R? is an input
token embedding and d is the model’s hidden dimension. For each attention head h € {1,..., H} in
layer £ € {1,..., L}, define
£,h Lh &h
QUM = xwiM KM = xwiEh | vEn = xwh, @

where Q") K(6h) (6h) ¢ RT*dn and d), = d/H.

Attention Logits. The pre-softmax attention logits are given by

Z(Lh) _ Q(Z,h)(K(E,h))T e RT*T, LEh) <q§é’h),k§£’h)>. (22)

i,
Attention Weights. The post-softmax weights are

Z(Z’h)) L _ eXP(Zz(,ejh)/vdh)
Vai )T S esp(e V)

AW = softmax ( (23)
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Attention Output. The output of the head is
Y(f,h) — A(€7h)V(Z’h) c RTth, (24)

and the full multi-head output is
MHA® (X) = [Y(“) ... |YED| W e RTxd, (25)
We refer to Z(“") and AP as the pre-softmax affinities and post-softmax attention weights,

respectively. While A(“*) normalizes attention for token interaction, it also suppresses informative

patterns in Z(“"). Our work leverages Z directly to extract statistical signals useful for contextual
analysis, KV compression, and attribution.

24



oo o o o o e o o o o o [
ODO0DODOO000DDDODODODDLOL
o T v o o o
DO0D00ORADDDODODDO0DO000000
DODO0DDDOO00DDD0DDOODDDN
DOD00DD0D0D0DDDODODO0D00
DODO0DDOO0DDO0DDODDDODODDO
DODO0D00DODDODDDODDOO0D0E
DOODDDO00ODDDDDDO0DOO0O000
o o o
Tifva{raivufrafivvrafr e oot et e fra e
poufr oo o e o T o
oo o o T e
e oo o o e o e o e
DO0DD0DDDO000DDDDDDODO000
OOD0000DDDODO00DDO00D0O00
T o o e
DOO0DD0O0DODDO00000DDOO0000
OOD0DODO0DODOOOO00DDODODO0D
T oo
oo oo o
e oo e o o Fr
OOO0DDO0ODO0DDDDDDO00000
OO000DDODO0000DDDODODMOON
oo o e e o
N O T W N O O O O O O N O

Figure 20: (see on screen) The distribution of RC upper bound (overlap area) for QmSum dataset.
The first (last) row corresponds to heads in the first (last) layer.
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Figure 21: (see on screen) The distribution of RC upper bound (overlap area) for Squad v2 dataset.
The first (last) row corresponds to heads in the first (last) layer.
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Figure 24: (see on screen) Percentiles of RC upper bound (overlap area) across the Squad dataset
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