1

1.1

Improving GP Hyperparameter Fitting for Bayesian
Optimization with a Goal-Oriented Criterion

Anonymous’

! Anonymous Institution

Abstract Hyperparameters of Gaussian process (GP) surrogate models are typically fit by maximizing
the log marginal likelihood (LML). In the specific context of Bayesian optimization, we might
desire an alternative criterion for hyperparameter optimization that preferentially yields a
better surrogate model fit in regions with high objective value, at the expense of a poor fit in
regions with low objective value. With this motivation in mind, we introduce the Probability
Density of Improvement (PDI) criterion function for GP surrogate hyperparameters that
naturally guides the surrogate model to attend to points with high objective function value.
We show that the proposed criterion function achieves a statistically significant improvement
over traditional Type-II MLE on Bayesian optimization tasks using a benchmark set of
synthetic functions.

Introduction

The LML of a Gaussian process yields a natural and principled approach to hyperparameter selection
via maximizing the LML — otherwise known as Type-II maximum likelihood estimation (MLE)[7].
However, conceptually, the LML treats all discrepancies between the data and the model with equal
weight. This may not always be a desirable property.

For example, in the course of Bayesian optimization[3] we might accept a surrogate model that
does a poor job explaining data with low objective values, provided that it more accurately models
regions with high objective values. If the objective function has qualitatively different behavior
(e.g., in terms of variability, smoothness, measurement noise, etc.), then emphasizing the ability of
our surrogate to fit these “important” regions at the expense of “unimportant” ones may increase
its utility for the narrow task of optimization. In the following sections, we develop intuition for
how our proposed criterion function induces this behavior and demonstrate its effectiveness at
Bayesian optimization on a range of synthetic benchmark tasks from [4].

Intuition

The PDI criterion function is inspired by the well-known Probability of Improvement acquisition
function[5; 3]. Suppose we have an existing dataset D = {(X, yi)}ile of observations of the
objective-function values y; at locations X;, with a candidate threshold yinresh = Ythresh ({yi}le)
that we take to be some function of the previously observed y-values, e.g., their maximum. The
choice of hyperparameters 0 induces a belief over the amount by which a new observation (X, y.)
will improve on the given threshold. Defining this improvement as v := max (0, Y — Ythresh), We
can write its density as a rectified normal distribution:

Pimp. (U} {(fi,yi)}le) : [0, 0) — R*

Ythresh — Hxx) 0= 0’

pimp. (0| {(GruYi) = {N(

. 2 .
(U 5 Hx, — Ythreshs O-x*) otherwise,

Submitted to AutoML 2025 Non-Archival Track © 2025 the authors, released under CC BY 4.0

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

https://creativecommons.org/licenses/by/4.0/

1.2

where 1., and oy, are the GP posterior predictive mean and standard deviation at x,, conditioned
on {(;, yi)}f:r

As a consequence of rectification, values below the threshold have the same density, leading to
an implicit censoring: We do not care how far below the threshold value an observation lies, only
that it lies below the threshold. In contrast, the density is non-constant above the threshold, and
observations that agree with our belief about the specific amount of improvement will lead to a
higher density.

Before articulating the details, we intuit that a surrogate model based on this density might
preferentially fit points above the threshold at the cost of remaining less faithful to points below
the threshold. This could lead to improved performance in the course of Bayesian optimization if
the objective exhibits qualitatively different behavior close to its optima. One might expect such
nonstationarity, for example, in a simulation of a physical phenomenon that is well behaved near
the “correct” parameters but more pathological elsewhere.

Details

If our GP hyperparameters are well-chosen, then we expect this belief over improvement to be
well-quantified. In other words, we seek to maximize the likelihood of some sequence of observed
improvements {v;};cr as a function of the hyperparameters. So far, we have not specified this
choice of sequence. A natural choice, in the context of Bayesian optimization, is the sequence in
which the points are actually acquired.

However, nothing in the motivation or definition of the PDI criterion demands that we consider
only one choice of ordering. We could imagine averaging the sequential PDI over all possible
permutations of an existing set of observations, demanding that our belief over improvement is
well-quantified no matter the order of observations. Of course, this would be computationally
infeasible, but the idea inspires an alternative “leave-one-out” (LOO) version of the PDI criterion:

PDoo ({(Fy)}) = | | pimp. (3 | (G u ¥ \ (G} 1)
k=1

where vy := max (0, Yx — Ythresh ({Yi}; \ {(Zx yx)})) is the observed improvement of the kth acqui-
sition, as conditioned on the complementary observations — all those except the kth. Experimentally,
we find that the sequential version of PDI is outperformed by PDI} o0, and so we focus on the latter
for the rest of this work.

There is one final detail to consider, which is the choice of threshold function yyesn (-). While
taking yinresh (1) = max(-) is appealing in its simplicity, we observe that in the case of the PDI; oo
this choice would generally result in only one term in the product impacting the likelihood — the
term k where yj attains the maximum max ({y;}_,). Empirically, this choice of threshold function
leads to an ill-behaved hyperparameter optimization landscape. Choosing yyesh to be some quantile
q (with g < 1) of the existing observations alleviates this issue, but reduces the desirable censoring
behavior of the criterion. We choose instead to compute PDI; oo by considering yinresh OVer a range
of quantiles, from g = 0.75 to q = 1.0, and average the resulting values. This produces a smoother
and more well-behaved optimization landscape.

Methods

We compare our proposed method (PDI;00) against standard Type-II MLE using the log marginal
likelihood (LML) across a range of synthetic benchmark tasks found in [4], with the only control
variable being the criterion for hyperparameter optimization. We provide further implementation
details in the appendix.

We conduct 30 independent runs of each Bayesian optimization task for each method in order
to obtain a statistical picture of performance. The random seed, and hence the initial points, are

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

74

75

76

77

78

79

identical for paired runs of PDI; oo and LML. We then compute the relative optimization gap — the
fraction of progress from the best initial evaluation to the true global maximum — as a function of
number of objective evaluations, allowing us to straightforwardly compare results across random
seeds and across tasks.

Results

We present our results in table 1. We consider the final gap at exhaustion of the objective function
evaluation budget. For all tasks in aggregate, and for each task individually, we report the mean
final gap (+ the associated standard error), and p-values of a relative t-test, paired by task and by
random seed.

In some cases, we observe that one method closes the gap significantly more quickly than
the other, but both converge eventually, leading to a negligibly small final gap. To account for
this, we define the “hit time” of a run as the number of iterations required to reach a gap value of
99% of the mean final gap of the method that performs best on that problem. If a run reaches the
function evaluation budget before this point, we right-censor the number of required iterations to
the function evaluation budget.

We report the mean hit time for both methods, and the p-value of a relative t-test on their
difference. For a uniform comparison, we report the mean hit time for all tasks in percentage
of objective function evaluation budget, averaged across tasks. In all other rows, the mean hit
time is in units of objective function evaluations. For convenience, we also report the relative

speedup between the mean hit time of LML and the mean hit time of PDI; oo as the fraction
A = mean hit time (LML)
~ mean hit time(PDI o0) *

Conclusions and Discussion

We observe that our proposed method (PDI;o0) statistically outperforms standard Type-II MLE
(LML) on our set of benchmark tasks. LML surpasses PDI; oo on 9 of 43 tasks in terms of final gap
achieved, and on only 5 of 43 tasks in terms of hit time. On the other hand, PDI; oo surpasses LML
on 17 of 43 tasks — as well as on all tasks in aggregate — by either metric. The difference in hit
times is not only statistically significant: in many cases, it represents a substantial reduction in the
number of objective function evaluations required for optimization.

With respect to wall-clock time, we note that our implementation of PDIj ¢ introduces addi-
tional computational overhead compared to LML (see figure 3). The implementation could likely be
further optimized to reduce this overhead. However, in real-world Bayesian optimization tasks, the
cost of evaluating the objective function typically outweighs the cost of fitting hyperparameters[3].
Therefore, we focus here on performance as a function of objective evaluations.

We note that PDI} oo tends to outperform LML more reliably and to a greater degree in higher-
dimensional problems (see figure 2). This may be due to the relative ease of lower-dimensional
tasks, which give “less room” for either method to outperform the other. Alternatively, it may
indicate that PDIj o0 is especially well suited to higher-dimensional problems, perhaps because
they are more likely to exhibit variation in structure near the optimum versus away from it.

In any case, these preliminary results suggest that further exploration may be fruitful. In
particular, the following lines of research interest us:

« Testing these alternative PDI criteria on real-world, non-synthetic objective functions.

« Identifying conditions under which PDI is likely to outperform LML, e.g., by quantifying the
heterogeneity of the objective function near versus far from the optimum.

« Considering generalizations of the idea to other active learning goals besides optimization, e.g.,
Bayesian quadrature: Can we develop an alternative hyperparameter criterion function that
outperforms LML in a quadrature setting?

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

m

112

113

114

115

116

17

118

119

120

121

122

123

124

125

Mean Final Gap Mean Hit Time

Task, Dimension PDI;oo0 LML P-value PDIjgo LML P-value A # Trials
All Tasks, — 0.85 0.79 0.000 52.3% 62.5% 0.000 119% 1259
Gramacy and Lee (2012), 1 0.81 0.95 0.979 22.9 29.3 0.018 128% 30
Beale, 2 0.75 0.90 0.998 46.4 39.3 0.834 85% 30
Bohachevsky, 2 1.00 1.00 0.058 13.6 16.3 0.197 120% 30
Branin, 2 0.94 1.00 0.982 40.2 24.3 0.998 61% 30
Bukin 6, 2 0.90 0.85 0.071 37.2 56.7 0.002 152% 30
De Jong 5, 2 0.82 0.85 0.738 42.9 45.3 0.378 106% 30
Drop-Wave, 2 0.70 0.57 0.050 54.1 63.8 0.098 118% 30
Eggholder, 2 0.66 0.83 1.000 56.5 47.3 0.957 84% 30
Goldstein-Price, 2 0.90 0.91 0.568 33.8 28.8 0.760 85% 30
Holder Table, 2 0.89 0.96 0.998 52.9 44.5 0.912 84% 30
Kim1, 2 0.87 0.88 0.567 49.1 52.3 0.327 107% 30
Kim2, 2 0.82 0.84 0.816 52.9 48.1 0.794 91% 30
Kim3, 2 0.85 0.87 0.731 40.6 45.3 0.254 112% 30
Michalewicz, 2 0.96 0.82 0.007 27.7 53.9 0.000 195% 30
Rosenbrock, 2 0.91 0.98 0.977 44.6 31.7 0.996 71% 30
Shubert, 2 0.40 0.26 0.016 56.3 70.3 0.028 125% 30
Six-Hump Camel, 2 0.85 0.98 0.999 65.7 44.4 1.000 68% 30
Three-Hump Camel, 2 0.85 0.92 0.855 39.1 34.7 0.738 89% 30
Hartmann 3D, 3 0.98 0.99 0.742 33.5 25.9 0.907 77% 30
Ackley, 4 0.80 0.50 0.000 104.6 141.5 0.000 135% 30
Colville, 4 0.96 0.98 0.966 75.2 66.5 0.751 88% 30
Cosines, 4 0.90 0.89 0.298 85.2 89.1 0.387 105% 30
Griewank, 4 0.98 0.98 0.609 62.7 71.5 0.166 114% 30
Levy, 4 0.94 0.96 0.831 96.1 82.0 0.893 85% 30
Rastrigin, 4 0.81 0.54 0.000 105.4 148.8 0.001 141% 30
Rosenbrock, 4 0.93 0.98 0.999 115.3 82.5 0.986 72% 30
Zakharov, 4 0.79 0.71 0.032 68.7 85.6 0.120 125% 30
Hartmann 6D, 6 0.97 0.76 0.000 131.7 215.6 0.000 164% 30
Ackley, 8 0.62 0.16 0.000 246.3 321.0 0.000 130% 30
Cosines, 8 0.88 0.88 0.945 145.6 130.8 0.742 90% 29
Griewank, 8 0.98 0.88 0.000 122.2 288.8 0.000 236% 30
Levy, 8 0.94 0.83 0.001 180.5 263.0 0.002 146% 30
Rastrigin, 8 0.66 0.30 0.000 221.5 312.6 0.000 141% 30
Rosenbrock, 8 0.95 0.78 0.000 114.0 278.7 0.000 244% 30
Zakharov, 8 0.89 0.87 0.117 63.6 62.2 0.737 98% 30
Ackley, 16 0.48 0.11 0.000 460.2 641.0 0.000 139% 30
Cosines, 16 0.88 0.88 0.703 179.0 205.8 0.230 115% 30
Griewank, 16 0.93 0.82 0.001 284.1 528.1 0.000 186% 30
Levy, 16 0.91 0.80 0.000 3471 578.1 0.000 167% 30
Rastrigin, 16 0.57 0.27 0.000 459.7 641.0 0.000 139% 30
Rosenbrock, 16 0.94 0.75 0.000 341.0 609.4 0.000 179% 30
Zakharov, 16 1.00 1.00 0.755 34.9 56.1 0.281 161% 30

Table 1: Benchmark statistics for problems in [4]. Highlighted cells indicate that one method outper-
forms the alternative to a statistically significant degree: p <= 0.05 where PDI} oo outperforms
LML, highlighted in bold blue, or p >= 0.95 where LML outperforms PDIj o0, highlighted in

bold red.

References

[1]

[7]

(8]

BALANDAT, M., KARRER, B., JIANG, D., DAULTON, S., LETHAM, B., WiLsON, A. G., AND BAKsHY, E.
BoTorch: A framework for efficient monte-carlo bayesian optimization. In Advances in Neural
Information Processing Systems (2020), H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, Eds., vol. 33, Curran Associates, Inc., pp. 21524-21538.

GARDNER, J., PLEISS, G., WEINBERGER, K. Q., BINDEL, D., AND WiLson, A. G. GPyTorch:
Blackbox matrix-matrix gaussian process inference with GPU acceleration. In Advances in
Neural Information Processing Systems (2018), S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31, Curran Associates, Inc.

GARNETT, R. Bayesian Optimization, 1 ed. Cambridge University Press, Jan. 2023.

K1y, J. BayesO Benchmarks: Benchmark Functions for Bayesian Optimization. Zenodo, Mar.
2024.

KusHNER, H. J. A New Method of Locating the Maximum Point of an Arbitrary Multipeak
Curve in the Presence of Noise. Journal of Basic Engineering 86, 1 (Mar. 1964), 97-106.

Mockus, J. On bayesian methods for seeking the extremum. In Optimization Techniques IFIP
Technical Conference Novosibirsk, July 1-7, 1974, G. Goos, J. Hartmanis, P. Brinch Hansen,
D. Gries, C. Moler, G. Seegmiiller, N. Wirth, and G. I. Marchuk, Eds., vol. 27. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1975, pp. 400-404.

RasmusskN, C. E., aAND WiLLiams, C. K. I. Gaussian Processes for Machine Learning, 3. print ed.
Adaptive Computation and Machine Learning. MIT Press, Cambridge, Mass., 2008.

Sosov’, I. On the distribution of points in a cube and the approximate evaluation of integrals.
USSR Computational Mathematics and Mathematical Physics 7, 4 (Jan. 1967), 86-112.

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

4

142

143

144

145

146

147

A Appendix

A.1 Implementation Details

We conduct our experiments using the BoTorch framework for Bayesian optimization[1], with
expected improvement[6; 3] as the choice of acquisition function. We also employ GPyTorch[2] to
implement our alternative hyperparameter criterion.

We use the BayesO Benchmarks[4] package of synthetic optimization to provide our objective
functions. We report statistics for all functions in the benchmark package except Easom, which
was excluded due to incorrect recording of objective function values during optimization, and
Sphere, which was excluded because the objective function (f(x) := x?) is too simple to be of
use for benchmarking purposes. For functions that have a variable input dimension (Cosines,
Griewank, Levy, Rastrigin, Rosenbrock, and Zakharov), we create task instances with 4, 8, and 16
input dimensions. Additionally, we create a 2-dimensional task for the classic Rosenbrock function.

We budget 40 - d objective function evaluations for each task, where d is the dimension of the
task. The initial design for each task consists of five points sampled from a Sobol sequence[8]. After
these initial five acquisitions, and after every following acquisition, we fit the hyperparameters
by maximizing either PDI} oo or LML. In order to efficiently evaluate PDI} o0, we make use of the
fact that the complete set of leave-one-out predictive distributions can be computed at once (see
equation 5.12 in [7]).

For both criterion functions, we conduct hyperparameter optimization using L-BFGS with
multiple starts (the current values plus four random samples from the hyperparameter priors) in
order to avoid bad local minima. We further limit L-BFGS to 50 steps per optimization and a relative
objective function tolerance of le — 3, as optimizing to high tolerance is unnecessary and becomes
expensive with large numbers of observations.

Rarely, the resulting hyperparameters yield a numerically non-positive definite covariance
matrix, even after adding “jitter”[7, p. 47] — in such cases, we continue with hyperparameter
optimization for up to 200 more steps. In case this fails, we restart optimization from a new set of
hyperparameters drawn from their corresponding priors.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

A.2 Additional Figures

Cartoon of Belief Over Improvement

Ythresh |

Improvement

Candlidate Probability Density/Mass

Figure 1: A one-dimensional cartoon showing a GP and its induced belief over improvement at a
candidate location. Observations made at this location that result in no improvement are
censored by the discrete component (in red) of the mixed discrete/continuous density.

Mean Hit Time Speedup of LOO Over LML (A), by Task Dimension
(Higher is Better)

2.5 4

2.0
a
~ 1.5 4
o
3
o
§ I ...
8 R :
'E 1.0 Feeeeeboanans ! ' ? ...
[I U o
=
T | 1
c 1]
3 15
e e e All Tasks

251 ® Grouped by Task Dimension

. ¢ Individual Tasks

ﬁ 1 T T T T T T T

1 2 3 4 6 8 16

Task Dimension

Figure 2: The speedup, A, in mean hit time between LML and PDIj o0, plotted for individual tasks
(small blue stems) and averaged across tasks with the same dimensionality (large blue stems).
PDI; 00 tends to outperform LML more reliably on tasks with dimensionality > 6.

175

Relative Computational Overhead of LOO Over LML, by Task Dimension

(Lower is Better)

10.0 A
9.0
8.0
7.0 1

6.0
5.0 1

4.0 A

3.0 A

2.0 1

Relative Computational Overhead

®

All Tasks
Grouped by Task Dimension
Individual Tasks

1.0

Task Dimension

16

Figure 3: The relative computational overhead of PDILOO compared to LML, plotted for individual
tasks (small blue stems) and averaged across tasks with the same dimensionality (large blue
stems). PDI; oo is on average about 6.6 times more costly than LML, in terms of computational
overhead, i.e., ignoring the cost of objective function evaluations.

	Introduction
	Intuition
	Details

	Methods
	Results
	Conclusions and Discussion
	Appendix
	Implementation Details
	Additional Figures

