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Abstract Hyperparameters of Gaussian process (GP) surrogate models are typically fit by maximizing 5

the log marginal likelihood (LML). In the specific context of Bayesian optimization, we might 6

desire an alternative criterion for hyperparameter optimization that preferentially yields a 7

better surrogate model fit in regions with high objective value, at the expense of a poor fit in 8

regions with low objective value. With this motivation in mind, we introduce the Probability 9

Density of Improvement (PDI) criterion function for GP surrogate hyperparameters that 10

naturally guides the surrogate model to attend to points with high objective function value. 11

We show that the proposed criterion function achieves a statistically significant improvement 12

over traditional Type-II MLE on Bayesian optimization tasks using a benchmark set of 13

synthetic functions. 14

1 Introduction 15

The LML of a Gaussian process yields a natural and principled approach to hyperparameter selection 16

via maximizing the LML — otherwise known as Type-II maximum likelihood estimation (MLE)[7]. 17

However, conceptually, the LML treats all discrepancies between the data and the model with equal 18

weight. This may not always be a desirable property. 19

For example, in the course of Bayesian optimization[3] we might accept a surrogate model that 20

does a poor job explaining data with low objective values, provided that it more accurately models 21

regions with high objective values. If the objective function has qualitatively different behavior 22

(e.g., in terms of variability, smoothness, measurement noise, etc.), then emphasizing the ability of 23

our surrogate to fit these “important” regions at the expense of “unimportant” ones may increase 24

its utility for the narrow task of optimization. In the following sections, we develop intuition for 25

how our proposed criterion function induces this behavior and demonstrate its effectiveness at 26

Bayesian optimization on a range of synthetic benchmark tasks from [4]. 27

1.1 Intuition 28

The PDI criterion function is inspired by the well-known Probability of Improvement acquisition 29

function[5; 3]. Suppose we have an existing dataset D = {( ®𝑥𝑖 , 𝑦𝑖)}𝑘𝑖=1 of observations of the 30

objective-function values 𝑦𝑖 at locations ®𝑥𝑖 , with a candidate threshold 𝑦thresh = 𝑦thresh
(
{𝑦𝑖}𝑘𝑖=1

)
31

that we take to be some function of the previously observed 𝑦-values, e.g., their maximum. The 32

choice of hyperparameters
®𝜃 induces a belief over the amount by which a new observation ( ®𝑥∗, 𝑦∗) 33

will improve on the given threshold. Defining this improvement as 𝑣 := max (0, 𝑦∗ − 𝑦thresh), we 34

can write its density as a rectified normal distribution: 35

𝑝imp.

(
𝑣

��� {( ®𝑥𝑖 , 𝑦𝑖)}𝑘𝑖=1) : [0,∞) → R+

𝑝imp.

(
𝑣

��� {( ®𝑥𝑖 , 𝑦𝑖)}𝑘𝑖=1) = {
Φ
(
𝑦
thresh

−𝜇𝑥∗
𝜎𝑥∗

)
𝑣 = 0,

N
(
𝑣 ; 𝜇𝑥∗ − 𝑦thresh, 𝜎

2

𝑥∗

)
otherwise,
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where 𝜇𝑥∗ and 𝜎𝑥∗ are the GP posterior predictive mean and standard deviation at 𝑥∗, conditioned 36

on {( ®𝑥𝑖 , 𝑦𝑖)}𝑘𝑖=1. 37

As a consequence of rectification, values below the threshold have the same density, leading to 38

an implicit censoring: We do not care how far below the threshold value an observation lies, only 39

that it lies below the threshold. In contrast, the density is non-constant above the threshold, and 40

observations that agree with our belief about the specific amount of improvement will lead to a 41

higher density. 42

Before articulating the details, we intuit that a surrogate model based on this density might 43

preferentially fit points above the threshold at the cost of remaining less faithful to points below 44

the threshold. This could lead to improved performance in the course of Bayesian optimization if 45

the objective exhibits qualitatively different behavior close to its optima. One might expect such 46

nonstationarity, for example, in a simulation of a physical phenomenon that is well behaved near 47

the “correct” parameters but more pathological elsewhere. 48

1.2 Details 49

If our GP hyperparameters are well-chosen, then we expect this belief over improvement to be 50

well-quantified. In other words, we seek to maximize the likelihood of some sequence of observed 51

improvements {𝑣𝑖}𝑖∈𝐼 as a function of the hyperparameters. So far, we have not specified this 52

choice of sequence. A natural choice, in the context of Bayesian optimization, is the sequence in 53

which the points are actually acquired. 54

However, nothing in the motivation or definition of the PDI criterion demands that we consider 55

only one choice of ordering. We could imagine averaging the sequential PDI over all possible 56

permutations of an existing set of observations, demanding that our belief over improvement is 57

well-quantified no matter the order of observations. Of course, this would be computationally 58

infeasible, but the idea inspires an alternative “leave-one-out” (LOO) version of the PDI criterion: 59

PDILOO

(
{( ®𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1

)
:=

𝑛∏
𝑘=1

𝑝imp.

(
𝑣𝑘

��� {( ®𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 \ {(®𝑥𝑘 , 𝑦𝑘 )}) , (1)

where 𝑣𝑘 := max

(
0, 𝑦𝑘 − 𝑦thresh

(
{𝑦𝑖}𝑛𝑖=1 \ {(®𝑥𝑘 , 𝑦𝑘 )}

) )
is the observed improvement of the 𝑘th acqui- 60

sition, as conditioned on the complementary observations — all those except the 𝑘th. Experimentally, 61

we find that the sequential version of PDI is outperformed by PDILOO, and so we focus on the latter 62

for the rest of this work. 63

There is one final detail to consider, which is the choice of threshold function 𝑦thresh (·). While 64

taking 𝑦thresh(·) ≡ max(·) is appealing in its simplicity, we observe that in the case of the PDILOO 65

this choice would generally result in only one term in the product impacting the likelihood – the 66

term 𝑘 where 𝑦𝑘 attains the maximum max

(
{𝑦𝑖}𝑛𝑖=1

)
. Empirically, this choice of threshold function 67

leads to an ill-behaved hyperparameter optimization landscape. Choosing𝑦thresh to be some quantile 68

𝑞 (with 𝑞 < 1) of the existing observations alleviates this issue, but reduces the desirable censoring 69

behavior of the criterion. We choose instead to compute PDILOO by considering 𝑦thresh over a range 70

of quantiles, from 𝑞 = 0.75 to 𝑞 = 1.0, and average the resulting values. This produces a smoother 71

and more well-behaved optimization landscape. 72

2 Methods 73

We compare our proposed method (PDILOO) against standard Type-II MLE using the log marginal 74

likelihood (LML) across a range of synthetic benchmark tasks found in [4], with the only control 75

variable being the criterion for hyperparameter optimization. We provide further implementation 76

details in the appendix. 77

We conduct 30 independent runs of each Bayesian optimization task for each method in order 78

to obtain a statistical picture of performance. The random seed, and hence the initial points, are 79
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identical for paired runs of PDILOO and LML. We then compute the relative optimization gap — the 80

fraction of progress from the best initial evaluation to the true global maximum — as a function of 81

number of objective evaluations, allowing us to straightforwardly compare results across random 82

seeds and across tasks. 83

3 Results 84

We present our results in table 1. We consider the final gap at exhaustion of the objective function 85

evaluation budget. For all tasks in aggregate, and for each task individually, we report the mean 86

final gap (± the associated standard error), and p-values of a relative t-test, paired by task and by 87

random seed. 88

In some cases, we observe that one method closes the gap significantly more quickly than 89

the other, but both converge eventually, leading to a negligibly small final gap. To account for 90

this, we define the “hit time” of a run as the number of iterations required to reach a gap value of 91

99% of the mean final gap of the method that performs best on that problem. If a run reaches the 92

function evaluation budget before this point, we right-censor the number of required iterations to 93

the function evaluation budget. 94

We report the mean hit time for both methods, and the p-value of a relative t-test on their 95

difference. For a uniform comparison, we report the mean hit time for all tasks in percentage 96

of objective function evaluation budget, averaged across tasks. In all other rows, the mean hit 97

time is in units of objective function evaluations. For convenience, we also report the relative 98

speedup between the mean hit time of LML and the mean hit time of PDILOO as the fraction 99

Δ =
mean hit time(LML)

mean hit time(PDILOO ) . 100

4 Conclusions and Discussion 101

We observe that our proposed method (PDILOO) statistically outperforms standard Type-II MLE 102

(LML) on our set of benchmark tasks. LML surpasses PDILOO on 9 of 43 tasks in terms of final gap 103

achieved, and on only 5 of 43 tasks in terms of hit time. On the other hand, PDILOO surpasses LML 104

on 17 of 43 tasks — as well as on all tasks in aggregate — by either metric. The difference in hit 105

times is not only statistically significant: in many cases, it represents a substantial reduction in the 106

number of objective function evaluations required for optimization. 107

With respect to wall-clock time, we note that our implementation of PDILOO introduces addi- 108

tional computational overhead compared to LML (see figure 3). The implementation could likely be 109

further optimized to reduce this overhead. However, in real-world Bayesian optimization tasks, the 110

cost of evaluating the objective function typically outweighs the cost of fitting hyperparameters[3]. 111

Therefore, we focus here on performance as a function of objective evaluations. 112

We note that PDILOO tends to outperform LML more reliably and to a greater degree in higher- 113

dimensional problems (see figure 2). This may be due to the relative ease of lower-dimensional 114

tasks, which give “less room” for either method to outperform the other. Alternatively, it may 115

indicate that PDILOO is especially well suited to higher-dimensional problems, perhaps because 116

they are more likely to exhibit variation in structure near the optimum versus away from it. 117

In any case, these preliminary results suggest that further exploration may be fruitful. In 118

particular, the following lines of research interest us: 119

• Testing these alternative PDI criteria on real-world, non-synthetic objective functions. 120

• Identifying conditions under which PDI is likely to outperform LML, e.g., by quantifying the 121

heterogeneity of the objective function near versus far from the optimum. 122

• Considering generalizations of the idea to other active learning goals besides optimization, e.g., 123

Bayesian quadrature: Can we develop an alternative hyperparameter criterion function that 124

outperforms LML in a quadrature setting? 125
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Mean Final Gap Mean Hit Time

Task, Dimension PDILOO LML P-value PDILOO LML P-value Δ # Trials

All Tasks, — 0.85 0.79 0.000 52.3% 62.5% 0.000 119% 1259

Gramacy and Lee (2012), 1 0.81 0.95 0.979 22.9 29.3 0.018 128% 30

Beale, 2 0.75 0.90 0.998 46.4 39.3 0.834 85% 30

Bohachevsky, 2 1.00 1.00 0.058 13.6 16.3 0.197 120% 30

Branin, 2 0.94 1.00 0.982 40.2 24.3 0.998 61% 30

Bukin 6, 2 0.90 0.85 0.071 37.2 56.7 0.002 152% 30

De Jong 5, 2 0.82 0.85 0.738 42.9 45.3 0.378 106% 30

Drop-Wave, 2 0.70 0.57 0.050 54.1 63.8 0.098 118% 30

Eggholder, 2 0.66 0.83 1.000 56.5 47.3 0.957 84% 30

Goldstein-Price, 2 0.90 0.91 0.568 33.8 28.8 0.760 85% 30

Holder Table, 2 0.89 0.96 0.998 52.9 44.5 0.912 84% 30

Kim1, 2 0.87 0.88 0.567 49.1 52.3 0.327 107% 30

Kim2, 2 0.82 0.84 0.816 52.9 48.1 0.794 91% 30

Kim3, 2 0.85 0.87 0.731 40.6 45.3 0.254 112% 30

Michalewicz, 2 0.96 0.82 0.007 27.7 53.9 0.000 195% 30

Rosenbrock, 2 0.91 0.98 0.977 44.6 31.7 0.996 71% 30

Shubert, 2 0.40 0.26 0.016 56.3 70.3 0.028 125% 30

Six-Hump Camel, 2 0.85 0.98 0.999 65.7 44.4 1.000 68% 30

Three-Hump Camel, 2 0.85 0.92 0.855 39.1 34.7 0.738 89% 30

Hartmann 3D, 3 0.98 0.99 0.742 33.5 25.9 0.907 77% 30

Ackley, 4 0.80 0.50 0.000 104.6 141.5 0.000 135% 30

Colville, 4 0.96 0.98 0.966 75.2 66.5 0.751 88% 30

Cosines, 4 0.90 0.89 0.298 85.2 89.1 0.387 105% 30

Griewank, 4 0.98 0.98 0.609 62.7 71.5 0.166 114% 30

Levy, 4 0.94 0.96 0.831 96.1 82.0 0.893 85% 30

Rastrigin, 4 0.81 0.54 0.000 105.4 148.8 0.001 141% 30

Rosenbrock, 4 0.93 0.98 0.999 115.3 82.5 0.986 72% 30

Zakharov, 4 0.79 0.71 0.032 68.7 85.6 0.120 125% 30

Hartmann 6D, 6 0.97 0.76 0.000 131.7 215.6 0.000 164% 30

Ackley, 8 0.62 0.16 0.000 246.3 321.0 0.000 130% 30

Cosines, 8 0.88 0.88 0.945 145.6 130.8 0.742 90% 29

Griewank, 8 0.98 0.88 0.000 122.2 288.8 0.000 236% 30

Levy, 8 0.94 0.83 0.001 180.5 263.0 0.002 146% 30

Rastrigin, 8 0.66 0.30 0.000 221.5 312.6 0.000 141% 30

Rosenbrock, 8 0.95 0.78 0.000 114.0 278.7 0.000 244% 30

Zakharov, 8 0.89 0.87 0.117 63.6 62.2 0.737 98% 30

Ackley, 16 0.48 0.11 0.000 460.2 641.0 0.000 139% 30

Cosines, 16 0.88 0.88 0.703 179.0 205.8 0.230 115% 30

Griewank, 16 0.93 0.82 0.001 284.1 528.1 0.000 186% 30

Levy, 16 0.91 0.80 0.000 347.1 578.1 0.000 167% 30

Rastrigin, 16 0.57 0.27 0.000 459.7 641.0 0.000 139% 30

Rosenbrock, 16 0.94 0.75 0.000 341.0 609.4 0.000 179% 30

Zakharov, 16 1.00 1.00 0.755 34.9 56.1 0.281 161% 30

Table 1: Benchmark statistics for problems in [4]. Highlighted cells indicate that one method outper-

forms the alternative to a statistically significant degree: 𝑝 <= 0.05 where PDILOO outperforms

LML, highlighted in bold blue, or 𝑝 >= 0.95 where LML outperforms PDILOO, highlighted in

bold red.
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A Appendix 148

A.1 Implementation Details 149

We conduct our experiments using the BoTorch framework for Bayesian optimization[1], with 150

expected improvement[6; 3] as the choice of acquisition function. We also employ GPyTorch[2] to 151

implement our alternative hyperparameter criterion. 152

We use the BayesO Benchmarks[4] package of synthetic optimization to provide our objective 153

functions. We report statistics for all functions in the benchmark package except Easom, which 154

was excluded due to incorrect recording of objective function values during optimization, and 155

Sphere, which was excluded because the objective function (𝑓 (𝑥) := 𝑥2) is too simple to be of 156

use for benchmarking purposes. For functions that have a variable input dimension (Cosines, 157

Griewank, Levy, Rastrigin, Rosenbrock, and Zakharov), we create task instances with 4, 8, and 16 158

input dimensions. Additionally, we create a 2-dimensional task for the classic Rosenbrock function. 159

We budget 40 · 𝑑 objective function evaluations for each task, where 𝑑 is the dimension of the 160

task. The initial design for each task consists of five points sampled from a Sobol sequence[8]. After 161

these initial five acquisitions, and after every following acquisition, we fit the hyperparameters 162

by maximizing either PDILOO or LML. In order to efficiently evaluate PDILOO, we make use of the 163

fact that the complete set of leave-one-out predictive distributions can be computed at once (see 164

equation 5.12 in [7]). 165

For both criterion functions, we conduct hyperparameter optimization using L-BFGS with 166

multiple starts (the current values plus four random samples from the hyperparameter priors) in 167

order to avoid bad local minima. We further limit L-BFGS to 50 steps per optimization and a relative 168

objective function tolerance of 1𝑒 − 3, as optimizing to high tolerance is unnecessary and becomes 169

expensive with large numbers of observations. 170

Rarely, the resulting hyperparameters yield a numerically non-positive definite covariance 171

matrix, even after adding “jitter”[7, p. 47] — in such cases, we continue with hyperparameter 172

optimization for up to 200 more steps. In case this fails, we restart optimization from a new set of 173

hyperparameters drawn from their corresponding priors. 174
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A.2 Additional Figures 175

Figure 1: A one-dimensional cartoon showing a GP and its induced belief over improvement at a

candidate location. Observations made at this location that result in no improvement are

censored by the discrete component (in red) of the mixed discrete/continuous density.

Figure 2: The speedup, Δ, in mean hit time between LML and PDILOO, plotted for individual tasks

(small blue stems) and averaged across tasks with the same dimensionality (large blue stems).

PDILOO tends to outperform LML more reliably on tasks with dimensionality ≥ 6.
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Figure 3: The relative computational overhead of PDI LOO compared to LML, plotted for individual

tasks (small blue stems) and averaged across tasks with the same dimensionality (large blue

stems). PDILOO is on average about 6.6 times more costly than LML, in terms of computational

overhead, i.e., ignoring the cost of objective function evaluations.
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