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Abstract

Many scientific optimisation tasks require finding designs consistent with physical
or experimental constraints. Generative models such as diffusion models have
proven to be powerful tools to propose designs, but remain challenging to control,
often requiring significant model-specific procedures and compute to meet the
constraints. We introduce surrogate latent spaces — Euclidean subspaces defined
by examples — that enable standard optimisation algorithms to search for designs
efficiently; including when the objective function is a black-box, non-differentiable,
or expensive to evaluate, e.g. be evaluated through simulation or real-world ex-
periments. We outline the underlying principles governing surrogate spaces, and
demonstrate that the approach allows generating protein backbone designs using
RFDIFFUSION with a sequence length that was previously infeasible.

1 Introduction

Generative models such as diffusion and flow matching have transformed the synthesis of high-
dimensional data across domains, from images and video to molecules and protein structures [Ho
et al., 2020, Song et al., 2020b, Lipman et al., 2022, Watson et al., 2023].

Yet, in many scientific applications, the goal is not merely to sample from a data distribution but
to optimise for specific, measurable outcomes: a molecule’s stability, a material’s conductivity, or
an aerodynamic coefficient. While these objectives often can be evaluated through simulation or
experiment, they are typically non-differentiable, noisy, or expensive to compute. This creates a
fundamental incompatibility between the differentiable conditioning mechanisms used in modern
generative models and the black-box nature of many scientific optimisation tasks.

Recent work has explored steering generative models through prompt engineering or gradient-based
guidance [Dhariwal and Nichol, 2021, Song et al., 2024, Fan et al., 2023], but these approaches
presuppose access to well-behaved conditioning signals and are unsuitable when objectives arise
from physical processes or empirical evaluation. Alternatively, Latent Space Optimisation (LSO)
methods [Gómez-Bombarelli et al., 2018, Kusner et al., 2017, Moss et al., 2025] propose searching
directly within the latent representation of a generative model. However, when applied to modern
sample-based models such as diffusion or flow matching, direct optimisation in latent coordinates is
impeded by the high dimensionality of the latent variable and the absence of guarantees that arbitrary
perturbations remain within the model’s support [Bodin et al., 2024].
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Figure 1: Illustration of a surrogate latent space. (left) A low-dimensional surrogate space U is
mapped via the surrogate chart ϕw onto the positive orthant of the unit sphere (mid left), which is
then transported via ℓ to valid latent realisations z ∼ p (mid right), before finally being decoded by
the generative model g into objects x (right). All mappings are bijective, and enable optimisation
algorithms to operate in U while guaranteeing validity, uniqueness, and approximate stationarity.

To address this, we propose to construct controllable, low-dimensional surrogate latent spaces,
defined using examples. These spaces, which are Euclidean and bounded, are specified by a freely
chosen number of examples and will contain a smoothly indexed set of similar solutions. As a
result, the formed search spaces are easy to navigate using standard optimisation algorithms such
as Bayesian Optimisation [Shahriari et al., 2015], CMA-ES [Hansen, 2016] and others, without
retraining, fine-tuning, or gradient propagation. We demonstrate using an experiment on protein
design that searching within a surrogate space is substantially more efficient than searching within
the original latent space.

2 Surrogate latent spaces

We consider a deterministic generative model g : Z → X that maps latent variables z ∼ p(z) to
observable samples x ∈ X . Such deterministic mappings can for example be specified by a diffusion
model — the probability-flow ODE [Song et al., 2020b] for continuous-time or DDIM [Song
et al., 2020a] for discrete-time — or using by a flow matching model [Lipman et al., 2022]. The
latent space Z is typically high-dimensional (D≫104), making direct optimisation intractable and
unsafe: arbitrary perturbations of z can leave the model’s support, yielding invalid or nonsensical
generations [Bodin et al., 2024].

Our goal is to construct a low-dimensional Euclidean space U = [0, 1]K−1 (where K ≪ D) which
can be optimised over efficiently, while guaranteeing that every point u ∈ U corresponds to a valid
latent z ∼ p(z), in turn meeting the requirements for valid generation x = g(z). The space is
defined by K examples, specifically by their corresponding latent realisations {zk}Kk=1.

2.1 Choosing the seeds

Let {zk}Kk=1 be latent vectors corresponding to K designs; which we will refer to as seeds. Seeds can
be chosen in a task-informed manner, for example, be obtained from inversions [Song et al., 2020b,a]
of ‘good’ known designs (existing data from prior experiments scoring highly on some task), or be
(filtered) high scoring solutions originally sampled from the latent distribution.

High scoring seeds tend to define spaces containing high scoring solutions, but importantly, the
solutions found within a surrogate space can be substantially higher scoring than the seeds defining
it; an example of this is shown in Figure 3. Therefore, even defining a surrogate space with random
seeds is worthwhile if high scoring seeds are not available a-priori.

The number of seeds determines the dimensionality of the search space, and should be set with
consideration to the optimisation algorithm used (which are designed for different dimensionalities)
and the total evaluation budget; larger spaces typically contain a better best solution than smaller
spaces, but can be more difficult to search within.
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Figure 2: We can build smooth surrogate spaces for any generative model. (left) Waveform
generations over a grid of a 2D slice of a 7D surrogate space formed from 8 seed latents and the
8256-dimensional StableAudio2.0 text-to-audio generation model [Evans et al., 2025]. (middle) The
first frames of a similarly constructed grid of videos from the 4,308,480-dimensional HunyuanVideo
text-to-video generation model [Kong et al., 2024]. (right) A grid of proteins over a 2D surrogate
space formed from 3 seed latents corresponding to 3 proteins using RFDiffusion [Watson et al., 2023].

2.2 Surrogate space construction

We define a smooth bijection

ϕ(u; {zk}) = ℓ(ϕw(u); {zk}) , u ∈ U = [0, 1]K−1,

referred to as the surrogate chart, which is composed of two maps internally; a weight chart ϕw :
U → SK−1+ which maps Euclidean coordinates to the positive orthant of the unit hypersphere, and ℓ :

SK−1+ → Z which combines the seeds according to the seed weights w = ϕw(u). Following Bodin
et al. [2024], ℓ is defined using a latent-optimal linear (LOL) transport map ensuring that linear
combinations of the seeds remain distributed as p(z):

z = ℓ(w; {zk}) = T←(ξw), ξ = [T→(z1), . . . , T→(zK)]⊤,

where T→ and T← are transport maps between p(z) and an auxiliary distribution pϵ that is rotationally
invariant and closed under aggregation (e.g., a zero-mean Gaussian or uniform hyperspherical law).
See Figure 1 for an illustration, and Section A for details, including for transport maps for various
latent distributions and for the inverse of the surrogate chart.

2.3 Principles for the optimisation landscape

The surrogate chart is designed to obtain surrogate spaces according to three key principles for
compatibility with standard optimisation algorithms:

P1 Validity: All coordinates in U map to valid latent samples supported by the generative
model: u 7→ z = ϕ(u; {zk}) ⇒ z ∼ p(z). This prevents degeneracy and ensures
meaningful generations and objective evaluations during optimisation.

P2 Uniqueness: All locations must encode unique objects given the seeds, i.e. the map-
ping u 7→ z is bijective. This avoids redundant representations and ensures that distinct
optimisation steps correspond to distinct generated objects.

P3 Stationarity: The relationship between objects’ similarity as a function of their Euclidean
distance in the surrogate space should be approximately maintained for any pair of objects
throughout the space. Euclidean distances in U approximately preserve cosine similarity in
the latent space: sim(zi, zj) ≈ v(∥ui − uj∥2), where v is a monotone kernel induced by
the geometry of the chart.

Together, these properties make surrogate latent spaces well suited for standard black-box optimisation
algorithms — including Bayesian Optimisation [Shahriari et al., 2015] and CMA-ES [Hansen, 2016]
— while remaining agnostic to the underlying generative model. In Appendix A we show that these
principles hold.
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2.4 Practical Use in Scientific Optimisation

In scientific and engineering contexts, the objective function f(x) — scoring a design — often
corresponds to a simulation or experiment (e.g., aerodynamic drag, protein stability, or material en-
ergy). Direct gradient propagation through f is typically impractical or impossible, and conditioning
generative models on f would require task-specific fine-tuning [Krishnamoorthy et al., 2023, Fan
et al., 2023]. By introducing surrogate spaces, allowing us to define informed low-dimensional search
spaces for the task at hand, we can search over valid generations as:

u∗ = argmax
u∈U

f(g(ϕ(u))) z = ϕ(u) x = g(z) (1)

This approach generalises across modalities and objective functions, from text-to-image to protein
backbones, while requiring no model retraining and only a small number of evaluations of f .

3 Illustrative Experiment: Protein Optimisation
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Figure 3: 2D surrogate space for proteins. A surrogate space U2 defined by K = 3 seed latents
(top) yields a structured objective landscape. Left: grid of generated backbones across U2. Right:
corresponding evaluation scores (Cα–frame RMSE). Notably, significantly lower RMSE proteins
exist in the evaluated grid than the evaluations corresponding the seeds (top left, top right, and bottom
right corners).

Our methodology focuses on the latent variable and is agnostic to the generative model itself. This
allows it to be applied to various data modalities as long as a generative model is available, which
we illustrate in Figure 2. We will now demonstrate on a protein backbone design task that surrogate
spaces allows us to search for designs efficiently.

Setup. We employ RFDIFFUSION [Watson et al., 2023] as a deterministic generative model of
protein backbones, and define a surrogate space using latent vectors corresponding to a small set of
seed structures. Each coordinate u ∈ U maps to a latent z = ϕ(u) and hence to a backbone x = g(z).
The objective function f(x) evaluates the reconstruction error of each design by computing the
Cα–frame RMSE between the generated backbone and its structure predicted by ALPHAFOLD2 [Pak
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et al., 2023]. The objective function f(x) is non-differentiable2 and expensive, but we are yet able to
deploy a standard black-box optimisation algorithm (CMA–ES [Hansen, 2016]) directly in U .

Results. Surrogate spaces consistently yield RMSEs, higher rates of successful recovery (RMSE<
2.0 Å), and a greater number of structurally diverse successful proteins. Random sampling failed
in most trials, consistent with prior results. In contrast, optimisation in U consistently produced
recoverable proteins; random seeds already improved success rates at no additional cost, while filtered
seeds (taken as the 24 with lowest RMSE out of 100 random designs, as no a-priori solutions were
known) further reduced RMSE and increased yield over ten-fold.

5.00 RMSE 2.54 RMSE 1.83 RMSE 1.10 RMSE

Figure 4: Protein design with surrogate latent spaces. Top: Representative generations showing
the RMSE discrepancy between the RFDIFFUSION backbone (yellow) and their ALPHAFOLD2
regeneration (blue). Bottom: comparison of standard sampling from the model versus optimisation
in our surrogate spaces using CMA–ES. Plots report the median and 90% confidence interval of
the best RMSE per step as well as the number of successful and diverse designs. We define a
successful generation as meeting the RMSE target from Watson et al. [2023]. Diversity is based on
the TM-score [Zhang and Skolnick, 2004] and detailed in Section G.

4 Conclusion

Surrogate latent spaces provides an interface between generative models and scientific optimisation.
By constructing low-dimensional surrogate spaces mapping to a model’s latent space, we can search
the latent space efficiently and guarantee that all explored points remain valid under the generative
model. This method transforms pre-trained diffusion or flow models into controllable spaces of
candidate solutions that can be explored based on prior knowledge and experiments.
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A Defining the surrogate chart

The key idea behind our proposed method is to build a search space U using a collection of K
so-called seeds that leads to a coordinate system able to generate objects with similar properties
to the seeds. The surrogate and the latent space are related through a smooth bijective mapping
ϕ : U , · → Z , which we refer to as the surrogate chart. The surrogate chart is associated with the
seed latents {zk}Kk=1, zk ∈ Z and defined as,

ϕ(u, {zk}Kk=1) = z, z := l
(
w, {zk}Kk=1

)
, w := ϕw(u), (2)

where ϕw : U → SK−1+ and l : SK−1+ , · → Z are invertible functions. Here, SK−1+ denotes the
positive orthant of the unit (K − 1)-sphere,

SK−1+ :=
{
w ∈ RK

∣∣ ∥w∥2 = 1, wi ≥ 0 ∀i
}
.

The surrogate chart ϕ thus defines a coordinate system for a subset of Z , with inverse mapping

ϕ−1(z, {zk}Kk=1) = u, u := ϕ−1w (w), w := l−1
(
z, {zk}Kk=1

)
. (3)

A.1 Ensuring model support for all coordinates in U

To ensure validity (P1), each coordinate u ∈ U maps to a latent realisation z ∈ Z via a linear
combination weight vector w ∈ SK−1+ . To guarantee that all coordinates u ∈ U are valid, the
weight vector w must map to a z ∼ p, where p is the latent distribution of the generative model. To
ensure this, the function l (Equation 2) is formed via a Latent Optimal Linear combinations (LOL)
transport map [Bodin et al., 2024] which via an ‘inner’ latent variable ϵ ∼ pϵ guarantees that a linear
combination of the seed latents follows the latent distribution p

z = l(w, {zk}Kk=1) := T←(ϵ) ϵ := ξw ξ := [ϵ1, . . . , ϵK ]T ϵk := T→(zk), (4)

where T→ and T← maps from p to pϵ and back, respectively, and l−1(z, {zk}Kk=1) =
ξ+T→(z)/||ξ+T→(z)||2 where ξ+ is the Moore–Penrose inverse of ξ, see Section B.

Amenable inner latents An inner latent distribution pϵ is amenable to our methodology if it is
zero-mean, rotationally invariant, and closed under aggregation with unit–ℓ2 weights. Formally, if
ϵ1, . . . , ϵK

i.i.d.∼ pϵ and w ∈ SK−1, then an inner latent distribution pϵ is amenable to our methodology
if it is zero-mean, rotationally invariant, and closed under aggregation with unit–ℓ2 weights. Formally,
if ϵ1, . . . , ϵK

i.i.d.∼ pϵ and w ∈ SK−1, then

z = T←(ξw), ξ = [ϵ1, . . . , ϵK ]T ,

again satisfies z ∼ p. Specifying the maps T→ and T← to map between the distributions p and pϵ is
the framework for applying our method to a model at hand:

• Gaussian latents. If p = N (0,Σ), then closure holds directly under ∥w∥2 = 1, and
we may set T→ = T← = id. If p = N (µ,Σ) with µ ̸= 0, then T→(z) = z − µ and
T←(ϵ) = ϵ+ µ, which centres the distribution before aggregation and restores the mean
afterwards. This case was treated in Bodin et al. [2024].

• Hyperspherical latents. If p = Unif(SD−1), where z ∈ RD, then T→ = id, while T←
normalises any linear combination back onto the sphere, T←(ϵ) = ϵ

∥ϵ∥ . Because this
construction is rotation–equivariant, it preserves the uniform law on the sphere.

• Composite latents. If the latent variable z can be decomposed into M statistically inde-
pendent components such that z = {z(1), . . . ,z(M)} where p(z) ∝ p(z(1)) . . . p(z(M)),
then each component z(m),m ∈ [1, . . . ,M ] can be mapped separately. This allows, for
example, for a model having two or more latent variables, to map these independently, and
concatenate their inner latents when computing linear combinations.

• General scalar distributions If a latent variable z has individual dimensions zi that are
independent of the others (see above), those elements follow scalar distributions which
can be transported optimally to e.g. N (0, 1) — which is amenable — using the respective
cumulative distribution function as proposed in Bodin et al. [2024].

8



A.2 Ensuring uniqueness for generations from U

We now address principle (P2), that every point in U specifies an unique realisation of z. In Bodin
et al. [2024] linear combinations of the seeds are defined for the entire hyperplane, however, following
the transformation, such combinations can all be indexed by a bounded set; the weights w ∈ SK−1
is a sufficient such set to index all possible Latent Optimal Linear combinations, as we show in
Section C. As each coordinate u ∈ U specifies a unique w ∈ SK−1+ , which in turn specifies a unique
z, it follows that each coordinate in U maps to an unique latent realisation.

The focus on linear combinations weights residing on the positive orthant SK−1+ ⊂ SK−1 rather than
the whole hypersphere will be motivated by the principle addressed in the next section. But we point
out that, to represent positive associations to the seeds we only need positive weights SK−1+ , as only
those induce (positive cosine) similarity to the seeds. Note that negative associations (to encourage
dissimilarity) to any particular seed could still be represented, by negating the corresponding seed
latent. Moreover, as SK−1+ is a subset of SK−1, uniqueness still holds.

A.3 Ensuring approximate object similarity stationarity

We will now address our final principle of stationarity (P3), motivated by a well-established obser-
vation in generative modelling that similarity between generated objects is captured by the cosine
similarity of latent vectors. This principle underlies embedding models [Devlin et al., 2019, Mikolov
et al., 2013, Kingma and Welling, 2013], widely in e.g. information retrieval [Hambarde and Proenca,
2023] and model alignment [Radford et al., 2021]. We adopt the same assumption in this work.

A common implicit assumption when computing cosine similarities is that latent vectors are centred
and isotropic, e.g., unit Gaussian [Steck et al., 2024]. While this may not hold for general latent
distributions, it does hold for the inner latent representation ϵ (Equation 4), to which any latent z
indexed by w ∈ SK−1 admits a mapping. Hence, ϵ serves as the central latent variable in this section.

We adopt simz(zi, zj) := sime(ϵi, ϵj) where sime is the cosine similarity, which is

simz(zi, zj) = sime(ϵi, ϵj) =
ϵ⊤i ϵj

∥ϵi∥ ∥ϵj∥
=

(ξwi)
⊤ξwj

∥ξwi∥ ∥ξwj∥
(5)

for zi = ϕ(ui) and zj = ϕ(uj), where ui,uj ∈ U . For large latent dimensionality D, this reduces
to

(ξwi)
⊤ξwj√

(w⊤i ξ
⊤ξwi)(w⊤j ξ

⊤ξwj)

a.s.−−−−−→
D→∞

w⊤i wj

since ∥wi∥ = ∥wj∥ = 1, E[ϵk,d] = 0, and ξ⊤ξ
a.s.−−−−−→

D→∞
Dσ2I for independent {ϵk}. In Section E

we show that this effect dominates already at practical dimensionalities, allowing us to control the
similarity of objects across U through the design of ϕw.

To preserve similarity as a function of Euclidean distance, we require, for some function v

v(∥ui − uj∥2) = ϕw(ui)
⊤ϕw(uj), ∀ui,uj ∈ U , (6)

the form of a stationary kernel. This condition can only hold approximately, since ϕw : [0, 1]K−1→
SK−1+ maps flat to curved space, and Gaussian curvature is preserved under local isometries.

This is analogous to the impossibility of constructing a flat map of the globe that preserves all distances
— the classic cartographic problem Snyder [1987]. Restricting to an orthant reduces curvature and
thus approximation error, but exact preservation is unattainable for any ϕw. In Appendix D, we
specify two variants, including one based on the Knothe–Rosenblatt (KR) map, which we found
performs well empirically and which we adopt in experiments where not otherwise specified.

B Inverse of the l map

In this section we will derive the inverse of the map l introduced in Section A.

Let {zk}Kk=1 ⊂ Z be seeds, and define their inner latents ϵk = T→(zk). Let ξ = [ϵ1, . . . , ϵK ] ∈
RD×K . Assume:

9



(A1) ξ has full column rank, so that ξ+ξ = IK ;
(A2) For all ϵ ∈ RD,

T→
(
T←(ϵ)

)
= α(ϵ) ϵ, α(ϵ) > 0.

Define the l map
l(w, {zk}) = T←(ξw), w ∈ SK−1+ .

Then l is invertible with

l−1(z, {zk}) =
ξ+ T→(z)

∥ξ+ T→(z)∥
.

Proof. Let z = l(w, {zk}) = T←(ξw). Applying T→ and using (A2) gives

T→(z) = T→
(
T←(ξw)

)
= α(ξw) ξw.

Multiplying by ξ+ and using (A1),
ξ+T→(z) = α(ξw) (ξ+ξ)w = α(ξw)w.

Thus ξ+T→(z) is a positive scalar multiple of w. Normalising cancels the unknown factor,
ξ+T→(z)

∥ξ+T→(z)∥
= w,

which establishes the result.

[When normalisation is redundant] Normalisation in the inverse formula is redundant if and only if
T→◦ T← = id,

that is, when α(ϵ) ≡ 1.

• Gaussian latents. T→ and T← are exact inverses, so α = 1. No normalisation needed.
• Hyperspherical latents. With T←(ϵ) = ϵ/∥ϵ∥ and T→ = id, one has α(ϵ) = 1/∥ϵ∥.

Normalisation is essential.
• Independent scalar latents mapped via CDF to Gaussian. Exact inverses, so α = 1.

Normalisation is redundant.

C SN is a sufficient index for Latent Optimal Linear combinations

In this section we will show that linear combination weights on the unit hypersphere is sufficient to
index all Latent Optimal Linear combinations [Bodin et al., 2024]. We will first address the Gaussian
case and then the general case.

Gaussian latents A linear combination
y = Zw, (7)

where Z = [z1, . . . ,zK ], w ∈ RK , zk ∈ RD, zk ∼ p and p = N (µ,Σ) has distribution
y ∼ N (αµ, βΣ) (8)

where α =
∑K

1 wi and β =
∑K

1 w2
i . The variable y does not follow the same distribution p as zk at

weights yielding α ̸= 1 and β ̸= 1. In Bodin et al. [2024] the following map was proposed for the
linear combinations y in the Gaussian case

T (y) = (1− α

β
)µ+

y√
β

(9)

which is the Monge optimal map between N (αµ, βΣ) and N (µ,Σ).

We can rewrite Equation 9 as

T (y) = (1− α

||w||
)µ+

y

||w||
, (10)

and note that if µ = 0, then the transformed variable is invariant to the norm of the weights w.

As we can treat the requirement of µ = 0 by centring the distribution for a known mean vector, it
follows that w ∈ SK−1 is sufficient to index all such transformed variables.
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General case In the non-Gaussian setting, the same principle applies once we introduce an amenable
inner latent distribution pϵ (Section A). For any latent distribution p, we construct transport maps
T→ and T← such that ϵ = T→(z) ∼ pϵ and z = T←(ϵ) ∼ p. Because pϵ is rotationally invariant and
closed under aggregation with unit–ℓ2 weights, any linear combination

ϵ = ξw, ξ = [ϵ1, . . . , ϵK ]T , ϵk ∼ pϵ, (11)

with w ∈ SK−1 again satisfies ϵ ∼ pϵ. Applying the inverse transport then yields

z = T←(ϵ) ∼ p, (12)

showing that the weights w on the unit hypersphere are sufficient to index all latent-optimal linear
combinations, regardless of the underlying distribution p.

Concretely, the Gaussian case corresponds to the choice pϵ = N (0,Σ), where closure holds directly
under ∥w∥ = 1. For other distributions, pϵ and the associated transport maps adapt accordingly:
hyperspherical latents are closed under normalisation, composite latents can be mapped component-
wise, and scalar independent latents can be treated dimension-wise via their cumulative distribution
functions. In all cases, the invariance of pϵ under unit–ℓ2 aggregation ensures that w ∈ SK−1 is a
sufficient index.

Summary Both the Gaussian case and the general case rely on the same underlying mechanism:
linear aggregation in a latent space that is invariant under unit–ℓ2 weighting, together with a suitable
transport map back to the target distribution p. This establishes that restricting to w ∈ SK−1 is
always sufficient to represent all Latent Optimal Linear combinations, independent of the specific
form of p.

D Weight charts ϕw

Let K be the number of seeds. The weight chart is a map

ϕw : [0, 1]K−1 → SK−1+ ,

where SK−1+ = {w ∈ RK : ∥w∥2 = 1, wi ≥ 0} is the positive orthant of the unit hypersphere.

Angular coordinates chart (spherical angles). Set θi = π
2ui ∈ (0, π

2 ) for i = 1, . . . ,K − 1 and
define

w1 = cos θ1, wk =
( k−1∏

i=1

sin θi

)
cos θk (k = 2, . . . ,K − 1), wK =

K−1∏
i=1

sin θi. (13)

Inverse: recover angles by θ1 = arccos(w1) and θk = arccos
(
wk/

∏k−1
i=1 sin θi

)
for k ≥ 2, then

ui =
2
π θi. Notes: smooth, not equal-area.

Knothe–Rosenblatt (KR) chart. Let U ∈ (0, 1)K−1 and define independent stick-breaks

vk = I−1uk

(
1
2 ,

K−k
2

)
, k = 1, . . . ,K − 1,

where I−1· (a, b) is the inverse regularised incomplete beta. Set (Dirichlet stick-breaking)

z1 = v1, zk = vk

k−1∏
i=1

(1− vi) (k = 2, . . . ,K − 1), zK =

K−1∏
i=1

(1− vi), wi =
√
zi.

(14)

Inverse: with z = w ⊙ w and sk =
∑K

j=k zj ,

vk =
zk
sk

, uk = Ivk

(
1
2 ,

K−k
2

)
, k = 1, . . . ,K − 1.

Notes: smooth, pushes Unif([0, 1]K−1) to the uniform surface measure on SK−1+ (equal-area); use
stable betainc/betaincinv.
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Number of seeds K = 2 Number of seeds K = 10

Number of seeds K = 100 Number of seeds K = 1000

Top image

Figure 5: (top) Dot products of the weights wT
i wj and the cosine similarity simϵ(ϵi, ϵj) for uniformly

drawn samples in U for K = 2, 10, 100, 1000, respectively for various dimensions D, where ϵ ∈ RD.
The number of samples per setting is 10, 000, with 100 realisations of the seeds drawn from N (0, I)
and 100 uniformly sampled u per sampled seeds realisation. (bottom) Estimated correlations between
wT

i wj and ϕϵ uses all the samples per setting.
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E The weight chart ϕw sets the similarity structure

In Figure 5 we demonstrate numerical evidence for the claim in Section A.2 that the dot product
wT

i wj is the dominant factor in determining the cosine similarity between two latent variables
ϵi, ϵj ∈ RD indexed by a surrogate latent space U . We see that already D ≈ 100,K ≤ 10 yields an
dominating wT

i wj , as shown by Pearson correlations of more than 0.95, and correlations very close
to 1 for higher dimensionalities of D (at a rate dependent on K). For reference, typical diffusion and
flow matching models [Rombach et al., 2022, Labs, 2024, Lipman et al., 2022] have a D of tens of
thousands to hundreds of thousands, and Kong et al. [2024] has a dimensionality of several million.

F RFdiffusion

We adopt the pipeline of Watson et al. [2023], consisting of: (1) backbone generation with RFDIFFU-
SION, (2) sequence design with PROTEINMPNN [Dauparas et al., 2022], (3) structure reconstruction
with ALPHAFOLD2 [Pak et al., 2023], and (4) evaluation by Cα–frame RMSE. Lower RMSE
indicates closer agreement between the generated and reconstructed backbones.

In step 1, candidate backbones are sampled from the original RFDIFFUSION model using DDIM. A
backbone is defined as the set of Cα coordinates and residue-wise rotations, but does not include
categorical amino acid identities. In step 2, each backbone is completed with M = 8 amino
acid sequences predicted by PROTEINMPNN. This introduces the missing categorical information;
however, the predictions are noisy, motivating multiple samples. In step 3, the sequences are passed to
ALPHAFOLD2, which reconstructs 3D structures from sequence alone, testing whether the backbone
proposed by RFDIFFUSION is compatible with realistic sequences. In step 4, reconstructed proteins
are aligned to the original backbones, and Cα RMSE is computed. For each backbone we report the
best sequence (minimum RMSE over M = 8), following the evaluation protocol of Watson et al.
[2023]. For optimiser setups, see H

As in Watson et al. [2023] we adopt a threshold of T = 2.0Å RMSE to define successful recovery,
however we drop their secondary filtering metric of designs having PAE < 5.0 to focus on proof
of principle, although in future this could naturally be supported by considering multi-objective
optimisation. For fairness, all baselines were recomputed under our evaluation. Each optimisation
run used 200 iterations, twice the 100 generations of the original paper.

RFDIFFUSION parametrises a backbone of length N by residue-wise frames (x(t)
pos,x

(t)
rot)∈R3N ×

SO(3)N , where x
(t)
pos are Cα coordinates and x

(t)
rot are orientations derived from N–Cα–C triplets,

measured from a reference frame. The forward diffusion process applies Gaussian noise to xpos and
Brownian motion on xrot; generation is by reverse integration of the probability–flow ODE. The
resulting latent is

z = (zpos, zrot) = (x(T )
pos,x

(T )
rot ), zpos∼N (0, I3N), zrot∼Unif(SO(3)N ).

Because zpos follows a Gaussian distribution and we parametrise zrot as quaternions which are
uniformly distributed on zrot∼Unif(S3N ), we can directly apply composite latents from Section A.1
to construct surrogate latent spaces U .

Figure 3 shows a N=2 dimensional latent space formed from K=3 seed latents, over which a grid of
protein structures have been generated and evaluated according to the target objective. Clear structure
in shown in the objective space which makes this objective amenable to optimisation.

For the protein optimisation experiments we set the number of seed latents to K = 24. Optimisation
is performed in U via CMA–ES, with candidates mapped back into Z for decoding and evaluation.
Two seed selection strategies were used. Random seeds: sampled directly from the prior distributions,
incurring no additional cost. Filtered seeds: obtained by first generating 100 backbones from the
base model, ranking them by RMSE, and selecting the top K = 24 latents as seeds. None of these
passed the T = 2.0 threshold, but they provided a stronger starting point than random seeds. The
extra cost relative to random seeds is generating and evaluating the pipeline 100 times.
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Method Best RMSE ↓ SUCC ↑ SUCCDIV ↑
Random in Z 2.33 0 0
CMA–ES in UK−1 (random seeds) 1.19 7 4
CMA–ES in UK−1 (filtered seeds) 1.08 12 5.5

Table 1: Protein design at N = 600 after 200 iterations. SUCC: successful recoveries (RMSE< T );
SUCCDIV: distinct clusters of successful backbones. Medians over 10 runs.

G Template Modelling Score (TM-score)

The Template Modelling score (TM-score) is a widely used measure of structural similarity between
two protein backbones. Unlike RMSE, which is sensitive to local deviations and scales poorly with
chain length, the TM-score is normalised to the length of the target protein and therefore more suitable
for comparing proteins of different sizes [Zhang and Skolnick, 2004].

Given a target structure of length L and a comparison structure, the TM-score is defined as

TM−score = max
alignments

1

L

L∑
i=1

1

1 +
(

di

d0(L)

)2 , (15)

where di is the distance between the ith pair of aligned Cα atoms under a given alignment, and
d0(L) = 1.24 3

√
L− 15− 1.8 is a normalisation factor that accounts for protein length. The score

lies in [0, 1], with higher values indicating greater structural similarity.

As a rule of thumb, TM-score > 0.5 indicates that two structures share the same fold, while
TM-score < 0.17 corresponds to similarity expected by chance.

In our case, all generations are of equal length, so RMSE remains valid; however, using TM-score
not only allows us to apply established interpretative thresholds, but also lets us follow Watson et al.
[2023] in treating two designs as non-diverse if their pairwise TM-score exceeds 0.6.

Diversity counting. To compute the number of diverse generations reported in Section 3, we apply
the following greedy procedure: 1. Sort generated proteins by reconstruction accuracy (lowest RMSE
first). 2. Initialise the diverse set with the best structure. 3. For each subsequent protein, compute its
TM-score against all members of the current diverse set. 4. Add it to the diverse set if its TM-score is
≤ 0.6 with respect to all previously accepted members; otherwise, discard it.

This ensures that each counted generation is both accurate (passes the RMSE threshold) and struc-
turally distinct under TM-score. Note: because a newly generated protein may achieve lower RMSE
than existing members of the diverse set while simultaneously being non-diverse with respect to
several of them, the overall count of diverse structures can decrease across iterations.

H Optimiser setups

Optimiser setups:

• CMA-ES.. We use the implementation from Nomura and Shibata [2024] with population
size 4 and σ = 0.2.

• Random search in Z . Standard random (and independent) sampling from the latent
distribution.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly describe the contribution—constructing
surrogate latent spaces that permit black-box optimisation over the outputs of generative
models. The stated claims match both the methodological framework and the empirical
demonstrations across images, audio, video, and protein design.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper highlights several practical considerations throughout, such as the
requirement for deterministic sampling from the generative model, the role of seeds in
defining the surrogate subspace, and the way optimisation budgets affect results. These are
discussed contextually rather than as an explicit limitations section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Formal derivations and proofs are provided in the appendices, and all as-
sumptions required for the constructions are stated or referenced in the corresponding
sections.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describes seed selection, surrogate dimensionalities, optimisation
procedures (e.g., CMA-ES), evaluation metrics, and generative model configurations. These
details are sufficient for reproduction with the same publicly available pretrained models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Code is not yet released because a full-version submission is still in preparation.
The experiments rely on publicly available pretrained generative models, and the procedures
described in the paper are sufficient for independent reproduction.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies optimisation budgets, seed counts, generative models used,
scoring metrics, and protocol details; further information is provided in the appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Protein-design experiments report median trajectories with 90% confidence
intervals and success/diversity statistics capturing optimisation variability.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper specifies use of pretrained diffusion/flow-matching models, single-
GPU inference for generation, and evaluation compute (e.g., AlphaFold2). Hardware
requirements and computational scale are apparent from the experimental description.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work uses public pretrained generative models, no human subjects or
private data, and presents no ethical or safety concerns beyond those already associated with
standard generative-model usage.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper discusses scientific design-optimisation impacts. The approach does
not introduce new misuse vectors beyond existing generative models; societal risk is low.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release new high-risk models or datasets; it constructs
surrogate search spaces on top of existing public generative models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All generative models and toolchains used (e.g., Stable Diffusion, StableAu-
dio2, HunyuanVideo, RFDiffusion, AlphaFold2, ProteinMPNN) are cited and come with
known public licenses.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce or release new datasets, pretrained models, or
assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: No human-subjects research is conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not part of the method development or experimental pipeline.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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