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ABSTRACT

Understanding the learning process and the embedded computation in transform-
ers is becoming a central goal for the development of interpretable Al. In the
present study, we introduce a hierarchical filtering procedure for generative mod-
els of sequences on trees, allowing us to hand-tune the range of positional cor-
relations in the data. Leveraging this controlled setting, we provide evidence
that vanilla encoder-only transformers can approximate the exact inference al-
gorithm when trained on root classification and masked language modeling tasks,
and study how this computation is discovered and implemented. We find that cor-
relations at larger distances, corresponding to increasing layers of the hierarchy,
are sequentially included by the network during training. Moreover, by comparing
attention maps from models trained with varying degrees of filtering and by prob-
ing the different encoder levels, we find clear evidence of an iterative hierarchical
reconstruction of correlations, which we relate to a plausible implementation of
the exact inference algorithm within the same architecture.

1 INTRODUCTION

Transformer-based large language models have revolutionized natural language processing, and have
notably demonstrated their capacity to perfectly assimilate the grammatical rules of the languages
they are trained on. While this evidence shows that transformers can handle and exploit the subtle
long-range correlations that emerge in natural language, their inner workings remain largely unclear.

Due to the complexity of the standard transformer architecture (Vaswani et al.,|2017), understanding
what strategy is precisely implemented via the attention mechanism to solve a given problem has
been limited so far to very simple tasks (Weiss et al.|[2021;[Zhong et al., 2024} Behrens et al.| 2024)).
Nonetheless, significant results have been obtained by studying transformers on simplified models of
language known as Context-Free Grammars (CFGs). Through probing of the so-called parsing tree
of CFGs, evidence has notably pointed towards transformers trained on predicting masked symbols
implementing the optimal dynamic programming algorithm to reconstruct the hidden structure of
the grammar, but alas without finding a fully plausible implementation within the architecture (Zhao
et al., [2023; |Allen-Zhu & Li, [2023). On the other hand, when tasked with reconstructing the most
probable parsing tree in the context of probabilistic CFGs, transformers may struggle to match the
optimal algorithm if ambiguity is high (Khalighinejad et al.l 2023]).

Beyond language models, the significance of data structure in machine learning applications is well
recognized yet remains poorly understood. CFGs represent a data structure characterized by hier-
archical correlations (Mossel, |2016). In general, understanding how standard deep networks can
take advantage of this hierarchical structure in their training is an important research question. To-
wards this objective, simplified hierarchical models of structured data on fixed trees have proved
very useful in understanding the effectiveness of Convolutional Neural Networks (CNNs) (Cagnetta
et al.,[2024), for which there are now formal results supporting the idea that the optimal Belief Prop-
agation (BP) algorithm can be approximately implemented (Mei, [2024). Unfortunately, while the
implementation of the hierarchy in CNNs is made quite transparent by the hierarchical structure of
their convolutional filters, this is not true for transformers, and one can therefore not straightfor-
wardly transpose this interpretation to other architectures (Cagnetta & Wyart, 2024)).

In this work, we present a complementary study to those described above, which allows us to under-
stand further how transformers approach optimal inference in a structured data model, both in terms
of the learning procedure and of the implementation in the architecture.



Under review as a conference paper at ICLR 2025

S ®  sampe (©) @
a2 1.0 104 ¥ 10
e ;
€05 1004 o f
g z 21074
0.014 . . 2o g
F 10 £
" Random
é_l.() '/, 102
5 4 102
€05 4 ) -2
s 4P 1074
B o0l 0 10° 10" 10 010° 101 10° 10°
00 05 1.0 Epoch Epochs
BP marginals (f)
51'00-_“-“%5‘;,%@'&‘2 =
«&'p
' b | 2 0.751
] | © P with MLM
5 . § j  pretraining
at F 05049
PRV B N 3 5
gddoodbbo Layer 1 Layer 2 Layer 3 Layer 4 10 10

P

Figure 1: Synthesis of our main results. (a) The proposed filtered hierarchical model, illustrated
here with ¢ = 3 layers and with a filtering parameter 0 < k£ < /, allowing one to truncate the
hierarchy and generate data with more or less structure. (b) Scatter plot of the predictions of a
trained transformer for a masked symbol (with ¢ = 4 possible states) versus the corresponding
exact marginals obtained with the BP oracle, in-sample on 10* sequences with &k = 0 and ¢ = 4
(top), and out-of-sample on uniformly generated sequences (bottom). (c) Evolution along training,
on a root classification task with P = 217 examples and £ = 0, ¢ = 4, of the average Kullback-
Leibler divergence between transformer predictions and marginals obtained from the matched BP
(black) and mismatched BP (from light green £ = 1 to purple k£ = 4) on identical in-sample inputs,
demonstrating the transformer learns increasingly structured representations. (d) Identical to (c)
for a MLM task on P = 2'® data. (e) Attention maps averaged over 10* in-sample inputs, for a
transformer with n;, = ¢ = 4 layers of attention trained on the MLM task with fully hierarchical
data, exhibiting a structure that mirrors the organization of the generative tree and the sequence of
operations of BP. (f) Test accuracy on root classification on fully hierarchical data k = 0 versus
number of labeled training samples P with no pretraining (circles) compared to MLM pretraining
with frozen (squares) and unfrozen (diamonds) encoder weights during fine-tuning.

Our contributions. We propose a controlled hierarchical model of discrete sequences, in which
we can easily tune the strength of correlations between tokens thanks to a “filtering” parameter k,
illustrated in Fig. [T[(a). This tree-based probabilistic graphical model gives us access to the exact
inference algorithm for reconstructing any symbol on the tree, Belief Propagation (BP) (Mézard &
Montanari, 2009)). Leveraging this context, we show that

 Transformers not only approach optimal performance in root classification and Mask Lan-
guage Modeling (MLM) tasks, but they do so in a calibrated way—i.e., by predicting prob-
abilities that approximate those yielded by the BP oracle even on out-of-sample inputs, see
Fig.[[(b)—which provides evidence of an equivalence in computation to the exact inference
algorithm.

* When trained with stochastic gradient descent, transformers sequentially discover the exis-
tence of higher hierarchical correlation levels (i.e., longer-range correlations), progressively
aligning with the prediction of algorithms that impute only parts of the full correlation
structure, see Fig. c)—(d). In other words, our simplified setting allows us to understand
how transformers learn from structured data in time.

* Well-trained transformers reconstruct the correct hierarchical structure through the suc-
cession of attention blocks. Matching the number of transformer layers to the number of
layers in the generative tree, we find that the attention maps are compatible with a natural
implementation of BP within the architecture, see Fig.[T[e). We verify this affinity through
probing experiments, providing strong clues on how transformers learn from our struc-
tured data in “space”, thereby explaining the effectiveness of unsupervised pre-training for
supervised classification tasks, illustrated in Fig. f).
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The paper is organized as follows. First, we provide a detailed description of our tunable hierarchical
model in Sec. 2] We then perform numerical experiments on standard transformer architectures in
Sec.[3 shedding light on the learning dynamics. The understanding of the implementation learned
by the transformer, and its compatibility with a possible implementation of the Belief Propagation
algorithm in the architecture that we propose, is analyzed in-depth in Sec. |4} We finally conclude
and discuss the wider implications of our results in Sec.[3}

2 A MODEL WITH FILTERED HIERARCHICAL CORRELATIONS

2.1 THE FULL HIERARCHICAL MODEL

We consider a tree-based generative process producing structured sequences of discrete symbols.
We here focus on the fixed tree topology case, allowing for direct control over the effective range
of the hierarchical correlations induced in the generated sequences (2.2)), and enabling exact and
efficient inference through Belief Propagation (2.4).

The “full” hierarchical generative process shown in the first row of Fig[[{a) can be described as
follows. The chain starts from an initial symbol zg, which we will refer to as the root of the tree,
sampled with probability py from a vocabulary X = {1,...,q}. Then, the first layer of the tree
is drawn randomly using a transition tensor M, which assigns the probability of generating some
children—from the same vocabulary X—given a parent (here x(). In this work, we will restrict
ourselves to binary trees for simplicity. We therefore have M € R%9*?, with M, the probability
of generating the pair (b, c) given a parent a. Since its elements are transition probabilities, this
tensor should satisfy My, € [0,1] Va,b,c and >, My = 1 Va. The process, with the same
tensor M, is then repeated independently for each of the newly created children nodes for a total
of ¢ generations, eventually yielding a sequence of 2¢ integers {@i}iz1, . o¢. We will refer to the
symbols in the sequence as the leaves of the generative tree.

We leave the details of the definition of the class of transition tensors M that we use in Appendix
In short, we will resort to randomly sampled log-normal transition probabilities, yielding complex
long-range correlations along the sequences. Importantly, we will only consider tensors with non-
overlapping entries, that is Mgy = 0 if My > 0 Va' # a. As a result, the production rules of
our unfiltered generative model are non-ambiguous in the sense that a pair of children symbols can
only have a single parent. Given all the symbols in a sequence, one can therefore deterministically
reconstruct the underlying generative tree, all the way up to the root.

2.2  FILTERING HIERARCHICAL CORRELATIONS

We develop a filtering tool that enables control over the correlation structure in the generated se-
quences. In particular, we consider a family of generative models, indexed by an integer k£ < ¢, with
hierarchical correlations truncated at a given depth k of the tree.

In the £ = 0 case described in the previous paragraph, all children generated at any level of the tree
are sampled in pairs from their respective parents and are strongly correlated. When £ > 0, we in-
stead generate the tree by drawing the children at level &k conditionally independently given the root,
with the same marginals as the full model. Then, for layers below layer k, the generative process is
the standard one described above, inducing stronger correlations within blocks of 2¢~* tokens. The
procedure is illustrated in Fig.[T(a), where dashed segments indicate conditional independence.

In order to match the correct marginal probabilities in the truncated models, the conditional inde-
pendent sampling at level k is done as follows. For each of the 2¥ variables at level k, say :rjP_-]
one considers the unique path that relates the root to this intermediate child in the original fully
hierarchical tree, yielding a probability

P(a;=b| a0 =a) = (oMM 7)) (1)

with o,,,(j) € {L, R} indicating whether the path leading to the tree element j considered at layer k
takes a left or right branching at the previous layer m. The ¢ x ¢ transition matrices M* and M7

"Here we take j > 2° to refer to the internal nodes of the tree, while 2o remains the root and z; with
i=1,...,2°are the leaves.
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are computed by tracing the original tensor

ME=D Mae, ML= My, ?)
c b

while py € R is the vector of probabilities for the root. By constructing filtered trees in such a way,

we ensure that the conditional correlations of the leaves capture up to the k™ level of the hierarchy.
Note, however, that the root can no longer be recovered deterministically from a full sequence when
k> 0.

2.3 RELATED DATA MODELS

Context-free grammars. Our hierarchical model can be considered as an instance of a simplified
probabilistic context-free grammar (PCFG) with log-normally distributed transition rates [De Giuli
(2019). The simplification is two-fold. Standard CFGs typically include two distinct sets of symbols,
non-terminals and terminals, representing parts of speech—i.e. nouns, verbs etc.—and actual words
respectively, plus a root symbol. Here, instead, we consider a single vocabulary X for all the symbols
in the tree, including the root—which allows us to define a root classification task. Moreover, the
parsing trees underlying CFGs are not fixed: terminals can be produced at different levels and the
sequence length can vary. Instead, we assume a fixed parsing tree for our model, where the 2¢ leaves
are collected from the last layer—which allows us to define a filtering procedure based on removing
layers of hidden symbols above the leaves.

The Random Hierarchy Model. Our model is closely related to the recently introduced Random
Hierarchy Model (RHM) of (Cagnetta et al.|(2024), which was studied to improve the understanding
of the effect of hierarchical structures on generative diffusion (Sclocchi et al., 2024) or last token
prediction (Cagnetta & Wyart, [2024). The main differences to our formulation are that in the RHM
the allowed transitions have uniform transition rates—while we consider a log-normal distribution—
and that the production rules depend on the layer—while we here consider a single transition tensor
throughout the tree. Correlations between the leaves arise in the RHM when some children pairs
cannot be produced, leading to a reduced entropy of viable sequences. Having non-uniform transi-
tions in our model similarly limits the entropy, while leading to a significantly different correlation
structure. One should for instance notice that the staircase decrease of the correlations as a function
of the distance between leaves presented in (Cagnetta & Wyart| (2024) is not visible in our case.

2.4 EXACT INFERENCE

A key advantage of generating sequences through a tree-based process is that we can perform exact
inference efficiently using a dynamic programming approach. Moreover, the fixed tree topology
allows us to consider a simplified version of the general inside-outside algorithm Baker| (1979),
which can be written in a message-passing form within the Belief Propagation (BP) formalism (Sato,
2007; Mézard & Montanari, [2009). Assuming that the transition tensor M and root probabilities pg
are known, with BP one can compute the exact marginal probabilities for all the symbols at any
position in the tree, with a linear computational cost in the size of the tree. Without going into detail
on the derivation, let us describe the BP scheme for the filtered tree graphs we are considering.

We start by randomly initializing an upgoing and downgoing message—each one being a vector
in R? that represents a probability distribution over the ¢ possible symbols—for each edge in the
generative tree. In the following, we denote with v;_,, a message going from a so-called variable
node j (shown by a circle in the sketches) to a factor node « (shown by a full or empty square in the
sketches), and with 7, ; the message in the opposite direction. Wherever there is a known variable
one should then fix v;_,o[z,] = (5%,@, where a is the known value e.g. of the leaf.

When the hierarchy is truncated, two distinct types of updates are possible, depending on whether
one lies in the filtered or unfiltered regions of the tree. In the former, the root is directly connected
to 2% “empty” factor nodes, as shown in Fig. a), each connected to a single and distinct variable
node below. In this case the BP fixed point equations for messages from the root to the empty factor
are given by

Vosayz0] o< | [ Pae—olzal, 3)
L]
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i.e. outgoing messages are simply a product of the incoming messages from all the other edges. At
each of the 2" factor nodes, both upgoing and downgoing messages satisfy

ﬁajﬁ()[x()] X ZP(J;] | xo)yjﬁaj [xj]7 ﬁa]‘*)j [x]] X ZP(‘%.] | xO)VO*)Otj [‘ro]v (4)

where P(x; | zo) is given by equation |1} and is specific to the factor node considered. The notation
o means that the messages—that are probabilities—are to be normalized (e.g. Zmo Vo ;=0 [xo] = 1).

We now consider the lower, unfiltered part of the tree. As illus- (a) 0
trated in Fig. 2[b), each of the “full” factor nodes is connected to X
three variable nodes, representing the parent and two children in Var—0 A \‘\”Oﬁa?k
the standard branching process. The outgoing messages from the ai D D Qo
factor node should satisfy Vi As ‘\\ﬁa‘zk_}zk
I}a%u[xu} X Z qum[mrljl%a[wl}yr%a[xry (5) O O
T, Ty :

For all variable nodes except for the root detailed above, the sin-
gle outgoing messages are equal to the single incoming messages
in these variable nodes at the previous/next layer of the tree. For
example, the upgoing messages 11, in Fig.[2[(a) is simply 01,
where « is the full factor node lying below variable 1 (assuming
k < {). Efficient convergence to the fixed point is guaranteed if
one starts from the leaves and updates the messages in an upgoing
pass, and then performs a downgoing pass from the root, for a to-
tal of 2(¢ — k + 1) steps. Once the messages have converged, any
unknown variable can be optimally reconstructed by computing the Figure 2: Illustration of the

marginals as two types of BP updates: (a)
plzi] o H Damsils], (6) above; (b) below the filter
acoi level k.

where 0i is the set of factor nodes connected to variable node 7. In our problem, this product will
therefore typically be over a single factor node when inferring masked leaves, or 2* factor nodes
when inferring the root.

In the following, we will adopt the short-hand notation BPj, to denote a BP implementation that
assumes the computational graph of the k-filtered hierarchical model, thus able to perform exact
inference in a matched case with data with filtering parameter equal to k.

3 HOW TRANSFORMERS LEARN TO CLIMB THE HIERARCHY IN TIME

3.1 EXPERIMENTAL SETUP

We will focus on the encoder-only variant (Devlin et al.l 2019)) of the celebrated “vanilla” trans-
former architecture, introduced in [Vaswani et al.| (2017). A full recap of this parametrization is

given in Appendix

In a nutshell, each of the sequence elements x; € {1,...,q} is first converted to a positionally-

informed token wz(-o) € R<. For our experiments, we consider d = 128 and the standard sinusoidal

positional encoding of Vaswani et al.| (2017). Each transformer block in the network then maps
the previous encoded sequence onto a new sequence of tokens with the same length and embedding
dimension, through a concatenation of a self-attention layer and a fully connected layer, with residual
connections and layer normalization. The self-attention layer importantly introduces some mixing
between the different tokens in the sequence, represented by what we will refer to as an attention

matrix A € Rﬁ_[ x2" The fully connected layer will be taken to be a standard 2-layer network with
relu activations and hidden dimension d’ = 2048. Following these operations, repeated ny, times
to obtain the full encoder, we obtain a position-dependent high-dimensional representation of each
of the original symbols in the sequence. What is finally done with this sequence of tokens depends
on the task at hand: we consider root classification in Sec. [3.2] and masked language modeling in

Sec.3.3
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Motivated by our focus on understanding the transformer’s implementation, we will take the number
of attention layers to match the depth of the unfiltered generative tree, n;, = ¢. Studying varying
values of k for the training data will effectively allow us to explore cases where there are more
attention layers than hierarchical levels in the generative tree, while we discuss the consequences of
having n;, smaller than the number of hierarchical levels in Appendix

In the following, all numerical experiments are performed on the same realization of the transi-
tion tensor, randomly sampled for ¢ = 4 using the parametrization described in Appendix [A] (see
also our Reproducibility Statement below). While there may be quantitative differences for differ-
ent randomly generated tensors—particularly at small g—results remain qualitatively unchanged in
experiments on different grammars, see Appendix

3.2 SUPERVISED CLASSIFICATION

In the context of our model, a natural idea is to use the root of a tree x as a label for the generated
sequence {x;}, and to train a transformer encoder architecture on the associated classification task
using a dataset of P labeled sequences. To perform the root prediction, the tokens in the final layer
are concatenated position-wise (forming a large d x 2¢ vector) and fed to a linear readout, which
outputs ¢ logits associated with the possible root symbols. The network is trained by minimizing
the cross-entropy loss between these logits and the correct one-hot encoding of the root.

Optimal test accuracy. We find that given sufficient labeled data 1.0
P > P*, transformers achieve optimal root classification accuracy
in the fully hierarchical model, as illustrated in Fig.[3] For a given
level of factorization k on the training set, the networks also approach
the optimal accuracy predicted by BP; on a test set with a matched
factorization level, see Fig. [I0] of Appendix Notice that, while
in the case k = 0 the exact algorithm finds the value of the root with
certainty, this is no longer the case for k > 1.

<
o0
)

Test accuracy

<
<)
1

Different from the Random Hierarchy Model of |Cagnetta et al.
(2024)), characterizing analytically the scaling of P* with the param-
eters of the grammar with our non-uniform transition probabilities is
a challenging goal, and is left for future work. Still, we discuss the
role of the filtering parameter k of the data model on the sample com-

plexity in Appendix [D.3] Figure 3: Evolution of the
root prediction accuracy on

full hierarchical £k = 0
test samples for transform-
ers trained on P labeled
samples generated with k =
0,1,2,3,4 (top to bottom).
Dashed lines indicate, for
each k, the accuracy com-
puted with the BP algorithm
of the k-filtered trees (opti-
mal only for k =0).

Out-of-sample testing. In our data model, one can also test all the
trained models on out-of-sample values of the filtering parameter k.
For example, we test models trained on intermediate filtered data,
with £ > 0, on the full hierarchical test dataset, with k = 0, as il-
lustrated in Fig. 3| or test that trained on ¥ = 0 on k£ > 0 samples,
see Fig. In both cases, the transformers achieve a performance
that exactly matches that of BP in the presence of the same mismatch
between the assumed inference graph and the data generative graph.
We stress that, in this mismatched task, the BP prediction is no longer
optimal, yet the trained networks systematically reach the same accu-
racy. This observation provides the first evidence that the transformers are implementing an approx-
imation of the BP algorithm matched with the training data distribution.

Full prediction matching. So far, we have established that the trained transformers match
the accuracy of the exact inference algorithm on the root prediction in- and out-of-sample.
We can however go one step further, as the transformers output ¢ logits, which were passed
through an argmax operation to yield a prediction. Taking the softmax instead gives a nor-
malized g-dimensional vector, which we can interpret as the marginal probabilities of the root
symbol given the input sequence, and compare to the exact marginals obtained with BP. We
find that these match extremely well at the end of training, as shown by the small Kullback-
Leibler divergences averaged over in-sample inputs in the k& = 0 case in Fig. [I(a), and simi-
larly for £ > 0 on both in-sample and entirely out-of-sample inputs in Fig. [11] of the Appendix.

6
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While such a match is not entirely surprising in the deterministic
k = 0 problem, as the one-hot encoding of the root label against
which the transformer logits are compared at training corresponds to
the exact marginal distribution yielded by BP, the match is highly
non-trivial in the ambiguous k£ > 0 instances, where the transformer
is never explicitly guided towards the correct values during training,
as the one-hot encoding of the root label does not correspond to the
exact marginals anymore. This calibration therefore provides a sec-
ond strong piece of evidence that the transformers spontaneously im-
plement exact inference.

o .y
o] o
A !

Test accuracy
o
D
f

0.44

Supervised learning dynamics. Looking more specifically at the 0 0 10° 100 102

learning dynamics of a network trained on the full hierarchy sheds Epoch
some light on the learning process of the transformer encoder. Fig. 4]
shows the evolution of the test accuracy not only on data generated
in the same way as the training set with £ = 0, but also on filtered
datasets with k¥ > O—and therefore on out-of-sample data. One can
notice multiple stages in the learning procedure: in the first epochs,
the network imputes a simplistic explanation of the data, resolving the
leaf-to-root correlations—aided by the supervised signal—, as well as
the short-range correlations between the leaves. As a result, the test
accuracy increases for all values of k. As time progresses and longer-
range correlations are discovered in the training data, the accuracy on
the most filtered datasets drops towards the mismatched BPg predic-
tion, since the imputed higher correlation levels are not present in the
out-of-sample test data. In the meantime, the accuracy for the smallest values of k keeps increasing.
In a limited number of epochs, as the network perfectly learns to infer the root on k¥ = 0 data, the
BP, oracle accuracy is reached on all levels of factorization.

Figure 4: Evolution of
the root prediction accu-
racy computed on filtered
test datasets, with & =
0,1,2,3,4 (from top to bot-
tom), for a model trained on
k = 0 data and P = 217,
¢ = 4, g = 4. The dashed
lines represent the out-of-
sample BP prediction.

This picture can be further refined by considering the predictions of a transformer trained on the
full hierarchy and the evolution of their distance from the marginals predicted on the same data
by the BPj, oracles, for all k& > 0. As illustrated by the Dy, in Fig. c), we observe an initial
stronger alignment to BP,, which only considers leaf-to-root correlations. As training on k = 0
data progresses and the transformer shifts towards the correct prediction, the model predictions
sequentially align to versions of BP that incorporate more and more of the correlation structure—
i.e., BP; with decreasing values of k.

3.3 MASKED LANGUAGE MODELING

We now turn to self-supervised training, where the model learns from a dataset of P unlabeled
sequences. In simple terms, the Masked Language Modeling (MLM) training procedure consists of
randomly masking parts of the sequences and asking the model to recover them from the context.
This is closer to what is done in practice to train large language models, see e.g. Devlin et al.|(2019));
Liu et al. (2019). While in principle one could mask several symbols simultaneously in training, we
focus on single-symbol masking—at a random position in the sequence—in the following, given
the limited length of our sequences (a single symbol representing already 6.25% of the sequence for
¢ = 4). Contrary to the root inference task, in MLM perfect accuracy cannot be achieved even in the
fully hierarchical case, because of the stochastic nature of the branching process in the generative
tree. The optimal performance is still yielded by the BP matched to the test data.

To reconstruct the masked symbol, we now feed a single token, selected from the final transformer
encoding at the positions associated with the masked element, to a linear layer producing a vector
of logits. The network is then trained by minimizing the cross-entropy loss between these logits and
the one-hot encoding of the masked element in the sequence.

Optimal reconstruction performance. Given sufficient data, we find that transformers again ap-
proach optimal accuracy on data with any level of filtering. We show the case trained on k£ = 0 in
Fig.[5] where the transformer reaches the BP( accuracy also on out-of-sample test data with k£ > 0.
Consistent with intuition, the required amount of training data P* is increased relative to the super-
vised task, as the network must learn to resolve the weak long-range correlations in the sequence
without any supervised signal from the top of the hierarchy. Moreover, compared to root classifica-
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tion, the networks trained for MLM require much longer training—typically ~ 103 epochs in place
of a mere ~ 10 epochs for classification—to approach optimal performance, see Fig. 5] vs Fig.

Full prediction matching. To go beyond test accuracy, we also consider the full probabili-
ties outputted by the transformer. As shown in the top panel Fig. [T[b), we find them to be
close to the exact predictions obtained from BP when measured on in-sample inputs. To con-
firm the generality of this correspondence, we extend the comparison to uniformly sampled data
in the bottom panel of Fig. [[{b). In this setting, we still observe high correlations between
the outputs, albeit with more dispersion related to the markedly atypical nature of these test
samples with respect to the finite training data. Measuring the alignment using the Kullback-
Leibler divergence, shown in Fig. [T(d), or else the sample-specific prediction match and Spear-
man (ranking) correlation between the two discrete probability distributions, shown in Fig. [12]
of Appendix confirms the near equivalence between transformer and BP computation.
Note that it is again remarkable to observe the correct calibration of
the logits given that the network is trained with hard labels for the
masked symbols, although the task is probabilistic in nature.

Self-supervised learning dynamics. By analyzing the out-of-
sample performance with different filtering levels, we also unveil the
sequential nature of the MLLM learning process. Computing the test
accuracy on all k levels throughout the training dynamics, we ob-
serve a clean “staircase” behavior in the test accuracy, as shown in
Fig.[5] This picture confirms and clarifies the experiments in Fig. [
showing that the network sequentially resolves the nested levels of

Test accuracy

the hierarchy, in a bottom-up order. Note that the observation of the 010° 10! 102 10°
shorter-range correlations being learned first is consistent with the Epoch
signal-to-noise picture exposed in |Cagnetta & Wyart| (2024). More-

over, the presence of a sequential mechanism of discovery and resolu- )

tion of different moments of the data distribution has been studied in  Figure 5:  Evolution of

Refinett1 et al.| (2023)); Bardone & Goldt (2024); Rende et al.|(2024).
Overall, the convergence of the transformer to both the in-sample and
the out-of-sample token prediction accuracy of BP supports the claim
that the model learns to implement a close approximation of the exact
algorithm. The learning mechanism is also confirmed by the behavior
of Dk, along the training, shown in Fig.[T{d): analogous to the root
inference case, but more qualitatively compelling, the predictions of

the root prediction accu-
racy computed on filtered
test datasets, with k& =
0,1,2, 3,4 (from top to bot-
tom), for a model trained on
k = 0dataand P = 217,
¢ = 4, g = 4. The dashed

lines represent the out-of-

a transformer trained on the fully hierarchical data sequentially align R
sample BP prediction.

with the BP;, marginals, with decreasing k as training progresses and
longer-range correlations are accounted for by the transformer.

4 HOW TRANSFORMERS EMBED THE EXACT INFERENCE COMPUTATION

Attention map analysis. In the root inference task, the readout performing the prediction is fed
with the entire sequence of tokens. As a result, there are many ways for the transformer encoder to
distribute the computation across its layers, and no necessity for single tokens to carry information
on all the ancestry levels in the tree, making it a non-ideal setting for mechanistic interpretation.
In the MLM task, on the other hand, single token encodings are used to predict the masked
symbols. This requirement seems to guide the model towards more interpretable attention maps,
shedding some light on how the model may approximate the optimal algorithm. They are shown in
Fig.[6] each row referring to a transformer encoder trained on data with different filtering levels—k
increasing from top to bottom.

In the fully filtered case (bottom row) there is no need to combine the different elements of
the sequence before the readout and the attention matrices are nearly uniform. Now, as we re-
duce the level of filtering in the generative process, clear patterns emerge in the attention map.

Note that transformers trained on the classification task still present some patterns related to the hierarchical
nature of the data model, albeit less clearly, see Appendix D.5]
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First, the model focuses on short-ranged corre-
lations between nearest neighbors when £ = 3
and, as we decrease k, towards patterns of size
~ 2¢7F_which is the exact size of the stronger
correlated block with a filtering parameter k—see
Sec.[2] Given the recombination allowed by the r -
readout, it appears that having ny, = ¢ — 1 lay- g 5
ers is sufficient to allow for a rather transparent g n
implementation. Note that the similarity between
the k = 1 and k = 0 cases (top two rows) is nat-
ural: as visible in Fig. [T(a), the tree topology in "

these two cases is identical and only the transition s
probabilities for this first layer is different.

Interestingly, the network naturally organizes the
attention layers hierarchically. This is particu-
larly visible when there are fewer redundant lay- P
ers i.e. in the cases £k = 0,1 (two top rows in
Fig.[6). Such a layout is consistent with the BP
algorithm on the full tree, where one combines el- T
ements pairwise while going up the tree. While a
typical BP implementation includes a downward i
pass, it is possible to avoid this step if the to- 1
ken embedding dimension, d, is sufficiently large.
To illustrate this point, we propose an existence
proof of a plausible implementation of the BP al-

Figure 6: Visualization of the n; = 4 attention
matrices (averaged over 10* input sequences)

gorithm in an architecture.

Exact transformer embedding of BP. In a
natural implementation of BP, inference for the

for transformers trained on the MLM task on
different filtered datasets, with k = 0,1,2,3,4
(top to bottom rows), and P = 218, ¢ = 4, ¢ =
4. For the fully factorized model with k£ = 4,

MLM task requires the messages from the visi-
ble leaves to reach the top of the hierarchy and
descend back to the masked symbol, effectively
propagating through 2/ layers. A proposal in
Zhao et al.|(2023) for a transformer embedding of
the inside-outside parsing algorithm—a general-
ization of the above-described BP to the unknown
topology setting—requires as many transformer
blocks as double the sequence length—here 2—, and an attention head per hidden symbol in the
hierarchy. Thus, it might seem surprising that a single-head transformer encoder with ¢ blocks could
be sufficient to mimic the BP algorithm. To prove the feasibility of its implementation within these
architectural constraints, we propose an idealized transformer implementation of the BP algorithm.
Note that some of the key ingredients of this feasible implementation are introduced for the sake of
interpretability but are not imposed in our experiments, and therefore this does not represent an exact
explanation of the trained transformer computation. The complete existence argument is deferred to
Appendix [E] while here we provide a high-level description of some key ideas.

the one with the smallest correlations (the leaves
are independent conditional to the root) the at-
tention matrix appears structureless. When k&
decreases one sees the emergence of markedly
non-zero attention blocks of size <~ 2¢=% For
k = 0,1, the trained attention matrices reflect
all the hierarchies of the correlations.

We consider a fully disentangled embedding of positional and semantic information in the vectorized
tokens, contained in d = ¢(¢ + 2) + ¢ dimensions. The isolation of the semantic information
allows the implementation of a simple position-based attention mechanism, inspired by the factor
graph structure, and compatible with the attention matrices in Fig.[6] Then, going up the hierarchy
requires the computation of a trace of products (see equation [)), which can be well approximated
by the fully connected layers in the second part of the transformer blocks, provided the attention
selects the right terms in the product. The less intuitive component of the implementation is the
computation of the messages directed towards the leaves, used in the MLM task. Given the limit
on the number of transformer blocks, this computation must be done in parallel with the upward
climb of the hierarchy, despite the missing downward messages. It turns out that, by exploiting
O(q*) memory slots in the token embedding—and thus with an increased memory cost compared to
BP—a different recursion with the same result as the standard message-passing can be implemented,
within the ny, = ¢ constraint for the number of transformers layers.
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Probing the encoder representations. To confirm
that the computation going up the tree is distributed se-
quentially in the transformer blocks, consistent with the
exact embedding of BP, we undertake a probing exper-
iment similar to those performed e.g. in Zhao et al.
(2023). First, we analyze the encoder trained on the
full hierarchy, i.e. the kK = 0 case from the experiment
in Fig.[6] While keeping the encoder weights fixed, we
attach two-layer readouts (64 hidden units) after each of
the 4 blocks of the encoder, trained to extract informa-
tion about the ancestors of the leaves from the tokens in
the corresponding positions. As shown in the left panel
of Fig.[/] the prediction accuracy is high on the ances-
tors up to one level above the probed representation,
deteriorating on higher levels of ancestry. Note that the
additional level is resolved because the two-layer read-
out can learn to perform the computation to climb up

Test accuracy

1 2 3 1 2 3
Tree layer Tree layer

Figure 7: Test accuracy in the ancestor
prediction task (in our convention layer 0
is the root) with £ = 4, ¢ = 4. (Left)
Predictions obtained by reading the inter-
mediate transformer encoding levels of a
model pre-trained on the full hierarchy
(k = 0), using the level 4 (circles), 3

(squares), 2 (diamonds) and 1 (triangles)
encoding. (Right) Predictions obtained by
reading the last layer transformer encod-
ing of models pre-trained on filtered data
with & = 1,2, 3,4 (light green to purple).

one layer of the hierarchy.

As a means of comparison, in the right panel of Fig.
we conduct a similar probing experiment attaching
read-outs to the last encoder layer of the models trained
with £ > 0 data, from the experiment in Fig. @ In this
case, the token representations should not provide accurate information about ancestors past the last
hierarchy level passed by the hierarchical filtering. We find qualitative agreement between the cor-
responding curves in the two panels, as expected from a direct comparison of the attention matrices.
For example, the ancestor prediction performance from the second layer encoding of the £ = 0 case
(first-row attention maps in Fig. [6) is compatible with that on the final encoding of the k = 2 case
(third row in Fig. [6). This finding supports the claim that the increasing levels in the hierarchy are
learned sequentially in the transformer blocks, consistent with a natural implementation of BP.

Synergy between tasks and MLM pre-training. The probing experiment in Fig.[/|shows that the
MLM training produces transformer representations that carry information about the leaf ancestors,
despite the absence of supervision. In the context of our model, this straightforwardly explains why
self-supervised pre-training allows a large speed-up in the supervised training process, in line with
many empirical observations on real-world data [Howard & Ruder| (2018). We verify that this is
indeed the case by fine-tuning an MLM pre-trained model on the root inference task. As shown
in Fig. [T(f), we observe a significant reduction in the labeled data required to achieve optimal root
inference—P™* in Sec. , both with frozen and with fine-tuned encoder weights.

5 CONCLUSIONS

The modularity of our data model allowed us to uncover how transformers sequentially discover and
implement longer-range correlations during the learning dynamics. These findings are compatible
with similar observations in controlled studies Rende et al.|(2024) and with a general understanding
of the learning process of LLMs trained on natural language Kaplan et al.| (2020). Moreover, this
mechanism could be exploited to shape theory-driven curriculum learning strategies for NLP, where
curating the presentation order of training examples was already proven effective Campos|(2021).

Generalizing our filtering-based interpretative tool to the case of variable sequence lengths |Allen-
Zhu & Li| (2023)—where the topology of the parsing tree is not known a priori—is a challenging
but promising direction for approaching a more detailed understanding of the learning dynamics and
the embedded computation in transformer trained on natural language.

On the other hand, the idealized model of structured sequences studied in the present work might be
less suited for modeling natural language compared to standard CFG constructions, yet the agnostic
nature of the approach could open connections to related fields, like protein sequences analysis
Zhang et al.| (2023) and immunology Meynard-Piganeau et al.| (2024)), and to different inference
problems where optimal inference can be achieved via dynamic programming Mossel et al.| (2014;
2023).

10
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REPRODUCIBILITY STATEMENT

We provide the source code used to perform our numerical experiments in the Supplementary Mate-
rial (SM). It includes a Python script generating the data, as well as the PyTorch implementation of
the transformer and training scripts for both root inference and MLM. It finally provides an efficient
implementation of the Belief Propagation algorithm which can be used for both root inference and
Masked Language Modeling. The data used to produce the figures in the main text corresponds to
fixing seed = Oand sigma = 1 in the data generation script, see Appendix [A]for details on the
role of the latter.

A FURTHER DETAILS ON OUR DATA MODEL

The transition tensor M—the “grammar” of our generative model in CFG terminology—fully con-
trols the properties of the above-defined generative process. We define a parametrized ensemble
of random grammars, from which multiple transition tensors can be sampled independently. Two
grammars generated with the same parameters are expected to share some high-level features and
produce data of comparable complexity, at least in the large vocabulary size limit. Elaborating on
recent work on context-free grammars (see Sec. [2.3]of the main text), we generate transition proba-
bilities as

M ehabe
abc — <~ 1 7
’ Zb’c’ eftavrer @
where the logits hgp. are generated as
aoc .f b) as
habc — {05 b 1 ( C) €0 (8)
—00 otherwise,

with &, independent Gaussian random variables of zero mean and unit variance, and ¢ controlling
the probability fluctuations between likely and unlikely transitions. Here, the ¢ sets O, build a
equal-sized partition of the ¢? possible children pairs (b,c), i.e. O, N Op = 0 if a # a’ and
| Us Ou| = ¢%. This non-overlapping prescription implies that the broadcast from the root to the
leaves has no ambiguity. Therefore, as stated in the main text, if the transition tensor M is known,
one can deterministically go up the hierarchy of the tree and infer the root given a set of leaves. We
leave generalizations of this setting for future work.

B VANILLA ENCODER-ONLY TRANSFORMER ARCHITECTURE

A sequence of leaves {r;} generated by the hierarchical model and represented by 2¢ integers is
first converted into a sequence of one-hot vectors {x;}, with ; € BY. E] Then, we perform the
first encoding step producing a sequence of fokens {wgo)} € R?, with arbitrary dimension d >
q, obtained through a learnable projection to the embedding space and the inclusion of positional
encoding p;,

-”31('0) = WEgx; + ps, )

with Wg € R%¥9 and p; € R<. For our experiments, we consider d = 128 and the standard
sinusoidal positional encoding of [Vaswani et al.|(2017)).

As described in the main text, each transformer block in the network then transforms the tokens as
follows,

:igl) = layernorm (a:(l_l) + selfattention(a:(l*l); W(l), ng), W‘(/I))) , (10)

i

wgl) = layernorm (i(l) + FC(:ZZ(-Z); Wl(l), W2(l))> . (11

i

The single-head self-attention layer considered in this work entails the computation of three different
quantities from each token: the query g; = Wqx;, the key k; = Wi x; and the value v; = Wy x;.

3For simplicity, the procedure described here does not consider special tokens. In practice, we will take a
vocabulary of size g + 1 to account for masked symbols when doing MLM, see Devlin et al.{(2019).

11
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For simplicity, we take W, Wi and Wy, in R4 <. The queries and keys are combined to compute
the attention matrix

Ay — softmax (%) , (12)

then used to build a linear combination of the values,
2[
selfattention(z; Wo, Wi, W) = Z Aqjvj. (13)
j=1

The fully-connected layer, instead, is a standard 2-layer network with relu activations:
FC($“ le WQ) = W2 relu (WliL'Z) 5 (14)

where W, € R4 W, € R¥*4 and d’ = 2048 in our experiments. We refer the reader to the
original paper by [Vaswani et al.|(2017) for additional details on the transformer encoder operations.

C FURTHER DETAILS ON NUMERICAL EXPERIMENTS

All numerical experiments presented in this paper were performed using PyTorch (Paszke et al.,
2019) version 2.3.0. We use the Adam (Kingma & Ba, |2014) optimizer with batches of size 32
and a fixed learning rate of 10~%, other parameters left as default. We did not find learning rate
scheduling to provide significant benefits in our experiments. All models were initialized randomly
using the default settings (Xavier uniform distribution).

In both root inference and MLM, the accuracy of the transformer implementation and of the BP over
M trials is measured straightforwardly as

M
Accuracy = i Z 0, 2, (15)
y=1

where x, is understood as the ground truth and &, the symbol inferred using the network or BP.

The Kullback-Leibler divergence between two discrete probability distributions encoded as n-
dimensional vectors « and v, is given by

Diw(u || v) =Y uq log (ga) . (16)
a=1 @

D ADDITIONAL FIGURES

D.1 INFLUENCE OF THE NUMBER OF ATTENTION LAYERS

Establishing a relation between the number of encoder layers n, in the transformer and the ability
to achieve this optimal classification on data generated from hierarchical models is also not straight-
forward. Indeed, given the concatenation of operations involved in a single transformer block and
the presence of residual and normalization layers, the effective number of computational layers in
a transformer is not as explicit as in a multilayer perceptron or a CNN architecture. As apparent in
the main text, setting ny, = {—or ny, > ¢ — k for filtered data—enables the transformer to converge
towards a very interpretable parameter configuration. However, this natural choice does not appear
to be strictly necessary for the transformers to achieve optimal inference, at least when the number
of embedding dimensions d is large.

More specifically, Fig. [§] shows that the test accuracy on the root classification task on & = 0
unfiltered data can reach the optimal value for n;, < ¢. While n;, = ¢ = 4 is the most sample
efficient, it is clear that n;, = 3 provides comparable performance, and only n; = 1 appears to lead
to poor sample efficiency. In all the performed experiments, a bigger value for ny, corresponded to
better sample efficiency, which seems to indicate that more flexible models require less data to reach
the same performance level despite the increased number of parameters to train.

12
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Figure 8: Reproduction of Fig. [[(b) with now n;, < 4 attention layers in the transformer encoder
and restricted to the “worst case” k = 0 unfiltered dataset.
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Figure 9: Reproduction of Fig. b) on other realizations of the transition tensor M for the same
parameters £ = 4, ¢ = 4, 0 = 1. We remind that for the & > 0 cases, the BP predictions (dashed
lines) are not Bayes optimal, as the test accuracy is measured out-of-sample here. From left to right,
these grammars can be reproduced by fixing seed = {1,15,31} in the data generation code
provided in the SM.

In any case, the required complexity of the architecture is clearly related to the amount of structure
in the data model. As an extreme illustration, in the case of fully filtered correlations k£ = ¢, the
BP marginals for the root are just products of conditional probabilities on the leaves as P(xo = a |

{z;}) x Hfil P(z; | 9 = a), i.e. a “Naive Bayes” classifier is optimal. Any layer of attention is
thus superfluous since a standard feed-forward network with a single hidden layer is sufficient for
this task. In fact, the analysis of the attention maps (trained this time on MLM) in Sec. ] confirms
this natural intuition, as most attention layers appear effectively unused by the transformer when
nr > k.

D.2 OTHER GRAMMARS

As expected from the log-normal nature of its entries, there may be significant sample to sample
fluctuations in the transition tensor M for a given value of o, which we expect to (slowly) decay
as g becomes large. All the results presented in the main text come from the same grammar with
q = 4, 0 = 1 (corresponding to seed = 0 in the data generation script provided in the SM, see the
Reproducibility Statement above), however we illustrate that all our conclusions should qualitatively
hold for any realizations of M in Fig.[9] Indeed, while there are some very clear differences in the
“difficulty” of the grammars presented, the transformer architecture performs very similarly, here on
the root inference task. All subsequent experiments can be reproduced on these different grammars,
yielding an unchanged phenomenology.

13
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Figure 10: Reproduction of Fig. [3] with the test accuracy computed on (in-sample) factorized data,
rather than the out-of-sample testing presented in the main text.

D.3 IN-SAMPLE CLASSIFICATION PERFORMANCE ON FILTERED DATASETS

Fig. [10f shows the test accuracy computed in-sample for the factorized datasets as a function of the
training set size P. The optimal inference accuracy predicted by the Belief Propagation, which is
not unity when k > 0, is reached by the transformers in all cases when trained on sufficient data.

It appears that the required amount of data P* for reaching optimal accuracy not only depends on
the specific transition tensor M (see Fig. [9] for an illustration for & = 0), but also on the level of
factorization. For intermediate values of k, P* is notably larger than with the k£ = 0 full hierarchy.
This is due to the fact that the £ = 0 case is quite unique for two (related) reasons. The first is
that the logits outputted from the network need not be calibrated, so the accuracy can reach the
optimum without the transformer having fully implemented an algorithm equivalent to BP, whereas
the relative weights of prediction must be well understood to match the optimal inference in the
ambiguous k£ > 0 cases—in other words it is easier to match perfect accuracy with approximate
weights when the true distribution is J-distributed. The other is that this being said, matching the
BP is also easier in the £ = 0 case because it is the only case where the training cross-entropy loss
corresponds exactly to that computed with the true marginals—that are also delta distributed due to
the determinism of the task—whereas in the k£ > 0 cases the training loss does not guide explicitly to
the exact marginals. The latter clearly appears in Fig.[T1] showing the Kullback-Leibler divergence
between the transformer outputted logits and the BP marginals instead of the test accuracy.

Note that the other case which has a singularly small sample complexity is that of the fully filtered
data, k = /, as it is implementable in a single feedforward layer and does not require an implemen-
tation equivalent to BP.

D.4 ADDITIONAL COMPARISON OF THE OUTPUTS
D.5 CLASSIFIER ATTENTION MAPS

Fig. [13] shows the attention maps resulting from the supervised training for transformers achieving
the optimal performance on datasets with different filtration levels. As in the masked language
modeling task, one immediately notices the emergence of blocks of size ~ 2¢~*_ In this prescription,
where tokens are not required to be fully descriptive, it is however difficult to identify a clear pattern
relating to the distribution of the computation across the different layers.

E A POSSIBLE TRANSFORMER IMPLEMENTATION OF BELIEF PROPAGATION

We show here how the BP algorithm for leaf inference can be implemented using ¢ layers of trans-
formers with token sizes which are compatible with what is used in our experiments. We consider
the “worst case” scenario of a complete, unfiltered tree generative process of depth £.
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Figure 11: Reproduction of Fig. [T0] with the Kullback-Leibler divergence between the transformer
outputs BP marginals for identical levels of factorizations for (Left) in-sample inputs, (Right) uni-
formly randomly generated inputs.
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Figure 12: Reproduction of Fig. [[(d) with the prediction (i.e. arg max) match (left) and spearman
(i.e. ranking) correlation (right) between the transformer outputs and BP marginals.

Token embedding. We propose an implementation that relies on vectorized tokens with a structure
of the form

z" = " (17)

where:

e i€ {1,...,2° is the index of a leaf
* m € {1,..., £} is the index of a transformer layer

] fr(l’m) ,r.gqu)

g ey are ¢ vectors of dimension
q (¢° elements in total) storing the quantities
needed to compute the final leaf marginals,

. ml(-m) is a vector of size ¢ storing the up-going

message for the ancestor of leaf ¢ at level m,

. ﬁgm) is a vector of size ¢ storing the up-going
message for the m™ complementary ancestor of

leaf i, see Fig.[14] Figure 14: Illustration of the upgoing

messages embedded in the tokens of the

15 transformer implementation of BP for a
tree with ¢ = 3. Complementary ances-
tors are shown with dashed lines.
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Figure 13: Reproduction of Fig. |§| for the supervised task on filtered datasets of size P = 27 for
k=0and P = 2% for k > 0.

* p; is a ¢-dimensional binary vector containing
positional information on the full path from root
to leaf 7 (see below).

In this prescription, the total dimension of each token is therefore d = ¢2 + 2q + /.

Initialization. We are going to consider the following initialization,

1

(,,gam) -2, Yab=1,...,q, (18)
b q

i =0, (19)

while the messages mEO) should be initialized as in the standard BP given a sequence, i.e. with a
Kronecker 4 for known symbols and a uniform vector for masked leaves. The positional vector p;
should finally be a binary £1 vector representing the sequence of left/right turns from the root to
leaf i (as o in equation [T).

Attention layer. In our implementation, the dot product
T
(W((gm)ml(‘M)) (W]((M):Bgm)>

entering the softmax and at the heart of the attention mechanism only encodes positional informa-

tion; more precisely, it combines the common ancestors of tokens ¢ and j down to layer £ — m of the
T

generative tree. This can be achieved with query and key matrices such that (Wém)) W}({m) has

elements equal to zero except in its lower right corner of size ¢ x £ which has the following structure:

BLi—m—1)x(t—m-1) O 0
0 —B 0 ; (20)
0 0 [0] mXm

with 8 > 1. Let us detail the role of this ¢ x ¢ sub-matrix. Its upper left terms proportional to 8 will
be relevant in the softmax, when 8 > 1, if they are positive, meaning these are common ancestors
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to tokens ¢ and j, and negligible if they are negative. The diagonal term proportional to — 3 requires
the two considered tokens to be in different positions in the sequence to contribute to the softmax,
ensuring there is no influence of the messages on themselves in the following steps. Its lower right
corner, which is populated by a m X m matrix of zeros, ensures that layers below ¢ — m in the
generative tree are no longer considered.

On the other hand, the value matrix may be used to select the correct messages in the token vector,
with zeros elsewhere.

As aresult, the total operation amounts to averaging the message incoming from the complementary
sub-tree over all the trajectories within the complementary sub-tree

0 0
selfattention(m(m);Wém),Wl((m),W‘(/m))i% Ejeg(_m) [mgm)} = mf.m) ;2D
0 0

where Sﬁm) is the set of tokens belonging to the complementary tree of token 7 at layer £ — m of
the generative tree. Note that in principle it is not necessary to average since all of the paths should
lead to the same message from the complementary tree, however keep in mind that in practice some
tokens will be masked. The averaging procedure therefore allows recovering the information (unless

all of the tokens in gl(-l) happen to be masked). Thanks to the skip connections, this contribution is
added to the initial token, populating the initially empty entries of these complementary messages
while leaving the rest of the tokens unaffected.

Fully connected feedforward layer. Following the initialization and after the attention layer, the
encoded token has the correct structure of equation One must now update the relevant informa-
tion in order to go to the next attention layer and therefore the next layer in the generative tree. More
precisely, we need to:

+ Compute the messages of the m + 1" ancestor,

» Update the quantities needed to compute the marginal for the leaf associated with the token
considered,

* Remove temporary or unwanted quantities stemming from the previous steps.

All of these must be done with an identical operation for all tokens as the feedforward layer is
applied independently for all positions in the sequence.

The first part is to update the messages following the equivalent of equation ]
) S (o), ) :
(mz “ o8 %: aP;(b,c) m; b m; c’ ( )

where P; (b, c¢) is either bc or ¢b depending on the topology of the factor node at which the up-
date takes place—a piece of information fully contained in p;. This type of operation should be
implementable, at least approximately, by a two-layer network since it is known to be a universal
approximator.

Now, we are to compute the actual leaf marginals. As mentioned in the presentation of the standard
BP implementation (Sec.[2.4), the standard approach is to perform both an upwards and downwards
pass, which would require 2/ attention layers.

Here, we instead wish to perform the computation in ¢ step, as we have seen from experiments that
the transformer can achieve perfect accuracy with ¢ attention layers and that it does not appear to

use all layers when k < £. To do so, we have included the ¢? elements of rgl), ceey r((]l) in the token
and now show how to update these. Note that if we had 2/ layers, we could instead only store ¢
quantities.
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As an example, consider the factor graph in Fig.[I4]and assume the root is not pinned. We can start
from the standard BP recursion for the down-going message received by leaf i:

(), 5 (5 (00 M) (), M| (), M

2
az,c1 \az,ba \as,cs
(23)

and define an auxiliary message with a double index dependence:

pa) S () m, (24)
(re=n),, = 22 (i), Mocoe

C1
C1

In particular, the idea is that we are tracing only over the index of the complement ancestor—which
is already available from the first layer—but not on the index of the downgoing message, which can
only be computed after reaching the top of the hierarchy. Instead, we keep in memory all the separate
contributions for each parent index. Then, we can obtain a recursion for the auxiliary messages:

(rem ), o S Mp (), (7), *
h.k

with the base case given in Eq.[24]treated in the transformer first layer. At the last transformer layer,
one can also trace over the root index, completing the recursion. Doing so in the final feedforward
layer notably yields, at the end of the transformer encoder,

zb: (r,(a’[))b . Z (zb: M};ﬂ(h,k)) (T.Z(a,e—l))h <mgz—1)>k, (26)

R,k

which is proportional to the incoming message on the leaf and therefore to its marginal if it is to
be inferred. The final linear readout may then select this relevant part of the outputted tokens to
perform the masked language modelling.

Including intermediate layers. In principle, one could add ¢ x (¢ — 1) new vectors entries in the
token in order to store the marginals at intermediate layers. These would simply be used to store the

intermediate values of the ) _, (r,ga’l )) .
b

Accommodating for filtration. The implementation described above considered the case of k£ =
0, unfiltered generative trees, i.e. the most complex case from the BP standpoint. In the case of a
dataset with filtering parameter k, one can adapt the implementation by taking ¢ — k layers. The
central difference then lies in the £ — k™ block, which must then combine the 2¥ messages going
up to the root in its feedforward layer (instead of two messages like at all other layers in the £ = 0
case).
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