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Abstract

Solving multi-goal reinforcement learning (RL) problems with sparse rewards is
generally challenging. Existing approaches have utilized goal relabeling on col-
lected experiences to alleviate issues raised from sparse rewards. However, these
methods are still limited in efficiency and cannot make full use of experiences. In
this paper, we propose Model-based Hindsight Experience Replay (MHER), which
exploits experiences more efficiently by leveraging environmental dynamics to
generate virtual achieved goals. Replacing original goals with virtual goals gener-
ated from interaction with a trained dynamics model leads to a novel relabeling
method, model-based relabeling (MBR). Based on MBR, MHER performs both
reinforcement learning and supervised learning for efficient policy improvement.
Theoretically, we also prove the supervised part in MHER, i.e., goal-conditioned
supervised learning with MBR data, optimizes a lower bound on the multi-goal RL
objective. Experimental results in several point-based tasks and simulated robotics
environments show that MHER achieves significantly higher sample efficiency
than previous model-free and model-based multi-goal methods.

1 Introduction

Although reinforcement learning (RL) has been shown to be effective in a range of reward-driven
problems [20, 18, 13, 19], current RL algorithms require massive amounts of training data [33] and
lack sample efficiency in sparse reward settings [1]. In multi-goal RL, the problem of efficiency
becomes more prominent as agents are required to accomplish multiple goals simultaneously. One of
the most essential factors affecting sample efficiency in multi-goal RL is the sparse reward, in which
case informative learning signals are very limited. Previous works have proposed many solutions such
as reward shaping [22], curriculum learning [3], exploration [23, 34], and hindsight relabeling [16, 1].
Among those solutions, learning from mistakes is a useful strategy to handle sparse rewards in multi-
goal RL settings. Hindsight Experience Replay (HER) [1] remarkably improves sample efficiency
through goal-relabeling that relabels failed experiences with actually achieved goals. Following HER,
a few works are put forward to improve goal sampling methods [9, 24, 17, 8], or utilize hindsight
knowledge for supervised policy learning [31, 12] and adversarial imitation learning [7].

Goal relabeling provides a practical paradigm for generating pseudo demonstrations to train control
policies, and deep reinforcement learning algorithms further improve upon the efficiency of relabeling
strategies [16, 1]. Most goal relabeling methods depend on trajectories and goals that an agent
collects from environments. However, intelligent agents can achieve goals in complex environments
even though they never encounter the exact same situation [26]. This ability requires building
representations of the dynamics from past experience that enable generalization to novel situations
[27, 30]. Modeling dynamics offers an explicit way to represent an agent’s knowledge about the task.

⇤Work was done during the internship with Tencent Robotics X.
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Figure 1: (a) Diagram of model-based relabeling. The real trajectory is collected by a past behavior policy µ and
the virtual trajectory is generated from the interaction of the current policy ⇡ and a trained dynamics model.
Hindsight relabeling such as HER uses real achieved goals (e.g., �(st+T ), � is a state-to-goal mapping) to
relabel, while model-based relabeling utilizes virtual achieved goals (e.g., �(s0t+n)). (b) Overall framework of
MHER. Detailed descriptions can be found in Section 4.4.

Existing methods [21, 15, 14, 28] have apply neural models to greatly facilitate predicting physical
dynamics and the consequences of actions, and provide a strong inductive bias for generalization to
novel environment situations. With the dynamics model and the current policy, we can predict future
states along with achieved goals. Can we exploit goals generated from model-based interaction for
sample efficient multi-goal reinforcement learning?

In this paper, we propose a novel framework, Model-based Hindsight Experience Replay (MHER),
utilizing environmental dynamics to handle sparse rewards. In MHER, we introduce a new relabeling
method, model-based relabeling, and then minimize a joint loss based on the model-based relabeled
data for efficient policy learning. Unlike previous hindsight relabeling methods that relabel transitions
with goals achieved at a later point during the same trajectory, model-based relabeling leverages
dynamics models to generate pseudo goals for guiding the learning of the policy, as shown in Figure 1.
The pseudo goals are collected in an efficient way without interaction with environments. Then goal-
relabeling through imagined trajectories allows an agent to re-interpret its actions using a different
goal from the perspective of the latest policy, leading to an implicit curriculum of goal relabeling
guided by the policy. With the model-based relabeled data, we apply both supervised learning and
reinforcement learning to update the policy. We theoretically prove that the policy can be improved
by minimizing the goal-conditioned supervised learning loss [12] with the model-based relabeled
data. To evaluate the performance of MHER, we conduct experiments on both point-based and
Mujoco environments. Experimental results 2 show that MHER achieves significantly higher sample
efficiency than previous works such as HER, Curriculum-guided HER [9], Maximum Entropy-based
Prioritization [34], and Goal-Conditioned Supervised Learning [12].

The main contributions of this paper can be summarized as follows:

• We present a new goal relabeling method, model-based relabeling, leveraging dynamics
models to handle sparse rewards in multi-goal RL;

• We apply supervised learning on the relabeled data and introduce a joint loss for RL training.
We also prove that minimizing the supervised loss using the model-based relabeled data is
equivalent to optimizing a lower bound on the original multi-goal RL objective;

• Empirical results on several benchmark environments demonstrate that the proposed method,
MHER, exceeds previous multi-goal RL algorithms in sample efficiency.

2https://github.com/YangRui2015/Model-basedHER.
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2 Related Work

Our work concentrates on sample efficiency in multi-goal reinforcement learning (RL) with sparse
rewards. Hindsight Experience Replay (HER) [1] introduces hindsight relabeling for multi-goal RL,
opening up a new way to learn from failed experiences with sparse and binary rewards. Based on HER,
a few studies have been investigated to find more efficient goal sampling ways. Curriculum-guided
HER (CHER) [9] selects goals in a heuristic way to balance the diversity of selected goals and the
proximity to original goals. Focusing on the long horizon problem in multi-goal RL, Maximum
Entropy Goal Achievement [24] samples from the frontier of achieved goals and gradually increases
the entropy of achieved goals. Recent woks [17, 8] view hindsight relabeling as the inverse RL and
sample relabeling goals according to their cumulative return or value function. Considering the visual
tasks, [25] leverages GAN to generate virtual goals for relabeling, but it requires collecting a special
dataset of near-goal states. In contrast to previous works, relabeling goals of MHER are generated
from the interaction between current policy and a learned dynamics model.

In addition to improving the goal sampling methods, other works introduce prioritization replay and
supervised learning to address sample inefficiency in multi-goal RL. Energy-Based Prioritization
proposes to more frequently replay trajectories with higher energy. Maximum Entropy-based Pri-
oritization (MEP) [34] prioritizes experiences based on trajectory entropy. By incorporating a few
expert demonstrations, goalGAIL [7] significantly speeds up the convergence of policy via adversarial
imitation learning. Self-supervised methods provides another simple but effective way for multi-goal
RL. Policy Continuation with Hindsight Inverse Dynamics (PCHID) [31] extends hindsight inverse
dynamics to the multi-step situation following dynamic programming, thus enabling learning in
a self-imitated scheme. Goal-Conditioned Supervised Learning (GCSL) [12] provides theoretical
guarantees that supervised learning from hindsight relabeled experiences optimizes a lower bound
on the goal-oriented RL objective. Unlike PCHID and GCSL which both use real achieved goals
for supervision, we leverage virtual goals for supervision and provide theoretical guarantees that
supervised learning with virtual goals can lead to policy improvement.

Model-based RL algorithms have been studied for a long history and generally obtain higher sample
efficiency over model-free algorithms [2]. Dyna [32] generates virtual samples with a trained
dynamics model to augment training data. Learned dynamics models can also be incorporated into
model-free algorithms to accelerate learning of policies and value functions [21]. Model-based value
expansion (MVE) [10] improves model-free value estimation with predictive transitions. To tackle
with the model bias in learned models, STEVE [5] uses an ensemble of models for a robust prediction.
Model-Based Policy Optimization (MBPO) [15] proves a monotonic improvement with limited use
of a predictive model. However, most of the model-based methods are designed for tasks with dense
rewards. PlanGAN [6] is the first algorithm to use GANs and models for planning in sparse-reward
multi-goal tasks. But PlanGAN is a planning method and requires a huge amount of computation
to simulate trajectories for selecting a single action, and it may also suffer from the accumulated
model-based errors in the long planning horizon. Different from these works, our work only utilizes
the virtual achieved goals to avoid training with full virtual states and alleviate the impact of model
bias.

3 Preliminaries

3.1 Multi-goal Reinforcement Learning

Multi-goal reinforcement learning (RL) can be characterized by the tuple hS,A,G, r, p, �i, where
S,A,G, p, � refer to state space, action space, goal space, transition function, and discount factor,
respectively, and r : S ⇥ A ⇥G ! R is the goal-conditioned reward function [26]. A commonly
used sparse reward function in multi-goal setting is defined as:

r(st, at, g) =

⇢
0, ||�(st)� g||22 < threshold
�1, otherwise

, (1)

where � : S ! G is a mapping function from states to achieved goals and is assumed to be available
[1]. Agents are required to learn a policy ⇡ : S ⇥G! A to maximize returns of reaching goals from
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the desired distribution p(g):

J(⇡) = Eg⇠p(g),at⇠⇡,st+1⇠p(·|st,at)

⇥ 1X

t=0

�
t
r(st, at, g)

⇤
(2)

3.2 Hindsight Experience Replay

Hindsight Experience Replay (HER) learns from failed experiences and tackles with sparse rewards
in multi-goal RL. Given a trajectory ⌧ = {(st, at, g, rt, st+1)}Tt=1 of length T , HER alternates g

and rt in the t-th transition (st, at, g, rt, st+1) with a future achieved goal in the same trajectory
g
0 = �(st+k), 1  k  T�t and r

0
t
= r(st, at, g0) computed by Eq. (1). After relabeling, transitions

in failed trajectories can be assigned nonnegative rewards, therefore HER addresses the core issue
of sparse rewards. HER can be combined with any off-policy algorithms such as DQN [20], DDPG
[18], TD3 [11], and SAC [13].

In our paper, we adopt the DDPG+HER framework following [1, 9]. DDPG is an off-policy actor-
critic algorithm consisting of a deterministic policy ⇡ and a value function Q : S⇥A⇥G! R. When
collecting data with the policy ⇡, Gaussian noise with zero mean and constant standard deviation
is applied for exploration, as implemented in [11]. We denote the data distribution after hindsight
relabeling as Bh. The value function Q is updated to minimize the TD error:

Lcritic = E(st,at,g
0,r0t,st+1)⇠Bh

⇥
(yt �Q(st, at, g

0))2
⇤
, (3)

where
yt = r

0
t
+ �Q(st+1,⇡(st+1, g

0), g0).

The policy ⇡ is trained with policy gradient on the following loss:

Lactor = �E(st,g0)⇠Bh

⇥
Q(st,⇡(st, g

0), g0)
⇤
.

4 Methodology

In this section we will describe how our method, MHER, integrates environment dynamics into
Hindsight Experience Replay [1] for training goal-conditioned policies. First we introduce the way
we train the dynamics model that maps current state and action to the next state [32, 10]. Then
we propose a novel model-based relabeling technique based on the learned model and introduce a
joint loss combining policy gradient [29, 18] and goal-conditioned supervised learning [12] on the
model-based relabeled data. Finally, we describe the overall framework of MHER.

4.1 Dynamics Models

When considering deterministic dynamics, the most direct way of training dynamics models is to
learn to predict the next state given current state and action. Let m(st, at) denote a learned dynamics
function that takes the current state st and action at as input and outputs an estimation of the next
state st+1. However, this model can be difficult to learn when the states st and st+1 are very similar
and the action has seemingly little effect on the changes in continuous control environments [21].
Therefore we follow [21] to learn a dynamics function that predicts the change between states by
minimizing the following loss:

Lmodel = E(st,at,st+1)⇠B

⇥
k(st+1 � st)�m(st, at)k22

⇤
, (4)

where the data (st, at, st+1) is sampled from the replay buffer B. Note that the dynamics model is
independent of goals and rewards, therefore the data to train the model m can also be sampled from
the relabeled data distribution such as Bh. With the trained dynamics model, current state st and
action at, we can predict the next state as st+1 = st +m(st, at).

4.2 Model-based Relabeling

The insight of model-based relabeling (MBR) is that states in the virtual trajectory generated by the
dynamics model can also be viewed as achieved goals for the starting state, so it can be used for
relabeling the original transition. As shown in Figure 1, given a transition (st, at, st+1, rt, g) collected
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Algorithm 1: MHER Framework
1 Given model-based interaction steps n, and ↵ in the joint policy loss Ljoint;
2 Initialize policy ⇡ and value function Q;
3 Warmup the dynamics model m by minimizing Lmodel in Eq. (4) with random samples;
4 for episode = 1, 2, . . . ,M do
5 Sample a desired goal g;
6 Collect a trajectory with the policy ⇡ and save to the replay buffer B;
7 Sample a minibatch b from the replay buffer : {(st, at, st+1, rt, g)i}Ni=1 ⇠ B;
8 Update the dynamics model m with b;
9 for i = 1, 2, . . . , N do

10 (st, at, st+1, rt, g) bi;
// model-based relabeling

11 s
0
t+1 = st+1, v = {s0

t+1} ;
12 for j = 1, 2, . . . , n do
13 a

0
t+j

= ⇡(s0
t+j

, g);
14 s

0
t+j+1 = s

0
t+j

+m(s0
t+j

, a
0
t+j

);
15 Append s

0
t+j+1 to v ;

16 end for
17 Sample random future state s ⇠ v;
18 Get virtual achieved goal g0 = �(s);
19 Recompute r

0 = r(st, at, g0) using reward function in Eq. (1);
20 bi  (st, at, r0, st+1, g

0);
21 end for
22 Update value function Q with b to minimize Lvalue in Eq. (7);
23 Update policy ⇡ with b to minimize Ljoint in Eq. (6) ;
24 end for

by a behavior policy, MBR starts at st+1 and interacts with the dynamics model m using current policy
⇡ for n steps. After interaction with the model, we have a virtual trajectory of {s0

t+i
, a

0
t+i

, s
0
t+i+1}ni=0,

where i = 0 is the original transition and a
0
t+i

= ⇡(s0
t+i

, g), s0
t+i+1 = s

0
t+i

+m(s0
t+i

, a
0
t+i

), 1 
i  n. Then, any state in the virtual trajectory implies an achieved goal guided by current policy.
MBR randomly samples from the virtual achieved goals g

0 = �(s0
t+j

), 1  j  n to relabel the
original transition: (st, at, st+1, r

0
t
, g

0), where � is the state-to-goal mapping and r
0
t
= r(st, at, g0) is

computed according to Eq. (1). In our relabeled transitions, only the goal g0 is virtually generated and
other items are real experiences, avoiding the usage of full virtual states for training the value function.
More detailed descriptions are provided in Appendix C. Note that the model-based interaction is
driven by the current policy ⇡ under original goals g, thus MBR gradually pushes the relabeling goals
towards the desired goal as the policy ⇡ improves. Theoretically, optimizing J(⇡) is equivalent to
minimizing an upper bound on the expected distance between virtual achieved goals and original
desired goals. The proof can be found in Appendix A.3. We will also verify this property empirically
in Section 5.4.

Two major advantages of model-based relabeling over previous relabeling strategies are as follows:

(1) MBR takes advantages of the current policy and environmental dynamics to generate more
diverse goals for accelerating policy learning.

(2) As the policy improves, relabeling goals will gradually approach the assigned targets,
therefore an implicit curriculum of automatic relabeling is introduced.

4.3 Learning Policy with Model-based Relabeled Data

After model-based relabeling (MBR), we further perform policy update based on the relabeled data.
Similar to [12], the policy can be optimized through supervised learning on the model-based relabeled
data. However, the difference is that we use virtually generated goals g0 for supervision and minimize
a mean square error rather than optimize the maximum likelihood, which are substantially the same
under certain assumptions. We denote the model-based relabeled transition distribution as Bm, then
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the supervised loss LSL is defined as:
LSL = E(st,at,g

0)⇠Bm

⇥
kat � ⇡(st, g

0)k22
⇤
, (5)

where g0 is relabeled using MBR. Theoretically, we prove that minimizing LSL in Eq. (5) is equivalent
to maximizing a lower bound of J(⇡), which is formally presented below.
Theorem 1. Given a Diagonal Gaussian policy with a mean vector ⇡(s, g0) and a non-zero positive

constant variance �
2
, the discount factor �, the real environmental dynamics p(·|s, a), a learned

dynamics model pm(·|s, a), the model-based relabeled data distribution Bm, and n-step model-based

interactions, minimizing the supervised loss LSL in Eq. (5) is equivalent to maximizing a lower

bound on the multi-goal RL objective.

J(⇡) � �n�
n

2�2
LSL + C1✏m + C2,

where C1, C2 are two constants independent of policy ⇡. ✏m is the model error bounded at each

timestep t: ✏m = maxtEs⇠⇡D,t [DTV (p(s0|s, a)kpm(s0|s, a))], and ⇡D is the data collecting policy

of Bm.

The detailed proof is provided in Appendix A.1.

Previous works update policy via either policy gradient [1, 9] or supervised learning [12] with the
hindsight relabeled data introduced in Sec 3.2. In contrast to these works, we propose a joint loss
combining policy gradient and the supervised loss LSL for more efficient policy learning. Specifically,
at each iteration during training, the policy is trained to minimize the following joint loss on the
model-based relabeled data Bm:

Ljoint =� E(st,g0)⇠Bm

⇥
Q(st,⇡(st, g

0), g0)
⇤

+ ↵E(st,at,g
0)⇠Bm

⇥
kat � ⇡(st, g

0)k22
⇤
,

(6)

where ↵ > 0 is the weight balancing the expected return and the supervised loss LSL. The Q-function
is updated to minimize the TD error on the model-based relabeled data Bm:

Lvalue = E(st,at,g
0,r0t,st+1)⇠Bm

⇥
(yt �Q(st, at, g

0))2
⇤
, (7)

where yt = r
0
t
+ �Q(st+1,⇡(st+1, g

0), g0).

4.4 Algorithm

The overall framework of model-based hindsight experience replay (MHER) is presented in Algorithm
1 and Figure 1 (b). First, the dynamics model m is trained to minimize the loss Lmodel using Eq.
(4) in both warm-up and training periods. For every episode, we sample a goal g from the desired
goal distribution and collect a trajectory to the replay buffer B using current policy. After collecting
data, we sample a minibatch b from the replay buffer B. For each transition in the minibatch, we
leverage the current policy ⇡ to rollout a n-step trajectory with the learned dynamics model m and
perform model-based relabeling as explained in Section 4.2. After MBR, the minibatch b belongs
to the model-based relabeled distribution Bm and is sent for training the Q network and the policy
network. The Q network is updated according to Eq. (7) and the policy is trained to minimize the
joint loss Ljoint in Eq. (6).

5 Experiments

We conduct experiments on both continuous Point2D and Mujoco environments and compare the
performance of MHER against a number of leading multi-goal RL algorithms for sparse reward
environments. We also demonstrate the effectiveness of our goal-relabeling method by visualizing
the distribution of relabeling goals.

5.1 Experimental Settings

Environments Our experimental environments consist of two Point2D environments, one Sawyer
robots, and two Mujoco robots modified from OpenAI Gym [4]. All of the five environments’ states,
actions, and goals are continuous. In the first two point-based environments the blue point aims
to reach the green circle. The other four environments (FetchReach-v1, SawyerReachXYZEnv-v1,
Reacher-v2) control a robot to reach a target position in the goal space. More detailed task description
can be found in Appendix F.

6



Figure 2: Median test success rate (line) with interquartile range (shaded area) on Point2D and Mujoco
environments acorss 10 random seeds.

Baseline Implementation All the implementations of baseline algorithms are taken from their
open-source code except GCSL, which we implement a deterministic version to fairly compare with
other algorithms. For GCSL [12], we only maintain a policy network and train it to minimize the
loss LGCSL = E(st,at,g

0)⇠Bh

⇥
kat � ⇡(st, g0)k22

⇤
, where g

0 is relabeled using future achieved goals
similar to HER and Bh refers to the data distribution after hindsight relabeling.

Implementation of MHER As for the implementation of MHER, actor and critic networks are
both 3-layer fully connected networks with 256 units each layer. All the networks are updated with
Adam optimizer, learning rate 1 ⇥ 10�3, and Polyak averaging coefficient of 0.9. To encourage
exploration, the probability of random action is set as 0.3, and the scale of Gaussian noisy is 0.2.
Following [1, 9], we perform model-based relabeling with a probability of 0.8. Note that the portion
of data without MBR is not sent for goal-conditioned supervised learning, which can be implemented
with a mask.

Training Settings We train all the algorithms for 30 epochs with one rollout worker. Each epoch
contains 1 (Point2DLargeEnv-v1, Point2D-FourRoom-v1), 5 (FetchReach-v1, SawyerReachXYZEnv-
v1), or 15 (Reacher-v2) episodes according to the difficulty of the environments. Every episode
contains 100 interaction steps with the environment. At the end of each episode, we train all the
algorithms for 5 batches with a batch size of 64.

Evaluation Settings After each epoch, we evaluate every algorithm for 100 episodes, and report
the median test success rate and the interquartile range across 5 random seeds. To train the dynamics
model m for MHER, we use a fully connected network with 4 hidden layers and 256 neurons each
layer. In the warmup period, we train m for 100 updates with a batch size of 512 and a learning rate
of 0.001. When training with MHER, we update m with the sampled minibatch for 2 times. More
detailed hyperparameters are provided in Appendix D.

5.2 Benchmark Results

We compare MHER with baselines such as DDPG, HER [1], CHER [9], MEP [34], and GCSL [12]
in five benchmark environments. For MHER, the model-based interaction step is set as 5 and the
parameter ↵ in the joint loss is set as 3. The median test success rates are reported in Figure 2. It is
apparent that MHER achieves significantly higher performance than those baselines with a much faster
learning speed. The results also show that DDPG learns slowly in all the environments, while HER,
CHER, MEP are three effective baselines. Besides, GCSL’s performance in different environments
is not consistent, e.g., in Reacher-v2 it is very close to DDPG but in SawyerReachXYZEnv-v1 it
outperforms DDPG by a large margin.

In Figure 3 (a) and 3 (b), we study how the parameters ↵ and model-based interaction steps n

impact MHER’s performance. The parameter ↵ impacts the weight of the supervised policy loss in
Ljoint when optimizing the policy, and ↵ = 0 indicates learning without the supervised loss. The
results in Figure 3 (a) suggest that as ↵ increases, performance increases when ↵  3 and decreases
when ↵ > 3. As for the model-based interaction steps, more steps may contain more long-distance
information but too many steps can lead to irrelevant goals. The results in Figure 3 (b) verify our
analysis and the horizon of 5 achieves the best performance in the candidate set {0, 1, 3, 5, 7}. More
experimental results are provided in Appendix B.
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(a) (b) (c) (d)

Figure 3: (a)(b) Parameter study of ↵ and step number in Reacher-v2 environment. (c)(d) Comparison results
with model-based based reinforcement learning baselines, MVE and MBPO, in Point2DLargeEnv-v1 and
SawyerReachXYZEnv-v1 environments.

Point2DLarge Reacher

Figure 4: Relabeling goal distributions of HER, CHER, and MHER in Point2DLargeEnv-v1 and Reacher-v2.
Blue points are real states in a trajectory, and red stars are their expected goals. Yellow points are relabeling
goals for each transition in the trajectory.

5.3 Results of Model-based RL baselines

We also make fair comparison with model-based RL baselines in Figure 3 (c) and (d), including
Model-based Value Expansion (MVE) [10] and Model-based Policy Optimization (MBPO) [15].
Implementation details of MVE and MBPO are provided in Appendix D. From the experimental
results, we can conclude that previous model-based RL methods contribute little to multi-goal RL
tasks with sparse rewards. In contrast to these algorithms, MHER can exploit environmental dynamics
to learn policies more efficiently in the sparse reward setting. We also compare with PlanGAN [6], a
planning method rather than a RL method, in Appendix B. The results show that MHER can achieve
comparable or higher performance compared with PlanGAN, although PlanGAN requires extremely
large amount of computations (detailed analysis is provided in Appendix B.1) to simulate trajectories
for selecting actions.

5.4 Relationship with Curriculum Goal Relabeling

Prior work, Curriculum-guided HER (CHER) [9] introduces an explicit curriculum for automatically
selecting relabeling goals. Nevertheless, the curriculum is hand-designed and needs to be adjusted
through hyperparameters.

In Figure 4, we compare the relabeling goals of HER, CHER, and MHER in Point2DLargeEnv-v1
and Reacher-v2 environments. We can observe that HER selects goals randomly along the future
achieved goals, leading to more goals in the end of trajectories. Besides, CHER selects goals to
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Figure 5: Ablation studies in Point2DLargeEnv-v1, FetchReach-v1, and Reacher-v2.

balance the diversity of selected goals and the proximity to the expected goal. Moreover, HER and
CHER only select real achieved goals, thus the set of sampling goals is limited. On the contrary,
MHER generates virtual relabeling goals according to the dynamics model and the current policy
under the original desired goal. In the early stage, relabeling goals of MHER are near achieved goals.
As the policy improves, they gradually approach their expected goals. The learning process of MHER
is automatically adjusted by the policy, therefore MHER can substantially achieve more efficient
curriculum learning.

5.5 Ablation Studies

To analyze the importance of model-based relabeling (MBR) and supervised learning on the MBR

data (denoted as SL) in the MHER framework, we design ablation experiments to compare MHER
variants with HER. For MBR and SL, the number of model-based interaction steps is 5 and ↵ = 3 by
default. We experiment with the following settings:

• MHER: DDPG+MBR+SL;

• no SL: DDPG+MBR, which is equivalent to ↵ = 0;

• no MBR: DDPG+SL, adding an auxiliary task to DDPG that only uses model-based relabeled
transitions to minimize the supervised policy loss.

Empirical results in Figure 5 demonstrate that MBR is more important than SL in the MHER
framework. DDPG+MBR learns faster than HER, but DDPG+SL learns very slowly in FetchReach-
v1 and Reacher-v2, and cannot converge to 100% success rate in Point2DLargeEnv-v1, which
indicates that SL is less effective compared to MBR. By combining MBR and SL, the performance
is significantly improved. The intuition behind the results is that MBR and SL achieve mutual
improvement under the MHER framework, because MBR provides goals following an efficient
curriculum to train the policy, and the supervised policy loss further improves the policy that guides
the curriculum of MBR.

6 Conclusion

In this paper, we propose the framework of Model-based Hindsight Experience Replay (MHER) to
improve sample efficiency in multi-goal RL with sparse rewards. In MHER, we introduce virtual
goals for goal relabeling and policy improvement, corresponding to model-based relabeling (MBR)
and a joint loss combining policy gradient and supervised learning with MBR data. Experiments in a
range of continuous multi-goal tasks demonstrate that MHER achieves significantly higher sample
efficiency than previous goal-conditioned works such as HER, CHER, MEP and GCSL. Moreover,
we show that MHER is efficient in the following aspects: (1) virtual goals generated from interaction
with the trained model are not limited to real experiences; (2) generated goals follow an efficient
curriculum guided by the policy; (3) policy learning takes advantage of both reinforcement learning
and supervised improvement. In the future, we would like to work on more efficient works inspired
by MHER.
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