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Abstract—Human data constitute a rich repository of knowl-
edge about environment dynamics and embodied interactions.
Existing methods attempt to use this data by retargeting human
motion to robots or pretraining visual representations. However,
these approaches may not generalize to novel object configura-
tions or capture the underlying dynamics of interactions. Our
key insight is that the dynamics of human-object interactions
are transferable to robots and can guide reinforcement learning
(RL) by reducing the exploration space. Specifically, we learn a
particle-based simplified dynamics model from human data to
generate diverse high-level trajectories through model predictive
control (MPC). Then those trajectories can successfully guide
reinforcement learning (RL) in physical simulations by improv-
ing sample efficiency and success rate, enabling generalizable
manipulations after Sim-to-Real transfer. Extensive real-world
experiments demonstrate our method not only outperforms
baselines in higher success rate and better generalizability for
single-object grasping tasks but also succeeds in challenging clut-
tered environments where existing methods fail, establishing an
effective framework for human-guided dexterous manipulation.
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I. INTRODUCTION

Human-level dexterous manipulation in robots is essential
for advancing robotic capabilities. However, dexterous manip-
ulation is challenging due to the high degrees of freedom of
robot hands and the complex non-linear dynamics in hand-
object interactions. Previous approaches either rely on model-
based trajectory optimization or model-free reinforcement
learning (RL). Model-based trajectory optimization [22, 15]
struggles to handle the complexity of dynamics. Reinforce-
ment learning methods [25, 11, 2, 7, 31] highly rely on
task-specific reward designs and are inefficient with high-
dimensional exploration spaces. Although imitation learning
methods [10] trained on real robot data showcase a solution to
the problem, they require time-consuming collection of large
amounts of real robot data[30, 3] which is not feasible for lab-
oratories. Compared to that, human data is rich in quantity and
it implicitly encodes human experience in manipulation, which
shows great potential in learning dexterous manipulation.

What should we learn from the human data? Since there is
a large morphology gap between humans and robots, directly
applying human data to robots is not feasible. Some previous
work [19, 18, 21] seek to learn visual features from human
videos, while the pre-trained representation often relies on
real-robot data for fine-tuning. Others choose to learn from
human motion trajectories. Existing methods [23, 8, 9, 27] use
optimization methods (e.g. inverse kinematics) for retargeting
human trajectories to robot motions, and perform imitation
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learning or RL to follow the trajectories. However, they
are essentially memorizing and replaying human trajectories,
failing to generalize or adapt to unseen scenarios.

Our core idea is to build a simplified physical world to
better leverage the abundant human experience and priors
in human data for guiding robot learning. In this world,
complex physics (force, mass, contact) are abstracted away,
while the successful human-object interaction priors (motion,
collision) are preserved. Specifically, we learn a particle-based
dynamics model from the human-object interaction datasets.
Having this generalizable world model, we are able to search
for diverse high-level trajectories according to different task
and object configurations. Remarkably, since our model is
learned from human data which by default contains all-success
demonstrations, it is easy to obtain a plausible trajectory by
searching in our world, which contains the human experience
and dynamics priors necessary for learning complex dexterous
manipulation skills efficiently. Our key insights are as follows:
• Our model facilitates efficient robot planning. By removing

complex low-level physics which is not necessary for high-
level planning, our model could generate reasonable plan-
ning trajectories in seconds, reducing the extensive overhead
of directly exploring in the real physical world or in physical
simulations[34, 28] for learning dexterous manipulation.

• By constructing a simplified physical world by human
experience, we can adaptively search for diverse trajectories
according to different environment and object configurations
in it. Compared to previous methods, we have better gener-
alizability to novel environment and object configurations.

• Our two-stage pipeline is efficient. The high-level trajecto-
ries generated by the world model can facilitate low-level
skill reinforcement learning in physical simulations. We
successfully demonstrate this in simulation and real robots.

II. METHODS
A. Overview

Our goal is to enable dexterous hand grasping that can
quickly generalize to complex scenarios, including unseen
objects and cluttered environments. To achieve this, we pro-
pose a two-stage pipeline that first learns to generate high-
quality reference trajectories through particle-based dynamics
modeling and model predictive control, and then trains policies
in simulation using reinforcement learning (RL) guided by the
generated trajectories. The first stage serves as high-level plan-
ning and enables quick adaptiveness to novel environments
with physics abstraction, whereas the second stage recovers
physics detail and enables sim-to-real transfer.
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Fig. 1. Method Overview.We employ a two-stage pipeline that enables dexterous hand grasping in complex, unseen environments. (a) A particle-based
dynamics model is learned from human-object interaction data. (b) The shared particle-based representation between human and robotic hands enables model-
based planning for robot trajectory generation (c) The generated trajectories are used to guide reinforcement learning in a physics-based simulator to recover
detailed dynamics. (d) The learned policy is then transferred zero-shot to the real world.

We formalize this problem as a Markov Decision Process
(MDP) M = (S,A, P, r, γ). At each time step t, the robot
observes the state st ∈ S and selects an action at according
to a policy π: at ∼ π(at|st). The environment then transits to
state st+1 and the robot receives a reward rt. The policy is
optimized to maximize reward given a reference trajectory τi.

The reference trajectory τi is generated by minimizing a
cost function between desired goal state with a sequence of
states predicted by dynamics model f . The model trained on
human-object interaction data captures hand-object dynamics
priors and operates in a particle-based representation of hand
and object, which is shared between human and robotic hands.
B. Learning World Model from Human Object Interactions

We argue that particle representation is a transferable repre-
sentation for real-world hand-object interactions. Specifically,
it enables adapting dynamics priors learned from human hands
to robot hands or novel objects by modeling local particle-
based behaviors that generalize across different entities.

We train a GNN [17, 1] on DexYCB dataset [5], which
contains real-world 3D hand and object pose sequences. Hand
poses are represented using MANO model [26], while ob-
jects are with scanned meshes and 6DoF poses. To construct
particle-based representations, we sample a fixed set of ver-
tices from the MANO hand template and uniformly sample
surface points from each object mesh, maintaining temporal
correspondence by applying the poses at each frame.

Our model operates in the joint hand and object particle
position space st = (xobj

t , xhand
t ), taking as input the current

state st and action at defined as displacement of hand particle
positions at = xhand

t+1 − xhand
t , and predicts the next state st+1.

At each timestep t, we construct a graph Gt = ⟨Vt, Et⟩
where each node vi,t = ⟨xi,t, ci,t, ai,t⟩ encodes the particle’s
position xi,t, particle attribution ci,t ∈ 0, 1 (where c = 0
denotes object particles and c = 1 denotes hand particles),

and action ai,t. For hand particles, the action is defined as
the displacement between consecutive frames and is set to
zero for object particles. Intra-hand and intra-object edges
are pre-defined based on spatial proximity in a canonical
pose, while hand-object edges are dynamically constructed by
connecting particles within a distance threshold. Please refer
to the appendix C for additional details.

Given the graph, we first obtain node feature and edge
feature through node decoder and edge encoder respectively.
These features are thus propagated through edges using mes-
sage passing, and the updated node features are decoded to
predict the next-step particle positions xi,t+1.

To reduce error accumulation over time, we train the model
autoregressively: starting from the ground-truth initial state
s0, we recursively predict future states, using each predicted
state as input for the next prediction. The training loss is the
mean squared error (MSE) between predicted and ground-truth
particle positions over a prediction horizon H:

L =
1

H

H−1∑
t=1

∥ŝt − st∥22 (1)

C. MPC for Searching High-level Trajectories

With the learned dynamics model, we apply Model Pre-
dictive Control (MPC) to optimize robot hand trajectories by
minimizing a cost function over predicted states. Specifically,
we leverage Predictive Path Integral (MPPI)[33] to iteratively
sample and refine action sequences.

To address the complexity of planning over long horizons,
we sample a sequence of key-frame robot commands {ut}H

′

t=0

and interpolate them to generate a full action sequence over the
horizon H . These commands are converted into hand particle
trajectories via forward kinematics, ensuring compatibility
with the particle-based dynamics model. To maintain temporal



consistency, we pre-sample particles on the surface of the robot
hand in a canonical pose and update their positions at each
timestep via forward kinematics.

Planning proceeds as follows: given an initial object config-
uration, we sample a batch of robot commands {ut}H

′

t=0, which
are converted into hand particle trajectories. These trajectories,
together with the current object state, are used as inputs to
the learned dynamics model to predict future object states
autoregressively. Each predicted trajectory is evaluated by a
cost function based on the predicted object and hand configura-
tions. We then re-weight the action samples using importance
sampling and update the distribution parameters accordingly.
This process is repeated iteratively, and the action sequence
with the lowest expected cost is selected for execution.

We use a weighted cost function defined as

ω1Lpc + ω2Lfinger + ω3Lpalm + ω4Lpene + ω5Lattr (2)

Specifically, Lpc measures mean squared error (MSE) between
the predicted and goal object particles, encouraging the object
to reach target configuration. Lfinger and Lpalm penalize distance
between hand and the object to promote reaching behavior.
Lpene discourages hand-object penetration, while Lattr encour-
ages stable grasp postures. Please refer to Appendix D-A for
detailed loss definitions.
D. Reinforcement Learning for Low-level Policies

Due to limited data distribution, the learned dynamics
model cannot fully capture complex physical interactions but
simplified dynamics behaviours, resulting in inaccurate robot-
hand-object interaction – ”magic” grasping. Though imperfect,
these high-level trajectories contain meaningful information
like approaching behaviors which can guide RL in a physical
simulator to obtain physically plausible trajectories.

We train a state-based policy which takes robot joint posi-
tions and 6D object poses as input states and predicts delta
end-effector poses and delta hand joint positions. During con-
trol, the end-effector pose is converted to arm joint positions
using inverse kinematics (IK) using Pinocchio [4].

Reward function consists of 4 items weighted by λ1,2,3,4:

R = λ1Rf + λ2Rcontact + λ3Rlifting + λ4Rsuccess (3)

The first term, following reward Rf , defined as Rf =
β1Rj + β2Ree,x + β3Ree,r, encourages the robot to follow
reference hand motions. The other terms are designed to
encourage task success. Please check the appendixA-C for
detailed illustrations of each item.

III. EXPERIMENTS

In this section, we investigate the following questions:
• Does our generative reference trajectory enable sample-

efficient learning of grasping policies on both seen and
unseen objects?

• Can our framework generalize to cluttered environments
and perform obstacle avoidance without explicit collision
supervision?

• Can the policy learned in simulation successfully transfer
to the real world?

A. Sample-Efficient Grasping on Seen and Unseen Objects

1) Experiment Setup: Task Setup. For single-object grasp-
ing task, we divide objects into 3 test sets: 1. DexYCB
[5] objects used in dynamics model training 2. DexYCB
[5] objects not used in dynamics model training 3. In-the-
wild daily objects. For each object, we sample a reference
trajectory and train a separate policy. Performance is evaluated
using the success rate (SR), defined as whether the object
reaches a predefined height. Each experiment is repeated three
times with different random seeds, and we report the average
performance metrics. Please see simulation environment and
policy implementation details in appendix A-A.

Baselines. We compare our method with 3 competi-
tive baselines: (i)RL Engineering replacing the trajectory-
following term replaces by reaching reward to encourage
the hand reaching the object defined as where Rr = 1 −
tanh

(
α1

∥∥∥T t
palm − T t

object

∥∥∥
2

)
where T t

palm and T t
object are the

3D position of the palm link on the robot hand and the 3D
position of the object at timestep t, respectively. (ii) Human
Motion Retargeting using human-demonstrated trajectories
from the DexYCB dataset with motion retargeting [24] from
human hand to robotic hand, (iii) S2S Trajectory Generator
(State-to-State Regression) uses a GPT2-style transformer to
predict the future hand-object state St+10 using the history
hand-object states St+a(a = 0, 1, ..., 9) in an auto-regressive
manner. Note that the only difference between the baselines
and our method lies only in the choice of reference trajectory;
all other settings for policy training are kept consistent.

2) Results: Table I summarizes results for single-object
grasping tasks. It should be noted that seen and unseen refer
exclusively to whether an object was included in the training
data for the dynamics model only. Our method demonstrates
strong consistency across both categories, indicating that the
learned dynamics model generalizes well to unseen objects
with minimal performance degradation.

While the Human-Retargeting baseline benefits from high-
quality human demonstration data and achieves a strong over-
all success rate, ours performs comparably, without relying on
additional data for novel objects. Moreover, we outperform the
other two baselines by a large margin.

As shown in Figure 3, our method converges faster even
compared with Human-Retargeting baseline. This efficiency
advantage is likely due to the embodiment gap between human
and robotic hands in motion retargeting [24], which can result
in penetrations or infeasible grasp poses.

B. Obstacle Avoidance in Cluttered Environments

1) Evaluation Setup: Task Setup. We create three clustered
environments with either a large obstacle or densely packed
objects to evaluate generalization to unseen scenarios, making
obstacle avoidance during execution highly challenging. In
each environment, we define two different target objects for
grasping, resulting in a total of six distinct scenarios. Perfor-
mance is evaluated using the success rate (SR), defined as the
percentage of successful lifts where the obstacle is untouched.



SR (%) ↑ Seen YCB Objects Unseen YCB Objects Unseen In-the-Wild Objects
Ref. Trajectory mustard cracker sugar bleach cerave chocolate gelsheet moisture Avg.

None 33 6 22 16 3 0 8 12 13
Human-Motion-Retargeting 78 61 - - - - - - -

Trajectory Generator 64 58 42 27 0 28 42 0 33
Ours 82 69 81 90 69 53 83 58 73

TABLE I
QUANTITATIVE RESULTS IN SIMULATION: seen AND unseen REFER TO WHETHER AN OBJECT IS IN THE TRAINING DATA OF THE DYNAMICS MODEL.

Human-Retargeting

Ours

State-to-State

RL-Engineering

Fig. 3. Learning curves (shaded areas show variances of the 3 seeds).

Each experiment is repeated three times with different random
seeds, and we report the average performance metrics.

Implementation. We reuse the dynamics model trained in
the previous experiment section but modify the trajectory gen-
eration process by incorporating obstacle information. Specif-
ically, we extend the hand-object penetration cost in MPC to
account for penetration with each individual object. During the
second stage of RL training (Section II-D), our policy follows
the generated obstacle-avoidance trajectory as a reference,
without direct access to explicit obstacle information. For
a fair comparison, we introduce an extra penalty reward
item only for all baseline methods to directly access explicit
obstacle information: if the robot hand touches any non-target
object, we will give a large penalty (e.g. -10). We use the
same experimental setting in the single-object grasping tasks,
including training iterations, and evaluation criteria.

2) Results: Table II shows the quantitative results, demon-
strating that our method consistently outperforms all baseline
methods. Unlike baselines, our approach has no noticeable
performance degradation while our baseline fails in almost
all the scenarios. By leveraging high-level trajectory guidance
without requiring additional penalty terms, our method demon-
strates strong planning and search capabilities, enabling rapid
adaptation to novel, cluttered environments.

SR(%) ↑ Cluttered scene-1 Cluttered scene-2 Cluttered scene-3
Ref. Trajectory mustard bleach bleach sugar bleach sugar Avg.

None 7 12 0 3 0 0 4
Human-Motion-Retargeting 0 0 0 0 0 0 0

Trajectory Generator 0 0 18 2 0 0 3
Ours 77 85 82 83 78 62 78

TABLE II
RESULTS IN SIMULATION ON THREE CLUTTERED ENVIRONMENTS.

C. Real World Experiments
1) Experiment Setup: Task Setup. We validate the zero-

shot transfer of our policies on a real robot across six

environments, including single-object grasping and cluttered
scenarios. For seen and unseen single-object grasping tasks,
we apply the same randomization range: ±5 cm in the xy
plane and ±30◦ rotation around the z-axis. For cluttered
environments, we use a variation of ±3 cm in xy and ±10◦ in
z rotation. We select the best-performing seeds for evaluation
and repeat each experiment ten times. Please see Hardware
Setup and Implementation Details in appendix A-B.

SR (%) ↑ Single-seen Single-unseen Cluttered scene-1 Cluttered scene-2 Cluttered scene-3
Ref. Trajectory mustard bleach mustard bleach bleach bleach Avg.

None 20 50 0 0 0 0 13
Human-Motion-Retargeting 50 80 0 0 0 0 22

Trajectory Generator 60 60 0 0 0 0 20
Ours 80 90 80 80 70 70 78

TABLE III
REAL-WORLD EXPERIMENTS ON SIX ENVIRONMENTS, INCLUDING seen,

unseen, AND CLUTTERED SCENARIOS.

2) Results: Shown in Table III, our policy transfers to
the real world with minimum performance degradation and
significantly outperforms all baseline methods. Notably, while
for seen-mustard task, the Human-Retargeting baseline per-
forms well in simulation, its grasp posture fails to ensure a
stable grasp in the real world, leading to execution failures.
Interestingly, for the unseen-bleach task, both RL and S2S
baselines achieve higher success rates than in simulation, pri-
marily because we selected a successful seed for deployment.
All baselines fail in cluttered environments, which aligns with
their near-zero success rates observed in simulation. Figure 4
provides qualitative examples of robot using our methods to
successfully grasp objects while navigating around obstacles.

t
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Fig. 4. Real-World Experiments. Left: experimental setup. Right: examples
of the robot successfully grasping objects while navigating around obstacles.

IV. CONCLUSION

We propose to learn a particle-based world model from
human to facilitate robot learning. We use the model to
adaptively search for diverse trajectories for different object
configurations. We successfully demonstrate the effectiveness
of our methods under various settings in simulation and real-
world robots.
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APPENDIX A
IMPLEMENTATION DETAILS

A. Simulation and Policy Implementation Details

Simulation environment. We use a PSYONIC Ability
Hand mounted on an xArm 7 to match our real-world hardware
setup. For simulation, we employ SAPIEN [34] and OpenAI-
Gymnasium [29] to enable multi-process parallel simulation.

Implementation. We use hand-object interaction data from
DexYCB, filter out unseen objects, extract sequences of hand
and object particles. We represent the hand with 40 particles
and each object with 100 particles. For sampling, we generate
1000 samples per iteration and update over 15 iterations
which takes around 60 seconds. Policy learning is performed
using Soft Actor-Critic(SAC)[12], and we set the maximum
environmental steps at 7.68 million steps for training which
is enough for all the baselines to converge. We apply domain
randomization and object initial configuration randomization
with an xy translation range of ±5 cm and a rotation range
of ±30◦ around the z-axis. A grasp is considered successful
if the object is lifted by at least 8 cm.

B. Real-World Experiments

Hardware setup. We use a PSYONIC Ability Hand
mounted on an xArm 7 for real-world experiments, as illus-
trated in Figure 4. A RealSense D435i depth camera, calibrated
following [14], is used to capture RGB-D data for object pose
estimation.

Implementation. We use FoundationPose [32] for object
pose estimation, which tracks the object pose given object
meshes, RGB-D observations, and an initial object segmen-
tation mask. At the start of each experiment, we manually
select a bounding box around the target object in the input
image and apply Segment Anything (SAM) [16] to extract
the initial segmentation mask. Using the estimated pose, we
align the simulation by initializing the object to match its real-
world configuration. The policy is then executed in simulation
for 120 timesteps, producing a sequence of joint positions that
are used as reference targets for execution on the real robot.

C. Reinforcement Learning

In the RL reward function (equation 3) in the main paper,
there are 4 items. The first term, following reward Rf , defined
as Rf = β1Rj + β2Ree,x + β3Ree,r, encourages the robot
to follow reference hand motions. Here, the first component
Rj = 1 − tanh (α1∥qt − q̂t

′∥) encourage the robot hand
to follow reference joint positions, where qt and q̂t′ are
robot hand joint positions at timestep t and reference robot
hand joint positions at corresponding timestep t′. The second
component Ree,x = 1 − tanh (α2∥xt

ee − x̂t′

ee∥) and the third
component Ree,r = 1 − tanh (α3ϕ(θ

t, θ̂t
′
)) constrains robot

ee pose where xee are robot ee position and ϕ computes
the angular distance between robot ee orientation θt with its
reference θ̂t

′
.

We use a small weight on the joint following reward Rj ,
as reference motions can be imprecise. Instead, we encourage
finger exploration through Rcontact , which gives a reward only
when the thumb and at least one other finger make contact
with the object. We assign an additional task-success related
lifting reward Rlifting = λ5h where h is the lifted height (cm)
compared to the initial pose of the object, and give a large
reward Rsuccess when task success. In experiments, we do not
tune the parameters for the reinforcement learning policy for
different object or different task. By contrast, we use the same
set of the parameters for all the experiments shown below:
λ1 = λ2 = λ3 = λ5 = 1, λ4 = 15, β1 = 0.1, β2 = β3 =
1, α1 = α2 = α3 = 1

APPENDIX B
ADDITIONAL EXPERIMENTS

A. Generalization to Diverse Object Poses

pose-1 pose-2 pose-3 pose-4 pose-5 pose-6 Avg.

Success Rate (%) 83 76 75 69 72 74 75

TABLE IV
SUCCESS RATES OF MUSTARD BOTTLE UNDER 6 NOVEL POSES

In Table IV, we conduct experiments for testing the gener-
alizability of our methods under the various object poses. We
randomly selected 6 distinct poses (which is unseen during the
world model training) in a area with the size of a US-letter
paper. Results demonstrates that our method could adapt to
novel object positions and orientations well. Results can also
be found in video materials.

APPENDIX C
DISCUSSION ON DYNAMICS MODEL IMPLEMENTATION

A. Graph Construction Process
A key requirement for our dynamics model training is

maintaining consistent particle correspondences over time, i.e.
each particle remains in the same region of hand or object
throughout the entire trajectory. We adopt tailored strategies
for sampling and processing points on the object, human, and
robot hand as illustrated in Figure 5.

Object Point Sampling Our method assume access to
the object mesh. A fixed set of surface points is obtained by
uniformly sampling the mesh. These points are transformed
using the object’s pose at each frame, resulting in a consistent
and trackable point cloud across time.

Human Human (MANO) Sampling Human hand Hu-
man hand pose is represented using the MANO model [26],
which deforms a shared mesh template over time. We apply
furthest point sampling (FPS) to a flat hand pose (canonical
pose) to select a fixed subset of mesh vertices, which are then
extracted from the MANO mesh at each frame to ensure one-
to-one temporal correspondence.

Robot Hand Sampling We adopt a particle-level forward
kinematics approach to generate pose-aware particle sets con-
sistent with the robot’s motion. For each hand link, a dense



point cloud is sampled in its canonical (link-local) pose, and
each point is associated with its link. At each frame, we
apply link transformations via forward kinematics to obtain
consistent particle positions. To reduce redundancy, furthest
point sampling is applied on a flat robot hand pose.

Edge Construction We construct intra-hand edges (hu-
man or robot) by connecting particle pairs within 0.04 m in
the flat hand pose. Intra-object edges use 5-nearest neighbors
(5-NN) in the canonical pose. Hand-object edges are built
dynamically per frame between hand and object particles
within 0.04 m.

B. Implementation Details

The dynamics model is trained with MSE loss using Adam
Optimzier with a learning rate 5 × 10−4 and batchsize 32.
Hyperparameters for dynamics models are shown in Table
V. Following [1], we restrict the magnitude of the rotation
component of predicted rigid transformations for a single step
to be at most 30 degrees to stabilize training, which is much
larger than any rotation that occurs in our datasets. Model
training converges within 1 hours with one NVIDIA RTX 4090
GPU.

Hyperparameters Value Hyperparameters Value

Training sequence length 5 steps Testing sequence length 30 steps
# graph points per object 40 # graph points per hand 40
Node encoder MLP width 150 Edge encoder MLP width 150
Node encoder MLP layers 3 Edge encoder MLP layers 3

Edge effect MLP width 150 Edge effect MLP layers 3
Edge propagation steps 3

TABLE V
HYPERPARAMETERS FOR DYNAMICS MODEL.

C. Ablation on Graph Construction Choice

We perform ablation study on graph construction choice
using DexYCB [5] dataset, following its default train and
test split. We compare our model with a variant where edge
connectivity is independently re-computed at each time step
without preserving temporal consistency.

(a)Sample from canonical pose (b) Obtain sequential particles that  
maintain correspondences over time 

Fig. 5. Graph Construction Process for Dynamics Model. (a) Hand and
object particles, along with intra-hand and intra-object edges, are sampled
from a canonical pose. (b) These particles maintain consistent correspondences
across the sequence, resulting in temporally coherent graphs.

We evaluate model performance using three metrics: Cham-
fer Distance, Earth Mover’s Distance (EMD), and translation
difference (tdiff) between the predicted and ground truth ob-
ject states. As shown in Table VI, our full model achieves
lower errors across all metrics, demonstrating the benefit of
temporally consistent graph structure. This consistency acts
as an inductive prior, encouraging the model to focus more
effectively on capturing hand-object interactions, leading to
improved dynamics prediction.

Chamfer ↓ EMD ↓ tdiff ↓

Ours 0.0179 0.0140 0.0161
Ours w/o Edge consistency 0.0180 0.0146 0.0165

TABLE VI
ABLATION STUDY ON GRAPH CONSTRUCTION. WE COMPARE OUR FULL

MODEL WITH A VARIANT WITHOUT TEMPORAL EDGE CONSISTENCY,
EVALUATED USING CHAMFER DISTANCE, EMD, AND tDIFF OF PREDICTED

OBJECT STATES WITH GROUND-TRUTH STATES.

APPENDIX D
IMPLEMENTATION DETAILS IN MPC

A. Cost Function Definitions

We use a combination of cost functions as planning objec-
tives.

Point Cloud Distance Cost penalizes the distance be-
tween predicted object particles to the goal object particles.
Decay factor γ reduces the influence of earlier time steps,
placing more emphasis on aligning the predicted object with
the goal configuration in the final frame, which is the most
important.

Lpc =

H−1∑
t=0

γH−t−1∥x̂obj
t − xobj

goal∥2 (4)

Finger-to-Object Distance Cost and Palm-to-Object Dis-
tance Cost penalize the distance between the hand (specifi-
cally, the fingers and palm) and the object, thereby encour-
aging reaching behaviors. At each timestep, the minimum
distance between any finger (or palm) particle and any ob-
ject particle is computed and summed across the prediction
horizon.

Lfinger =

H−1∑
t=0

min
i,j

∥x̂finger
i,t − x̂obj

j,t∥2 (5)

Lpalm =

H−1∑
t=0

min
i,j

∥x̂palm
i,t − x̂obj

j,t∥2 (6)

Here, x̂finger
i,t and x̂palm

i,t denote the predicted positions of finger
or palm particles at timestep t. These particle groups are
predefined on MANO[26] mesh template or robot hand links.

Penetration Cost enforces a key physical constraint to
prevent hand-object intersection, inspired from priors work in



hand-object pose estimation[13, 6]. Specifically, it penalizes
predicted hand particles that penetrated the object:

Lpene =

H−1∑
t=0

∑
v∈x̂hand

t

(−1ϕ(P̂−1v)<0 ϕ(P̂−1v)) (7)

where ϕ(x) is the trilinear interpolated SDF value at location
x from the object’s SDF volume. P̂−1v transforms the hand
particles back into the object’s canonical coordinate space,
using a transformation P̂ derived from corresponding points
alignment between particles in the object’s canonical space
and those in the predicted state.

Attraction Cost encourages contact between the finger-
tips and the object [13] by penalizing the minimum SDF values
of the five fingerts that are outside the object:

Lattr =

H−1∑
t=0

n=5∑
i=i

min
v∈x̂j-th finger

t

(1ϕ(P̂−1v)>0 ϕ(P̂−1v)), (8)

where x̂j-th finger
t is predefined j-th finger particles. We follow

the same strategy as [6] to determine when the attraction cost
should be applied: when the maximum penetration (i.e. the
maximum of the negative SDF) exceeds a threshold, the hand
is considered to be in contact with the object, and the attraction
cost is activated to pull distant fingers closer.

We set γ = 0.8, ω1 = 30, ω2 = 0.5, ω3 = 0.5, ω4 = 5, ω5 =
0.5 in all experiments.

B. Details in MPPI Planning

We sample a sequence of keyframe robot commands
{ut}H

′

t=0, where each command has (6+n) degrees of freedom
(DoF): 3 DoF for wrist position, 3 DoF for wrist orientation
represented in axis-angle form, and n DoF for joint positions.
These keyframe sequence is then upsampled to the full tra-
jectory length H by applying linear interpolation to the wrist
position and joint positions, and spherical linear interpolation
(slerp) to the wrist orientation. The hyperparameters used for
the MPPI optimizer during planning with the learned dynamics
model are summarized in Table VII.

Hyperparameters Single Object Cluttered Environment
Action sampler temporal correlation β∗ 0.3 0.3

MPPI # samples 1000 1000
Robot commands keyframe horizon H′ 9 11

Robot commands full horizon H 30 30
MPPI # iterations 15 30

MPPI scaling temperature γ∗ 1 1

TABLE VII
HYPERPARAMETERS FOR PLANNING. WE USE NOTATION FROM [20]

FOR PARAMETERS DENOTED BY ∗.


