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Abstract

Attention has been widely adopted in many state-of-the-art deep learning models.1

While the significant performance improvements it brings have attracted great2

interest, attention is still poorly understood theoretically. This paper presents a new3

perspective to understand attention by showing that it can be seen as a solver of a4

family of estimation problems. In particular, we describe a convex optimization5

problem that arises in a family of estimation tasks commonly appearing in the de-6

sign of deep learning models. Rather than directly solving the convex optimization7

problem, we solve its Fenchel dual and derive a closed-form approximation of the8

optimal solution. Remarkably, the solution gives a generalized attention structure,9

and its special case is equivalent to the popular dot-product attention adopted in10

transformer networks. We show that T5 transformer has implicitly adopted the11

general form of the solution by demonstrating that this expression unifies the word12

mask and the positional encoding functions. Finally, we discuss how the proposed13

attention structures can be integrated in practical models.14

1 Introduction15

Attention-based deep neural networks are now integrated into cutting-edge language models that16

have revolutionized a broad range of tasks: machine translation [1, 15], sentiment classification [27],17

image captioning [29] and unsupervised representation learning [5], etc. Especially, attention plays a18

pivotal role in the construction of the transformer architecture [25], which has had a profound impact19

on the deep learning field.20

Despite great empirical success, the driving principles of attention are still poorly understood. This21

lack of understanding impedes practitioners from confidently and appropriately using attention layers22

and makes it challenging to develop new attention-based neural architectures.23

In this paper, we offer a new perspective for understanding attention by showing that it is in fact24

a solver for a certain type of optimization problem that corresponds to an inference task. We give25

several examples, all of which can be characterized as follows: given 1) an unreliable estimate of26

the mean of an unknown distribution p on Rd and 2) a preference distribution u on Rd encoding27

beliefs on p’s selection, the inference task is to get a better estimate of p’s mean given its unreliable28

estimate and u. We derive a convex optimization problem that is abstracted from the task and solve it29

by instead solving its Fenchel dual [22, p.104]. Remarkably, the derived expression of the improved30

estimate of p gives a generalized attention structure whose special case is equivalent to the popular31

dot-product attention [15] that is also applied in the transformer network [25]. In addition, we show32

that our generalized attention expression has been implicitly adopted by T5 transformer [19] as the33

expression unifies the concept of word masks and its positional encoding functions. Extra examples34

are given to show how the generalized attention structures can be used in practice.35
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2 Related Works36

Since 2019, several authors have investigated the properties and working mechanism of attention.37

This series of works mainly addresses whether the attention mechanism can serve as a proxy of38

saliency [9, 18, 23, 24, 26, 28]. Most of these works obtain insights into the attention mechanism39

by performing empirical studies. The related methods include analyzing the behaviours of trained40

attention-based networks [4], or pruning a few heads, or analyzing the effects of altering the attention41

weights [18, 26], or a mixture of these [9, 24].42

Apart from understanding attention empirically, some theoretical results presented by Brunner el43

al. [3] and Hahn [7] show that the self-attention layers are not identifiable. This implies there could44

exist multiple combinations of attention weights that can provide equally good final predictions.45

In particular, such non-uniqueness means that the use of attention may complicate interpretability.46

Another important approach to understand attention is to analyze its asymptotic behaviour when47

the number of heads and the network width approach infinity [8, 30]. In this limiting case, the48

entire network can be seen as a Gaussian process [13] and its behaviours can be characterized by49

closed-form expressions that are not available in the finite case.50

Very recently (since 2021) several theoretical works have appeared that study attention outside the51

asymptotic regime. Lu et al. [14] set up a simple attention-based classification model and derive a52

closed-form relationship between the word’s embedding norm and the product of its key and the53

query. They empirically show that such relationship also exists in a more complicated and practical54

configuration. Ramsauer et al. [20] construct an equivalence relationship between attention and55

a newly proposed Hopfield network with continuous states. In particular, they show that the new56

Hopfield network’s update rule is equivalent to the attention mechanism used in transformers [25].57

3 A Motivating Example58

We first consider a seemingly unrelated example, to illustrate the key ingredients of this paper.59

Assume a probability distribution p on Rd has a spherical Gaussian prior u ∼ N (µ, Id). Let hp60

denote the mean of the unknown p. Given an unreliable observation b of hp, what is the best guess61

of hp? To solve this problem, we may formulate the following optimization problem62

p∗ = arg min
p

α

2

∥∥∥∥b− ∫ ap(a) da
∥∥∥∥2 +K(p, u), (1)

with α > 0 responsible for the relative strength of the two terms, where K(p, u) denotes the KL63

divergence between p and u. The basic idea behind (1) is that: although b is not reliable, it should64

not be too far from hp =
∫
ap(a) da. Also, as u encodes the preferred value of p, we add the65

KL divergence term to show preference for p that is close to u. As will be discussed later, such a66

formulation can be either obtained from the maximum likelihood principle or from the maximum67

entropy principle [10, 11]. In particular, Rioux et al [21] develop (1) for image de-blurring by applying68

Maximum Entropy on the Mean (MEM), an information-theoretic method due to Gamboa [6] but not69

yet widely known in machine learning.70

After obtaining the minimizer p∗ of (1), its mean
∫
ap∗(a) da gives our estimate of hp. Rioux et71

al. [21] prove, via Fenchel duality [22, p.104] that the minimizer p∗ takes the form72

p∗(a) =
u(a) exp〈a, λ∗〉∫

u(a′) exp〈a′, λ∗〉 da′
, (2)

where73

λ∗ = arg max
λ∈Rd
〈b, λ〉 − 1

2α
‖λ‖2 − log

∫
Rd

u(a) exp〈a, λ〉 da. (3)

Note that
∫
Rd u(a) exp〈a, λ〉 da = exp(〈µ, λ〉 + 1

2 ‖λ‖
2
) as it is the moment generating function74

(MGF) of u ∼ N (µ, Id). Substituting the expression into (3) followed by setting the derivative with75

respect to λ to zero yields λ∗ = α
α+1 (b − µ). By (2), p∗(a) ∝ exp(− 1

2 ‖a− µ‖
2

+ 〈a, λ∗〉) ∝76

exp(− 1
2 ‖a− (µ+ λ∗)‖2). Substituting λ∗ = α

α+1 (b− µ) into it implies that p∗ follows a Gaussian77

distribution N ( 1
1+αµ+ α

1+αb, Id). Thus, our estimate of hp is 1
1+αµ+ α

1+αb.78

2



In this paper, we focus on a similar optimization problem that estimates hp assuming that u is instead79

a discrete distribution. We show that such optimization problems naturally and frequently arise in80

neural network designs. By solving the optimization problem, we derive a closed-form approximation81

for the estimate of hp, via Fenchel duality. The approximation then gives a generalized attention layer82

structure as shown in Fig 1. A special case of it is equivalent to the familiar dot-product attention [15]83

that is also adopted in transformers [25]. Moreover, we will show that T5 transformer [19] implicitly84

adopts our generalized attention expression.85

4 Setup of a Design Problem86
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Figure 1: A conceptual graph of the deep learning model
that we work with. The block g(k) is the one we will
investigate.

Throughout the rest of the paper, we87

consider a machine learning problem88

in which the objective is to predict an89

output quantity Y from a given input90

X . Additionally, Y may include K91

components, namely, be expressed as92

(Y (1), Y (2), . . . , Y (K)). To be more93

concrete, we present a few example ma-94

chine learning problems and let them95

run through our development.96

Example: Translation Problem. In97

this problem, the input X is a sentence,98

or a sequence of words, in the source99

language, and output Y is the sequence100

of words in the target sentence, where101

Y (k) denotes the kth word.102

Example: Image Captioning. In this problem, the input X is a raw image and output Y is the103

sequence of words in the caption, where Y (k) denotes the kth word.104

Example: Filling in the blanks task. This task has been used to train the BERT model [5]. The105

input X is a sequence of words with certain percentage of words masked. The output Y are the106

predicted masked words, where Y (k) denotes the kth masked one.107

The objective of any of these problems and that we address in this paper is to learn a function F ,108

mapping from the space of X to the space of Y so that Y = F (X). We will denote by F (k) the part109

of F responsible for predicting Y (k) (Fig 1a), namely, Y (k) = F (k)(X). Although we here express110

F as separate functions (F (1), F (2), . . . , F (K)), we note that it is in fact possible that different F (k)’s111

share some component in common. We now focus on the design of F (k).112

We restrict the architecture of F (k) to the form in Fig 1b with the main focus on the inference of h(k).113

The extraction of feature h(k) is via two parallel modules f (k)evd and f (k)pref that directly operate on the114

input X followed by a function g(k) (in Fig 1c), which we will design.115

The Design Problem We describe the problem of designing g as follows.116

Suppose that there is an unknown distribution p(k) on Rd whose mean vector is h(k), namely,117

h(k) =

∫
Rd

ap(k)(a) da. (4)

Let u(k) be another distribution on Rd that is generated as the output of a network module f (k)pref . Here118

u(k) is referred to as the preference distribution, which serves as a prior guess of p(k). Specifically119

u(k) puts non-zero probability masses on M “template” vectors t(k)1 , t
(k)
2 , . . . , t

(k)
M in Rd, and their120

probabilities are respectively u(k)1 , u
(k)
2 , . . . , u

(k)
M (which sum to 1). Collectively, we will denote the121

set {t(k)1 , t
(k)
2 , . . . , t

(k)
M } of templates by T(k).122

The preference distribution u(k) is considered as a good approximation of p(k), in the sense that the123

support of p(k) is contained in the set T(k) of templates. Note that if Rd is the word embedding space124
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Figure 2: The model architectures of the three running examples. For the f (k)evd in (a) and (b), the
dashed links exist throughout the training and are replaced by the dotted ones in the generation stage.

for a large vocabulary, and if the size M of the template set T(k) is relative small, then restricting the125

support of p(k) to within T(k) imposes a strong constraint on p(k).126

On the other hand, u(k) is not a sufficiently accurate approximation of p(k), in the sense that u(k) may127

assign probabilities to T(k) somewhat differently. Such inaccuracy shifts the mean µ(k) of u(k) from128

the mean h(k) of p(k). Suppose that there is another piece of information z(k) ∈ Rd that is generated129

by another network module f (k)evd and provides information regarding the mean shift. In particular, we130

assume that z(k) is a noisy version of the shift, more precisely,131

z(k) = h(k) − µ(k) + ε, (5)

where ε ∼ N (0, σ2I) is the spherical Gaussian noise in Rd with covariance σ2I. We refer to z(k) as132

the evidence.133

Then the design problem is to construct a function, or a network block, g, which infers the un-134

known distribution p(k) and hence its mean h(k) based on the evidence z(k) and the preference135

distribution u(k).136

This formulation of the design problem might seem peculiar at the first glance, but we will show137

via examples (see Fig 2) that such a problem naturally arises in the construction of many machine138

learning models in practice.139

Example: Translation Problem. For the translation problem, consider the model implementation140

plotted in Fig 2a that is similar to the one proposed in [1]. We will focus on the part of the model141

responsible for inferring the kth word of the target sentence. In this model, h(k) corresponds to the142

constructed feature according to (4) that serves as an estimate of the context vector collecting the143

source sentence information. The estimated h(k) is then fed into a classifier f (k)out to predict the kth144

word. The preference distribution u(k) is generated by f (k)pref which takes the source sentence words as145

inputs. In particular, the support of u(k) consists of the source sentence word embeddings T (called146

annotations in [1]) which are pre-processed by two LSTM layers.1 The preference weight for each147

template depends on some positional encoding functions, which, in principle, should assign higher148

1In this model, given input X , all u(k)’s share the same support T. The superscripts of the templates are
then omitted to show their independence from k. Similar comments apply to implementations of the other two
running examples.
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weights to the templates appearing in the similar locations to the words we are inferring (that is, h(k)149

is assumed to rely on the templates near tk more heavily).150

Note that the inferred p(k)’s support must be a subset of u(k)’s as it is reasonable to assume that the151

target sentence words only depend on those appearing in the source sentence. Besides, although152

the preference weights specified by the positional encoding functions could provide some a priori153

information for the templates’ weights in p(k), they cannot be accurate as their inferences do not154

consider the previously generated words Y (i<t). This results in the mean µ(k) shifted from h(k),155

which is estimated by z(k) = f
(k)
evd that takes all the previously generated words Y (i<t) into account156

using another LSTM layer. Thus, h(k) and p(k) should not be far from z(k) + µ(k) and u(k),157

respectively.158

Example: Image Captioning. The caption generation model presented in Fig 2b has a similar159

architecture reported in [29]. This model shares the designs of f (k)evd and f (k)out with the translation160

model while f (k)pref instead extracts the templates from a raw image using a CNN network. In general,161

a word’s position in the caption is independent of the location of the object it describes in the image.162

Therefore, in this model, all templates extracted by the CNN share the same preference weight.163

As similar objects appear in an image would have similar features extracted by the CNN (for example,164

a zebra and a horse), allowing similar templates not in T to participate in h(k)’s estimation would165

possibly mix in information not contained in the raw image and harm the word inference accuracy.166

Therefore, we could improve the estimate of h(k) by choosing p(k) similar to u(k) in the sense that167

p(k)’s support cannot contain elements not in u(k)’s.168

Intuitively, as the generation process proceeds, the context h(k) should be updated to provide relevant169

information in the image to facilitate the next word inference. Such change is governed by the170

caption’s semantic evolution, which is captured by z(k) = f
(k)
evd that predicts the shift of the mean171

µ(k) from h(k). For this reason, µ(k) + z(k) serves as an estimate of h(k) and should not be far away172

from it. Likewise, uk should be close to p(k).173

Example: Filling in the blanks task. For the filling-in-the-blank tasks, let us consider a model174

architecture plotted in Fig 2c that is similar to the one used in BERT [5]. We focus on the inference of175

the kth masked word, which is assumed to be the jth word of the input sentence. In this model, f (k)pref176

and f (k)evd share the transformation layers (TL) that are commonly used in the NLP tasks to map one177

sequence of vector representations to another of the same length.2 Taking the output sequence, f (k)pref178

applies a linear map V to each of its elements to form T as the support of u(k) while the preference179

weights are specified by some positional encoding functions. At the same time, z(k) = f
(k)
evd estimates180

h(k)’s shift from the mean µ(k) due to the variation of the local information. For the same reasons181

discussed in the previous two examples, we need µ(k) + z(k) close to h(k) while p(k) is close to u(k).182

Notably the formulation of the problem is based on the assumption that the network modules f (k)evd183

and f (k)pref are fixed and generate z(k) and u(k) satisfying the above assumed properties. In reality,184

f
(k)
evd and f (k)pref are in fact obtained via training. However, we argue that if g is made to satisfy our185

design objective, then we can at least interpret f (k)evd and f (k)pref obtained from training as serving to186

produce z(k) and u(k) with our desired properties.187

5 Formulation of an Optimization Problem188

The discussion made in the previous section implies that the key optimization problem we are about189

to focus on should ensure190

1. h(k) is not too far from µ(k) + z(k), where h(k) is constructed by p(k) according to (4) and191

µ(k) is the mean of the preference distribution u(k).192

2. p(k) is close to u(k) while p(k)’s support must be a subset of u(k)’s.193

2Typical implementation of such layers include convolution layers, recurrent layers and self-attention layers.
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These two desiderata prompt us to optimize:194

min
p

α

2

∥∥∥∥(µ(k) + z(k)
)
−
∫
Rd

ap(a) da
∥∥∥∥2 +K(p, u(k)) (6)

with α > 0 responsible for the relative strength of the two terms, where K(p, u(k)) denotes the KL195

divergence from p to u(k). Remarkably, K(p, u(k)) has a finite value if and only if p(k) has non-zero196

values on the support of u(k). Thus, both requirements in the second desideratum are satisfied by197

using the KL divergence as a measure for the closeness of p(k) and u(k). Let p̃(k) be the minimizer of198

(6). The estimate of h(k) is199

ĥ(k) =

∫
Rd

ap̃(k)(a) da. (7)

Naturally, this optimization problem can be derived from two different, though, related perspectives.3200

A maximum likelihood perspective. The optimization problem in (6) can be derived using the201

maximum log likelihood method by treating the KL-divergence term as a regularizer. According to202

(5), the difference (µ(k)+z(k))−h(k) follows a Gaussian distributionN (0, σ2I). This implies the log203

likelihood function `(z(k)) ∝ − 1
2σ2

∥∥(µ(k) + z(k))− h(k)
∥∥2. Maximizing it with the KL-divergence204

term as a regularizer is the same as minimizing205

1

2σ2

∥∥∥(µ(k) + z(k)
)
− h(k)

∥∥∥2 + ηK(p, u(k)), (8)

where η > 0 controls the strength of the regularization. Substituting (4) into (8) followed by206

rearrangement yields207

min
p

1

2ησ2

∥∥∥∥(µ(k) + z(k)
)
−
∫
Rd

ap(a) da
∥∥∥∥2 +K(p, u(k)), (9)

which is equivalent to (6) by setting α−1 = ησ2.208

A maximum entropy on the mean perspective Consider a problem that seeks a distribution p such209

that the expectation
∫
Rd ap(a) da is not far from µ(k) + z(k). In particular, we require210 ∥∥∥∥(µ(k) + z(k)

)
−
∫
Rd

ap(a) da
∥∥∥∥2 ≤ 1

2α
. (10)

Note that, given z(k), there are infinitely many p’s that satisfy the constraints, which makes it difficult211

to pick a “best” p for later use. A technique known in information theory as the maximum entropy on212

the mean (MEM) [6, 21] solves this problem by picking the best guess of the ground truth p∗ that213

simultaneously satisfies (10) and minimizes the KL divergence to the preference distribution u(k).214

That is,215

p̃(k) = arg min
p
K(p, u(k)) subject to

∥∥∥∥(µ(k) + z(k)
)
−
∫
Rd

ap(a) da
∥∥∥∥2 ≤ 1

2α
, (11)

which is also the minimizer of (6) according to Equation (18) of [21] and Corollary 4.9 of [2].216

6 Optimal Solution217

Rioux et al. proved that the optimization problem stated in (6) has the following Fenchel dual (see218

Theorem 2 of [21]):219

Theorem 1. The dual of (6) is given by220

max
λ∈Rd

{〈
λ, µ(k) + z(k)

〉
− 1

2α
‖λ‖2 − log

∫
Rd

u(k)(a) exp〈a, λ〉 da
}
. (12)

Given a maximizer λ∗ of (12), one can recover the minimizer p̃(k) of (6) via221

p̃(k)(a) =
u(a) exp〈a, λ∗〉∫

Rd u(a′) exp〈a′, λ∗〉 da′
. (13)

3In fact, there is also a Bayesian perspective to derive the problem, which will be discussed in Appendix A.
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By Theorem 1, the estimated h(k) defined in (7) can be re-written as222

ĥ(k) =

∫
Rd

a p̃(k)(a) da =

∫
Rd

a
u(k)(a) exp〈a, λ∗〉∫

Rd u(k)(a′) exp〈a′, λ∗〉 da′
da, (14)

where λ∗ is a maximizer of (12).223

In general, λ∗ does not have a closed-form expression in terms of α, u(k) and z(k), and a standard224

paradigm is to search for it using gradient ascent-based methods. In this paper, we will not search for225

λ∗ in this way; instead, we will derive a closed-form expression to approximate it. Remarkably, this226

takes the form of the generalized attention presented in Fig 1.227

Note that the integration in (12) equals Eu(k) [exp〈W,λ〉], the expectation of the random variable228

exp〈W,λ〉 where W has the probability distribution u(k). The expectation is just the moment229

generating function (MGF) M(λ) of W , and the value logM(λ) is called the cumulant of W [17,230

p.26], which has an expansion [17, (2.4)]231

logM(λ) =
〈
µ(k), λ

〉
+

1

2

〈
λ,Σ(k)λ

〉
+O(‖λ‖3), (15)

where µ(k) =
∫
Rd a u

(k)(a) da and Σ(k) =
∫
Rd

(
a− µ(k)

) (
a− µ(k)

)T
u(k)(a) da respectively232

denote the expectation and the variance-covariance matrix of W .233

Now we assume that α is small and we argue that this assumption is justified in practice. For instance,234

in the translation task, all of words in the dictionary can serve as candidate templates, which could235

be more than 10,000, but u(k) reduces this size to the length of the source sentence (usually less236

than tens of words). The inference of p(k) should strongly anchor around this prior information;237

consequently the information provided by z(k) should weigh less. On the other hand, z(k) can hardly238

provide an accurate estimate of the mean shift, since the generation of z(k) is often ignorant of the239

templates selected by u(k) (for example, in the example translation and image captioning models) or240

generated by a low-capacity module (as in the example filling-in-the-blank model). For these reasons,241

one should de-emphasize the constraint imposed by z(k) and hence choose a small α.242

When α is picked to be small enough (see (12)), the optimization of λ gets a large penalty on its L2243

norm and thus, ‖λ∗‖ is close to zero. Then, by (15), we have244

log

∫
Rd

u(k)(a) exp〈a, λ∗〉 da = logM(λ∗) ≈ 〈µ(k), λ∗〉+
1

2
〈λ∗,Σ(k)λ∗〉. (16)

Substituting (16) into (12) followed by setting the derivative with respect to λ to zero yields245

λ∗ = α(Id + αΣ(k))−1z(k), (17)
where Id denotes the d× d identity matrix. As α is assumed close to zero, (17) is further reduced to246

λ∗ = αz(k). (18)
Plugging the expression into (14) gives the result stated as follows:247

Theorem 2. For a small enough α > 0, the estimated h(k) defined in (7) can be approximated by248

ĥ(k) =

∫
Rd

a
u(k)(a) exp(α〈a, z(k)〉)∫

Rd u(k)(a′) exp(α〈a′, z(k)〉) da′
da. (19)

For the case that u(k) is a discrete distribution with support {t(k)1 , t
(k)
2 , . . . , t

(k)
n } and the preference249

probability {u(k)1 , u
(k)
2 , . . . , u

(k)
n }, (19) becomes simply250

ĥ(k) =

n∑
i=1

ti
u
(k)
i exp(α〈ti, z(k)〉)∑n

j=1 u
(k)
j exp(α〈tj , z(k)〉)

. (20)

In Fig 3, we set d = 2 and visualize the approximation of h(k) for different selections of α. We can251

observe that, as α decreases, (20) outputs a better approximation of ĥ(k).252

Let α = τ−
1
2 , we rewrite Theorem 2 as follows for later reference.253

Corollary 1. For a sufficiently large τ , the best guess of h(k) defined in (7) with α = τ−
1
2 equals254

ĥ(k) =

n∑
i=1

t
(k)
i

u
(k)
i exp(〈t(k)i , z(k)〉/

√
τ)∑n

j=1 u
(k)
j exp(〈t(k)j , z(k)〉/

√
τ)
. (21)
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Figure 3: The approximation of ĥ(k) for different choices of α. The dots in light blue compose the
support of discrete u(k) with the preference weights labelled above. The dark blue arrow starting
from the mean µ(k) of u(k) denotes the evidence z(k). The red square marks the ĥ(k) constructed
by (14) with the λ∗ maximizes (12), while the green one marks the ĥ(k) approximated by (20). As
we can observe, (20) gives a precise approximation of ĥ(k) when α is sufficiently small.

7 Discussion255

In Section 6, we derived an alternative expression of ĥ(k) defined in (7) by solving the Fenchel dual of256

the optimization problem stated in (6). Although the expression is not in closed form, as we are only257

interested in the case when α is small, a closed-form approximation of ĥ(k) is derived in Theorem 2258

and reduced to the form stated in (21) when considering a discrete distribution u(k).259

As we pointed out, the block g(k) in Fig 2a, Fig 2b and Fig 2c is expected to find the inferred p̃(k)260

minimizing (6) followed by plugging it into (7) to construct ĥ(k). Therefore, one can complete261

the architecture designs of the three running examples by replacing g(k) with a network layer262

implementing (21), namely, the structure in Figure 1 (c).263

The relationship between the optimal solution and the attention models. Remarkably, the expres-264

sion stated in (21) gives a generalized attention block. By setting u(k)i = 1
n for all i, the expression265

is equivalent to the well known dot-product attention [15], which is also applied in the transformer266

network [25]. The equivalence of the expression of ĥ(k) and the dot-product attention layer tells us:267

(a) by applying a dot-product attention layer in a model, we essentially ask the model to perform268

an optimization task defined in (6) and construct the output according to (7). (b) the derivation of269

h(k) depends on two relatively independent pieces of information: a preference distribution given the270

global information and an estimate of the output’s deviation from the preference distribution’s mean271

according to some local information. This suggests that the design of attention-based model can be272

decomposed into two parts that respectively estimate these two values.273

The model consisting of a stack of attention layers. Although our discussion focuses on the case274

that contains a single attention layer, any attention layer L in an attention stack fits our frameworks275

(see Fig 1). In particular, all the attention layers closer to the input X than L can be grouped into the276

functions f (k)pref or f (k)evd. For those layers that take the current layer’s output as input, we can group277

them into f (k)out, where c(k) may contain the outputs of other attention layers working in parallel.278

T5 transformer implicitly adopts the generalized attention structure. We now show that T5279

transformer [19] can be seen as a realization of the generalized attention in (21), where the preference280

weights u(k) unifies the concepts of word masks and T5’s positional encoding functions. Consider281

the running example: filing in the blanks, with the preference distribution282

u(k)(ti) =

{
0 if the ith word is masked
exp(bj−i)/Z otherwise,

(22)

where Z is a normalizing constant and bj−i is a trainable scalar that only depends on the relative283

position of word i and word j (which is the kth masked word that we are inferring). Substituting284

such u(k) into (21) with τ = d yields285

ĥ(k) =

n∑
i=1

ti
exp

(
〈ti,z(k)〉√

d
+ bj−i + 1masked(i)

)
∑n
l=1 exp

(
〈tl,z(k)〉√

d
+ bj−l + 1masked(l)

) , (23)
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where 1masked(i) is an indicator function that equals −∞ if word i is masked and zero otherwise.286

The expression in (23) has the same structure as that adopted in T5 transformer, where the indicator287

function serves as the mask function to prevent the model from assigning weights to the masked288

words. In this way, the concepts of word masks and the positional encoding functions are unified289

by u(k) in (22). Conversely, T5 transformer is a realization of the generalized attention with the290

preference weights u(k) specified in (22).291

Generalized attention structures suggested by the optimal solution. While T5 transformer has292

implicitly adopted the generalized attention, (21) hints further generalizations could be made. For293

instance, in T5 transformer, the function outputting template’s preference weights only considers the294

word masks and the word’s relative positions. This function could be generalized to also consider the295

input sentence contexts, and the output weights encode the importance of each word before giving296

the local information stored in z(k). The same idea could be applied to the image captioning example297

to replace the uniform preference weights. By adding a neural network taking the input image to298

generate non-uniform preference weights, we devise a mechanism to estimate the importance of each299

part of the image before the caption generation. In this way, the newly added network collects global300

information from the image to propose a preference distribution, which could be updated locally301

based on current generation stage encoded in z(k).302

Moreover, although we mainly focus on the case when u(k) is discrete, we want to emphasize that the303

analysis performed in Section 6 also covers continuous u(k). This hints that a continuous attention304

mechanism could also be implemented, which might prove to be useful in some applications.305

Limitations and other comments. The approximations performed in (15) and (18) have implicitly306

assumed that random variableW following distribution u(k) has bounded moments. For a discrete u(k)307

with fixed support T = {t1, t2, . . . tn}, all the moments are bounded and we can always pick a small308

enough α (or equivalently large enough scaling factor τ in Cor 1) to make the approximation meet309

our requirements. A concern may arise as the support T in our running examples are supplied by310

some neural layers, which could output templates of increasing norms as the training evolves. This311

problem could be alleviated by adding norm regularization or using normalized templates instead.312

8 Conclusion313

This paper presented a new perspective to understand the attention mechanism by showing that it can314

be treated as realizing a solver of a family of inference tasks. These tasks involve improving the noisy315

estimate of a distribution p’s mean by a preference distribution that encodes some beliefs of p’s value.316

We have used three running examples with the typical model architectures to show that such tasks317

naturally exist in neural network design. We then abstracted a convex optimization problem from318

these tasks and derived a closed-form approximation of the optimal solution by solving the problem’s319

Fenchel dual. We find that the closed-form approximation can be seen as a generalized attention320

layer and show that one of its special cases is equivalent to the dot-product attention adopted in321

transformers. We further performed an analysis on the general form and showed that T5 transformer322

implicitly adopts the generalized attention structure with attention weights unifying the concepts of323

the word masks and the positional encoding functions.324

This paper is the first work that presents a principled justification for the design of attention modules325

in neural networks. The generalized attention structure presented in this paper potentially opens a door326

to a wide design space. For example, the preference weights need not be derived from the positional327

encoding functions; they could integrate a variety of information provided by other components of328

the network. Additionally, this research might have pointed to new ways to analyze the functioning329

of a neural network component, namely, via isolating the component from the complex network330

structure and asking: is there a “local problem” that is solved by the design of this component?331

Potential negative societal impacts. This paper presents a new perspective to understand attention332

and derived a generalized attention structure. Our work is foundational, which we believe does not333

have direct negative societal impacts. Due to the very wide range of applications of attention, such as334

self-driving [12] and healthcare [16], our work may have unexpected negative impacts on these areas.335
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