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ABSTRACT

Updates to Machine Learning as a Service (MLaaS) APIs may affect downstream
systems that depend on their predictions. However, performance changes intro-
duced by these updates are poorly documented by providers and seldom studied
in the literature. As a result, users are left wondering: do model updates intro-
duce subtle performance changes that could adversely affect my system? Ide-
ally, users would have access to a detailed ChangeList specifying the slices
of data where model performance has improved and degraded since the update.
But, producing a ChangeList is challenging because it requires (1) discovering
slices in the absence of detailed annotations or metadata, (2) accurately attribut-
ing coherent concepts to the discovered slices, and (3) communicating them to the
user in a digestable manner. We introduce Mocha, an interactive framework for
building, verifying and releasing ChangeLists that addresses these challenges.
Using it, we perform a large-scale analysis of three real-world MLaaS API up-
dates. We produce a ChangeList for each, identifying over 100 coherent data
slices on which the model’s performance changed significantly. Notably, we find
63 instances where an update improves performance globally, but hurts perfor-
mance on a coherent slice – a phenomenon not previously documented at scale in
the literature. These findings underscore the importance of producing a detailed
ChangeList when the model behind an API is updated.

1 INTRODUCTION

Modern software systems often depend on Machine Learning as a Service (MLaaS) APIs developed
by cloud providers (e.g. AWS, GCP, Azure) or research organizations (e.g. OpenAI, HuggingFace).
The models behind these APIs are periodically updated and new versions are released. However,
to the user, how a new update will affect the workings of their broader system is typically unclear.
Consider, for example, a newspaper that uses an image tagging API to source archival photos for
retrospective stories (Greenfield, 2018). Updates to the underlying model could lead to unexpected
changes in the workflow of photo editors and journalists who rely on the system.

MLaaS providers rarely provide transparent evaluations of their updates, and those that do focus on
global metrics and vague notions of improvement. Release notes from cloud providers like Amazon,
Google and Microsoft for their APIs are terse and provide little information e.g. Microsoft’s Vision
API (Feb ‘22 update) noting “general performance and AI quality improvements” (Microsoft, b).

These release notes tell an incomplete story: saying that one model improves on another obscures
the fact that models may perform very differently on fine-grained slices of data (Ribeiro et al., 2020;
de Vries et al., 2019). Returning to the newspaper described above, performance after the update
may improve globally, while still deteriorating on historic photos – the kind of photos commonly
found in the newspaper’s archives. Without more detailed evaluations, users are left wondering:

Do model updates introduce subtle changes that could adversely affect my system?

While many studies include detailed comparisons of MLaaS APIs (Buolamwini & Gebru, 2018;
Goel et al., 2021a;b; Ribeiro et al., 2020; Qi et al., 2020), they lack comparisons of the same API
before and after an update. Recent work shows that API updates can lead to performance drops on
benchmarks (Chen et al., 2021), but the analysis is limited to simple tasks and global measurements.

1



Under review as a conference paper at ICLR 2023

…

✔

horse

Feb�‘22

Nov�
‘20

Feb�
‘22

person

field

horse

person

field

Black�and�
white

person

field

ChangeList

142
42+1.2%

Horse�in�
field

214

-7.6%

✓
✔
✅
❎
❌
╳
✗
✘

x

Black�and�
white

Horse�in�
field

Horse�in�
field

How�can�we�explain�model�updates�to�users?

Black�and�
white

✘

✘

Mocha�creates�ChangeLists�to�describe�changes�due�to�model�updates

…

1.�Discovery 2.�Attribution 3.�Release

Figure 1: Overview of Mocha. (left) An MLaaS API updates and changes predictions for down-
stream users; (right) Mocha is an interactive framework for building, verifying and releasing
ChangeLists to explain model updates using slices of data.

Answering this question would be easier if providers released detailed reports specifying the slices
of data where performance has changed. We formalize this using the notion of a ChangeList.
Ideally, a ChangeList is interactive, allowing a user to explore how the model’s behavior has
changed on the slices most important to their system. For the example above, the newspaper should
be able to draw conclusions like: “the updated API detects objects in historic photos with 10%
lower recall”. Such conclusions would inform decisions around whether or not to integrate the
update. However, producing a comprehensive ChangeList is difficult due to 3 main challenges:

1. For complex data like images, the set of slices that partition the data is extremely large and
unknown a priori. How can we gather coherent slices that explain the change?

2. When interpreting slices, we typically attribute concepts (e.g. historic) to them. However, if
the slice was discovered automatically, it may not align perfectly with a concept, leading to false
conclusions about performance on the concept. How do we quickly perform accurate attribution?

3. The number of slices with significant changes can be very large, and not all changes will be
relevant to all users. How do we help users surface slices most important to their system?

To address these challenges we introduce Mocha, an interactive framework for building, verifying
and releasing ChangeLists for model updates. Mocha consists of three phases:

1. Discovery: First, we adapt a recently proposed slice discovery method (Eyuboglu et al., 2022)
to gather slices for the ChangeList in Mocha. We use cross-modal embeddings and a simple
mixture model to identify slices of data where the models differ. Mocha also supports manual
slicing over metadata, and can incorporate slices from any method of slice discovery.

2. Attribution: Next, we ascribe concepts to the discovered slices. Via an interactive process
termed micro-labeling, we verify the accuracy of the attributions and dynamically correct them.
Cross-modal embeddings (e.g. CLIP) are used to guide an importance sampler (Owen, 2013) that
surfaces a small number of examples for labeling. Labeled examples are then used to estimate
the precision and recall of the user attributions, and to update slices to reflect label feedback.

3. Release: Finally, to help users understand model updates, we release the ChangeList in the
Mocha web interface. The slices in the ChangeList are indexed by cross-modal embeddings,
and are therefore easily searchable by text or image. Further, if the ChangeList is missing
slices important to the user, they can initiate discovery and attribution to edit the ChangeList.

While Mocha can be used to prepare ChangeLists for any pair of models, we focus particu-
larly on demonstrating its application to the challenging real-world problem of documenting MLaaS
APIs. We use Mocha to study updates to three image tagging APIs with the HAPI database (Chen
et al.), which gathers predictions on the same test examples before and after an update. We produce
one ChangeList per API update, with findings from our study of ChangeLists below:

• The ChangeLists include over 100 coherent slices on which the model’s performance changed
significantly. These slices were not annotated in the dataset and were discovered by Mocha.

• There are 63 slices in the ChangeLists on which an API update introduced a statistically
significant degradation in performance. For example, between 2020 and 2022, the accuracy of a
model from Google Cloud Vision on the task of tagging “people” degraded by 17.7%-points for
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black and white images. This phenomenon, where an update improves performance globally but
hurts performance on a coherent slice, has not been documented at this scale in the literature.

Our findings underscore the importance of releasing ChangeLists, and we recommend that
providers and research organizations release detailed ChangeLists alongside model updates to
help users make informed decisions around integrating updates into downstream systems.

1.1 PRIOR WORK

Evaluating MLaaS APIs. A growing number of publications include evaluations of MLaaS APIs.
Some evaluate a single API in depth (Hosseini et al., 2017). Others compare several different APIs
on the same task (Yao et al., 2017; Reis et al., 2018; Hosseini et al., 2019). For example, Chen et
al. compare APIs from different providers and demonstrate that performance varies by class (Chen
et al., 2020). Several studies discuss significant racial disparities in the performance of MLaaS APIs
(Buolamwini & Gebru, 2018; Koenecke et al., 2020). More generally, evaluation frameworks like
Checklist and RobustnessGym applied to MLaaS APIs (Ribeiro et al., 2020; Goel et al., 2021b)
demonstrate an array of vulnerabilities not discernible with standard evaluations. While some of
these studies compare APIs from different providers, few compare different versions of an API from
the same API. Recently, Chen et al. (2021) showed that the accuracy of ML APIs sometimes changes
after an update. This analysis, which is most similar to our own, is limited to simple classification
tasks and does not consider error consistency or slice-level differences in performance.

Comparing Machine Learning Models. Prior studies have compared machine learning models by
measuring the consistency of the errors made by different image classifiers (Geirhos et al., 2020;
2021; Gontijo-Lopes et al.; Mania et al., 2019; Fort et al., 2019). For example, Mania et al. (2019)
measure the consistency of errors made by different ImageNet classifiers with the same accuracy,
showing that error consistency is significantly higher than would be expected if predictions from
different models were independent. Building on this, recent work explores how differences in model
initialization and architecture affect the consistency of errors (Gontijo-Lopes et al.; Fort et al., 2019).
Instead of using a fixed set of test inputs, others generate new inputs where models disagree (Li et al.,
2021; Xie et al., 2019; Pei et al., 2017) or compare outputs of explanation methods (Jia et al., 2021).

2 MEASURING GLOBAL CHANGES IN REAL API UPDATES

We first introduce change metrics, summary statistics that describe the effect of a model update on
performance. Our metrics measure (1) the performance shift due to the update and (2) the inconsis-
tency of this shift across the data. We use these metrics to provide a new perspective in the analysis
of three real API updates, which motivates our proposal to build ChangeLists in Section 3.

Preliminaries. Consider a supervised learning setup where each example (X , Y ) is composed of
an input X ∈ X (e.g. an image) and a target Y ∈ Y (e.g. a binary label). Assume we have a loss
function (or point-wise metric) ℓ : Y × Y → R. Additionally, we have black-box access to two
models trained for this task v[1], v[2] : X → Y – e.g. these models could serve predictions for the
same MLaaS API at different points in time: v[1] before an update and v[2] after. To compare the
models, we collect their predictions ŷ[j]i := v[j](xi) on a dataset D = {(xi, yi)}ni=1 ∼ P(X,Y ).

Change Metrics. We define two change metrics in terms of D = ℓ(v[1](X), Y ) − ℓ(v[2](X), Y ),
the difference in loss between the models,

1. Performance Shift (on average, did the model improve as a result of the update?). This metric
estimates the expected difference in losses,

µℓ = E[ℓ(v[1](X), Y )− ℓ(v[2](X), Y )] = E[D]. (1)
Positive values of µ indicate that the model improved after the update.

2. Performance Inconsistency (is the shift in performance inconsistent across the dataset?). This
metric estimates the standard deviation of the difference between the losses,

σ2
ℓ = Var[ℓ(v[1](X), Y )− ℓ(v[2](X), Y )] = Var[D]. (2)

Larger values of σℓ indicate that the models frequently disagree, and the shift is not consistent.
This metric is inspired by prior consistency metrics (Geirhos et al., 2020; Gontijo-Lopes et al.).
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Figure 2: Overview of Updates. We study three real-world API updates: Microsoft (a) Computer
Vision (top), Google Cloud Vision (middle), and EveryPixel Image Recognition (bottom). We
provide background information on the update (left), global metrics computed on the entire dataset
(middle, see Section 2), and a summary of the slices discovered by Mocha (right, see Section 4).

Example: zero-one loss. For the special case of the zero-one loss, ℓ01 : Y × Y → {0, 1}, we have

µ01 =
1

n

n∑
i=1

([ŷ[1] = yi]− [ŷ[2] = yi]), σ2
01 =

1

n

n∑
i=1

[ŷ[2] ̸= ŷ[1]]− µ2
01.

Observe that µ01 is simply the difference in accuracy between the models, while σ2
01 measures the

disagreement between the models that is left over after accounting for some of the performance shift.
The maximum σ01 = 1 occurs when both models have the same accuracy but disagree everywhere.

Discussion. These metrics allow us to measure when users should be cautious in using an updated
model. With positive performance shift and no inconsistency, model updates can be integrated by
users safely. However, high shift inconsistency even absent performance shift is concerning, since
the update may disproportionately hurt performance on data important to the user’s application.

A Global Analysis of APIs. We analyze global performance changes across three updates to real
MLaaS APIs: measuring ℓ01 change metrics alongside changes in recall, precision, and F1-score.
We briefly discuss the task, data, and APIs next (full details in Appendix A.4).

Task (Image Tagging). In image tagging, the input X is an image and category (e.g. horse) pair and
the target Y ∈ {0, 1} is a binary label indicating whether an object of the category is in the image.

Dataset (LVIS). We use the Large Vocabulary Instance Segmentation (LVIS) dataset, a relabeling of
the Common Objects in Context (COCO) images (Gupta et al., 2019; Lin et al., 2014) that reflects
the breadth of categories output by image tagging APIs (n = 1,577,603 across 1,203 categories).

APIs. We consider three object detection APIs: Microsoft Computer Vision API, Google Cloud
Vision API, and EveryPixel Image Keywording Service. The predictions are sourced from History
of APIs (Chen et al.), a longitudinal database of API predictions. We additionally process the API
outputs to map to labels in LVIS (details in Appendix A.4).

Results. From Nov ’20 to Feb ’22, Google and Microsoft saw accuracy shifts µ01 of +0.7% and
+1.2% respectively (+4.0% and +5.9% F1), while EveryPixel saw a small degradation in µ01 of
−0.5% (−2.9% F1). However, these shifts tell only a partial story: all three updates exhibit non-
zero shift inconsistency (σ01 > 0.15). To put this into context, the predictions of the Google API
(σ01 = 0.172 and σ01|Y = 0.326) changed on 10 +% of positive examples between versions. This
highlights that the API’s behavior changes in ways unexplained by global change metrics.

3 CHARACTERIZING MODEL UPDATES IN DETAIL

These findings highlight the importance of producing a more detailed, fine-grained understanding of
model updates. This motivates our key proposal: the introduction of a ChangeList (Section 3.1)
to explain the observed performance shift and shift inconsistency using the change in fine-grained
data slices, and an interactive framework called Mocha to build ChangeLists (Section 3.2).
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3.1 CHANGELISTS : A FINE-GRAINED CHARACTERIZATION OF MODEL UPDATES

For a user, the decision on whether to use an updated model requires understanding the data exam-
ples that account for performance shift and inconsistency. Users seek explanations that focus on the
data important to their application. We formalize this relationship through slices of data important
to users, and define ChangeLists in terms of these slices in order to reflect user needs.

Slices (S). A slice is a subset of data examples that share something in common e.g. in object
recognition, the set of images with dim lighting constitutes a slice. Formally, we represent a slice
with a random variable S ∈ {0, 1} and a set of slices with S = {S(j)}kj=1 ∈ {0, 1}k, with joint
distribution P (X,Y,S) over inputs, targets and slices. Each example has a realization of the slice
random variables {s(j)i }ni=1. If s(j)i = 1, then example (xi, yi) is in slice S(j). In practice, datasets
do not include realizations for all possible slices, e.g. not including annotations for dim lighting.
Intuitively, we would like a ChangeList to present users with slices alongside human-readable
descriptions and metrics quantifying how their performance has changed. We define these next.

Slice Attributions (A). Define random variable A(j) ∈ {0, 1} to represent a text attribution for
slice S(j) (e.g. “dim lighting”), with attributions A = {A(j)}kj=1 corresponding to S and example

level attribute realizations {a(j)i }ni=1. If a(j)i = 1, then example (xi, yi) satisfies attribution A(j).
Typically, these realizations are unknown, and only the text attribution A(j) will be given.

Slice Change Metrics (M). Given a slice S(j), denote change metrics µ(j)
ℓ , σ

(j)
ℓ for loss functions

ℓ1, . . . , ℓr, with the set of change metrics for S denoted by M = {µ(j)
ℓ1
, σ

(j)
ℓ1
, . . . , µ

(j)
ℓr
, σ

(j)
ℓr

}kj=1.

We are now ready to define a ChangeList using these concepts.

Definition (ChangeList C). Given dataset D and models v[1], v[2], a ChangeList is a collec-
tion of slices S along with their corresponding descriptions A and change metrics M.

Given this definition, we ask: what constitutes a good ChangeList? We discuss several criteria
that we expect will be desired by users of ChangeLists. These desiderata are not exhaustive, and
we expect more to emerge as ChangeLists are adopted into wider practice.

1. Diversity (of S). Different users have different slices of interest e.g. decorators may tag images
of homes, while doctors analyzing patient behavior may tag hospital images. ChangeLists
should contain a diversity of slices to reflect this.

2. Coverage (of σℓ with S). The slices S should together explain the inconsistency σℓ. The
explanatory power of S can be measured by the coefficient of determination r2 = 1− 1

σ2
ℓ
E[(D−

f(S))2], where f(s) = a+ bT s is a function fit by performing a linear regression of D on S.
3. Alignment (of A with S). Attributions should align with the examples in each slice, and users

should be able to read these attributions to understand the content of each slice.
4. Relevance (of M). Change metrics reported in the ChangeList should be chosen to be rele-

vant to the tasks for which the models are to be used.
5. Navigability (of S). Users of ChangeLists should be able to search over information in the

ChangeList, including global change metrics, slices, and attributions.
6. Editability (of C). Finally, users would ideally benefit from the ability to modify a released

ChangeList to meet their needs e.g. by interactively adding new slices of interest.

We emphasize that it is difficult to create a perfect ChangeList since every relevant slice cannot
be anticipated ahead of time. Our interactive framework Mocha is designed to help model providers
systematically build ChangeLists, while remaining flexible enough to addresses these concerns.

3.2 MOCHA : AN INTERACTIVE FRAMEWORK FOR GENERATING CHANGELISTS

Mocha provides an interactive interface (Fig. 3) for building, releasing and reading ChangeLists.
The process of building ChangeLists using Mocha is split into 3 phases:

1. Discovery (Section 3.2.1). To discover coherent slices that explain the shift inconsistency σℓ,
we adapt the Domino (Eyuboglu et al., 2022) slice discovery method to our model comparison
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Figure 3: A ChangeList produced using Mocha. (a) ChangeList View shows data slices where
model performance has improved and degraded. Users can navigate the slices either by issuing
search queries or by sorting on size and performance shift. (b) Slice Focus View shows examples in
the currently selected slice. During the attribution of discovered slices, it also provides rapid labeling
tools needed for labeling importance weighted samples (see Section 3.2.2). The implementation of
the Mocha GUI and back-end is written in Python using a common data-wrangling library.

setting. Additionally, we use Domino to generate text descriptions for each discovered slice S(j),
which serve as initial attributions A(j). Mocha users can manually define slices using interactive
tools for search, filtering and labeling, as well as add slices generated by any methods or sources.

2. Attribution (Section 3.2.2). Once slices are discovered, these initial slice attributions can be up-
dated using interactive slice inspection in Mocha. A key problem is estimating the alignment of a
slice S with its attribution A, while collecting attribute realizations {ai}ni=1 on a few informative
examples labeled by the user. Mocha proposes micro-labeling: an importance sampling proce-
dure driven by CLIP to find the most relevant examples for estimating alignment, coupled with
an interface to rapidly label their attribution realizations. Slices with poor attribution alignment
can also be updated to improve alignment using a fast training procedure.

3. Release (Section 3.2.3). Finally, once a ChangeList is finalized, it can be released as an
interactive web application presented in the Mocha interface. Users can search and sort the
ChangeList by the attributions and change metrics in order to read it quickly, and can continue
to edit the ChangeList using Mocha at any time. Mocha also provides semantic text search
over slices, using CLIP to find slices with similar image prototype or text attribution embeddings.

3.2.1 DISCOVERY

Slices are often sourced from metadata or extracted programmatically from the inputs (Goel et al.,
2021b). When working with complex data types (e.g. images), many important slices are not anno-
tated in metadata and cannot easily be extracted programmatically. The limited slices available are
insufficient to explain the shift inconsistency, and we must turn to slice discovery.

Slice discovery for model comparison is the task of mining unstructured inputs X for coherent
slices that explain the shift inconsistency σℓ. Recent work has explored slice discovery frameworks
for error analysis on a single model (Eyuboglu et al., 2022; Singla et al., 2021; Sohoni et al., 2020;
d’Eon et al., 2022; Yeh et al., 2020; Kim et al.). Below we adapt the Domino framework (Eyuboglu
et al., 2022) to our new task of explaining model differences in terms of unknown, unlabeled slices.

Domino takes as input trained models v[1], v[2] : X → Y and a labeled dataset D = {(xi, yi)}ni=1 ∼
P(X,Y ), and outputs slicing functions Ψ = {ψ(j) : X ×Y → [0, 1]}kj=1 that partition the data into
k slices Ŝ := Ψ(X,Y ) ∈ [0, 1]k. Domino proceeds in 3 steps: (1) embed the dataset, (2) slice the
resulting representation space, and (3) describe the discovered slices with natural language.
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Embed. We embed the dataset D using an encoder ginput : X → Z (Z ∈ Rd), which yields
embeddings Z = {zi := ginput(xi)}ni=1 for each example. Following Eyuboglu et al. (2022), we use
CLIP (Radford et al., 2021), a cross-modal foundation model, as our encoder.

Slice. We discover slices by fitting a k-component mixture model to the embeddings Z and model
losses ℓ[1], ℓ[2]. For mixture S(j), we assume Z|S(j) varies as multivariate Normal with diagonal
covariance. The distribution of losses depends on the loss function ℓ. In the zero-one loss case,
we assume ℓ[1]01 |S(j), ℓ

[2]
01 |S(j) vary as categoricals. We then optimize the log-likelihood with expec-

tation maximization. Like Domino, we use a hyperparameter γ to balance the contribution of the
embeddings and losses to the log-likelihood – higher γ trades-off coherence for explanatory power.

Describe. Finally, to help users interpret discovered slices, we describe slices in natural language.
We source candidate natural language phrases using a large, generative language model. We then
identify descriptions a(j) which are closest in embedding space to the centroid of the each slice S(j).

For details on Domino, we refer the reader to Eyuboglu et al. (2022). Once the discovery phase is
complete, the Mocha interface (Fig. 3) displays all discovered and user-specified slices (see Ap-
pendix A.4.1 for manual slicing), along with identified attributions and change metrics. Users can
continue to perform discovery at any time in order to add additional slices to the ChangeList.

3.2.2 ATTRIBUTION

The goal of the attribution phase is to help users verify and edit discovered slices, while communi-
cating the contents of each slice accurately. Mocha enables users to interactively (1) edit machine
attributions by inspecting examples, to align them with the slice; (2) estimate alignment between the
slice and its attribution; (3) update problematic slices that are poorly aligned with their attributions.

Edit Descriptions. When users interpret discovered slices, they typically attribute succinct con-
cepts to slices e.g. “subjects wearing sunglasses” if most images in a slice show a person wearing
sunglasses. This attribution allows them to draw conclusions such as “the model update improved
by x% accuracy on subjects wearing sunglasses”. Mocha provides interactive components (Fig. 3;
discussed in Section 3.2.3) to quickly inspect slices in order to edit machine-generated descriptions.
After editing, each slice has a single, textual attribution.

Estimate Alignment. Next, we want to determine the alignment of the slice S with its attribution A
using precision P and recall R. Measuring alignment lets users decide if a slice should be kept in the
ChangeList, updated to improve alignment, or simply deleted. High precision implies that most
slice examples satisfy the attribution i.e. A = 1, while with high recall, most examples that satisfy
the attribution in the dataset are in the slice. Unfortunately, calculating P,R requires exhaustively
labeling the unknown attribute realizations {ai}ni=1 for each example (i.e. labeling whether each
example satisfies the slice, See 3.1), which is intractable to do for every slice.

Under a small labeling budget, we can only sample a few examples for labeling to estimate P̂, R̂.
While we can estimate P̂ using simple random sampling (see Appendix A.2), naively estimating
recall can have high variance (Owen, 2013; Kossen et al., 2021), since the number of false negatives
(examples with A = 1 outside the slice) is frequently small relative to the dataset size n.

The key problem is how to construct a proposal distribution q that upweights and samples “enough”
false negatives to perform estimation via a procedure such as importance sampling (Owen, 2013).
Our insight is to use CLIP (or any cross-modal foundation model) to construct one or more proposal
distributions qi, by ranking examples in terms of their similarity to the text attribution A. The
advantage of using CLIP in this way is that it can provide an informative ordering of the examples in
response to the wide range of (arbitrarily written) user attributions. A description of our estimation
procedure is provided in Appendix A.2. Once the precision and recall are estimated, the user can
apply a consistent decision rule (e.g. a minimum threshold on lower confidence bounds) in order to
decide if the slice is satisfactory. If not satisfactory, the user can update it, which we discuss next.

Update Slices. For a slice S = ψ(X,Y ) with poor alignment with its attribution A, Mocha users
can update the slice by training a new slicing function ψ̃(X,Y ), using logistic regression on CLIP
embeddings (ignoring the label Y ). Ideally, to improve alignment with A, ψ̃ should be aligned with
A on the dataset D, i.e. ψ̃ is a good classifier of the attribution realizations {ai}ni=1.
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The main challenge is specifying labels for training ψ̂, as the {ai} are either unknown, or partially
known for previously labeled examples. We use a simple procedure to address this: use attribu-
tion labels if available (optionally with additional labeling), otherwise use the original slice labels
{ψ(xi, yi)}ni=1. This updates ψ̂ conservatively by matching ψ where necessary, and allows Mocha
to systematically improve the slice attribution alignment when a slice is updated. Note that for sta-
tistical validity we ensure no overlap between examples used for training or alignment estimation.

3.2.3 INTERACTION WITH MOCHA AND RELEASING CHANGELISTS

Finally, we provide an overview of how producers and users can interact with the Mocha interface
(Fig. 3), and discuss the process of releasing ChangeLists in Mocha.

Interaction. Mocha contains several components to help users build and release ChangeLists,

1. ChangeList View. (Fig. 5) The left panel 1⃝ shows the current ChangeList. The
ChangeList is displayed as a barplot against a chosen change metric, with the slice title and
size annotated ( 1⃝C). The user can select any slice for drilldown in the Slice Focus View. Users
can sort slices in the ChangeList with change metrics ( 1⃝B), or using text-based semantic
search to order slices with the most similar image prototype or slice name embedding first ( 1⃝A).

2. Slice Focus View. (Fig. 6) The right panel 2⃝ displays information about the slice selected in
the ChangeList, including tools for performing attribution and navigating the slice. Slice
summary statistics are shown along with the ability to edit its name and description ( 2⃝A). The
gallery ( 2⃝F) enables quick inspection of slice examples, including example selection to display
additional metadata. The gallery can be configured to view more or less examples at a glance,
and can be sorted and filtered by slice, user and task labels, or any metadata ( 2⃝D,E). They can
also be sorted by semantic similarity to a text search, implemented using CLIP ( 2⃝C). During at-
tribution, the corresponding component ( 2⃝B) guides the user through slice updates via training,
and attribute quality estimation. The user first passes through an (optional) slice update where the
slicing function is retrained using user provided labels. Then, for precision (and recall) estima-
tion, the gallery displays the samples to be labeled for the estimation procedure of Section 3.2.2,
and provides keyboard and mouse shortcuts for rapidly selecting and labeling examples. Once
estimates are calculated, they are displayed in the same attribution component.

Releasing ChangeLists. After multiple rounds of discovery and attribution, a ChangeList
can be released directly in the interactive Mocha web interface (Fig. 3). Users can navigate slices
in released ChangeLists using the ChangeList View, and easily search for and drilldown into
slices relevant to them. A key advantage of this method of release is that users can directly edit
ChangeLists by performing additional rounds of discovery and attribution in Mocha.

4 DEMONSTRATING MOCHA ON REAL-WORLD API UPDATES

In this section, we discuss our takeaways from applying Mocha to three recent API updates and
generating a ChangeList for each. First, we provide overview statistics summarizing the changes
documented in the ChangeLists. Next, we dive into each API in detail, highlighting noteworthy
changes, focusing on those where slice performance goes in the opposite direction as it does globally.

Overview of ChangeLists. Mocha enabled us to rapidly discover over 100 slices across three
real API updates. For each discovered slice S(j), we compute the accuracy shift µ(j)

01 ≈ E[D] and
test the null-hypothesis that the difference in accuracyD is symmetric about zero using the Wilcoxon
signed-rank test. On 103 slices, we find that at least one of the API’s performance changed signif-
icantly (using the Bonferonni correction for multiple hypothesis testing, α = 0.05

k ). Among these,
63 instances of an API’s performance degraded significantly and on 52, the performance degraded
by more than 5%-points. This phenomenon, where an update improves performance globally, but
hurts performance on a coherent slice, has not been documented at this scale in the literature.

In Section 2, we motivate the need for ChangeLists by showing our updates introduced incon-
sistency that was not captured by the performance shift. We can quantify how much of the incon-
sistency is “explained” by our slices with the coefficient of determination r2. Our ChangeLists
achieve quite different r2 on each update: 16.7% on EveryPixel, 12.4% on Google, and 5.3% on
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Figure 4: Changes discovered by Mocha. For each API update, we show the ten slices where the
API performances increased (top) or decreased the most (bottom). The x-axis shows the change in
accuracy. The y-axis shows the name ascribed to the slice in attribution and its size in parentheses.

Microsoft. These low r2 values highlight the difficulty of collecting a comprehensive set of slices
and the importance of interactive ChangeLists that allow users to find additional slices.

The performance shift and inconsistency statistics above are defined in terms of a point-wise metric
(i.e. accuracy), but we also compute precision, recall and F1. Of the 63 that showed statistically
significant performance shifts, 74.38% also saw changes in F1-score greater than 5% and 61.1%
saw changes in F1 greater than 10%. Comparing precision and recall also provides insight into
whether performance shifts are due to an increase in false positives or false negatives. Among the
statistically significant performance shifts, 76% exhibited a change in recall greater than 5% and
10.3% exhibited a change in precision greater than 5%. These statistics are summarized in Figure 2.

ChangeList (Google Cloud Vision). Google’s API is used in diverse settings ranging from
historic photos classification in newspaper archives (Greenfield, 2018) to managing visual assets
in cloud storage (Kus, 2017). Even though the API improved on average after the update, it is
important to identify fine-grained slices where performance has degraded. In Figure 4, we show 10
slices where performance degraded. Notably, the API’s accuracy in detecting stop signs decreased
by over 60%-points, a finding with potential safety implications. Post update, the accuracy of the
API’s “person” tag drops by 20.8%-points if the person is skiing or snowboarding. If they are playing
baseball, accuracy drops by 40.9%-points, and if the photo is in black and white it is 17.7%-points.
This last slice may be of particular interest to a newspaper using the API on archival photos.

ChangeList (Microsoft Computer Vision). Like Google, Microsoft’s API is used in diverse
settings and backs mobile applications and other intelligent software systems (Microsoft, b). Across
the entire dataset, Microsoft’s API improved significantly (+4.0% and +5.9% F1). However, our
ChangeList includes 14 slices on which the performance drops significantly. For example, accu-
racy in tagging “horses” degrades by more than 10%-points in old, black and white photos.

ChangeList (EveryPixel Image Recognition). Unlike the other APIs, the average model per-
formance degraded slightly between updates (−0.5% accuracy and −2.9% F1). Still, we were able
to find data slices where the API improved. Notably, after the update, its “cat” detection improved
across a broad set of contexts: near windows and doors, in the bathroom, and on or near keyboards.
In contrast, the Microsoft API, which improved globally, exhibited significantly degraded perfor-
mance on “cat” detection after the update.

5 CONCLUSION

MLaaS APIs are frequently updated with new versions, but providers rarely document how the API’s
behavior has changed. As a result, it is unclear to users how this affects downstream systems that
depend on the API. In this work, we present Mocha, a framework for producing a ChangeList –
a detailed report that highlights changes in performance using fine-grained slices of data. We hope
that it is a step towards a future where providers include changelogs with every model update.
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ETHICAL CONSIDERATIONS

We highlight limitations with our proposed framework, which should be considered before use.
These limitations also present potential avenues for future work. Our approach relies heavily on
general-purpose pretrained models. In specialized domains (e.g. medicine, law), such models may
not be readily available, limiting the applicability of our work. Furthermore, these models commonly
exhibit social biases. For example, CLIP has been shown to encode harmful stereotypes in its
representations Agarwal et al. (2021). Because we use CLIP embeddings to both identify slices and
generate natural language descriptions, it is possible that a ChangeList may include offensive
and harmful descriptions or groupings of data. As a result, it is critical that each ChangeList be
carefully reviewed prior to release. There is also risk that a ChangeList may fail to document an
important change in model behavior, potentially giving users a false sense of security. Future work
should explore techniques for measuring the completeness of a ChangeList.

REPRODUCIBILITY STATEMENT

We plan to release and open-source our implementation of Mocha, including the ChangeLists
that we discussed in Section 4, as well as all metadata associated with the generation of these
ChangeLists (outputs of slice discovery, labels collected during attribution, estimation of align-
ment metrics).
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A APPENDIX

A.1 DISCOVERY

In this section, we provide details on the slice discovery techniques used in this work. In general,
we follow closely the approach Eyuboglu et al. (2022).

We discover slices by fitting a k-component mixture model to the embeddings Z and model losses
ℓ[1], ℓ[2]. For mixture S(j), we assume Z|S(j) varies as multivariate Normal with diagonal covari-
ance. The distribution of losses depends on the loss function ℓ. In the zero-one loss case, we assume
ℓ
[1]
01 |S(j), ℓ

[2]
01 |S(j) vary as categoricals. The log-likelihood over the validation dataset is given as

follows and mazimied using expectation-maximization:

ℓ=

n∑
i=1

log

k̄∑
j=1

P (S(j)=1)P (Z=zi|S(j)=1)P (ℓ[1]=yi|S(j)=1)γP (ℓ[2]|S(j)=1)γ , (3)

Like Domino, we use a hyperparameter γ to balance the contribution of the embeddings and losses
to the log-likelihood – higher γ trades-off coherence for explanatory power. A slice is coherent if
the examples in it share something common. A set of slices have explanatory power if membership
in those slices can explain the shift inconsistency.

A.2 ATTRIBUTION: ALIGNMENT ESTIMATION

We would like to estimate the precision and recall with only a small amount of labeling effort:

P =

∑n
i=1 siai∑n
i=1 si

R =

∑n
i=1 siai∑n
i=1 ai

Consider one of the slices S that was discovered in the first phase of Mocha (Section 3.2.1). Because
S = ψ(X,Y ), we can compute the realizations of the slice variable {si = ψ(xi, yi)}ni=1 across our
full dataset. On the other hand, we cannot access any of the realizations of the attributions {ai},
since they are unknown.

Estimating Precision. We estimate precision directly using the standard approach of Monte
Carlo estimation with simple random sampling (SRS). To estimate precision P̂, we first sam-
ple nP examples to label with their attribution realizations {ai}, and then compute the estimator

P̂ =
∑nP

i=1 1[ai=1]

nP
. We use a standard bootstrap procedure to compute a confidence interval around

the estimated precision (Efron & Tibshirani, 1994).

Estimating Recall. Unfortunately, estimating recall efficiently is difficult since the number of false
negatives (i.e. examples with A = 1 that lie outside the slice) can be small relative to the size of
the dataset, making SRS an inefficient method with high variance in this setting. Beyond SRS, there
are many approaches to sampling and estimation with a small sample size including stratified sam-
pling (Parsons, 2014), importance sampling (Owen, 2013), ranked set sampling (McIntyre, 1952)
and others, as well as adaptive variants (Bugallo et al., 2017). Estimating recall with limited la-
bels has also recently received more attention in the machine learning community, particularly with
adaptive approaches (Kossen et al., 2021; Marchant & Rubinstein, 2021; Poms et al., 2021).

Among these approaches, importance sampling is a strong and reliable baseline, and we leave the
exploration of adaptive methods to future work. For simplicity, we reduce recall estimation to a
two step process: (1) using mixture importance sampling (Owen, 2013) to estimate the proportion
Q of examples with the attribution A = 1 in the complement of the slice; and (2) using a plug-in
estimator for recall with the estimates for precision P̂ and proportion Q̂. Formally, we define Q,

Q =

∑n
i=1(1− si)ai∑n
i=1(1− si)

In the first step, we use mixture importance sampling i.e. a simple variant of the Horvitz–Thompson
estimator that is unbiased (Owen, 2013). Key to this method is the choice of the proposal distribu-
tions qi, which upweight samples that are likely to be useful for estimation (Owen, 2013). Indeed,
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the key problem is how to construct proposal distributions that sample “enough” false negatives for
estimation via importance sampling (Owen, 2013). Good choices for the qi (i.e. those that lead to
low variance estimates) would put higher weight on the less prevalent samples with A = 1, and
lower weight on those with A = 0. At first glance, this appears impossible without labeling the
attribute realizations {ai}. While prior work has studied the estimation of classifier recall with lim-
ited labels (Kossen et al., 2021; Marchant & Rubinstein, 2021; Poms et al., 2021), these all reuse
the classifier being evaluated to construct a proposal distribution. We do not have a classifier for
arbitrary (user constructed) text attributions A in our setting.

Instead, we propose a procedure that relies on a flexible method to construct proposal distributions.
Our insight is to use CLIP (or any cross-modal foundation model) to construct one or more proposal
distributions qi, by ranking examples in terms of their similarity to the text attribution A. The
advantage of using CLIP in this way is that it can provide an informative ordering of the examples
in response to the wide range of (arbitrarily written) user attributions. This in turn leads to proposal
distributions that are more likely to appropriately upweight samples that correspond to the concept
A, which may have been arbitrarily selected by the user.

In detail, each example xj in the population is assigned a score λij based on inner-product search
with respect to text queries i ∈ [d] written by the user. Here, the user will write text queries that
they think align with the attribution A. The similarity score λij serves as a useful proxy for whether
the example satisfies the attribution A, and the ranking of examples by λij should correlate with
the attribution realizations. Then, we construct a proposal distribution qi from each set of scores
by first min-max scaling the scores, and then powering them in order to skew the distribution i.e.

qi(xj) ∝
(

(λij−mink λik)
(maxk λik−mink λik)

)r

for an exponent r. This serves to create a proposal distribution
that assigns very low probability to examples that have the lowest scores.

Once the proposal distributions qi are created, we construct a mixture distribution qα =
∑

i αiqi
with

∑
i αi = 1 (by default, we use the uniform mixture αi =

1
d ). We sample nQ examples from

the mixture distribution with corresponding weightswj (withwj =
∑

i αiwij) and user provided at-
tribution realizations aj . We can then estimate the proportion of examples Q̂ in the slice complement
with A = 1, as well as the recall R̂ using an (unbiased) plug-in estimator,

Q̂ =

∑nQ

j=1
1[aj=1]

wj
· 1
n−

∑n
i=1 si

nQ
, R̂ =

(n− ns) · P̂
(n− ns) · P̂ + n · Q̂

We provide confidence intervals for recall by running a standard bootstrap procedure independently
for both P̂ and Q̂, and combine these independent estimates to get bootstrapped estimates for recall.
We then output the appropriate quantiles corresponding to the required confidence level.

Once the precision and recall are estimated, the user can apply a consistent decision rule (e.g. a
minimum threshold on lower confidence bounds) in order to decide if the slice is satisfactory. If not
satisfactory, the user can update it, as discussed in Section 3.2.2.

A.3 EXTENDED DESCRIPTION OF THE LONGITUDINAL DATABASE OF API PREDICTIONS

A.3.1 IMAGE RECOGNITION

Task (Image Tagging). In image tagging, the inputX is an image and category (e.g. horse) pair and
the target Y ∈ {0, 1} is a binary label indicating whether an object in the category is in the image.
We consider the point-wise zero-one loss ℓ(y, ŷ[i]) = 1[y = ŷ[i]]. We also report other metrics that
are not point-wise: recall, precision, and F1-score.

Dataset. We use the Large Vocabulary Instance Segmentation (LVIS) dataset, a relabeling of the
original Common Objects in Context (COCO) images (Gupta et al., 2019; Lin et al., 2014). The
dataset has n = 1,577,603 examples. LVIS labels have two advantages over the original COCO
labels. (1) LVIS includes over 1,203 categories (compared to the 80 in COCO), which better reflects
the breadth of categories output by modern image tagging APIs. (2) LVIS provides negative sets, a
set of images for each category where no instance of the category appears. This allows us to measure
both the precision and F1-score of the APIs, while still using a long-tail set of categories.
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Table 1: Estimates of precision and recall for measuring attribution alignment with slices found
across all 3 API updates. Slices such as “stop signs” and “skateboard wheel” have low recall, so
they may be rejected for inclusion in a final ChangeList, while all other slices have both precision
and recall above 0.7.

name count recall precision

Snowboard airborne 257 0.971 (0.94, 1.00) 0.995 (0.98, 1.00)
Stop signs 103 0.631 (0.54, 0.76) 0.947 (0.89, 0.99)
Street name signs 277 0.789 (0.73, 0.85) 0.986 (0.97, 1.00)
Cats in the bathroom 119 0.889 (0.83, 0.95) 1.000 (1.00, 1.00)
Dogs in the house 561 0.801 (0.75, 0.85) 0.980 (0.97, 0.99)
Horses in old photos 101 0.974 (0.92, 1.00) 1.000 (1.00, 1.00)
Horses in rural settings 446 0.913 (0.87, 0.96) 0.930 (0.91, 0.96)
Surfboards on lakes and rivers 35 1.000 (1.00, 1.00) 1.000 (1.00, 1.00)
Surfboards in the ocean 614 0.859 (0.82, 0.92) 1.000 (1.00, 1.00)
Surfboards away from water 173 0.959 (0.89, 1.00) 1.000 (1.00, 1.00)
Motorcycle wheel 134 0.795 (0.73, 0.86) 1.000 (1.00, 1.00)
Train and bus wheel 349 0.936 (0.89, 0.98) 1.000 (1.00, 1.00)
Airplane wheel 187 0.981 (0.96, 1.00) 1.000 (1.00, 1.00)
Skateboard wheel 186 0.663 (0.62, 0.72) 1.000 (1.00, 1.00)
Skiing person 135 0.957 (0.91, 0.99) 0.981 (0.95, 1.00)

Ï
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Figure 5: Mocha ChangeList View. The Mocha ChangeList panel consolidates information
about the current ChangeList. Users can search for slices using text-based semantic queries,
which match slices with the most similar image prototype or slice name (component 1A). Slices
can also be ordered by associated metadata, such as change in performance or number of examples
in the slice (component 1B). The barplot summarizes changes in a user-selected metric across the
different slices (component 1C).

APIs. We consider three object detection APIs: Google’s AutoML Vision Object Detection
API (Google), EveryPixel’s Image Keywording Service EveryPixel, and Microsoft Computer Vi-
sion Image Understanding API (Microsoft, a). The predictions are sourced from History of APIs
(HAPI), a longitudinal database of API predictions (che). We use the raw outputs of the APIs and
perform our own preprocessing that maps the labels output by the APIs to those in LVIS (see Section
A.4 for details).

15



Under review as a conference paper at ICLR 2023

2A

2F

2C

2B

2D

2E

Figure 6: Slice Focus View. The slice focus vie enables granular inspection of different examples
in the slice. Users can visualize characteristics of the selected (active) slice (component 2A) and
manually label different attributes in the dataset (component 2B). Users can also search for examples
that match unstructured text queries (component 2C) and filter and sort examples by existing or
generated metadata (components 2D,2E). All examples are ordered in the gallery, which enables
efficient data scrubbing.

Reconciling labels. The label set output by image recognition APIs will not necessarily match that
of the evaluation dataset. For example, LVIS includes labels for 1,723 different object categories,
while the 2020 version of the Google API output over 7,462 different object categories Gupta et al.
(2019). In order to evaluate an API’s performance on a dataset, we must first reconcile the two
category sets. If an API outputs a category not in the LVIS vocabulary (e.g. “toboggan”), we want
to map it to a more general category in the LVIS vocabulary (e.g. “sled”). To do so, we leverage the
WordNet lexical database Fellbaum (1998), collecting for each category in LVIS all words with a
more specific meaning (i.e. its hyponyms). We find the hyponyms of a category using the following
procedure:

1. For each category in evaluation dataset, get the corresponding WordNet synsets. (LVIS
categories are already based on WordNet synsets.)

2. For each synset compute all (direct and indirect) hyponyms.

3. For each hyponym collect all of its lemmas and filter them to down only include those
whose most common noun word sense (based on WordNet sense ordering, see Daniel Ju-
rafsky (2021)) is the hyponym. This gives us a mapping from each lemma to a list of
categories.

• Note: This serves to filter out improbable mappings. For example, the synset
“mouse.n.02” is defined as ”a person who is quiet or timid” and is a hyponym of
“person”. However, this leads to an odd mapping: a prediction of “mouse” is mapped
to the category “person”. To avoid this, we only consider the most common noun
word sense of a lemma, which for “mouse” describes a rodent.

4. For each lemma select the category with the highest path similarity between its synset and
the lemma’s hyponym. This gives us a mapping from each lemma to a single category.

Using the resulting mapping, we can then ”translate” the set of categories predicted by the API to
the set of categories used in the dataset. If a predicted category is not in the mapping, we ignore
it. This means that each predicted category is mapped to at most one dataset category. If the object
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Figure 7: Slice Refinement and Coherence Statistics. The attribution panel (A) provides an fast
zero-one data labeling interface, which allows users to efficiently refine slices, bootstrap refiner
models, and compute coherence metrics (e.g. precision, recall) on the chosen slice. Users batch
select examples in the gallery (B) and select one of three options to label: 1) positive, 2) negative,
3) unlabeled (i.e. erase).

belongs in both specific and more general categories (e.g. “canoe” and “boat”) the API is expected
to output both the specific and general categories. This is based on the recommended evaluation
approach provided by the LVIS authors Gupta et al. (2019).

A.4 EXTENDED DESCRIPTION OF MOCHA

A.4.1 MANUALLY GATHERING SLICES

Manually gathering slices is a critical process for refining outputs of slice discovery methods (SDMs)
and for creating slices that were not automatically discovered. However, a manual step requires
scalable data exploration, which is difficult to do with large datasets. In Mocha, users can rapidly
scrub through data in the gallery and label examples to assign them to the appropriate slice (Fig. 7).
Users can also create their own slices and label examples that are part of that slice.

Mocha also leverages image-text foundation models, like CLIP, to perform similarity search be-
tween image examples and text queries (Fig. 8). Similarity search can reduce the burden of having
to scrub through large datasets when the attributes of interest are not labeled. Similarity searches
can also be used to find semantically meaningful groups of images, which can expedite manual slice
discovery workflows.
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A

B

Figure 8: Searching for Examples. Mocha supports semantic similarity search between images and
unstructured text using image-text foundation models, like CLIP. Based on the user search query (A),
images in the selected slice (or, if no slice is selected, entire dataset) are sorted by their similarity to
the query (B).
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