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Abstract

Recurrent neural network based machine learning systems are typically employed1

for their sequential functionality in handling time-varying signals, such as for2

speech processing. However, neurobiologists find recurrent connections in the3

vision system and debate about equilibrium-point control in the motor system.4

Thus, we need a deeper understanding of how recurrent dynamics can be exploited5

to attain combinational stable-input stable-output functionality. Here, we study6

how a simplified Cohen-Grossberg neural network model can realize combinational7

multi-input Boolean functionality. We place our problem within the discipline of8

algebraic geometry, and solve a special case of it using piecewise-linear algebra.9

We demonstrate a connectance-efficient realization of the parity function as a10

proof-of-concept. Small-scale systems of this kind can be easily built, say for11

hobby robotics, as a network of two-terminal devices of resistors and tunnel diodes.12

Large-scale systems may be energy-efficiently built as an interconnected network13

of multi-electrode nanoclusters with non-monotonic transport mechanisms.14

1 Introduction15

Shallow recurrent neural networks are being investigated for more context-aware object recognition16

[25] and brain-like behaviour [23]. They can be more compact (by trading space for time) and are a17

naturally robust alternative to deep neural networks (which are easily fooled by input perturbations18

or transformations [18, 29, 1]) when the role of recurrent dynamics is not to produce time-varying19

output but instead to produce transient (hidden) state-dynamics that facilitate deep, robust and20

transformation-invariant fixed-input fixed-output functionality. To better engineer such dynamics,21

we shall study equilibrium-point control, which can be defined as the process of steering to a target22

in state-space by fixing the input signal, instead of driving it by a continuously varying input signal.23

Historically, equilibrium-point control [14, 5] was first formulated to provide a plausible solution24

to the degrees of freedom problem in motor control [3], that is, we mentally represent intermediate25

destination points rather than a continuum of velocity information required to execute a movement.26

Here, we shall focus on using equilibrium-point control to realize multi-input Boolean functionality,27

in particular the parity function, which is a canonical proxy for nonlinear classification. Theoretical28

results in circuit complexity are known already for realizing Boolean functionality out of feedforward29

neural networks, with weighted-sum thresholded binary-output neurons [35]. It has been shown that30

arbitrary N -input Boolean functions can be realized in depth-3 feedforward networks with fewer31

neurons (m = O(2N/2) instead of the O(2N ) in total required for depth-2). However, with the32

advent of nanoelectronics, the size of an artificial neuron has been downscaled to such an extent33

that it is rather the interconnect wiring that now occupies a greater area in chip design. Thus for a34

fully-connected deep network, the area scales as the number of interconnects m2 = O(2N ). Such a35
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O(2N ) scaling law was earlier obtained by Shannon [34] for realizing arbitrary N -input Boolean36

functions by an interconnection of input-controlled switches (or equivalently a feedforward network37

of 2-input Boolean gates). Thus, unless we employ higher-order neurons [16], we can say that38

a Shannon bottleneck limits the maximum N -input Boolean logic realizable in a given area by39

(nanoscale) feedforward networks. We aim to circumvent this Shannon bottleneck by employing40

recurrent physical networks. It is known that certain combinational logic functions can be realized41

by fewer logic gates in a cyclic network than in an acyclic network [31], and with analog signal42

processing the improvement factor could be even higher.43

In the following section, we introduce a state-space model formalism to study equilibrium-point44

control, and commit to a physically realizable model, and discuss how a general solution for its45

equilibrium points is a difficult problem in algebraic geometry. Thus, we proceed to idealize the non-46

monotonic output of the physical system as a piecewise-linear function and solve for the equilibrium47

points. Finally, a piecewise-quadratic Lyapunov function is obtained for stability analysis and48

conditions for a unique equilibrium-point are provided.49

After the theory, in the results section, we provide a connectance-efficient realization of the parity50

function. The discussion section puts our results into a broader context and offers avenues for further51

research. Our objective here is to work at the intersection of nonlinear dynamical systems, neural52

networks, unconventional neuromorphic hardware, cyclic Boolean circuits, piecewise-linear control53

systems, and algebraic geometry.54

2 Theory55

2.1 State-space model56

For equilibrium-point control, in general we have an input vector x, a state si(t) for i = 1 : N , and57

an output y obtained from a system of equations58

ṡi(t) = Fi(s(t),x), y = lim
t→∞

G(s(t)). (1)

In this paper, we commit to a physically realizable recurrent network with voltage nodes si from59

i = 1 : N , with a capacitive time-constant τi, using resistors (of a constant conductance fij) and60

tunnel diodes (of a voltage-dependent conductance Gi(si)) as shown in Fig. 1, yielding a state-space61

model of the form62

τiṡi = xi −
∑
j ̸=i

fij(si − sj)−Gi(si), y = G1(ŝ1) (2)

where fij ≥ 0, Gi is a nonlinear passive function such that Gi(s)s ≥ 0 and ŝ1 ≡ limt→∞ s1(t) is63

the stable equilibrium-point if one exists (note: y(x) can be multi-valued and depend on the basin of64

attraction that the initial state s(0) lies in). Brain-scale systems of this kind may be realized by an65

interconnected network of nanoclusters with non-monotonic transport mechanisms as proposed in66

[24, Chapter 5]. However, finding suitable network parameters that result in practical functionality67

remains a challenge. Note that, although not the focus of this work, Eq. (2) can also represent68

state-space models with noisy rectified-linear units, for which semi-analytical results are known from69

a computational neuroscience [12] and a machine learning [33] perspective.70

2.2 Algebraic geometry of the equilibrium points71

A study of the set of equilibrium points of a state-space model, S0(x) ≡ {s ∋ F1:N (s,x) = 0},72

can not only help in characterising the stable equilibrium-points ŝ ∈ S∗ ⊆ S0, but also provide73

necessary (but not sufficient) conditions in the parameters defining the functions F1:N and G, to74

realize desired equilibrium-point functionality y(x). For example, to realize a Boolean function75

y : {0, 1}N → {0, 1}, the following property has to be satisfied:76

min
s∈S0(x)

G(s) ≤ 1 ∧ max
s∈S0(x)

G(s) ≥ 0 ∀x ∈ {0, 1}N . (3)
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Figure 1: Recurrent physical network corresponding to the state-space model (2) where the inputs
x1:N are currents, the states s1:N are voltages, the output y is a measured current, the linear interac-
tions are due to resistors with a conductance fij between node i and j, and nonlinear interactions are
due to tunnel diodes from node i to GND with conductance Gi(si).

The set of equilibrium points of our recurrent physical network model (2) are the roots of the system77

of nonlinear equations78

−fi,1:N · s1:N +Gi(si) = xi (4)
where the linear-interaction matrix fN×N has terms fii ≡ −

∑
j ̸=i fij .79

Solving the multivariate nonlinear equation (4) is a difficult problem in algebraic geometry, a80

discipline of mathematics which classically grew around efforts to understand the roots of multivariate81

polynomials and later metamorphosed by the study of integer-coefficient piecewise-linear functions,82

with an abstract language that has even recently been applied to explain circuit complexity results of83

deep feedforward networks [35, 30] through the lens of rational piecewise-linear functions [40].84

Algebraic geometry originally dealt with a qualitative approach by geometrical arguments [15], in85

contrast to a quantitative approach by numerical methods. An example of that kind is Harnack’s86

curve theorem [19] which states that for a 2-D polynomial curve of degree n, the maximum number87

of connected components is (n2 − 3n+ 4)/2. Now, with the advent of computer algebra, the roots88

of multivariate nonlinear equations are studied by the elimination of variables, using techniques89

such as resultants [13, 38] and Groebner bases [7, 8] for polynomial systems, and as an instance90

of the linear-complementarity problem [11] or equivalently as absolute-value equations [26] for91

piecewise-linear systems [37]. However, computer algebra is not scalable for higher dimensions.92

Thus there is a need to convey the richness in algebraic geometry using analytical expressions. While93

it is unlikely that analytical expressions may be obtained for any general form of nonlinearity, we94

may hope that the set of exactly solvable models can be extended well beyond linear equations, a95

hope banking on our successful experience from other areas of mathematics such as integral calculus96

[9, section IX] and iterated mappings [39, page 1098].97

2.2.1 Piecewise-linear algebra98

In this paper, we commit to a piecewise-linear analysis by considering99

Gi(s) =

{
gi1s 0 ≤ s ≤ gi2
(gi1 + gi3)gi2 − gi3s gi2 ≤ s ≤ gi2(1 +

gi1
gi3

)
, (5)

where gi1,2,3 > 0 so that Gi is a triangular peak function in a limited range of s, thus defining100

an idealized negative-differential behaviour. Shifting the state-space about its inflection points as101

z ≡ s− g2 and then combining (5) with (4) yields102

xi =

{
−fi,1:N · z + gi1zi − fi,1:N · g2 + gi1gi2 −gi2 ≤ zi ≤ 0

−fi,1:N · z − gi3zi − fi,1:N · g2 + gi1gi2 0 ≤ zi ≤ gi2(
gi1
gi3

)
, (6)

which can be simplified to103

xi = −fi,1:N · z + gi⊖zi − gi⊕|zi| − fi,1:N · g2 + gi1gi2 (7)
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for −gi2 ≤ zi ≤ gi2(
gi1
gi3

) with gi⊖ ≡ (gi1 − gi3)/2 and gi⊕ ≡ (gi1 + gi3)/2.104

The system in (7) can be expressed in the absolute-value equation normal form105

Az − |z| = b (8)
with Aij = (−fij + Iij gi⊖)/gi⊕, bi = (xi + fi,1:N · g2 + gi1gi2)/gi⊕ and the bounds106

−g2 ≤ z ≤ g2g1/g3. (9)
Similarly, (2) can be expressed as107

τ ż = g⊕(b− Az + |z|). (10)

Two sufficient conditions are known for the absolute value equation (8) to have a unique solution
based on the largest singular value σmin [26] and the spectral radius ρ [32]:

σmin(A) > 1, (11)
ρ(|A−1|) < 1. (12)

However, those are not yet sufficient conditions for a unique equilibrium-point solution for (2) and108

(10) because the bounds in (9) were not enforced. Thus, we shall proceed to obtain a Lyapunov109

function to guarantee that a stable equilibrium-point is reached.110

2.3 Lyapunov stability analysis111

Equilibrium-point stability for large complex systems is not guaranteed in general [17, 27], and the112

effective dimensionality of stable-input stable-output responses is richly dependent on the parameter113

space [2]. However, the interaction matrix for our physical system (2) is symmetric, and hence the114

system is a special case of the Cohen-Grossberg model [10]115

ṡi = ai(si)[bi(si)−
N∑
j=1

cijdj(sj)], (13)

with ai(si) = 1/τi, bi(si) = xi − Gi(si), cij = −fij and dj(sj) = sj . Thus, it is known to be
globally absolute stable, with a Lyapunov function

V = −
∑
i

∫ si

0

bi(u)d
′
i(u) du+

∑
i,j

cij
2
di(si)dj(sj) (14)

=
∑
i

(
Pi(si)− xisi −

∑
j>i

fijsisj −
fii
2
s2i

)
, (15)

where output power Pi(si) ≡
∫ si

0

Gi(u) du. (16)

Alternatively, since our system (5) is piecewise-linear, a piecewise-quadratic Lyapunov function may116

be obtained by a piecewise-affine system [22] analysis. While this approach is more powerful and117

holds even for asymmetric interaction matrices, it also seems to be analytically complex. From another118

angle, global asymptotic stability [21, Theorem 3] is guaranteed if the Jacobian matrix J satisfies119

Jii+1/2
∑

j ̸=i |Jij +Jji| < 0 ⇐⇒ G′
i(si) > 0 because in our system Jii = −

∑
j ̸=i fij −G′

i(si)120

and Jij = fij . Since our network employs non-monotonic functionality, G′
i(si) > 0 cannot be121

guaranteed for all reachable states si, and thus the above criteria is unfortunately inapplicable. Hence,122

we shall proceed with the Cohen-Grossberg approach.123

The power function (21) simplifies to124

P (s) =


∫ s

0
g1u du = g1s

2/2 0 ≤ s ≤ g2
g1g

2
2/2 +

∫ s

g2
(g1 + g3)g2 − g3u du g2 ≤ s

= g1s
2/2− g⊕(s− g2)

2,

(17)

and using the rectifier function [x) ≡ max(x, 0) may be expressed conveniently as125

P (s) = g1s
2/2− g⊕[s− g2)

2, (18)
when the system is within its operational bounds.126
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3 Results127

Given the Lyapunov stability result of our system, it is computationally efficient to simulate our128

state-space model and probe for combinational functionality. Here, we will simulate for the simplest129

proof-of-concept for deep functionality in a shallow recurrent - solving a parity problem.130

Using a cascade of 2-input XOR gates, the N -bit parity function can be realized with N/2 +N/4 +131

...+ 1 = N − 1 gates and 2N − 1 connections. Thus its total cost in area is at least 3N − 2 units.132

A minimally-connected network has N input wires, 1 output wire, and N − 1 interconnect wires133

with a total area cost of 2N units, assuming that the area occupied by the remaining components is134

negligible. Thus for N = 3, while a conventional digital circuit costs 7 units, our recurrent physical135

network takes just 6 wiring units.136

Our simple model has N = 3, f12 = f13 = f , f23 = 0, g11 = g1, g13 = g3, g21 = g31 = γ1,137

g23 = g33 = γ3, g12 = g2 and γ22 = γ32 = γ2. We find from a symbolic evaluation that σmin(A) ̸=138

1/ρ(|A−1|) in general, and conditions for unique stability were not obtainable (which is not surprising139

due to the s2 − s3 symmetry). Thus, parity functionality was found by trial-and-error yielding the140

parameters {f = 1.751, g1 = 1.876, g2 = g3 = 0.126, γ1 = 0.876, γ2 = 1.6, γ3 = 0.751} and141

simulated using Wolfram Mathematica 13 (code in Appendix). When x1 = x2 = x3 = 1, the states142

were forced to transition beyond the bounds in (5), so its range was extended by taking an absolute143

value. The results are plotted in Fig. 2.144

4 Discussion145

Our result should be seen as a theoretical proof-of-concept and as a motivation for continued146

research in this area. Future work must extend our simulations to much higher dimensions to serve147

as a practical demonstration of deep functionality by shallow recurrent networks. Moreover, the148

theoretical formalism introduced here is not yet fully exploited. We hope to find an analytical method149

to design functionality out of piecewise-linear Cohen-Grossberg networks.150

Our style of reasoning to circumvent the Shannon bottleneck may also be applied to other systems151

such as networks of coupled oscillators [28]. Our non-modular mode of signal processing, offers152

an alternative to not just circuit designers, but also to systems biologists who typically understand153

chemical reaction networks [6] as a composition of modules [20]. While, we have discussed154

equilibium-point functionality in a state-space model driven by an additive input, it is also worth155

investigating autonomous systems where the input is set as an initial state. An example is realizing156

unboundedly-finite parity functions using just a radius-4 cellular automaton [4]. Finally, we hope157

that this paper can serve as a call to action for neuromorphic engineers to look at physical reservoir158

computing [36] from another angle, besides temporal input-output functionality.159

References160

[1] M. A. Alcorn, Q. Li, Z. Gong, C. Wang, L. Mai, W.-S. Ku, and A. Nguyen. Strike (with) a pose:161

Neural networks are easily fooled by strange poses of familiar objects. In Proceedings of the162

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4845–4854, 2019.163

[2] R. D. Beer. Parameter space structure of continuous-time recurrent neural networks. Neural164

computation, 18(12):3009–3051, 2006.165

[3] N. Bernstein. The co-ordination and regulation of movements. The co-ordination and regulation166

of movements, 1966.167

[4] H. Betel, P. P. de Oliveira, and P. Flocchini. Solving the parity problem in one-dimensional168

cellular automata. Natural Computing, 12(3):323–337, 2013.169

[5] E. Bizzi, N. Hogan, F. A. Mussa-Ivaldi, and S. Giszter. Does the nervous system use equilibrium-170

point control to guide single and multiple joint movements? Behavioral and brain sciences,171

15(4):603–613, 1992.172

5



1

x1

1

x2

1

x3

1

XOR(x1,x2,x3)

1

s1

1

s2

1

s3

0.4

y

1

I(y>.15)

Figure 2: Numerical simulation of our 3-state network over 200 timesteps.

6



[6] D. Bray. Protein molecules as computational elements in living cells. Nature, 376(6538):307–173

312, 1995.174

[7] B. Buchberger. Ein algorithmus zum auffinden der basiselemente des restklassenringes nach175

einem nulldimensionalen polynomideal. PhD thesis, Universitat Insbruck, 1965.176

[8] B. Buchberger. Bruno buchberger’s phd thesis 1965: An algorithm for finding the basis177

elements of the residue class ring of a zero dimensional polynomial ideal. Journal of symbolic178

computation, 41(3-4):475–511, 2006.179

[9] G. S. Carr. Synopsis of elementary results in pure mathematics. 1886.180

[10] M. A. Cohen and S. Grossberg. Absolute stability of global pattern formation and parallel181

memory storage by competitive neural networks. IEEE transactions on systems, man, and182

cybernetics, (5):815–826, 1983.183

[11] R. W. Cottle. Linear complementarity problem, pages 1873–1878. Springer US, Boston, MA,184

2009.185

[12] D. Durstewitz. A state space approach for piecewise-linear recurrent neural networks for186

identifying computational dynamics from neural measurements. PLoS computational biology,187

13(6):e1005542, 2017.188

[13] I. Z. Emiris. On the complexity of sparse elimination. Journal of Complexity, 12(2):134–166,189

1996.190

[14] A. G. Feldman. Functional tuning of the nervous system with control of movement or main-191

tenance of a steady posture-ii. controllable parameters of the muscle. Biofizika, 11:565–578,192

1966.193

[15] W. Fulton. Intersection theory, volume 2. Springer Science & Business Media, 2013.194

[16] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang. Dendritic neuron model with ef-195

fective learning algorithms for classification, approximation, and prediction. IEEE transactions196

on neural networks and learning systems, 30(2):601–614, 2019.197

[17] M. R. Gardner and W. R. Ashby. Connectance of large dynamic (cybernetic) systems: critical198

values for stability. Nature, 228(5273):784–784, 1970.199

[18] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples,200

2015.201

[19] A. Harnack. Ueber die vieltheiligkeit der ebenen algebraischen curven. Mathematische Annalen,202

10(2):189–198, 1876.203

[20] L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray. From molecular to modular cell204

biology. Nature, 402(6761):C47–C52, 1999.205

[21] M. W. Hirsch. Convergent activation dynamics in continuous time networks. Neural networks,206

2(5):331–349, 1989.207

[22] M. Johansson and A. Rantzer. Computation of piecewise quadratic lyapunov functions for208

hybrid systems. In 1997 European Control Conference (ECC), pages 2005–2010. IEEE, 1997.209

[23] J. Kubilius, M. Schrimpf, K. Kar, R. Rajalingham, H. Hong, N. Majaj, E. Issa, P. Bashivan,210

J. Prescott-Roy, K. Schmidt, et al. Brain-like object recognition with high-performing shallow211

recurrent anns. Advances in neural information processing systems, 32, 2019.212

[24] C. P. Lawrence. Evolving Networks To Have Intelligence Realized At Nanoscale. PhD thesis,213

University of Twente, 2018.214

[25] M. Liang and X. Hu. Recurrent convolutional neural network for object recognition. In215

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3367–216

3375, 2015.217

7



[26] O. Mangasarian and R. Meyer. Absolute value equations. Linear Algebra and Its Applications,218

419(2-3):359–367, 2006.219

[27] R. M. May. Will a large complex system be stable? Nature, 238(5364):413–414, 1972.220

[28] S. N. Menon and S. Sinha. “defective” logic: Using spatiotemporal patterns in coupled relaxation221

oscillator arrays for computation. In 2014 International Conference on Signal Processing and222

Communications (SPCOM), pages 1–6. IEEE, 2014.223

[29] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial pertur-224

bations. In Proceedings of the IEEE conference on computer vision and pattern recognition,225

pages 1765–1773, 2017.226

[30] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the expressive power227

of deep neural networks. In international conference on machine learning, pages 2847–2854.228

PMLR, 2017.229

[31] M. D. Riedel and J. Bruck. Cyclic boolean circuits. Discrete Applied Mathematics, 160(13-230

14):1877–1900, 2012.231

[32] J. Rohn, V. Hooshyarbakhsh, and R. Farhadsefat. An iterative method for solving absolute value232

equations and sufficient conditions for unique solvability. Optimization Letters, 8(1):35–44,233

2014.234

[33] D. Schmidt, G. Koppe, Z. Monfared, M. Beutelspacher, and D. Durstewitz. Identifying nonlinear235

dynamical systems with multiple time scales and long-range dependencies. In International236

Conference on Learning Representations, 2021.237

[34] C. E. Shannon. The synthesis of two-terminal switching circuits. The Bell System Technical238

Journal, 28(1):59–98, 1949.239

[35] K.-Y. Siu, V. P. Roychowdhury, and T. Kailath. Depth-size tradeoffs for neural computation.240

IEEE Transactions on Computers, 40(12):1402–1412, 1991.241

[36] G. Tanaka, T. Yamane, J. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano,242

and A. Hirose. Recent advances in physical reservoir computing: A review. Neural Networks,243

115:100–123, 2019.244

[37] W. M. Van Bokhoven and D. M. Leenaerts. Explicit formulas for the solutions of piecewise245

linear networks. IEEE Transactions on Circuits and Systems I: Fundamental Theory and246

Applications, 46(9):1110–1117, 1999.247

[38] M. P. Williams. Solving polynomial equations using linear algebra. Johns Hopkins APL248

Technical Digest, 28(4):354–363, 2010.249

[39] S. Wolfram. A new kind of science, volume 5. Wolfram media Champaign, IL, 2002.250

[40] L. Zhang, G. Naitzat, and L.-H. Lim. Tropical geometry of deep neural networks. In Interna-251

tional Conference on Machine Learning, pages 5824–5832. PMLR, 2018.252

Checklist253

1. For all authors...254

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s255

contributions and scope? [Yes] The concrete result is the realization of a parity function256

by our recurrent physical network by using just 6 wiring units, while a conventional257

digital circuit costs 7 units. That being said, the paper is written to cover a much258

broader scope - this is a matter of taste (an earlier version of this manuscript recieved259

both positive and negative comments about the scope of this article).260
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(b) Did you describe the limitations of your work? [Yes] It is mentioned that future261

work must extend our simulations to much higher dimensions to serve as a practical262

demonstration of deep functionality by shallow recurrent networks. Also the simulation263

parameters were found by trial and error, instead of being derived analytically from the264

theoretical formalism - these limitations are mentioned in the discussion.265

(c) Did you discuss any potential negative societal impacts of your work? [N/A]266

(d) Have you read the ethics review guidelines and ensured that your paper conforms to267

them? [Yes]268

2. If you are including theoretical results...269

(a) Did you state the full set of assumptions of all theoretical results? [N/A]270

(b) Did you include complete proofs of all theoretical results? [N/A]271

3. If you ran experiments...272

(a) Did you include the code, data, and instructions needed to reproduce the main ex-273

perimental results (either in the supplemental material or as a URL)? [Yes] Check274

Appendix for the code to reproduce Figure 2.275

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they276

were chosen)? [N/A]277

(c) Did you report error bars (e.g., with respect to the random seed after running experi-278

ments multiple times)? [N/A]279

(d) Did you include the total amount of compute and the type of resources used (e.g., type280

of GPUs, internal cluster, or cloud provider)? [N/A] It is evident that Figure 2 is not a281

large-scale deep learning experiment but a small-scale conceptual simulation which282

takes less than 2 seconds on a modern desktop CPU.283

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...284

(a) If your work uses existing assets, did you cite the creators? [N/A]285

(b) Did you mention the license of the assets? [N/A]286

(c) Did you include any new assets either in the supplemental material or as a URL? [No]287

(d) Did you discuss whether and how consent was obtained from people whose data you’re288

using/curating? [N/A]289

(e) Did you discuss whether the data you are using/curating contains personally identifiable290

information or offensive content? [N/A]291

5. If you used crowdsourcing or conducted research with human subjects...292

(a) Did you include the full text of instructions given to participants and screenshots, if293

applicable? [N/A]294

(b) Did you describe any potential participant risks, with links to Institutional Review295

Board (IRB) approvals, if applicable? [N/A]296

(c) Did you include the estimated hourly wage paid to participants and the total amount297

spent on participant compensation? [N/A]298

A Appendix299

Wolfram Mathematica code to reproduce Figure 2.300

In[ ]:= simulate[f_, g_, γ_] := (sys = NonlinearStateSpaceModel[{

{x1 - (2 f) s1 + f (s2 + s3) - Abs[g〚1〛*s1 - (g〚1〛 + g〚3〛) Ramp[s1 - g〚2〛]],

x2 - (f) s2 + f (s1) - Abs[γ〚1〛 s2 - (γ〚1〛 + γ〚3〛) Ramp[s2 - γ〚2〛]],

x3 - (f) s3 + f (s1) - Abs[γ〚1〛 s3 - (γ〚1〛 + γ〚3〛) Ramp[s3 - γ〚2〛]]},

{x1, x2, x3, Xor[x1, x2, x3], s1, s2, s3, y = Abs[g〚1〛 s1 - (g〚1〛 + g〚3〛) Ramp[s1 - g〚2〛]], HeavisideTheta[y - .15]}

}, {s1, s2, s3}, {x1, x2, x3}];

inputs = {.5 - .5*SquareWave[ t/50], .5 - .5*SquareWave[ t/100], .5 - .5*SquareWave[ t/200]};

out = OutputResponse[{sys, {0, 0}}, inputs, {t, 0, 200}];

GraphicsColumn@Table[Plot[out〚i〛, {t, 0, 200}, PlotRange  All, Ticks  {Automatic, {0, 1/5, 1, 2}}], {i, 9}])

simulate[1.751, {1.876, .126, .126}, {.876, 1.6, .751}]301
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