

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 WARP: WEIGHT TELEPORTATION FOR ATTACK- RESILIENT UNLEARNING PROTOCOLS

Anonymous authors

Paper under double-blind review

ABSTRACT

Approximate machine unlearning aims to efficiently remove the influence of specific data points from a trained model, offering a practical alternative to full retraining. However, it introduces privacy risks: an adversary with access to pre- and post-unlearning models can exploit their differences for membership inference or data reconstruction. We show these vulnerabilities arise from two factors: large gradient norms of *forget-set* samples and the close proximity of unlearned parameters to the original model. To demonstrate their severity, we propose unlearning-specific membership inference and reconstruction attacks, showing that several state-of-the-art methods (e.g., NGP, SCRUB) remain vulnerable. To mitigate this leakage, we introduce WARP, a *plug-and-play teleportation defense* that leverages neural network symmetries to reduce *forget-set* gradient energy and increase parameter dispersion while preserving predictions. This reparameterization obfuscates the signal of forgotten data, making it harder for attackers to distinguish forgotten samples from non-members or recover them via reconstruction. Across six unlearning algorithms, our approach achieves consistent privacy gains, reducing adversarial advantage (AUC) by up to 64% in black-box and 92% in white-box settings, while maintaining accuracy on retained data. These results highlight teleportation as a general tool for reducing attack success in approximate unlearning.

1 INTRODUCTION

Machine unlearning (MU) aims to enforce the “right to be forgotten” by updating a trained model so that a designated *forget-set* has no influence Bourtoule et al. (2021); Zhao et al. (2024). The ideal outcome matches retraining from scratch on the remaining *retain-set*, with both the model’s parameters and predictions unaffected by the forgotten data, and without degrading generalization. A primary motivation for machine unlearning is to ensure privacy compliance for sensitive information Wang et al. (2025a). Once personal data is used for training, models may memorize specific details Ravikumar et al. (2024a), creating risks of privacy breaches Bourtoule et al. (2021); Carlini et al. (2022b). Unlearning addresses this by eliminating such traces, preventing exposure. The most direct solution is retraining from scratch without the *forget set*, but this is computationally prohibitive. *Exact Unlearning* methods such as SISA Bourtoule et al. (2021) reduce cost by modifying training to allow provable deletion, but they require proactive deployment and add overhead. To avoid full retraining, *Approximate Unlearning* methods finetune the original model to forget the target data while preserving utility Kurmanji et al. (2023); Chundawat et al. (2023a); Golatkar et al. (2020); Thudi et al. (2022), trading computational efficiency against formal guarantees.

At the same time, ML models are vulnerable to privacy attacks Rigaki & Garcia (2023). In Membership Inference Attacks (MIA), an adversary determines whether a given sample was part of the training set Shokri et al. (2017). In Data Reconstruction Attacks (DRA), the adversary seeks to recover raw data (or a close approximation) from model outputs or parameters Yin et al. (2021); Li et al. (2022); Jeon et al. (2021); Fang et al. (2023). These attacks have been demonstrated in both black-box (access to outputs) and white-box (access to weights) settings Nasr et al. (2019).

Ironically, MU itself can leak the very data it aims to erase. Given access to both the original and unlearned models, an adversary can mount differencing attacks Hu et al. (2024); Bertran et al. (2024), which substantially improve reconstruction success. Even models previously resistant to MIAs can become vulnerable once deletion is performed Bertran et al. (2024); Chen et al. (2021). The key

observation is that the parameter difference between the two models approximates the gradient of the forgotten sample (up to second-order terms), effectively releasing it to the adversary. Gradient inversion techniques, as in federated learning Geiping et al. (2020), can then reconstruct the forgotten data. Thus, approximate unlearning methods, especially gradient-ascent variants Kurmanji et al. (2023), can inadvertently compromise privacy instead of ensuring it.

In this work, we aim to strengthen MU against privacy attacks by characterizing two key factors driving leakage. The first, illustrated in Figure 1, is that a forgotten sample’s privacy risk correlates with its gradient norm in the original model. Intuitively, samples with large gradient magnitudes during training or finetuning induce stronger parameter changes when removed, making them more detectable via MIA and more exploitable for reconstruction Ye et al. (2023).

Second, as shown in prior work Thudi et al. (2022); Kurmanji et al. (2023), most approximate unlearning methods make minor parameter updates, typically by maximizing the *forget-set* loss while keeping retain-set accuracy stable. This keeps the unlearned model close to the original, so the parameter difference encodes information about the forgotten data. In gradient-ascent-based methods Kurmanji et al. (2023); Chundawat et al. (2023a), this difference is essentially the *forget-set* gradient. Recent studies confirm that such updates expose information equivalent to a single gradient step on the forgotten sample Bertran et al. (2024), which attackers can invert to reconstruct it.

To mitigate these risks, we propose WARP, a plug-and-play defense that integrates into existing unlearning algorithms without training-time statistics. Our method leverages neural network teleportation Armenta et al. (2023), exploiting parameter-space symmetries (e.g., rescaling or permutation) that preserve predictions. By applying selective teleportation steps before or during unlearning, we reduce *forget-set* gradient norms while injecting symmetry-preserving randomness. This yields unlearned models that retain accuracy yet are displaced in parameter space, making it harder for an attacker to disentangle forgetting from teleportation. Consequently, membership inference and reconstruction attacks are significantly weakened, as shown in Sections 4.2, 4.3, and 4.4.

Our **contributions** are summarized as follows:

- **Tailored privacy attacks.** We design MIA and DRA for the unlearning setting, where the adversary compares pre- and post-unlearning models. These attacks show that leading methods remain vulnerable, as parameter updates still expose information about the *forget-set*.
- **Symmetry-based defense.** We propose WARP, a plug-and-play defense that, building on existing teleportation and symmetry constructions, applies loss-preserving transformations to reduce *forget-set* gradient norms and increase parameter dispersion, thereby obscuring the signal exploited in reconstruction and inference, while remaining agnostic to the particular symmetry mechanism used to realize these transformations. WARP integrates into gradient-based post-hoc unlearning algorithms without requiring training-time statistics.
- **Comprehensive evaluation.** We evaluate our attacks and defense across three datasets—CIFAR-10, Tiny-ImageNet, and ImageNet-1K—using ResNet-18 and ViT-B/16 models under both black-box and white-box settings. Results across multiple unlearning algorithms show that teleportation consistently reduces privacy leakage while preserving accuracy on the retain set.

Overall, our work reframes unlearning privacy risk through the lens of *gradient norm reduction* and connects it to neural network symmetry, an underexplored optimization principle that lays a conceptual foundation for more privacy attack-resilient unlearning algorithms. Related works to ours are discussed in more detail in Appendix A. The code is available at [this link](#).

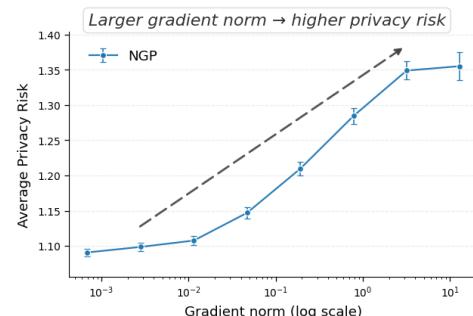


Figure 1: Privacy risk vs. gradient norms of *forget-set* samples, measured with U-LiRA.

108
109

2 THREAT MODEL

110
111 We consider a strong adversary performing *sample-wise membership inference*, distinguishing whether
112 a sample belongs to the *forget-set* \mathcal{D}_f or the *test set* $\mathcal{D}_{\text{test}}$. The attacker has access to both the pre- and
113 post-unlearning models.114
115 **Attacker Capabilities.** The attacker has full access to both the original θ^{org} and unlearned model
116 θ^u , as well as complete knowledge of the unlearning algorithm $\mathcal{A}_{\text{unlearn}}$ and its hyperparameters
117 $\mathcal{H}_{\text{unlearn}}$ (e.g., optimizer, learning rate, update steps, retain-set size).118 We consider two settings: **Black-box** — the attacker queries outputs $f(x; \theta^u)$. **White-box** — the
119 attacker additionally accesses full internals of both models $(\theta^{\text{org}}, \theta^u)$, including weights.120
121 **Attack Objective** Given a sample (x, y) from either the *forget-set* $\mathcal{D}_{\text{forg}}$ or the held-out test set
122 $\mathcal{D}_{\text{test}}$, the attacker computes a score $A'(x, y)$ and predicts membership as $A(x, y) = \mathbb{I}[A'(x, y) > \tau]$,
123 where $\mathbb{I}[\cdot]$ is the indicator function and τ is a decision threshold. The attacker seeks a high true
124 positive rate (TPR) on forgotten samples while maintaining a low false positive rate (FPR) on test
125 samples. This directly measures privacy risk: if membership can be reliably inferred, incomplete
126 unlearning is exposed and the forgotten samples identified. Unlike prior work, our goal is to audit
127 unlearning algorithms from a *privacy perspective*, rather than evaluating indistinguishability between
128 approximate and exact unlearning outcomes.129
130

3 METHODOLOGY

131
132

3.1 PRIVACY ATTACKS

133 To systematically evaluate privacy leakage in unlearning, we consider two complementary classes of
134 attacks: *membership inference* and *data reconstruction*.135
136 **Black-box (U-LiRA).** For the black-box setting, we adopt U-LiRA (Hayes et al., 2025), an
137 adaptation of LiRA (Carlini et al., 2022a) to unlearning. U-LiRA leverages shadow models trained
138 and unlearned with the same algorithm as the target, yielding a strong adaptive baseline for auditing
139 privacy. We defer full algorithmic details to Appendix B.140
141 **White-box (Gaussian Gradient-Difference).** In the white-box setting, we extend the Gaussian
142 gradient-difference framework of Leemann et al. (2023) to the unlearning case by contrasting
143 gradients computed on both the original and unlearned models. This contrast provides a powerful
144 signal of residual membership leakage when both model versions are available to attacker. The
145 detailed proposed formulation and test statistic are presented in Appendix C.146
147 **Reconstruction Attack in Unlearning.** We develop a *white-box* reconstruction attack tailored to
148 approximate unlearning with retain-set updates. Let $\Delta\theta = \theta^u - \theta^{\text{org}}$ be the observed parameter
149 change after one unlearning stage (possibly aggregating multiple optimizer steps). As in gradient
150 inversion, we seek an input whose parameter-gradient aligns with a target vector; here the natural
151 target is $\Delta\theta$. Our baseline (single-sample) objective is:

152
153
$$\hat{x}, \hat{y} \in \arg \min_{x, y} \mathcal{D}(\nabla_{\theta} \ell(f(x; \theta^{\text{org}}), y), \Delta\theta), \quad (1)$$

154 where ℓ is the training loss, $f(\cdot; \theta)$ the network, and \mathcal{D} a distance (e.g., ℓ_2 or negative cosine).155 With approximate unlearning, the update $\Delta\theta$ mixes retain and forget gradients. For a forget example
156 (x_f, y_f) and a retain minibatch \mathcal{B}_r ,

157
158
$$\Delta\theta \approx -\eta(g_r - \alpha g_f), \quad g_r = \frac{1}{|\mathcal{B}_r|} \sum_{(x_r, y_r) \in \mathcal{B}_r} \nabla_{\theta} \ell(f(x_r; \theta^{\text{org}}), y_r), \quad g_f = \nabla_{\theta} \ell(f(x_f; \theta^{\text{org}}), y_f), \quad (2)$$

159
160

161 with effective step size η and ascent weight $\alpha > 0$. Directly targeting $\Delta\theta$ in equation 1 is therefore
162 confounded by g_r . Even when equation 1 is instantiated with state-of-the-art gradient inversion

162 methods, naively inverting the unfiltered update $\Delta\theta$ remains ineffective, producing low accuracy of
 163 the reconstruction (see Section 4, Table 2).

164 Let $G_{\text{org}} = [g(b_i; \theta^{\text{org}})]_{i=1}^m$ and $G_u = [g(b_i; \theta^u)]_{i=1}^m$ be gradient snapshots on a small probe set drawn
 165 from the training distribution. We compute thin SVDs, $G_{\text{org}} = U_{\text{org}} \Sigma_{\text{org}} V_{\text{org}}^\top$ and $G_u = U_u \Sigma_u V_u^\top$,
 166 and keep the top- k left singular vectors to obtain orthonormal bases (columns) for the dominant
 167 gradient subspaces. Define the *orthogonal projectors*

$$\Pi_{\text{org}} = U_{\text{org}} U_{\text{org}}^\top, \quad \Pi_u = U_u U_u^\top, \quad \Pi_u^\perp = I - \Pi_u.$$

171 Unlearning attenuates the forget component, so retain gradients are expected to persist in both models,
 172 whereas the forget component is prominent in θ^{org} but suppressed in θ^u . We therefore *orthogonalize*
 173 the update against the unlearned subspace and keep only directions supported by the original model:

$$\tilde{g}_f = \Pi_{\text{org}} \Pi_u^\perp \left(-\frac{1}{\eta} \Delta\theta \right). \quad (3)$$

174 Intuitively, Π_u^\perp removes directions consistent with retain gradients that remain after unlearning, while
 175 Π_{org} preserves directions active before unlearning where the forget signal resides. If the retain
 176 subspace is well captured, then $\Pi_u^\perp g_r \approx 0$ and $\Pi_{\text{org}} \Pi_u^\perp (\alpha g_f) \approx \alpha g_f$, yielding a high-SNR estimate of
 177 the forget gradient.

178 We reconstruct the forgotten sample by solving the filtered inversion:

$$\hat{x}_f, \hat{y}_f \in \arg \min_{x, y} \mathcal{D}(\nabla_\theta \ell(f(x; \theta^{\text{org}}), y), \tilde{g}_f), \quad (4)$$

179 with optional priors or constraints on (x, y) . In practice, we choose k to retain a fixed fraction
 180 of gradient energy (e.g., 90–95%), which stabilizes the projectors and reliably isolates the forget
 181 component via orthogonalization. We empirically validate that orthogonal subspace filtering boosts
 182 reconstruction success across models and datasets; see Section 4.4 and Appendix Table 3.

183 3.2 WARP (TELEPORTATION-BASED DEFENSE)

184 **Motivation I: Parameter closeness increases privacy leakage.** We formulate post-hoc unlearning
 185 as minimizing a composite objective that balances forgetting on \mathcal{D}_f with utility on \mathcal{D}_r :

$$\min_{\theta} \underbrace{\ell_f(\theta | \mathcal{D}_f)}_{\text{Forget}} + \lambda \underbrace{\ell_r(\theta | \mathcal{D}_r)}_{\text{Retain}}, \quad \lambda \geq 0, \quad (5)$$

186 where θ denotes model parameters; ℓ_f is any differentiable *forgetting surrogate* that penalizes high
 187 confidence or reduces fidelity on \mathcal{D}_f (e.g., loss-inflation, uniform/soft labels, margin expansion); and
 188 ℓ_r is the standard training/consistency loss on \mathcal{D}_r to preserve performance. The trade-off coefficient λ
 189 controls how strongly the unlearning step remains anchored to the retain-set: larger λ keeps θ^u closer
 190 to θ^{org} , preserving accuracy but reducing the parameter shift introduced by forgetting. A first-order
 191 optimizer with mini-batches $\mathcal{B}_f \subset \mathcal{D}_f$ and $\mathcal{B}_r \subset \mathcal{D}_r$ yields the iterative update

$$\theta_{t+1} = \theta_t - \eta_t \left(\nabla_\theta \ell_f(\theta_t | \mathcal{B}_f) + \lambda \nabla_\theta \ell_r(\theta_t | \mathcal{B}_r) \right), \quad (6)$$

192 which encompasses common post-training approximate unlearning schemes; for instance, “negative-
 193 gradient” methods are recovered by taking $\ell_f(\cdot) = -\ell_{\text{train}}(\cdot)$ (i.e., ascent on the standard training
 194 loss over \mathcal{D}_f), whereas rehearsal/consistency-based approaches instantiate ℓ_r with supervised loss or
 195 distillation on \mathcal{D}_r Thudi et al. (2022); Kurmanji et al. (2023); Chundawat et al. (2023a).

196 Because equation 5 explicitly regularizes utility on \mathcal{D}_r and is optimized with small steps and early
 197 stopping on \mathcal{D}_f , the resulting unlearned parameters θ^u typically remain *close* to the original θ^{org}
 198 in parameter space. The displacement $\Delta\theta = \theta^u - \theta^{\text{org}}$ is well-approximated (to first order) by a
 199 weighted combination of gradients on the *forget-set*, mildly contaminated by retain gradients Thudi
 200 et al. (2022); Kurmanji et al. (2023); Huang et al. (2024). This proximity creates a privacy attack
 201 surface: An adversary with access to $(\theta^{\text{org}}, \theta^u)$ can leverage $\Delta\theta$ to perform membership inference or
 202 gradient-based reconstruction of \mathcal{D}_f Hu et al. (2024); Bertran et al. (2024), motivating the defenses
 203 applied over unlearning algorithms.

Motivation II: Gradient norm and curvature amplify leakage. Recent evidence suggests that the per-sample gradient trajectory is a strong predictor of privacy vulnerability. Tobaben et al. (2024) show that training examples that accumulate larger gradient norms during optimization are significantly more prone to MIA, reflecting the intuition from differential privacy that each update’s privacy loss scales with gradient magnitude. Complementing this, Ravikumar et al. (2024b) demonstrate that curvature around training samples—captured via local sharpness of the loss—serves as a reliable discriminator between members and non-members, with sharper regions implying higher membership exposure. These findings aligns with theoretical analyses such as Ye et al. (2023), who prove that large per-sample gradients at initialization inflate the KL divergence between neighboring training trajectories, directly increasing the sample’s privacy risk. Motivated by this, we hypothesize that approximate unlearning inherits the same vulnerability: samples with higher gradient norms tend to push parameters towards sharper local extrema during both training and unlearning, thereby overshooting the target update and leaving a stronger privacy footprint. Our experiments (Fig.1) confirm this intuition, revealing a clear correlation between a sample’s gradient norm in the original model and its susceptibility to membership inference after unlearning.

To simultaneously address (i) the parameter–space proximity that enables differencing and (ii) the gradient–norm driver of leakage, we leverage *loss-invariant symmetries* of deep networks.

Symmetry framework. Let \mathcal{G} denote a set of symmetry transformations acting on parameters θ (and, when needed, internal representations) such that the task loss is invariant: $\mathcal{L}(X, \theta) = \mathcal{L}(g(X, \theta))$ for all $g \in \mathcal{G}$ Zhao et al. (2022; 2023); Armenta et al. (2023); Simsek et al. (2021). A *teleportation* step chooses g and updates $\theta \leftarrow g \cdot \theta$, moving within the loss level set. In our defense, we select g to reduce the gradient norm of the *forget-set* while preserving utility on the *retain-set*:

$$g^* \in \arg \min_{g \in \mathcal{G}} \left\{ \underbrace{\sum_{(x,y) \in \mathcal{D}_f} \|\nabla_{\theta} \ell(f(x; g \cdot \theta), y)\|_2^2}_{\text{shrink forget-set gradients}} - \beta \underbrace{\|g \cdot \theta - \theta\|_2^2}_{\text{increase parameter dispersion}} \right\} \quad (7)$$

s.t. $\ell_r(g \cdot \theta | \mathcal{D}_r) \leq \ell_r(\theta | \mathcal{D}_r) + \varepsilon$.

with trade-off $\beta \geq 0$ and tolerance $\varepsilon \geq 0$. The first term reduces squared gradient norms of forget examples (Motivation II); the dispersion term adds symmetry-preserving randomness, displacing parameters from θ^{org} (Motivation I); the constraint preserves retain performance.

WARP operates on an abstract prediction-preserving symmetry map T_ϕ , and any such symmetry family can instantiate the framework. In practice, we use two concrete realizations—the retain–null-space projection introduced in the next paragraph, and the change-of-basis teleportation detailed in Appendix D—to illustrate this generality. To complement this algorithmic view, Appendix O develops teleportation-aware information-theoretic bounds on gradient-based reconstruction, showing how injecting symmetry-induced noise via T_ϕ expands the symmetry orbit and provably increases the expected reconstruction error for attackers observing $(\theta^{\text{org}}, \theta^u)$.

Primary instantiation: teleportation with retain null-space projection. We first describe one convenient way to instantiate T_ϕ using retain–null-space projections Wu et al. (2025). To optimize equation 7 efficiently on modern architectures without explicit group actions, we adopt *teleportation with input null-space gradient projection* Wu et al. (2025) and instantiate it using the recent projector formulation that keeps updates on the loss-invariant level set by per-layer projections onto the input null space (thus leaving the task loss unchanged up to numerical error). Concretely, define the *teleportation loss*

$$\mathcal{L}_{\text{tel}}(\theta) = \sum_{(x,y) \in \mathcal{B}_f} \|\nabla_{\theta} \ell(f(x; \theta), y)\|_2^2 - \beta \|\theta - \theta^{\text{org}}\|_2^2,$$

where \mathcal{B}_f is a minibatch from \mathcal{D}_f . Let R_ℓ be the per-layer representation matrix from a *retain* minibatch (layer- ℓ inputs), with thin SVD $R_\ell = U_\ell \Sigma_\ell V_\ell^\top$. We keep the top- k left singular vectors $B_\ell = U_{\ell,1:k}$ to span the retain subspace and define the orthogonal projector onto its complement $\Pi_\ell^\perp = I - B_\ell B_\ell^\top$. A teleportation step then applies the layer-wise update

$$W_\ell^{t+1} \leftarrow W_\ell^t - \eta_{\text{tel}} \Pi_\ell^\perp (\nabla_{W_\ell} \mathcal{L}_{\text{tel}}(\theta^t)) \quad (8)$$

270 which (i) *reduces* the forget-set gradient norms by descending on \mathcal{L}_{tel} , (ii) *preserves* the function
 271 on the retain-set by restricting motion to the retain-orthogonal subspace. The projection operator
 272 in equation 8 corresponds to the input-null-space projector. This is implemented by subtracting the
 273 component in the subspace of the core gradient, leaving only the residual for the teleport step.

274 To align the invariance with utility preservation, we compute B_ℓ *only from retain data*. Let $R_\ell(\mathcal{D}_r) =$
 275 $[\phi_\ell(x)]_{x \in \mathcal{B}_r}$ denote the matrix formed by stacking the layer- ℓ inputs for a retain minibatch \mathcal{B}_r . Then:

$$277 \quad R_\ell(\mathcal{D}_r) = U_\ell \Sigma_\ell V_\ell^\top, \quad B_\ell = U_{\ell,1:k}, \quad \Pi_\ell^\perp = I - B_\ell B_\ell^\top. \quad (9)$$

279 We set k to capture a fixed fraction of retain variance (typically 95%–99%) and apply the resulting
 280 projectors in equation 8. This confines each teleport step to the retain-orthogonal subspace, stabilizing
 281 predictions on \mathcal{D}_r while suppressing gradient energy on \mathcal{D}_f . Since Π_ℓ^\perp removes directions spanned
 282 by retain representations, suitable choices of rank k and step size η_{tel} ensure that

$$283 \quad |\ell_r(g \cdot \theta | \mathcal{D}_r) - \ell_r(\theta | \mathcal{D}_r)| \leq \varepsilon,$$

285 which matches the constraint below equation 7; in practice, prediction drift on \mathcal{D}_r remains within
 286 numerical tolerance (see Appendix P for hyperparameter sensitivity). To underline that WARP is not
 287 tied to retain-null-space projections, Appendix D instantiates T_ϕ using the SVD-free change-of-basis
 288 symmetries introduce in Armenta et al. (2023).

289 **Plug-and-play scope.** Teleportation is interleaved with the standard unlearning update equation 6,
 290 requiring no training-time per-sample gradients or stored statistics. The update equation 8 is applied
 291 at intervals $t \in K \subset 0, \dots, T-1$ (e.g., every S steps), keeping *forget-set* gradient norms low while
 292 preserving retention performance. The full algorithm appears in Appendix K.

295 4 EXPERIMENTS

297 We now empirically evaluate the proposed teleportation-based defense across multiple unlearning
 298 algorithms, datasets, and model architectures. Our experiments are designed to answer the following
 299 research questions: (i) How vulnerable are state-of-the-art unlearning algorithms to privacy attacks
 300 under both black-box and white-box threat models? (ii) To what extent does teleportation reduce
 301 membership and reconstruction leakage without sacrificing utility on the retain-set?

302 **Experimental Setup.** We conduct experiments on CIFAR-10, Tiny-ImageNet, and ImageNet-
 303 1K. On CIFAR-10 we use ResNet-18, while on ImageNet we evaluate ViT-B/16, covering both
 304 convolutional and transformer models. All models are trained with SGD and standard augmentation.
 305 Following prior work Kurmanji et al. (2023); Chundawat et al. (2023a), forget sets \mathcal{D}_f are sampled
 306 as roughly 1% of training data per class, with retain sets \mathcal{D}_r comprising the rest.

308 **Baselines.** We benchmark six representative unlearning algorithms—NEGGRAD+ Kurmanji
 309 et al. (2023), SCRUB Kurmanji et al. (2023), SALUN Fan et al. (2023), PGU Hoang et al. (2024),
 310 BADTEACHER Chundawat et al. (2023a), and SRF-ON Huang et al. (2024)—covering paradigms of
 311 gradient ascent, regularization, saliency, projection, and distillation. Full details are in Appendix E.

313 4.1 OVERVIEW EFFECTIVENESS OF WARP

315 Figure 2 summarizes privacy and utility across six unlearning methods with and without our plug-in
 316 defense. Each radar chart reports black-box membership inference risk (AUC and TPR at low FPR),
 317 accuracy on the most-memorized subset, white-box membership inference risk (AUC and TPR at
 318 low FPR), and standard test accuracy. The most-memorized subset is selected following our U-LiRA
 319 protocol in Sec. 4.2, motivated by prior findings that highly memorized samples carry elevated
 320 unlearning risk Naderloui et al. (2025). For visualization, all metrics are min–max normalized across
 321 methods. Privacy metrics in which lower is better are inverted by plotting $1 - \text{metric}$, so that larger
 322 polygons correspond to stronger privacy, while higher test accuracy remains preferable.

323 Three key observations emerge. First, no unlearning algorithm dominates across all axes. For
 instance, SF performs well under black-box auditing but is weaker under white-box auditing and in

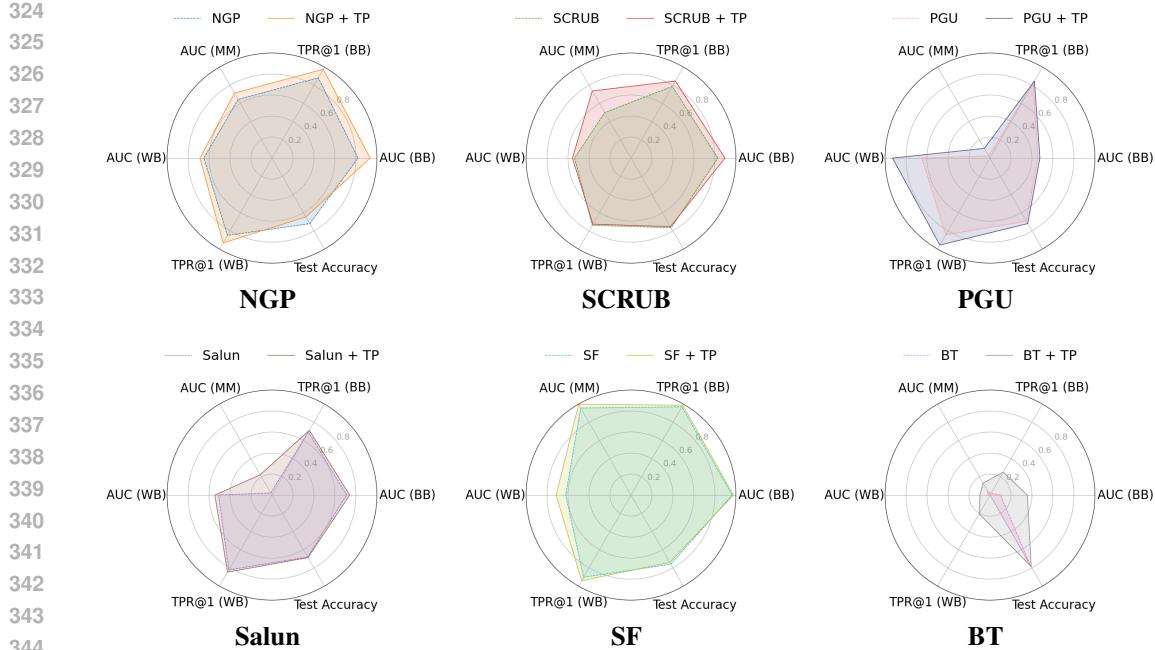


Figure 2: Comparison of unlearning vs. teleportation across six unlearning methods.

test accuracy, illustrating the necessity of evaluating under both threat models. Second, algorithms that appear robust under black-box evaluation such as NGP and SF still exhibit substantial leakage under our white-box test, underscoring the importance of auditing with gradient- or weight-based evidence. Third, adding our symmetry-based teleportation module, instantiated via retain null-space projection, consistently improves privacy across both black-box and white-box metrics while maintaining utility. In some cases, such as BT and SF, teleportation even improves test accuracy. The only noticeable accuracy drop occurs for NGP (about one percentage point), for which we provide a detailed privacy–utility trade-off analysis in Appendix I. The runtime overhead of teleportation is analyzed separately in Appendix J, and Appendix P presents ablations showing that WARP’s performance does not hinge on fragile choices of teleportation hyperparameters. Overall, these results demonstrate that the proposed defense empirically reduces attack success consistently and effectively across a diverse set of unlearning algorithms and threat models. For completeness, we also compare WARP against the strongest noise-based alternative, namely projected DP–Langevin unlearning Chien et al. (2024b), using its formally calibrated update rule; the full comparison is provided in Appendix M.

4.2 U-LiRA (BLACK-BOX)

We evaluate our teleportation defense with U-LiRA Hayes et al. (2025), a state-of-the-art black-box unlearning auditor. Following Deep Unlearn Cadet et al. (2024a), we train $T = 64$ shadow models with 10 random forget sets each. To model a strong adaptive adversary, shadows use the same unlearning algorithm, teleportation, and hyperparameters as the target, reducing proxy–target miscalibration Cretu et al. (2023). Details of U-LiRA appear in Appendix B.

As emphasized in prior work Carlini et al. (2022a), the most informative regime is low false-positive rates (FPR), where practical attacks must operate. We therefore report AUC as well as TPR@0.1, TPR@1, and TPR@5, which capture attacker success in this stringent regime. In addition, following RULI Naderlou et al. (2025), we stratify the *forget-set* by *memorization* (ranked by training confidence) and evaluate U-LiRA on the most–memorized slice. These points carry elevated privacy risk, so we report low-FPR TPR on this subset alongside aggregate metrics.

Table 1 shows that adding our teleportation plug-in reduces black-box membership leakage across all methods, on both the full *forget-set* and the most–memorized slice, with the largest gains at low FPR. For example, NGP’s TPR@1 nearly halves (0.030 → 0.014), SCRUB’s memorized-slice AUC

378 Table 1: **Privacy (Black-box) with and without WARP.** Reported are risks on *all forget samples*
 379 and the *most-memorized* 1% (AUC, TPR@0.1/1/5%), plus test accuracy. Each row shows baseline,
 380 WARP, and relative improvement (%).

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

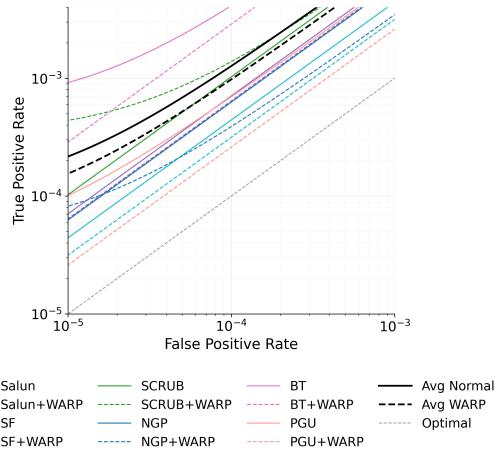
412

413

414

415

Method	All samples (BB)					Most-memorized (top 1%)					Acc.
	AUC	TPR@.1	TPR@1	TPR@5		AUC	TPR@.1	TPR@1	TPR@5	Test	
NGP (base)	0.545	0.012	0.030	0.077	0.649	0.058	0.157	0.277	0.277	0.808	
+ WARP	0.516	0.003	0.014	0.055	0.598	0.015	0.082	0.206	0.206	0.797	
Improvement (%)	64.4	81.8	80.0	81.5	34.2	75.4	51.0	31.3	31.3	-5.7	
SCRUB (base)	0.543	0.020	0.047	0.092	0.710	0.086	0.227	0.397	0.397	0.815	
+ WARP	0.526	0.015	0.036	0.078	0.610	0.041	0.119	0.213	0.213	0.813	
Improvement (%)	39.5	26.3	29.7	33.3	47.6	52.9	49.8	53.0	53.0	-1.1	
PGU (base)	0.636	0.024	0.040	0.098	0.910	0.201	0.511	0.706	0.706	0.804	
+ WARP	0.631	0.018	0.036	0.104	0.875	0.160	0.431	0.663	0.663	0.808	
Improvement (%)	3.7	26.1	13.3	-12.5	8.5	20.5	16.0	6.6	6.6	+2.0	
Salun (base)	0.572	0.020	0.062	0.121	0.910	0.129	0.321	0.520	0.520	0.802	
+ WARP	0.565	0.019	0.059	0.113	0.826	0.107	0.264	0.487	0.487	0.803	
Improvement (%)	9.7	5.3	5.8	11.3	20.5	17.2	18.3	7.0	7.0	+0.5	
SF (base)	0.509	0.004	0.015	0.056	0.518	0.089	0.034	0.079	0.079	0.814	
+ WARP	0.506	0.002	0.012	0.051	0.501	0.006	0.026	0.068	0.068	0.811	
Improvement (%)	33.3	66.7	60.0	83.3	94.4	94.3	33.3	37.9	37.9	-1.6	
BT (base)	0.725	0.000	0.177	0.287	0.902	0.119	0.295	0.582	0.582	0.816	
+ WARP	0.661	0.000	0.137	0.219	0.865	0.113	0.275	0.537	0.537	0.818	
Improvement (%)	28.4	—	24.0	28.7	9.2	5.1	7.0	8.5	8.5	+1.1	



Method	AUC	TPR@.1	TPR@1	TPR@5
NGP (base)	0.642	0.004	0.034	0.139
+ WARP	0.614	0.002	0.021	0.097
Improvement (%)	17.0	50.0	40.6	34.2
SCRUB (base)	0.700	0.011	0.102	0.287
+ WARP	0.657	0.006	0.061	0.193
Improvement (%)	14.3	54.5	42.5	33.5
PGU (base)	0.659	0.007	0.064	0.215
+ WARP	0.533	0.002	0.025	0.085
Improvement (%)	92.9	83.3	64.5	65.5
Salun (base)	0.721	0.008	0.069	0.230
+ WARP	0.705	0.006	0.062	0.214
Improvement (%)	9.5	33.3	10.1	7.0
SF (base)	0.670	0.005	0.043	0.161
+ WARP	0.629	0.003	0.030	0.124
Improvement (%)	29.2	50.0	34.9	23.2
BT (base)	0.938	0.037	0.346	0.809
+ WARP	0.907	0.028	0.279	0.684
Improvement (%)	49.2	25.7	19.4	18.4

416 Figure 3: **White-box privacy with and without WARP.** Gaussian gradient-diff test on 640 unlearned
 417 models. ROC curves (left) and AUC/TPRs (right); full ROC plots are in Appendix F.

418

419

420

421

422

423

424

425

426

427

428

429

430

431

420 drops by 0.10 (0.710→0.610), and SF’s AUC falls to near-random (0.501). Low-FPR TPR gains
 421 are often large even when aggregate AUC shifts are modest, showing that teleportation suppresses
 422 the high-confidence tails attacks exploit. Some methods remain leaky on memorized points, but
 423 teleportation frequently drives this slice close to random without hurting accuracy. Its impact is
 424 strongest on TPR@0.1 and TPR@1, as retain-null-space projection reduces forget gradients and
 425 shrinks extreme margins, weakening the rare signals enabling low-FPR success.

426

427

428

4.3 WHITE-BOX MIA

429 We evaluate the Gaussian gradient-difference test of Section C under the setup of Section 4, using
 430 ResNet-18 on CIFAR-10 and ViT-B/16 on Tiny-ImageNet (full ViT in Appendix H). For the null
 431 background we draw $m=1000$ non-members from $\mathcal{D}_{\text{test}}$, estimate $(\hat{\mu}, \hat{\Sigma})$ with ridge $\lambda=10^{-3}$, and
 432 restrict the test to the top-10% most-variant $\Delta(b)$ coordinates. Figure 3 shows ROC curves with and

432 Table 2: **Effect of teleportation defense** on reconstruction (ImageNet-1K, ResNet-18, NGP).
433

434 Variant	435 PSNR (dB) \uparrow	436 LPIPS (VGG) \downarrow	437 LPIPS (Alex) \downarrow	438 SSIM \uparrow	439 Test MSE \downarrow	440 Feat MSE \downarrow
Ours (normal unlearning)	10.74 ± 0.31	0.56 ± 0.013	0.34 ± 0.015	0.12 ± 0.008	0.10 ± 0.007	5.39 ± 0.50
Ours + WARP	7.38 ± 0.40	0.68 ± 0.01	0.46 ± 0.02	0.08 ± 0.006	0.21 ± 0.02	11.28 ± 1.89
<i>Improvement of Defense (%)</i>	+45.5	+21.2	+26.1	+31.6	+52.4	+52.2

441 Figure 4: **Reconstructions under NGP vs. NGP+WARP.**
442

443 without teleportation (log-log for low-FPR). Across methods, teleported variants shift toward chance
444 ($TPR = FPR$) and flatten between 10^{-5} – 10^{-2} FPR, suppressing high-confidence tails. The strongest
445 effect appears for BT and PGU, which show the largest AUC drops, while NGP, SF, and SALUN
446 show smaller but consistent shifts. An exception is SCRUB, where teleportation lowers ROC above
447 10^{-3} FPR but slightly raises TPR at $< 10^{-3}$, due to knowledge distillation interacting with symmetry
448 moves that amplify high-leverage directions. Overall, null-space teleportation reduces white-box
449 evidence at low FPR, with a narrow corner case for SCRUB.

461

4.4 RECONSTRUCTION ATTACK RESULTS

462 We evaluate the white-box reconstruction attack of Section 3.1 on **ImageNet-1K** with **ResNet-18**,
463 focusing on **NGP**. We reconstruct a *single* forgotten example and average over **100** uniformly sampled
464 points. For each target we use a retain minibatch of size $|\mathcal{B}_r| = 5$. Subspace projectors are built
465 per layer from probe gradients: we draw $m=100$ training samples to form G_{org} , G_u , compute thin
466 SVDs, and keep rank k preserving 90% gradient energy. We then apply Π_u^\perp and Π_{org} layerwise to
467 obtain the filtered target \tilde{g}_f . The attacker knows the label y_f and optimizes equation 4 with a TV
468 regularizer Geiping et al. (2020). The matching loss uses *masked* per-layer gradients: for each layer,
469 all coordinates are kept and a weighted dot-product alignment is computed Fang et al. (2023).
470

471 **Effect of teleportation.** Table 2 and Figure 4 compare reconstruction risk under standard NGP
472 unlearning and its teleported variant using change-of-basis reparameterization. Despite negligible
473 cost, this symmetry-based randomization disrupts reconstruction: even strong generative-prior
474 attacks fail to recover meaningful features of forgotten data. Teleportation injects a symmetry
475 component into $\Delta\theta$ that is nearly orthogonal to per-sample gradients Armenta et al. (2023), reducing
476 alignment with the true forget gradient g_f and driving gradient-matching toward low signal-to-noise
477 optima. It also undermines our subspace-filtered attack (Eq. 3), since teleportation reshapes gradient
478 subspaces so U_{org} and U_u overlap little, leaving the residual $\Pi_{\text{org}}\Pi_u^\perp(-\Delta\theta/\eta)$ small and noisy.
479 In practice, optimization collapses to the generative prior or class cues, yielding label-consistent
480 but semantically poor reconstructions (Figure 4). Symmetry moves thus decouple updates from
481 data-dependent directions, removing the geometric handle exploited by white-box reconstruction.
482 This motivates examining how teleportation reshapes the information relationship between parameters
483 and training data (forget-set); a stronger symmetry-aware adaptive reconstruction attack is evaluated
484 in Appendix N, and Appendix O provides complementary information-theoretic bounds showing how
485 teleportation expands the symmetry orbit and increases expected reconstruction error.

486 **5 CONCLUSION AND FUTURE WORK**

488 Approximate unlearning provides scalability but introduces privacy risks. We showed that adversaries
 489 with access to original and unlearned models can mount strong membership inference and reconstruc-
 490 tion attacks. These risks stem from two properties: parameter proximity and large forget-set gradient
 491 norms, which amplify leakage.

492 To counter this, we proposed WARP, a symmetry-based defense that interleaves teleportation
 493 with unlearning. By exploiting network symmetries, WARP reduces forget-set gradient energy
 494 and displaces parameters in symmetry-preserving directions, weakening both membership and
 495 reconstruction leakage while preserving retain performance. Across six unlearning algorithms,
 496 WARP improves privacy, cutting adversarial advantage by up to 64% in black-box and 92% in
 497 white-box settings. We also stress the need for white-box auditing: methods seemingly robust in
 498 black-box mode (e.g., SF Huang et al. (2024)) still leak when gradients are exposed. Even simple
 499 teleportation disrupts reconstruction, reducing quality by $\sim 45\%$.

500 Our findings suggest future directions. First, extending Langevin-based privacy analyses to practical
 501 unlearning with gradient ascent and symmetry moves is promising. Second, recent work shows
 502 approximate unlearning leaves low-rank weight signals, reversible via re-unlearning Fan et al. (2025)
 503 or removed by quantization Zhang et al. (2024). Exploring teleportation directly on weights may
 504 help obscure these signals and mitigate reversals. Finally, as the study of neural network symmetries
 505 continues to evolve and more efficient estimators and richer invariance families become available,
 506 WARP can directly inherit these advances by instantiating its symmetry map with stronger or cheaper
 507 symmetry mechanisms, which further strengthens its resistance to unlearning attacks.

508 **509 REFERENCES**

- 510 Marco Armenta and Pierre-Marc Jodoin. The representation theory of neural networks. *Mathematics*,
 511 9(24):3216, 2021.
- 513 Marco Armenta, Thierry Judge, Nathan Painchaud, Youssef Skandarani, Carl Lemaire, Gabriel
 514 Gibeau Sanchez, Philippe Spino, and Pierre-Marc Jodoin. Neural teleportation. *Mathematics*, 11
 515 (2):480, 2023.
- 516 Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
 517 optimization and generalization for overparameterized two-layer neural networks. In *International
 518 conference on machine learning*, pp. 322–332. PMLR, 2019.
- 519 Vijay Badrinarayanan, Bamdev Mishra, and Roberto Cipolla. Symmetry-invariant optimization in
 520 deep networks. *arXiv preprint arXiv:1511.01754*, 2015.
- 522 Haolei Bai, Siyong Jian, Tuo Liang, Yu Yin, and Huan Wang. Ressvd: Residual compensated svd for
 523 large language model compression. *arXiv preprint arXiv:2505.20112*, 2025.
- 524 Martin Bertran, Shuai Tang, Michael Kearns, Jamie H Morgenstern, Aaron Roth, and Steven Z Wu.
 525 Reconstruction attacks on machine unlearning: Simple models are vulnerable. *Advances in Neural
 526 Information Processing Systems*, 37:104995–105016, 2024.
- 528 Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
 529 Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *2021 IEEE symposium
 530 on security and privacy (SP)*, pp. 141–159. IEEE, 2021.
- 531 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 532 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 533 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- 534 Xavier F Cadet, Anastasia Borovykh, Mohammad Malekzadeh, Sara Ahmadi-Abhari, and Hamed
 535 Haddadi. Deep unlearn: Benchmarking machine unlearning. *arXiv preprint arXiv:2410.01276*,
 536 2024a.
- 538 Xavier F. Cadet, Anastasia Borovykh, Mohammad Malekzadeh, Sara Ahmadi-Abhari, and Hamed
 539 Haddadi. Deep Unlearn: Benchmarking Machine Unlearning, October 2024b. URL <http://arxiv.org/abs/2410.01276> [cs].

- 540 Yinzh Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In *2015*
 541 *IEEE symposium on security and privacy*, pp. 463–480. IEEE, 2015.
 542
- 543 Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer.
 544 Membership inference attacks from first principles. In *2022 IEEE symposium on security and*
 545 *privacy (SP)*, pp. 1897–1914. IEEE, 2022a.
- 546 Nicholas Carlini, Matthew Jagielski, Chiyuan Zhang, Nicolas Papernot, Andreas Terzis, and Florian
 547 Tramer. The privacy onion effect: Memorization is relative. *Advances in Neural Information*
 548 *Processing Systems*, 35:13263–13276, 2022b.
 549
- 550 Sungmin Cha, Sungjun Cho, Dasol Hwang, Honglak Lee, Taesup Moon, and Moontae Lee. Learning
 551 to unlearn: Instance-wise unlearning for pre-trained classifiers. In *Proceedings of the AAAI*
 552 *conference on artificial intelligence*, volume 38, pp. 11186–11194, 2024.
- 553 Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang. When
 554 machine unlearning jeopardizes privacy. In *Proceedings of the 2021 ACM SIGSAC conference on*
 555 *computer and communications security*, pp. 896–911, 2021.
 556
- 557 Eli Chien, Haoyu Wang, Ziang Chen, and Pan Li. Certified machine unlearning via noisy stochastic
 558 gradient descent. *Advances in Neural Information Processing Systems*, 37:38852–38887, 2024a.
 559
- 560 Eli Chien, Haoyu Wang, Ziang Chen, and Pan Li. Langevin unlearning: A new perspective of noisy
 561 gradient descent for machine unlearning. *Advances in neural information processing systems*, 37:
 562 79666–79703, 2024b.
- 563 Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching
 564 induce forgetting? unlearning in deep networks using an incompetent teacher. In *Proceedings of*
 565 *the AAAI Conference on Artificial Intelligence*, pp. 7210–7217, 2023a.
 566
- 567 Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot machine
 568 unlearning. *IEEE Transactions on Information Forensics and Security*, 18:2345–2354, 2023b.
- 569 Ana-Maria Cretu, Daniel Jones, Yves-Alexandre de Montjoye, and Shruti Tople. Investigating
 570 the effect of misalignment on membership privacy in the white-box setting. *arXiv preprint*
 571 *arXiv:2306.05093*, 2023.
 572
- 573 Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous
 574 models: Layers are automatically balanced. *Advances in neural information processing systems*,
 575 31, 2018.
- 576 Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
 577 powering machine unlearning via gradient-based weight saliency in both image classification and
 578 generation. *arXiv preprint arXiv:2310.12508*, 2023.
 579
- 580 Chongyu Fan, Jiancheng Liu, Alfred Hero, and Sijia Liu. Challenging forgets: Unveiling the worst-
 581 case forget sets in machine unlearning. In *European Conference on Computer Vision*, pp. 278–297.
 582 Springer, 2024.
 583
- 584 Chongyu Fan, Jinghan Jia, Yihua Zhang, Anil Ramakrishna, Mingyi Hong, and Sijia Liu. Towards
 585 llm unlearning resilient to relearning attacks: A sharpness-aware minimization perspective and
 586 beyond. *arXiv preprint arXiv:2502.05374*, 2025.
- 587 Hao Fang, Bin Chen, Xuan Wang, Zhi Wang, and Shu-Tao Xia. Gifd: A generative gradient
 588 inversion method with feature domain optimization. In *Proceedings of the IEEE/CVF International*
 589 *Conference on Computer Vision*, pp. 4967–4976, 2023.
 590
- 591 Stanislav Fort, Gintare Karolina Dziugaite, Maithra Raghu Paul, Surya Ganguli, and David J. Schwab.
 592 Deep learning versus kernel learning: An empirical study of loss landscape geometry and the time
 593 evolution of the neural tangent kernel. In *Advances in Neural Information Processing Systems*,
 volume 33, pp. 5850–5861, 2020.

- 594 Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-how
 595 easy is it to break privacy in federated learning? *Advances in neural information processing*
 596 *systems*, 33:16937–16947, 2020.
- 597
- 598 Kristian Georgiev, Roy Rinberg, Sung Min Park, Shivam Garg, Andrew Ilyas, Aleksander Madry,
 599 and Seth Neel. Attribute-to-delete: Machine unlearning via datamodel matching. *arXiv preprint*
 600 *arXiv:2410.23232*, 2024.
- 601 Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
 602 via hessian eigenvalue density. In *Proceedings of the 36th International Conference on Machine*
 603 *Learning (ICML)*, volume 97 of *Proceedings of Machine Learning Research*, pp. 2232–2241.
 604 PMLR, 2019.
- 605
- 606 Grzegorz Głuch and Rüdiger Urbanke. Noether: The more things change, the more stay the same.
 607 *arXiv preprint arXiv:2104.05508*, 2021.
- 608
- 609 Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside the box: Scrubbing deep
 610 networks of information accessible from input-output observations. In *European Conference on*
 611 *Computer Vision*, pp. 383–398. Springer, 2020.
- 612
- 613 Gene H. Golub and Charles F. Van Loan. *Matrix Computations*. Johns Hopkins University Press,
 Baltimore, MD, 4 edition, 2013.
- 614
- 615 Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In *Proceedings of*
 616 *the AAAI Conference on Artificial Intelligence*, volume 35, pp. 11516–11524, 2021.
- 617
- 618 Chiyuan Guo, Tom Goldstein, Awni Hannun, and Laurens van der Maaten. Certified data removal
 619 from machine learning models. In *International Conference on Machine Learning*, pp. 3832–3842.
 PMLR, 2020.
- 620
- 621 Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. *arXiv*
 622 *preprint arXiv:1812.04754*, 2018.
- 623
- 624 Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with randomness:
 625 Probabilistic algorithms for constructing approximate matrix decompositions. *SIAM Review*, 53
 (2):217–288, 2011.
- 626
- 627 Jamie Hayes, Ilia Shumailov, Eleni Triantafillou, Amr Khalifa, and Nicolas Papernot. Inexact
 628 unlearning needs more careful evaluations to avoid a false sense of privacy. In *2025 IEEE*
 629 *Conference on Secure and Trustworthy Machine Learning (SaTML)*, pp. 497–519. IEEE, 2025.
- 630
- 631 Tuan Hoang, Santu Rana, Sunil Gupta, and Svetha Venkatesh. Learn to unlearn for deep neural
 632 networks: Minimizing unlearning interference with gradient projection. In *Proceedings of the*
 633 *IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 4819–4828, 2024.
- 634
- 635 Yen-Chang Hsu, Ting Hua, Sungjen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
 636 compression with weighted low-rank factorization. *arXiv preprint arXiv:2207.00112*, 2022.
- 637
- 638 Hongsheng Hu, Shuo Wang, Tian Dong, and Minhui Xue. Learn what you want to unlearn: Unlearning
 639 inversion attacks against machine unlearning. In *2024 IEEE Symposium on Security and Privacy*
 (SP), pp. 3257–3275. IEEE, 2024.
- 640
- 641 Zhehao Huang, Xinwen Cheng, JingHao Zheng, Haoran Wang, Zhengbao He, Tao Li, and Xiaolin
 642 Huang. Unified gradient-based machine unlearning with remain geometry enhancement. *Advances*
 643 *in Neural Information Processing Systems*, 37:26377–26414, 2024.
- 644
- 645 Jinwoo Jeon, Kangwook Lee, Sewoong Oh, Jungseul Ok, et al. Gradient inversion with generative
 646 image prior. *Advances in neural information processing systems*, 34:29898–29908, 2021.
- 647
- 648 Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel LK Yamins, and Hidenori Tanaka.
 649 Neural mechanics: Symmetry and broken conservation laws in deep learning dynamics. *arXiv*
 650 *preprint arXiv:2012.04728*, 2020.

- 648 Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
 649 machine unlearning. *Advances in neural information processing systems*, 36:1957–1987, 2023.
 650
- 651 Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Gaussian membership inference privacy.
 652 *Advances in Neural Information Processing Systems*, 36:73866–73878, 2023.
- 653 Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. Auditing privacy defenses in federated
 654 learning via generative gradient leakage. In *Proceedings of the IEEE/CVF conference on computer*
 655 *vision and pattern recognition*, pp. 10132–10142, 2022.
- 656
- 657 Junxu Liu, Mingsheng Xue, Jian Lou, Xiaoyu Zhang, Li Xiong, and Zhan Qin. Muter: Machine
 658 unlearning on adversarially trained models. In *Proceedings of the IEEE/CVF international*
 659 *conference on computer vision*, pp. 4892–4902, 2023.
- 660 Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N Ravi. Deep unlearning via randomized
 661 conditionally independent hessians. In *Proceedings of the IEEE/CVF Conference on Computer*
 662 *Vision and Pattern Recognition*, pp. 10422–10431, 2022.
- 663
- 664 Ioannis Mitliagkas, Constantine Caramanis, Prateek Jain, Shiva Prasad Kasiviswanathan, and Sanjiv
 665 Kumar. Memory limited, streaming PCA. In *Advances in Neural Information Processing Systems*,
 666 volume 26, 2013.
- 667 Cameron Musco and Christopher Musco. Randomized block krylov methods for stronger and faster
 668 approximate singular value decomposition. In *Advances in Neural Information Processing Systems*,
 669 volume 28, 2015.
- 670 Nima Naderloui, Shenao Yan, Binghui Wang, Jie Fu, Wendy Hui Wang, Weiran Liu, and Yuan Hong.
 671 Rectifying privacy and efficacy measurements in machine unlearning: A new inference attack
 672 perspective. *arXiv preprint arXiv:2506.13009*, 2025.
- 673
- 674 Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning:
 675 Passive and active white-box inference attacks against centralized and federated learning. In *2019*
 676 *IEEE symposium on security and privacy (SP)*, pp. 739–753. IEEE, 2019.
- 677 Thanh Tam Nguyen, Thanh Trung Huynh, Zhao Ren, Phi Le Nguyen, Alan Wee-Chung Liew,
 678 Hongzhi Yin, and Quoc Viet Hung Nguyen. A survey of machine unlearning. *arXiv preprint*
 679 *arXiv:2209.02299*, 2022.
- 680
- 681 Erkki Oja. A simplified neuron model as a principal component analyzer. *Journal of Mathematical*
 682 *Biology*, 15(3):267–273, 1982.
- 683
- 684 Xinbao Qiao, Meng Zhang, Ming Tang, and Ermin Wei. Hessian-free online certified unlearning.
 685 *arXiv preprint arXiv:2404.01712*, 2024.
- 686
- 687 Deepak Ravikumar, Efstathia Souflieri, Abolfazl Hashemi, and Kaushik Roy. Unveiling privacy,
 688 memorization, and input curvature links. *arXiv preprint arXiv:2402.18726*, 2024a.
- 689
- 690 Deepak Ravikumar, Efstathia Souflieri, and Kaushik Roy. Curvature clues: Decoding deep learning
 691 privacy with input loss curvature. *Advances in Neural Information Processing Systems*, 37:
 692 20003–20030, 2024b.
- 693
- 694 Maria Rigaki and Sebastian Garcia. A survey of privacy attacks in machine learning. *ACM Computing*
 695 *Surveys*, 56(4):1–34, 2023.
- 696
- 697 Charbel Sakr and Brucek Khailany. Espace: Dimensionality reduction of activations for model
 698 compression. *Advances in Neural Information Processing Systems*, 37:17489–17517, 2024.
- 699
- 700 Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz, and Yang Zhang. {Updates-
 701 Leak}: Data set inference and reconstruction attacks in online learning. In *29th USENIX security*
 702 *symposium (USENIX Security 20)*, pp. 1291–1308, 2020.
- 703
- 704 Seonguk Seo, Dongwan Kim, and Bohyung Han. Revisiting machine unlearning with dimensional
 705 alignment. In *2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*,
 706 pp. 3206–3215. IEEE, 2025.

- 702 Nazanin Mohammadi Sepahvand, Anvith Thudi, Berivan Isik, Ashmita Bhattacharyya, Nicolas
 703 Papernot, Eleni Triantafillou, Daniel M Roy, and Gintare Karolina Dziugaite. Leveraging per-
 704 instance privacy for machine unlearning. *arXiv preprint arXiv:2505.18786*, 2025.
- 705 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
 706 against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*, pp. 3–18.
 707 IEEE, 2017.
- 708 Berfin Simsek, François Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram Gerstner,
 709 and Johanni Brea. Geometry of the loss landscape in overparameterized neural networks: Symme-
 710 tries and invariances. In *International Conference on Machine Learning*, pp. 9722–9732. PMLR,
 711 2021.
- 712 Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd: Under-
 713 standing factors influencing machine unlearning. In *2022 IEEE 7th European Symposium on
 714 Security and Privacy (EuroS&P)*, pp. 303–319. IEEE, 2022.
- 715 Marlon Tobaben, Gauri Pradhan, Yuan He, Joonas Jälkö, and Antti Honkela. Understanding practical
 716 membership privacy of deep learning. In *Privacy Regulation and Protection in Machine Learning*,
 717 2024.
- 718 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 719 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 720 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
- 721 Joel A. Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Practical sketching algorithms
 722 for low-rank matrix approximation. *SIAM Journal on Matrix Analysis and Applications*, 38(4):
 723 1454–1485, 2017.
- 724 Jana Vatter, Ruben Mayer, and Hans-Arno Jacobsen. The evolution of distributed systems for graph
 725 neural networks and their origin in graph processing and deep learning: A survey. *ACM Computing
 726 Surveys*, 56(1):1–37, 2023.
- 727 Qiyuan Wang, Ruiling Xu, Shibo He, Randall Berry, and Meng Zhang. Unlearning incentivizes
 728 learning under privacy risk. In *Proceedings of the ACM on Web Conference 2025*, pp. 1456–1467,
 729 2025a.
- 730 Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
 731 decomposition for large language model compression. *arXiv preprint arXiv:2403.07378*, 2024.
- 732 Xin Wang, Samiul Alam, Zhongwei Wan, Hui Shen, and Mi Zhang. Svd-llm v2: Optimizing singular
 733 value truncation for large language model compression. *arXiv preprint arXiv:2503.12340*, 2025b.
- 734 Manfred K. Warmuth and Dima Kuzmin. Randomized online PCA algorithms with regret bounds.
 735 *Journal of Machine Learning Research*, 9(10):2287–2320, 2008.
- 736 David P. Woodruff. Sketching as a tool for numerical linear algebra. *Foundations and Trends in
 737 Theoretical Computer Science*, 10(1–2):1–157, 2014.
- 738 Zihao Wu, Juncheng Dong, Ahmed Aloui, and Vahid Tarokh. Teleportation with null space gradient
 739 projection for optimization acceleration. *arXiv preprint arXiv:2502.11362*, 2025.
- 740 Song Xia, Yi Yu, Wenhan Yang, Meiwen Ding, Zhuo Chen, Ling-Yu Duan, Alex C Kot, and Xudong
 741 Jiang. Theoretical insights in model inversion robustness and conditional entropy maximization for
 742 collaborative inference systems. In *Proceedings of the Computer Vision and Pattern Recognition
 743 Conference*, pp. 8753–8763, 2025.
- 744 Jiayuan Ye, Zhenyu Zhu, Fanghui Liu, Reza Shokri, and Volkan Cevher. Initialization matters:
 745 Privacy-utility analysis of overparameterized neural networks. *Advances in Neural Information
 746 Processing Systems*, 36:5419–5446, 2023.
- 747 Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See
 748 through gradients: Image batch recovery via gradinversion. In *Proceedings of the IEEE/CVF
 749 conference on computer vision and pattern recognition*, pp. 16337–16346, 2021.

756 Zhiwei Zhang, Fali Wang, Xiaomin Li, Zongyu Wu, Xianfeng Tang, Hui Liu, Qi He, Wenpeng
 757 Yin, and Suhang Wang. Catastrophic failure of llm unlearning via quantization. *arXiv preprint*
 758 *arXiv:2410.16454*, 2024.

760 Bo Zhao, Nima Dehmamy, Robin Walters, and Rose Yu. Symmetry teleportation for accelerated
 761 optimization. *Advances in neural information processing systems*, 35:16679–16690, 2022.

762 Bo Zhao, Robert M Gower, Robin Walters, and Rose Yu. Improving convergence and generalization
 763 using parameter symmetries. *arXiv preprint arXiv:2305.13404*, 2023.

765 Kairan Zhao, Meghdad Kurmanji, George-Octavian Bărbulescu, Eleni Triantafillou, and Peter Tri-
 766 antafillou. What makes unlearning hard and what to do about it. *Advances in Neural Information*
 767 *Processing Systems*, 37:12293–12333, 2024.

768 A RELATED WORK

771 **Approximate Unlearning.** The removal of training samples was introduced by Cao & Yang
 772 (2015) in the context of the “right to be forgotten.” Retraining from scratch guarantees deletion but is
 773 infeasible for modern networks Vatter et al. (2023). Exact unlearning methods such as SISA Bourtoule
 774 et al. (2021) and Amnesiac Unlearning Graves et al. (2021) lower cost through partitioning or selective
 775 retraining but still require storage and scale poorly Nguyen et al. (2022).

777 Approximate unlearning directly updates the trained model to erase the *forget-set* Kurmanji et al.
 778 (2023); Chundawat et al. (2023a); Golatkar et al. (2020); Thudi et al. (2022). These methods aim to
 779 match the predictive distribution of retraining while preserving retain accuracy, offering a practical
 780 forgetting–utility trade-off with large savings in computation and memory. Related methods target
 781 structured forget sets such as entire classes Chundawat et al. (2023b); Seo et al. (2025), or tackle the
 782 harder instance-wise setting, where arbitrary samples must be removed Fan et al. (2024); Cha et al.
 783 (2024); Zhao et al. (2024). Many approaches rely on training-time side information like per-sample
 784 gradients Qiao et al. (2024); Mehta et al. (2022), or assume specialized regimes with adversarial
 785 robustness Liu et al. (2023) or differential-privacy noise Chien et al. (2024b;a); Sepahvand et al.
 786 (2025). While effective, these assumptions add resource overhead, limiting post-hoc use. Our focus,
 787 therefore, is training-agnostic, instance-wise unlearning that takes only a pretrained classifier and
 788 a designated *forget-set*, without stored gradients or training modifications Kurmanji et al. (2023);
 789 Thudi et al. (2022).

790 **Privacy Unlearning.** The effectiveness of approximate unlearning is accessed by two criteria: (I)
 791 the model should maintain accuracy on non-forgotten data, and (II) its outputs on the *forget-set* should
 792 be indistinguishable from those of a model with no access to it Naderloui et al. (2025). In practice,
 793 this is evaluated using MIA Shokri et al. (2017); Carlini et al. (2022a), which test whether a sample
 794 was part of training. Effective unlearning removes this membership advantage on the *forget-set*.

795 Most prior work evaluates unlearning by comparing outputs of the unlearned model to a retrained
 796 reference on the *forget-set* Cadet et al. (2024b); Kurmanji et al. (2023); Hayes et al. (2025); Georgiev
 797 et al. (2024); Naderloui et al. (2025). This black-box view ignores parameters, even though in
 798 practice—such as MU on edge devices—an adversary may access both original and unlearned models.
 799 Some studies consider this stronger setting: Chen et al. (2021) showed that output-comparison
 800 across models can detect unlearning, while others adapted reconstruction to infer forgotten data
 801 from parameter differences Salem et al. (2020); Hu et al. (2024); Bertran et al. (2024). These works,
 802 however, are limited to toy models and simplified updates, leaving privacy risk under realistic
 803 conditions unclear. In particular, they do not capture the robustness of recent multi-step approximate
 804 methods such as NGP or SCRUB Kurmanji et al. (2023); Chundawat et al. (2023a), where iterative
 805 updates with retain-set supervision weaken inversion of *forget-set* gradients. We address this gap
 806 with stronger white-box MIAs (Sec.C) and DRAs (Sec.3.1) tailored to realistic unlearning.

807 **Neural Network Symmetry.** Continuous symmetries in neural networks arise when transformations
 808 of the weights leave the output unchanged. Such invariances, a byproduct of overparameterization,
 809 mean that many distinct weight configurations represent the same function Gluch & Urbanke (2021).
 They appear in homogeneous activations Badrinarayanan et al. (2015); Du et al. (2018) and in

810 components like softmax and batch normalization Kunin et al. (2020), and have been linked to
 811 both improved optimization and generalization. Neural teleportation leverages these symmetries by
 812 relocating parameters within the loss-invariant level set, yielding equivalent models that accelerate
 813 optimization Armenta & Jodoin (2021); Armenta et al. (2023). Building on this idea, Zhao et al.
 814 (2022) introduced symmetry teleportation, which searches for beneficial relocations while providing
 815 a framework for analyzing symmetry-induced minima. More recently, teleportation with null-space
 816 gradient projection Wu et al. (2025) leverages the input null space: moving along projected directions
 817 leaves the function unchanged, directly aligning with the goal of teleportation.

819 B U-LiRA ALGORITHM

820 To evaluate sample-wise privacy leakage, we employ the U-LiRA attack Cadet et al. (2024a); Hayes
 821 et al. (2025), an adaptation of LiRA Carlini et al. (2022a) to the unlearning setting. The attack relies
 822 on shadow models to estimate two distributions for a target sample (x, y) : (i) models trained with
 823 (x, y) and subsequently unlearned using the same unlearning algorithm, and (ii) models trained from
 824 scratch without (x, y) . By fitting simple parametric models (e.g., Gaussians) to the outputs of these
 825 shadow ensembles, U-LiRA computes the likelihood of the target model’s output under each case
 826 and classifies membership according to a likelihood ratio test.

827 Crucially, all shadow models are trained with the *same unlearning algorithm and hyperparameters* as
 828 the audited model. This makes U-LiRA effectively an *adaptive attack*, since it tailors the proxies
 829 to each specific unlearning method. Such alignment minimizes miscalibration between shadow and
 830 target models and is known to increase attack success Cretu et al. (2023). Therefore, U-LiRA serves
 831 as a strong black-box baseline for auditing privacy in unlearning. A complete description of the
 832 algorithm can be demonstrated in Algorithm 1.

835 Algorithm 1 U-LiRA (used for auditing unlearning)

836 **Require:** Target model θ^* , learning algorithm A , unlearning algorithm U , number of shadows T ,
 837 sample (x, y)

838 **Ensure:** Prediction: is (x, y) in the *forget-set*?

839 1: Initialize empty lists $O \leftarrow \{\}$ and $\hat{O} \leftarrow \{\}$
 840 2: **for** $t = 1$ to T **do**
 841 3: Sample dataset D containing (x, y)
 842 4: Train $\theta^0 \leftarrow A(D)$
 843 5: Unlearn $\theta^f \leftarrow U(\theta^0, \{(x, y)\})$
 844 6: Retrain $\theta^r \leftarrow A(D \setminus \{(x, y)\})$
 845 7: Record $O[t] \leftarrow f(x; \theta^f)_y, \hat{O}[t] \leftarrow f(x; \theta^r)_y$
 846 8: **end for**
 847 9: Fit Gaussian (μ, σ^2) to O , and $(\hat{\mu}, \hat{\sigma}^2)$ to \hat{O}
 848 10: Compute $o^* \leftarrow f(x; \theta^*)_y$
 849 11: Compute likelihood ratio:

$$850 \quad p_{\text{member}} = \frac{\mathcal{N}(o^*; \mu, \sigma^2)}{\mathcal{N}(o^*; \mu, \sigma^2) + \mathcal{N}(o^*; \hat{\mu}, \hat{\sigma}^2)}$$

851 12: **if** $p_{\text{member}} > 0.5$ **then**
 852 13: **return** “member of training”
 853 14: **else**
 854 15: **return** “non-member”
 855 16: **end if**

859 C WHITE-BOX GAUSSIAN GRADIENT-DIFFERENCE ATTACK ALGORITHM

860 Guided by the GLiR framework of Leemann et al. (2023), we formulate sample-wise MIA in the
 861 unlearning setting as a binary hypothesis test that uses *both* the pre-unlearning and post-unlearning
 862 models. Let A denote the training algorithm, U the unlearning operator, S the original training set,

864 and $F \subseteq S$ the forget subset. For a candidate example (x, y) , we test
 865

$$866 \quad H_0 : (x, y) \sim \mathcal{D}_{\text{test}}, \quad (\theta^{\text{org}}, \theta^u) = (A(S), U(A(S), F)) \text{ with } x \notin S, x \notin F, \\ 867 \quad H_1 : (x, y) \in \mathcal{D}_{\text{forg}}, \quad (\theta^{\text{org}}, \theta^u) = (A(S), U(A(S), F)) \text{ with } x \in S \text{ and } x \in F,$$

868 i.e., under H_1 the point participated in the original training and was subsequently targeted by
 869 unlearning, whereas under H_0 it was never used. With white-box access, we form the gradient-
 870 difference statistic

$$871 \quad \Delta(x) = \nabla_{\theta} \ell(f(x; \theta^u), y) - \nabla_{\theta} \ell(f(x; \theta^{\text{org}}), y) \in \mathbb{R}^d. \\ 872$$

873 Assuming access to draws from $\mathcal{D}_{\text{test}}$, the adversary builds a background set $B = \{(b_i, \tilde{y}_i)\}_{i=1}^m \sim \mathcal{D}_{\text{test}}^m$
 874 and estimates the null (non-member) distribution of gradient differences via

$$875 \quad \hat{\mu} = \frac{1}{m} \sum_{i=1}^m \Delta(b_i), \quad \hat{\Sigma} = \frac{1}{m-1} \sum_{i=1}^m (\Delta(b_i) - \hat{\mu})(\Delta(b_i) - \hat{\mu})^{\top}. \\ 876 \\ 877$$

878 Following Leemann et al. (2023), we adopt a Gaussian model for $\Delta(x)$ under H_0 and compute the
 879 whitened Mahalanobis statistic

$$880 \quad s(x) = (\Delta(x) - \hat{\mu})^{\top} (\hat{\Sigma} + \lambda I)^{-1} (\Delta(x) - \hat{\mu}), \\ 881$$

882 with a small ridge $\lambda > 0$ for numerical stability. Under H_0 , $s(x)$ is approximately χ_d^2 -distributed,
 883 yielding the log- p -value score

$$884 \quad A'(x, y) = -\log(1 - F_{\chi_d^2}(s(x))), \\ 885$$

886 and the final decision rule

$$887 \quad A(x, y) = \mathbb{I}[A'(x, y) > \tau],$$

888 predicting *forgotten* when the score exceeds threshold τ . Algorithm 2 provides the full details of the
 889 proposed attack.

890

891 **Relation to GLiR and unlearning specifics.** GLiR aggregates evidence across training steps by
 892 comparing per-step sample gradients to a Gaussian background of batch gradients; our adaptation
 893 replaces the (typically unavailable) per-step trajectory with the two-model contrast $\Delta(x)$. The
 894 geometry is unchanged: Evidence corresponds to the squared norm of the whitened difference,
 895 $\|(\hat{\Sigma} + \lambda I)^{-1/2} \Delta(x)\|_2^2$. Unlike standard MIAs that query a single model, the test exploits white-box
 896 access to θ^{org} and θ^u and targets the unlearning-specific alternative H_1 (membership in both S and
 897 F), providing a simple and powerful auditor for residual leakage after unlearning.

898 **Algorithm 2** White-box Gaussian Gradient-Difference Attack for Unlearning Audit

900 **Require:** Pre-unlearning model θ^{org} , post-unlearning model θ^u , candidate sample (x, y) , loss ℓ ,
 901 predictor $f(\cdot; \theta)$, background sampler $\mathcal{S}_{\text{test}}(m)$ that returns m i.i.d. draws from $\mathcal{D}_{\text{test}}$

902 **Require:** Hyperparameters: background size m , repetitions T , ridge $\lambda > 0$, decision threshold τ

1: $S \leftarrow 0$ ▷ initialize cumulative evidence

2: **for** $t = 1$ to T **do**

3: $B_t = \{(b_i, \tilde{y}_i)\}_{i=1}^m \leftarrow \mathcal{S}_{\text{test}}(m)$ ▷ if labels are unavailable, set $\tilde{y}_i = \arg \max f(b_i; \theta^{\text{org}})$

4: **for** $i = 1$ to m **do**

5: $\Delta_i \leftarrow \nabla_{\theta} \ell(f(b_i; \theta^u), \tilde{y}_i) - \nabla_{\theta} \ell(f(b_i; \theta^{\text{org}}), \tilde{y}_i) \in \mathbb{R}^d$

6: **end for**

7: $\hat{\mu}_t \leftarrow \frac{1}{m} \sum_{i=1}^m \Delta_i$

8: $\hat{\Sigma}_t \leftarrow \frac{1}{m-1} \sum_{i=1}^m (\Delta_i - \hat{\mu}_t)(\Delta_i - \hat{\mu}_t)^{\top}$

9: $\hat{\Sigma}_{t, \lambda} \leftarrow \hat{\Sigma}_t + \lambda I_d$ ▷ ridge for numerical stability

10: $\Delta_x \leftarrow \nabla_{\theta} \ell(f(x; \theta^u), y) - \nabla_{\theta} \ell(f(x; \theta^{\text{org}}), y)$

11: $v \leftarrow \Delta_x - \hat{\mu}_t$

12: Solve $\hat{\Sigma}_{t, \lambda} w = v$ for w (e.g., Cholesky); $s_t \leftarrow v^{\top} w$

13: $\ell_t \leftarrow -\log(1 - F_{\chi_d^2}(s_t))$ ▷ log tail p -value under H_0

14: $S \leftarrow S + \ell_t$

15: **end for**

16: **return** FORGOTTEN if $S > \tau$; else TEST

918 D ALTERNATIVE SYMMETRY: CHANGE-OF-BASIS NEURAL TELEPORTATION.
919920 We also support the “neural teleportation” family of symmetry moves from Armenta et al. (2023). Let
921 $\tau_a > 0$ be a scale attached to neuron a . For an edge $a \rightarrow b$ with weight θ_{ab} the teleported weight is
922

923
$$\theta'_{ab} = \frac{\tau_b}{\tau_a} \theta_{ab}, \quad (10)$$

924

925 and if f_d is the activation at neuron d then the teleported activation is
926

927
$$g_d(x) = \tau_d f_d \left(\frac{x}{\tau_d} \right), \quad (11)$$

928

929 which preserves the function for positively homogeneous activations and extends naturally to batch-
930 norm scales Armenta et al. (2023). In a subset of experiments, we choose τ to further increase
931 parameter dispersion under loss invariance (outputs unchanged), thereby weakening the differencing
932 signal and making reconstruction harder; most results rely on the null space instantiation in equation 8.
933 In the experimental section, it is explicitly indicated when both mechanisms are enabled.
934936 E BASELINES
937938 We evaluate our teleportation-based defense as a *plug-and-play* module layered on top of several
939 state-of-the-art approximate post-hoc unlearning methods. These baselines are representative of the
940 most widely studied approaches in recent literature, requiring no access to training-time auxiliary
941 statistics (e.g., per-sample gradients) and operating directly on a pretrained model. Specifically, we
942 consider:
943

- 944 1.
- NegGrad+ (NGP)**
- Kurmanji et al. (2023): An improved variant of GA that incorporates
-
- 945 a regularization term on the retain-set. The method balances ascent on the
- forget-set*
- with
-
- 946 descent on the retain-set, aiming to preserve model utility while unlearning.
-
- 947 2.
- SCRUB**
- Kurmanji et al. (2023): A knowledge distillation approach that aligns the unlearned
-
- 948 model with the original model on the retain-set via a consistency loss, while simultaneously
-
- 949 removing the
- forget-set*
- ’s influence. SCRUB represents one of the most competitive baselines
-
- 950 in recent evaluations.
-
- 951 3.
- SalUn**
- Fan et al. (2023): A saliency-based unlearning method that directs updates to a subset
-
- 952 of weights deemed
- salient*
- for forgetting, identified via gradient-based weight saliency maps.
-
- 953 By restricting optimization to these salient weights, SalUn enhances stability and efficiency
-
- 954 compared to updating the full parameter set, and aims to reduce the gap to exact retraining.
-
- 955 4.
- Projected Gradient Unlearning (PGU)**
- Hoang et al. (2024): A method that projects the
-
- 956 gradient ascent update for the
- forget-set*
- onto a subspace orthogonal to retain-set, thereby
-
- 957 mitigating catastrophic forgetting. PGU is particularly relevant as it addresses gradient-level
-
- 958 entanglement between forget and retain data.
-
- 959 5.
- BadTeacher (BT)**
- Chundawat et al. (2023a): A recent distillation-based unlearning method
-
- 960 where the unlearned model (student) is trained against a deliberately corrupted teacher that
-
- 961 provides noisy or adversarial labels for the
- forget-set*
- , encouraging the student to erase their
-
- 962 influence while preserving performance on the retain-set.
-
- 963 6.
- SRF-ON (SF)**
- Huang et al. (2024): A geometry-aware unlearning method that decomposes
-
- 964 updates into forget ascent, retain descent, and saliency modulation. By embedding updates
-
- 965 into the manifold of retain data and approximating Hessian modulation with a fast–slow
-
- 966 strategy, SRF-ON improves stability–plasticity trade-offs and enables efficient large-scale
-
- 967 unlearning.
-
- 968

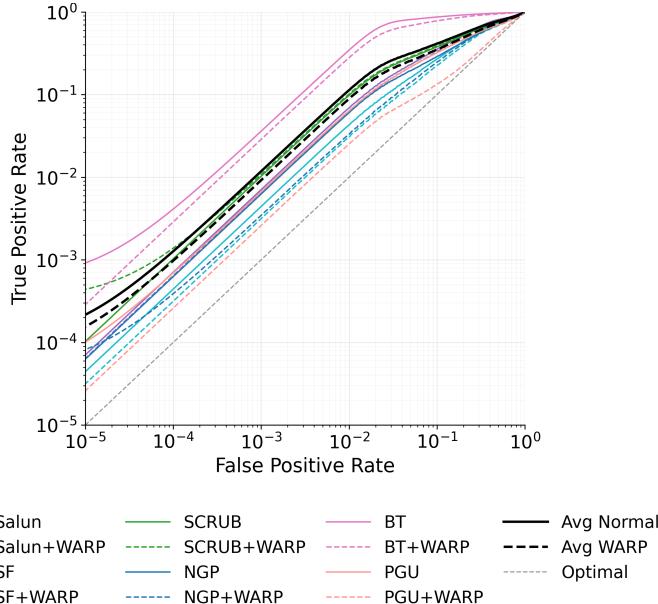
969 These methods span the main paradigms of approximate unlearning—gradient ascent, retain-aware
970 regularization, distillation, and projection-based updates—making them representative state-of-the-art
971 baselines.

972 **Table 3: Reconstruction on ImageNet-1K (ResNet-18), NGP (no defense).** Averages over 100
 973 forgotten samples. Higher is better for PSNR/SSIM; lower is better for LPIPS/MSE.
 974

Method	PSNR (dB) \uparrow	LPIPS (VGG) \downarrow	LPIPS (Alex) \downarrow	SSIM \uparrow	Test MSE \downarrow	Feat MSE \downarrow
GIFD Fang et al. (2023)	8.28 ± 0.28	0.630 ± 0.012	0.448 ± 0.016	0.098 ± 0.007	0.174 ± 0.012	6.725 ± 0.506
Ours (subspace-filtered + GFID)	10.74 ± 0.31	0.564 ± 0.013	0.345 ± 0.015	0.117 ± 0.008	0.100 ± 0.007	5.388 ± 0.497
Improvement (%)	+29.7	+10.5	+22.9	+19.4	+42.5	+19.9

980 F ADDITIONAL WHITE-BOX RESULTS ON CIFAR-10

982 Figure 5 reports the complete ROC curves for the Gaussian gradient-diff test, covering the entire
 983 FPR range. These correspond to the same 640 unlearned models as in Figure 3, shown here without
 984 zoom to provide the full view.



1005 **Figure 5: Complete ROC curves for the white-box Gaussian gradient-diff test.** Averaged over
 1006 640 unlearned models, identical to Figure 3. Lower curves (closer to the random-guess diagonal)
 1007 indicate stronger privacy.

1010 G RECONSTRUCTION ATTACK BASELINES AND COMPARISON.

1012 Table 3 compares three strategies for unlearning: (i) *simple differencing*, directly inverting $\Delta\theta$ Hu
 1013 et al. (2024); Bertran et al. (2024); (ii) *generative inversion* (GIFD) Fang et al. (2023) applied to $\Delta\theta$;
 1014 and (iii) *Ours*, which adds *orthogonal subspace filtering* (Eq. equation 3) to a generative backbone.
 1015 Results average 100 forgotten samples on ImageNet-1K with ResNet-18 under NGP unlearning.
 1016

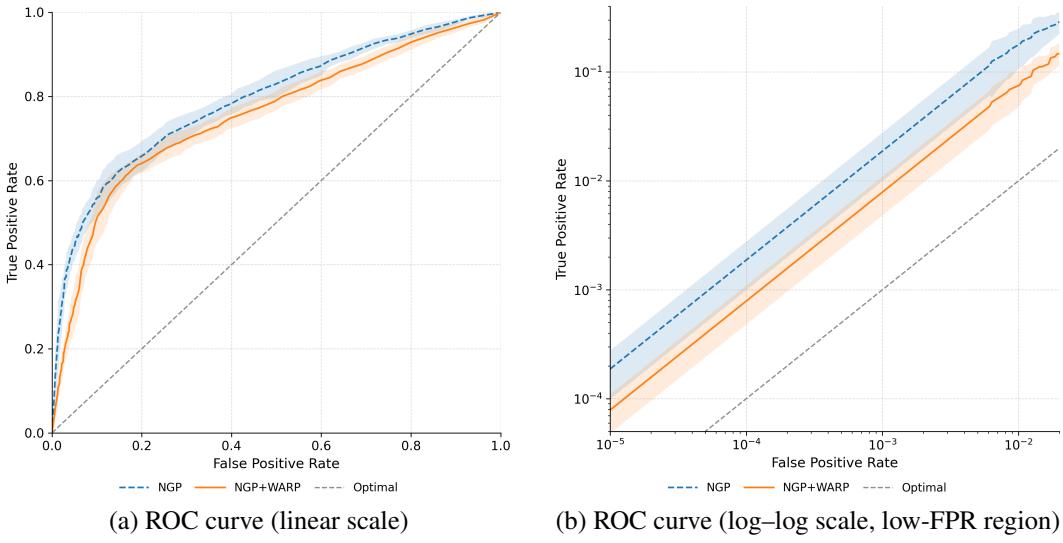
1017 H ADDITIONAL RESULTS: ViT ON TINY-IMAGENET

1019 To extend the white-box analysis of Section 4.3, we evaluate Vision Transformer models trained on
 1020 Tiny-ImageNet. We adopt ViT-B/16 as the base architecture and follow the same setup described
 1021 in Section 4, with the *forget-set* constructed by randomly sampling 1% of the training data and the
 1022 *retain-set* consisting of the remainder. All models are trained with SGD and standard augmentations
 1023 for ViT training. Unlearning is applied with NGP (NGP) and its teleported variant (NGP+WARP).
 1024

1025 As shown in Table 4 and Figure 6, WARP substantially reduces attack success across all thresholds,
 with the largest relative gains at low false-positive rates where practical attacks operate. These results

1026
 1027 **Table 4: White-box membership inference risk with and without teleportation (ViT, Tiny-
 1028 ImageNet).** Results are reported as mean \pm standard deviation across five splits. Improvements are
 1029 computed as advantage reduction over random guessing.

Method	AUC	TPR@0.01%	TPR@0.1%	TPR@1%	TPR@5%
NGP (base)	0.792 ± 0.019	0.0019 ± 0.001	0.0188 ± 0.009	0.178 ± 0.072	0.444 ± 0.035
+ WARP	0.755 ± 0.019	0.0008 ± 0.000	0.0079 ± 0.003	0.075 ± 0.027	0.302 ± 0.054
Improvement (%)	12.7	61.1	61.2	61.2	36.1



1035
 1036 **Figure 6: White-box ROC for the Gaussian gradient-difference test on ViT-B/16 (Tiny-
 1037 ImageNet).** Each curve is averaged over five different forget-set splits, with shaded regions showing
 1038 the standard deviation. Both figures compare NGP and NGP+WARP; (a) presents the full ROC on
 1039 a linear axis, while (b) zooms into the low-FPR regime on log-log scale, which is the operational
 1040 region for practical attacks.

1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318<br

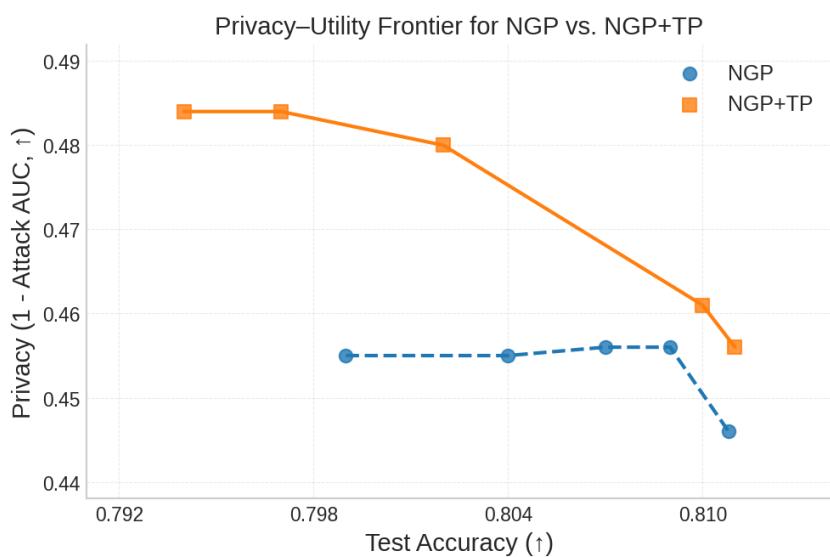


Figure 7: **Privacy–utility trade-off for NGP with and without WARP.** Each point is a hyperparameter trial, with privacy (1-AUC) averaged over 640 shadow models (64 shadows \times 10 forget sets) under the U-LiRA protocol. Points further to the right (higher accuracy) and upward (higher privacy) indicate better trade-offs.

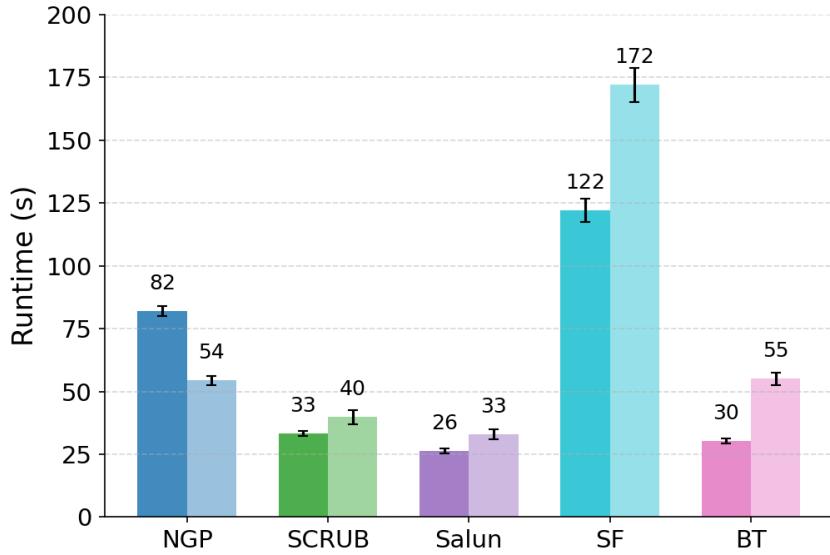


Figure 8: **Runtime overhead of teleportation.** Average runtimes (seconds) of unlearning algorithms with and without the WARP plugin, evaluated on CIFAR-10 with ResNet-18. Each bar reports the mean over five runs, with error bars showing standard deviations.

gains. Across the frontier, improvements remain stable, confirming that teleportation meaningfully reshapes the privacy–utility boundary in favor of the defender.

J RUNTIME ANALYSIS

In this appendix we focus on the retain–null-space instantiation of T_ϕ , which is the only variant that requires explicit SVDs; the change-of-basis teleportation in Appendix D is SVD-free and without its

1134 computational overhead as a result. Moreover, Section L introduces FastWARP, which replaces full
 1135 SVD with randomized low-rank approximations and further reduces this overhead.
 1136

1137 We benchmark the runtime of our teleportation defense across unlearning algorithms on a machine
 1138 equipped with an NVIDIA GeForce RTX 4090 GPU (24 GB memory) and an Intel 13th Gen Core
 1139 i9-13900KF CPU (24 cores, 32 threads, base 3.0 GHz, boost up to 5.8 GHz). Each experiment
 1140 was repeated five times, and Figure 8 reports averages with standard deviations in the caption. All
 1141 algorithms were run with the hyperparameters used in Table 1 and Figure 3, ensuring runtime reflects
 1142 the same conditions as our privacy–utility evaluations.
 1143

1144 For this particular SVD-based instantiation, teleportation increases runtime by approximately +27%
 1145 relative to the baseline on average, reflecting the overhead of constructing the retain subspace. The
 1146 main exception is NGP, where teleportation reduces runtime by about -32%, due to more stable
 1147 updates that in turn lower the required number of unlearning epochs. Since subspace computation can
 1148 be pre-computed offline and does not need to be repeated after every teleportation step, this overhead
 1149 can be amortized in practice. While updating the retain subspace less frequently can reduce cost, the
 1150 primary computational overhead from full SVD is addressed directly by an approximate low-rank
 1151 implementation (Appendix L), which removes the per-step bottleneck entirely.
 1152

K TELEPORTATION-BASED UNLEARNING ALGORITHM

1153 In Algorithm 3, T_ϕ denotes an abstract symmetry operator; in our experiments we instantiate it
 1154 either with retain–null-space teleportation or with change-of-basis teleportation, but any other loss-
 1155 preserving symmetry could be used in its place.
 1156

1162 **Algorithm 3** WARP (retain–null-space instantiation): teleportation-augmented gradient-based un-
 1163 learning.

1164 **Require:** θ^{org} , \mathcal{D}_f , \mathcal{D}_r , ℓ_f , ℓ_r , λ , β , $\{\eta_t\}$, η_{tel} , k , S or τ_{grad} , σ^2 , ε , T
 1165 1: $\theta_0 \leftarrow \theta^{\text{org}}$
 1166 2: **for** $t = 0, \dots, T - 1$ **do**
 1167 3: sample $\mathcal{B}_f \subset \mathcal{D}_f$, $\mathcal{B}_r \subset \mathcal{D}_r$
 1168 4: $\theta_{t+\frac{1}{2}} \leftarrow \theta_t - \eta_t (\nabla_\theta \ell_f(\theta_t \mid \mathcal{B}_f) + \lambda \nabla_\theta \ell_r(\theta_t \mid \mathcal{B}_r))$
 1169 5: **if** $(t \bmod S = 0) \vee \|\nabla_\theta \ell_f(\theta_{t+\frac{1}{2}} \mid \mathcal{B}_f)\|_2 > \tau_{\text{grad}}$ **then**
 1170 6: **for** layer ℓ **do**
 1171 build $R_\ell(\mathcal{B}_r)$; $R_\ell = U_\ell \Sigma_\ell V_\ell^\top$ (SVD)
 1172 $B_\ell \leftarrow U_{\ell,1:k}$; $\Pi_\ell^\perp \leftarrow I - B_\ell B_\ell^\top$
 1173 **end for**
 1174 $\mathcal{L}_{\text{tel}}(\theta) = \frac{1}{2} \sum_{(x,y) \in \mathcal{B}_f} \|\nabla_\theta \ell(f(x; \theta), y)\|_2^2 - \frac{\beta}{2} \|\theta - \theta^{\text{org}}\|_2^2$
 1175 **for** layer ℓ **do**
 1176 $W_\ell^{t+1} \leftarrow W_\ell^{t+\frac{1}{2}} - \eta_{\text{tel}} \Pi_\ell^\perp (\nabla_{W_\ell} \mathcal{L}_{\text{tel}}(\theta_{t+\frac{1}{2}})) + \sqrt{2 \eta_{\text{tel}} \sigma^2} \varepsilon_{\ell,t}$
 1177 $\varepsilon_{\ell,t} \sim \mathcal{N}(0, I)$
 1178 **end for**
 1179 $\theta_{t+1} \leftarrow \{W_\ell^{t+1}\}_\ell$
 1180 **if** $\ell_r(\theta_{t+1} \mid \mathcal{B}_r) > \ell_r(\theta_t \mid \mathcal{B}_r) + \varepsilon$ **then**
 1181 $\theta_{t+1} \leftarrow \theta_{t+\frac{1}{2}}$
 1182 **end if** ▷ backtrack/safeguard
 1183 **else**
 1184 $\theta_{t+1} \leftarrow \theta_{t+\frac{1}{2}}$
 1185 **end if**
 1186 **end for**
 1187 23: **return** $\theta^u \leftarrow \theta_T$

1188 **L APPROXIMATE NULL-SPACE TELEPORTATION**
1189

1190 **Low-rank structure of retain representations.** For a retain minibatch \mathcal{B}_r and layer ℓ , let
1191 $R_\ell(\mathcal{D}_r) \in \mathbb{R}^{|\mathcal{B}_r| \times d_\ell}$ denote the matrix whose rows collect the layer- ℓ inputs $\{\phi_\ell(x)\}_{x \in \mathcal{B}_r}$. Em-
1192 pirically, $R_\ell(\mathcal{D}_r)$ exhibits strong spectral decay: its spectrum is dominated by a small number of
1193 singular values, and most of the energy lies in a low-dimensional subspace. Such low-rank structure
1194 of activations, gradients and Hessians has been observed repeatedly in modern deep networks (Arora
1195 et al., 2019; Ghorbani et al., 2019; Fort et al., 2020; Gur-Ari et al., 2018), and is often attributed to
1196 overparameterisation and the implicit regularisation of SGD. In WARP, the retain subspace at layer ℓ
1197 is defined by the top- k left singular vectors of $R_\ell(\mathcal{D}_r)$:
1198

$$R_\ell(\mathcal{D}_r) = U_\ell \Sigma_\ell V_\ell^\top, \quad B_\ell = U_{\ell,1:k}, \quad \Pi_\ell^\perp = I - B_\ell B_\ell^\top.$$

1199 Since only the span of these dominant directions matters for teleportation, *exact* SVD is not required:
1200 any procedure that recovers a good approximation to the top- k principal subspace suffices.
1201

1202 **Covariance-based PCA and subspace iteration.** Instead of computing a full thin SVD of $R_\ell(\mathcal{D}_r)$,
1203 FASTWARP estimates B_ℓ via a covariance eigen-decomposition and a small number of subspace-
1204 iteration updates, following classical PCA and online PCA methods (Golub & Van Loan, 2013; Oja,
1205 1982; Warmuth & Kuzmin, 2008; Mitliagkas et al., 2013). We first form the covariance
1206

$$C_\ell = X_\ell X_\ell^\top \in \mathbb{R}^{d_\ell \times d_\ell},$$

1207 where $X_\ell \in \mathbb{R}^{d_\ell \times N}$ is a layer-wise input matrix constructed from \mathcal{B}_r (for convolutional layers we
1208 use unfolded patches; for batch-norm we aggregate per-channel features). We then compute the
1209 eigen-decomposition $C_\ell = Q_\ell \Lambda_\ell Q_\ell^\top$ and retain the smallest k such that the cumulative explained
1210 variance exceeds a threshold τ :
1211

$$k = \min \left\{ j : \frac{\sum_{i=1}^j \max(\lambda_{\ell,i}, 0)}{\sum_{i=1}^{d_\ell} \max(\lambda_{\ell,i}, 0)} \geq \tau \right\}, \quad B_\ell = Q_{\ell,1:k},$$

1213 optionally capped by a user-specified k_{\max} . For subsequent teleportation steps, we update B_ℓ using a
1214 few iterations of subspace iteration (Golub & Van Loan, 2013; Halko et al., 2011; Musco & Musco,
1215 2015; Tropp et al., 2017; Woodruff, 2014):
1216

$$Y \leftarrow C_\ell B_\ell, \quad [B_\ell, _] \leftarrow \text{qr}(Y),$$

1217 which amounts to an Oja-style streaming PCA update (Oja, 1982) with QR re-orthogonalisation.
1218 This reduces the cost of updating B_ℓ for a new minibatch from the $\mathcal{O}(|\mathcal{B}_r| d_\ell^2)$ cost of a fresh thin
1219 SVD to $\mathcal{O}(|\mathcal{B}_r| d_\ell k)$ for the covariance application plus $\mathcal{O}(d_\ell k^2)$ for QR, with $k \ll d_\ell$. The resulting
1220 projector $\Pi_\ell^\perp = I - B_\ell B_\ell^\top$ is then used exactly as in the original WARP update.
1221

1222 **Algorithm 4** FASTWARP basis update at layer ℓ
1223

1224 **Require:** d_ℓ , retain minibatch \mathcal{B}_r , B_ℓ^{prev} (or **NONE**), $\tau \in (0, 1]$, k_{\max} , T_{track}
1225 1: build $X_\ell \in \mathbb{R}^{d_\ell \times N}$ from \mathcal{B}_r
1226 2: $C_\ell \leftarrow X_\ell X_\ell^\top$; $C_\ell \leftarrow \frac{1}{2}(C_\ell + C_\ell^\top)$
1227 3: **if** $B_\ell^{\text{prev}} = \text{NONE}$ **then**
1228 4: $C_\ell = Q_\ell \Lambda_\ell Q_\ell^\top$
1229 5: sort Λ_ℓ in descending order, permute Q_ℓ accordingly
1230 6: $k \leftarrow \min \left\{ k_{\max}, \min \left\{ k : \frac{\sum_{i=1}^k \Lambda_{\ell,ii}}{\sum_i \Lambda_{\ell,ii}} \geq \tau \right\} \right\}$
1231 7: $B_\ell \leftarrow Q_\ell[:, 1:k]$
1232 8: **else**
1233 9: $B_\ell \leftarrow B_\ell^{\text{prev}}$
1234 10: **for** $t = 1, \dots, T_{\text{track}}$ **do**
1235 11: $Y \leftarrow C_\ell B_\ell$
1236 12: $[B_\ell, _] \leftarrow \text{qr}(Y)$
1237 13: $B_\ell \leftarrow B_\ell[:, 1:k]$
1238 14: **end for**
1239 15: **end if**
1240 16: $\Pi_\ell^\perp \leftarrow I_{d_\ell} - B_\ell B_\ell^\top$
1241 17: **return** B_ℓ, Π_ℓ^\perp

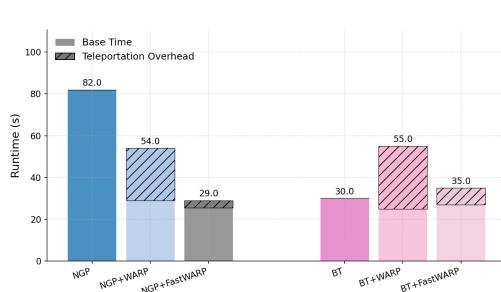


Figure 9: Runtime of the WARP plug-in on CIFAR-10 with ResNet-18. Each bar reports the mean over five runs. The top hatched segments correspond to the additional teleportation time; the solid base is the runtime of the underlying MU algorithm.

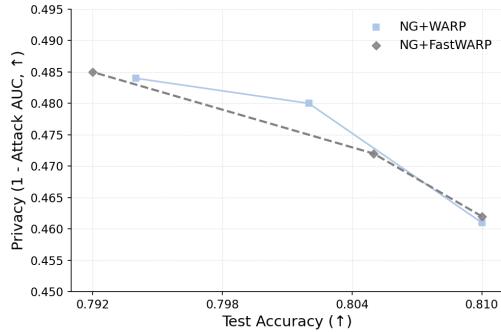


Figure 10: Privacy–utility comparison of NG+WARP and NG+FASTWARP. The approximate teleportation method (FASTWARP) matches the privacy–utility frontier of the exact variant, achieving nearly identical privacy and test accuracy.

Runtime and privacy–utility impact. Figure 9 reports the runtime for NG and BT with and without teleportation on CIFAR-10/ResNet-18. The hatched segments correspond to the teleportation component. Using full SVD yields a moderate yet visible overhead (e.g., BT+WARP increases runtime from 30 s to 55 s). Replacing full SVD with the covariance-based PCA and subspace iteration of Algorithm 4 (FASTWARP) shrinks this overhead substantially: total runtime drops to 29 s and 35 s for NG+FastWARP and BT+FastWARP, corresponding to a 2×–3× reduction in the teleportation time. The teleportation component becomes only a small fraction of the overall MU cost.

To measure the effect of this approximation on privacy and accuracy, Figure 10 compares NG+WARP and NG+FASTWARP along the privacy–utility frontier. The two curves are nearly indistinguishable: privacy ($1 - \text{AUC}$) differs by at most 0.3–0.6% across operating points, and test accuracy changes by at most 0.2–0.3 percentage points. We also track retain-set loss during teleportation and observe that the relative drift under FASTWARP remains below 2%, indicating that the approximate projector continues to enforce practical loss invariance. In some configurations, the additional numerical noise introduced by the approximation yields slightly *higher* privacy for the same utility. Overall, these results show that the privacy gains of WARP are robust to approximate PCA, and that FASTWARP preserves the empirical privacy–utility trade-off while significantly reducing computational overhead.

Scalability to LLMs and calibration of the retain subspace. A natural concern is whether null-space teleportation remains practical and stable at LLM scale, where layer widths reach $d_\ell \sim 10^3\text{--}10^4$ and a single minibatch may not span the retain subspace. Empirically, recent compression work shows that truncated SVD and related low-rank factorizations are already applied efficiently to full LLM weight matrices with comparable or larger dimensions: SVD-LLM Wang et al. (2024; 2025b) optimizes singular-value truncation for LLaMA Touvron et al. (2023)- and GPT Brown et al. (2020)-class models while preserving perplexity and throughput, demonstrating that rank- k SVD with $k \ll d_\ell$ is tractable in practice on modern hardware. Complementary methods such as ResSVD Bai et al. (2025) leverage the residual matrix left by truncation to correct the approximation, further reducing the effective loss of expressivity at fixed rank. Orthogonal lines of work, e.g., weighted low-rank factorization for LMs, explicitly introduce data-dependent weights in the covariance (or Gram) operator to bias the recovered subspace toward high-importance tokens or examples, and report competitive compression ratios on transformer-based LMs Hsu et al. (2022); Sakr & Khailany (2024). In our setting, we can adopt the same design principles: instead of forming $R_\ell(\mathcal{B}_r)$ from an arbitrary minibatch, we maintain a small buffer of retain batches with large gradient norm Sakr & Khailany (2024) or Fisher information, and construct the activation matrix X_ℓ from this “high-influence” pool. This yields a weighted or importance-sampled covariance $C_\ell = X_\ell X_\ell^\top$ whose top- k eigenspace more faithfully captures the retain subspace seen over the full retain stream, while keeping the per-teleportation cost at $\mathcal{O}(|\mathcal{B}_r|d_\ell k)$. Combined with low-rank SVD implementations that are already optimized for LLM compression, these heuristics make the FastWARP projector construction compatible with large transformer architectures without breaking the retain loss invariance enforced

1296 by WARP. We leave the adaptation to large language models for future research. Our contributions
 1297 target symmetry-based defenses for generic neural networks and established MU baselines, and do
 1298 not address LLM-specific challenges in unlearning, which constitute a distinct line of investigation.
 1299

1300 M COMPARISON WITH DP–LANGEVIN NOISE DEFENCES

1302 While our goal is to make neural networks more resilient to privacy attacks *post hoc*, a natural
 1303 question is how WARP compares with defences based on differential privacy (DP). DP is the strongest
 1304 known framework for providing indistinguishability guarantees between neighbouring datasets, and
 1305 a small number of recent unlearning methods have attempted to translate these guarantees into
 1306 *certified* machine unlearning. Among these, noisy-gradient (Langevin) approaches provide the closest
 1307 analogue to our setting; we therefore include them as a comparison point.

1308 Certified unlearning methods such as Guo et al. (2020); Chien et al. (2024b) formalise unlearning
 1309 as an indistinguishability requirement between (i) a model obtained by training on the full dataset,
 1310 and (ii) a counterfactual model that has never seen the forget set. These works build on the principle
 1311 that if the training algorithm is itself DP, then suitable post-processing can yield certified removal of
 1312 training points. Such guarantees make DP–Langevin the strongest known *general-purpose* defence
 1313 with explicit indistinguishability guarantees, hence a meaningful baseline to evaluate privacy–utility
 1314 trade-offs.

1316 **What the DP guarantees actually require.** The formal guarantees in Guo et al. (2020); Chien
 1317 et al. (2024b) rely on assumptions that do *not* hold in the deep, non-convex MU regime we consider:

- 1319 **Convexity and strong dissipativity.** Both works require (strongly) convex, ℓ_2 –regularised
 1320 objectives to bound the stationary distribution of the noisy dynamics. Deep convolutional
 1321 networks trained with cross-entropy fundamentally violate these assumptions.
- 1322 **DP-trained initial model required.** The certified-unlearning guarantee requires that the *original*
 1323 model be obtained using *the same* noisy-gradient mechanism (noisy SGD or Langevin) applied
 1324 throughout training on the full dataset. This is explicitly stated as a necessary condition in Chien
 1325 et al. (2024b). In contrast, our setting begins from a standard ERM-trained model, which is
 1326 non-DP and therefore outside the scope of their certification theorem.

1327 As a result, the “ ε ” obtained from the RDP accountant in our experiments should be interpreted
 1328 purely as a calibrated *noise level*, not as a valid DP guarantee. Our use of Langevin noise is therefore
 1329 a *strong noise-based defence*, not a certified mechanism.

1331 **Adapting projected Langevin unlearning to MU.** Following Chien et al. (2024b), we implement
 1332 projected Langevin dynamics on top of the same MU objective used throughout the paper. For a
 1333 per-sample clipped gradient with radius C and loss

$$1334 \mathcal{L}_{\text{MU}}(\theta) = \alpha (\ell_r(\theta) + \lambda \|\theta - \theta_p\|_2^2) - (1 - \alpha) \ell_f(\theta),$$

1336 the DP–Langevin update is

$$1337 g_t = \text{clip}(\nabla_\theta \mathcal{L}_{\text{MU}}(\theta_t), C), \quad (12)$$

$$1339 \theta_{t+1} = \theta_t - \eta_t g_t + \sqrt{2 \eta_t \lambda} \xi_t, \quad \xi_t \sim \mathcal{N}(0, I), \quad (13)$$

1340 where λ is the regularisation parameter entering the RDP privacy analysis. Given a target privacy
 1341 level ε , we follow the exact Rényi-DP accounting of Chien et al. (2024b) to compute the Gaussian
 1342 noise standard deviation σ required by their Langevin update. In our implementation, three quantities
 1343 act as tunable hyperparameters: the learning rate η , the per-sample gradient-clipping radius C , and
 1344 the regularisation coefficient λ that appears in the RDP analysis. For any chosen (η, C, λ) and target
 1345 ε , the formulas of Chien et al. (2024b) uniquely determine the corresponding noise scale σ . To ensure
 1346 fairness across baselines, we run the same number of hyperparameter-search trials as for the MU
 1347 baselines, jointly sweeping (η, C, λ) to obtain the set of reported results in Table 5.

1348 **Interpretation under non-convexity.** Although the privacy accountant yields a numerical ε , none
 1349 of the formal conditions needed for DP-certified unlearning hold for our deep ResNet models.

1350 Table 5: **NGP+WARP vs. Langevin noise (U-LiRA, black-box)**. Reported are risks on *all forget samples* and on the *most-memorized* subset (top 5%), plus test accuracy. U-LiRA AUC and
 1351 TPR@0.1% (FPR) are shown for each setting.
 1352

Method	All samples (BB)		Most-memorized (top 5%)		Acc. Test
	AUC	TPR@0.1	AUC	TPR@0.1	
Langevin ($\varepsilon = 1$)	0.523	0.004	0.671	0.029	0.682
Langevin ($\varepsilon = 4$)	0.571	0.006	0.766	0.048	0.718
Langevin ($\varepsilon = 8$)	0.627	0.020	0.912	0.166	0.771
Langevin ($\varepsilon = 16$)	0.650	0.027	0.935	0.224	0.798
NGP + WARP	0.516	0.003	0.598	0.015	0.797

1363
 1364 Consequently, we reiterate that the resulting values should not be interpreted as DP guarantees but
 1365 rather as a systematic way of calibrating the magnitude of injected noise. The comparison therefore
 1366 isolates the *empirical* effect of noise injection on forgetting, retention, and attack success.
 1367

1368
 1369 **Empirical privacy–utility trade-off.** Table 5 reveals a clear tension between nominal DP guar-
 1370 antees and empirical membership privacy. As the target privacy budget for Langevin is relaxed
 1371 from $\varepsilon = 1$ to $\varepsilon = 16$, test accuracy gradually recovers (from 0.682 up to 0.798), but U-LiRA risk
 1372 monotonically *increases*: the all-sample AUC rises from 0.523 to 0.650, and the AUC on the top-5%
 1373 most memorised points grows from 0.671 to 0.935, with TPR@0.1% FPR increasing from 0.029
 1374 to 0.224. In contrast, NGP+WARP simultaneously achieves competitive utility and strictly lower
 1375 attack success: on all forget samples it attains the best AUC and TPR@0.1% (0.516 and 0.003), and
 1376 on the most–memorised subset it reduces AUC to 0.598 and TPR@0.1% to 0.015, outperforming
 1377 every Langevin configuration by a wide margin. Notably, relative to the lowest-noise setting ($\varepsilon = 16$),
 1378 NGP+WARP matches accuracy (0.797 vs. 0.798) while cutting the memorised AUC from 0.935 to
 1379 0.598 and TPR@0.1% from 0.224 to 0.015. For stronger nominal privacy ($\varepsilon = 1$ or 4), Langevin
 1380 noise severely degrades accuracy (down to 0.682) yet still leaves substantially higher attack AUC
 1381 and TPR than WARP. Overall, these results suggest that isotropic DP noise is poorly aligned with
 1382 the specific memorization patterns exploited by U-LiRA: it injects substantial randomness into all
 1383 updates, harming utility without reliably protecting the most vulnerable examples, whereas WARP
 1384 reshapes the parameter space in a targeted way that yields a markedly better empirical privacy–utility
 1385 frontier.

1386 Taken together, these observations clarify the roles of the two approaches. Langevin noise offers a
 1387 principled mechanism for *certified* unlearning in the restricted setting of convex, DP-trained models,
 1388 but its guarantees do not extend to the non-convex MU regime nor to pretrained models obtained
 1389 without DP noise. Consequently, applying Langevin updates post hoc to deep networks provides
 1390 no formal protection and yields an unfavourable privacy–utility trade-off in practice. By contrast,
 1391 WARP operates directly on arbitrary pretrained models, targets the directions most responsible for
 1392 memorization, and empirically achieves substantially stronger resistance to membership inference at
 1393 comparable accuracy. A compelling direction for future work is to investigate whether the geometric
 1394 structure exploited by WARP can be combined with, or serve as a foundation for, certified unlearning
 1395 mechanisms that simultaneously handle non-convex objectives and non-DP initialisation—a capability
 1396 not supported by current DP-Langevin frameworks.

N ADAPTIVE RECONSTRUCTION WITH SYMMETRY–AWARE ATTACKER

1397 Teleportation acts by composing the unlearning update with a symmetry transform that preserves
 1398 predictions but redistributes parameter mass along loss–invariant directions (Section 3.2). This raises
 1399 a natural question: can a stronger white-box adversary, aware of the teleportation family, *invert* or
 1400 compensate for these symmetry moves and recover the residual forget gradient? More concretely, if
 1401 the attacker can parameterise and optimize over the change-of-basis (COB) scales τ used in neural
 1402 teleportation (Armenta et al., 2023), does this restore reconstruction quality and defeat WARP?
 1403

1404 It is worth noting that our privacy evaluation already includes two adaptive-attack families: U-LiRA
 1405 and GLiR, both of which instantiate adaptive membership-inference attacks by optimising proxy
 1406 models or surrogate loss landscapes. However, the reconstruction attack considered in Section 3.1—which
 1407 directly targets instance-level recovery of the forgotten data—was *not* adaptive: the attacker optimised
 1408 only over the dummy image while keeping the teleportation parameters fixed. To fully test the
 1409 robustness of symmetry-based teleportation, we now consider a strictly stronger attacker that *jointly*
 1410 optimizes both the dummy image and the teleportation parameters themselves.

1411 Concretely, we study whether an attacker who can parameterise and optimize over the change-of-basis
 1412 (COB) symmetry scales τ used in neural teleportation (Armenta et al., 2023) can undo the defender’s
 1413 symmetry moves, thereby restoring the clean gradient geometry required for successful reconstruction.
 1414 This experiment directly probes whether teleportation is merely hiding the forget gradient behind
 1415 a reversible reparameterisation, or whether it fundamentally reshapes the inverse problem faced by
 1416 reconstruction attacks.

1417 **Attack formulation.** In the adaptive setting, we give the attacker full knowledge of the teleportation
 1418 family and let them *shadow* the defender’s operations. Specifically, starting from the original
 1419 pretrained weights θ_{org} , the attacker first applies a change-of-basis symmetry parametrised by COB
 1420 scales $\tau = \{\tau_a > 0\}$, obtaining

$$\theta_{\text{org}}^{(\tau)} = T_{\tau}(\theta_{\text{org}}), \quad (14)$$

1421 where T_{τ} is the COB teleportation map (Appendix D). They then perform a single gradient step in
 1422 parameter space using a dummy image–label pair (x, y) :

$$\theta^{(\tau)}(x, y) = \theta_{\text{org}}^{(\tau)} + \eta_{\text{att}} \nabla_{\theta} \ell(f(x; \theta_{\text{org}}^{(\tau)}), y), \quad (15)$$

1423 with attack step size $\eta_{\text{att}} > 0$. The attacker’s goal is to choose (x, τ) so that the shadowed update
 1424 in equation 15 closely matches the actual unlearned parameters θ_u produced by WARP. Formally, we
 1425 solve

$$\hat{x}_f, \hat{\tau} \in \arg \min_{x, \tau} \left[D(\theta^{(\tau)}(x, y), \theta_u) + \lambda_{\text{TV}} \text{TV}(x) + \lambda_{\tau} \Omega(\tau) \right], \quad (16)$$

1426 where $D(\cdot, \cdot)$ is a parameter-space discrepancy (we use ℓ_2 distance over all weights), $\text{TV}(x)$ is the
 1427 total-variation regulariser on the image, and $\Omega(\tau)$ implements a Gaussian prior $\tau_a \sim \mathcal{N}(1, \sigma_{\text{cob}}^2)$ on
 1428 each COB scale. We optimize equation 16 by alternating gradient steps on x and τ , with τ clipped to
 1429 a bounded interval around 1 to avoid degenerate scalings.

1430 **Experimental setup.** For a fair comparison, we reuse exactly the reconstruction protocol of
 1431 Section 4.4 (same model, dataset, forgotten examples, optimizer, and image priors), and only extend
 1432 the attack to optimize over the COB parameters τ via equation 16. We vary the COB prior variance
 1433 σ_{cob} that defines $\Omega(\tau)$, treating each τ_a as a scalar random variable centred at 1 with variance σ_{cob} .
 1434 We sweep $\sigma_{\text{cob}} \in \{0, 0.1, 0.2, 0.4, 0.8\}$, where $\sigma_{\text{cob}} = 0$ recovers the non-adaptive attack with fixed
 1435 $\tau \equiv 1$, and larger values correspond to stronger dispersion along the symmetry orbit induced by
 1436 WARP. Following the evaluation protocol of Table 2, we quantify reconstruction quality using PSNR,
 1437 SSIM, LPIPS, and feature MSE, reporting averages over 30 randomly drawn forget examples.

1438 **Results and connection to theory.** Figure 11 shows how reconstruction quality changes as we
 1439 increase the COB prior std σ_{cob} that controls the spread of admissible symmetry scales. When
 1440 $\sigma_{\text{cob}} = 0$ the symmetry prior collapses around $\tau_a \approx 1$, so the attacker effectively searches over a
 1441 narrow neighbourhood of the defender’s true teleportation and can partially recover the forgotten
 1442 signal: the adaptive attack achieves substantially lower feature MSE and LPIPS than the non-adaptive
 1443 WARP attack (dashed line). However, the attacker never observes the ground-truth COB scales
 1444 used by the defender; as σ_{cob} grows and the symmetry orbit broadens, the optimisation over (x, τ)
 1445 quickly becomes unstable. Both metrics deteriorate almost monotonically with σ_{cob} : already at
 1446 moderate variance the gains over the non-adaptive attack largely disappear, and for the largest tested
 1447 σ_{cob} the adaptive reconstructions are statistically indistinguishable from (or slightly worse than) the
 1448 non-adaptive baseline. Importantly, the COB standard deviation is a defender-controlled knob: in
 1449 this symmetry family we can raise σ_{cob} up to 1.0 without changing the realised network function,
 1450 and in our main reconstruction experiments in Table 2 we set $\sigma_{\text{cob}} = 0.8$, already placing the attacker
 1451 in a high-variance regime where adaptive reconstruction is strongly impaired.

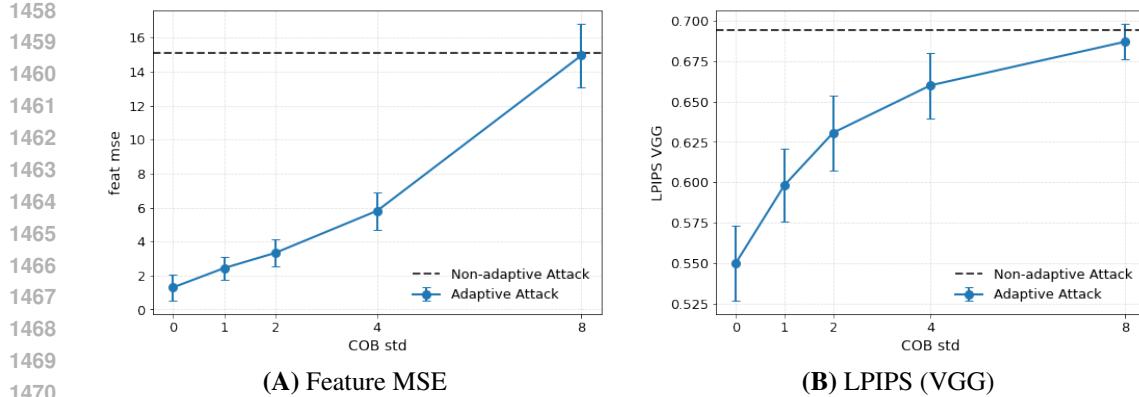


Figure 11: **Adaptive reconstruction under change-of-basis teleportation (NGP, ImageNet-1K).** (A) Feature MSE and (B) LPIPS (VGG) as a function of the COB standard deviation σ_{cob} . Increasing the symmetry variance consistently worsens reconstruction quality across both metrics.

This trend is consistent with our theoretical analysis in Appendix O, which shows that the expected reconstruction error increases with the variance of the COB scales. Larger σ_{cob} expands the symmetry orbit of θ_{org} and θ_u , so the update $\Delta\theta$ admits many symmetry-equivalent decompositions whose gradients are nearly orthogonal to the true forget gradient g_f . The optimisation problem in equation 16 thus becomes a highly ill-posed inverse problem over the joint space (x, τ) , where many different configurations of (x, τ) produce similar matches in parameter space. Empirically, the adaptive optimiser drifts toward such low-signal-to-noise solutions that satisfy the symmetry constraints but no longer encode the specific forgotten example, explaining the systematic degradation in reconstruction quality as symmetry variance (or std) increases.

Takeaway. Even under a strong white-box threat model—where the attacker knows the teleportation family and jointly adapts both the dummy input and the symmetry parameter—teleportation continues to disrupt reconstruction effectively. The injected symmetry components become entangled with the forget-induced update $\Delta\theta$, enlarging the attacker’s search space and destroying the geometric alignment between parameter differences and the underlying forgotten example. Thus, teleportation does not merely reparameterise the model in a way that can be inverted; instead, by injecting symmetry variance into the update, it structurally increases reconstruction error and removes the clean gradient-based signal that standard reconstruction attacks depend on. This provides empirical and theoretical evidence that symmetry-based teleportation fundamentally hardens the inverse problem faced by adaptive adversaries.

O TELEPORTATION-AWARE INFORMATION-THEORETIC BOUNDS ON GRADIENT-BASED RECONSTRUCTION

O.1 OVERVIEW OF THE THEORETICAL ANALYSIS

This appendix develops an information-theoretic lower bound on the minimal reconstruction mean-squared error (MSE) achievable by a gradient-based inversion adversary within a shared probabilistic model for gradients. We first adapt standard entropy-MSE relationships to the case where the attacker observes gradients rather than intermediate features, closely following the spirit of the analysis in Xia et al. (2025). We then introduce a Gaussian-mixture model (GMM) for gradient features and derive a parametric lower bound on the conditional entropy $H(x | g)$, analogous to the intermediate-feature analysis in Xia et al. (2025) but specialized to gradients. Finally, we incorporate teleportation (change-of-basis) noise as private randomness in the training dynamics and analyze its impact on the *same* lower-bound pipeline, under an explicit diagonal approximation and an energy-preserving design assumption on the change-of-basis distribution. Throughout, we keep the modelling assumptions identical between the teleported and non-teleported channels, so any improvement we prove directly reflects a genuine tightening of the analytic lower bound on

1512 reconstruction error—and hence a provable gain in information-theoretic privacy *within this common*
 1513 *generative framework*. We emphasize that $H(x)$ is fixed by the dataset distribution, so only *relative*
 1514 differences between the channels are meaningful.
 1515

1516 **O.2 SETUP AND THREAT MODEL**

1518 **Data and model.** Let $x \in \mathbb{R}^d$ denote the d -dimensional input random variable, distributed according
 1519 to some unknown data distribution on a measurable subset $\mathcal{X} \subseteq \mathbb{R}^d$. We assume throughout that x
 1520 admits a density w.r.t. Lebesgue measure and has finite second moment. (If one wishes to model
 1521 discrete or manifold-supported data, the analysis can be recovered by adding an arbitrarily small
 1522 Gaussian perturbation to x as is standard in differential-entropy arguments; we implicitly assume
 1523 such smoothing has been applied so that conditional covariances below are positive definite.)

1524 Consider a deep network with parameters $W \in \mathbb{R}^{m \times d}$ and first-layer pre-activations

$$z = Wx \in \mathbb{R}^m,$$

1525 and a subsequent decoder F_d . Let $\ell(\cdot, y)$ be a loss for a label y , and define the gradient with respect
 1526 to z :

$$g_z = \nabla_z \ell(F_d(z), y) \in \mathbb{R}^m.$$

1527 In the analysis below, the attacker’s observation will be a gradient-based signal g (not necessarily
 1528 equal to g_z directly) that is deterministically related to (x, y, W) plus noise. In a white-box setting,
 1529 for instance, the adversary can observe weight differences across steps, which are affine functions
 1530 of the underlying gradient features; since mutual information and our entropy-based bounds are
 1531 invariant under fixed invertible affine reparametrizations, it is without loss of generality to work with
 1532 a canonical gradient feature g .
 1533

1534 **Adversarial objective.** An inversion adversary aims to reconstruct x from the observable g . Given
 1535 an estimator $\hat{x}(g)$, we measure reconstruction quality by the mean-squared error (MSE)

$$\xi_g(\hat{x}) := \frac{1}{d} \mathbb{E}[\|x - \hat{x}(g)\|_2^2]. \quad (17)$$

1536 The *minimal* MSE ξ_g is the infimum of equation 17 over all measurable estimators $\hat{x}(\cdot)$. We interpret
 1537 “information-theoretic robustness” as the regime where the attacker is Bayes-optimal under the
 1538 assumed generative model, i.e. has access to the true posterior $P(x | g)$ induced by that model and
 1539 implements the Minimum Mean Square Error (MMSE) estimator.

1540 *Assumption 1* (Basic regularity). We assume:

- 1541 (i) x has a density on \mathbb{R}^d and finite second moment;
- 1542 (ii) for the observation g , the conditional distribution $P(x | g)$ admits a density with finite
 1543 second moment, and its covariance matrix $\text{Cov}(x | g)$ is positive definite almost surely;
- 1544 (iii) all entropies, mutual informations and expectations used below are finite.

1545 These conditions are standard in information-theoretic MMSE analysis (see, e.g., Xia et al. (2025))
 1546 and ensure that all quantities are well-defined and that the maximum-entropy characterization for
 1547 Gaussians can be applied without degeneracy.
 1548

1549 **O.3 MINIMAL MSE FROM GRADIENTS AND AN ENTROPY-BASED LOWER BOUND**

1550 **Bayes-optimal reconstruction from gradients** We first recall the standard MMSE characterization.

1551 **Proposition 1** (Minimal reconstruction MSE from gradients). *Let $x \in \mathbb{R}^d$ and an observation g
 1552 satisfy Assumption 1. Consider estimators $\hat{x}(g)$ of x based on g and define $\xi_g(\hat{x})$ as in equation 17.
 1553 Then:*

- 1554 (i) *The estimator that minimizes $\xi_g(\hat{x})$ is the conditional mean $\hat{x}^*(g) = \mathbb{E}[x | g]$.*
- 1555 (ii) *The corresponding minimal MSE is*

$$\xi_g := \inf_{\hat{x}} \xi_g(\hat{x}) = \frac{1}{d} \mathbb{E}_g \left[\text{Tr}(\text{Cov}(x | g)) \right], \quad (18)$$

1556 *where $\text{Cov}(x | g)$ denotes the conditional covariance of x given g and \mathbb{E}_g is expectation
 1557 w.r.t. g .*

1566 *Proof.* For any fixed g , the conditional risk $\mathbb{E}[\|x - \hat{x}(g)\|_2^2 \mid g]$ is uniquely minimized by $\hat{x}^*(g) =$
 1567 $\mathbb{E}[x \mid g]$ (standard MMSE theory, cf. Xia et al. (2025)). The minimal conditional risk at g is
 1568

$$\mathbb{E}[\|x - \mathbb{E}[x \mid g]\|_2^2 \mid g] = \text{Tr}(\text{Cov}(x \mid g)),$$

1570 since for any random vector X with mean μ and covariance Σ one has $\mathbb{E}\|X - \mu\|_2^2 = \text{Tr}(\Sigma)$. Taking
 1571 expectation over g and dividing by d yields equation 18. \square

1572 Thus, when we refer to the “minimal MSE achievable by an attacker” for a given observation model,
 1573 we mean ξ_g as given in equation 18, corresponding to a Bayes-optimal adversary within that model.
 1574

1575 **An entropy-based lower bound on the minimal MSE** We now relate the minimal MSE ξ_g to
 1576 the conditional entropy $H(x \mid g)$, generalizing standard entropy–MMSE inequalities (cf. Xia et al.
 1577 (2025)).

1578 **Theorem 1** (Entropy-based lower bound on gradient reconstruction). *Under Assumption 1, let*
 1579 *$H(x \mid g)$ be the conditional differential entropy of x given the observation g . Then the minimal*
 1580 *reconstruction MSE ξ_g in equation 18 satisfies*

$$\xi_g \geq \frac{1}{2\pi e} \exp\left(\frac{2}{d} H(x \mid g)\right). \quad (19)$$

1584 *Proof.* Fix g and define $\Sigma(g) := \text{Cov}(x \mid g)$. Under Assumption 1, $\Sigma(g)$ is symmetric and positive
 1585 definite almost surely. For each such g , the conditional distribution of x given g has entropy bounded
 1586 above by that of a Gaussian with the same covariance:

$$H(x \mid g = g) \leq \frac{1}{2} \log((2\pi e)^d \det(\Sigma(g))),$$

1587 with equality iff $x \mid g$ is Gaussian. This is the usual maximum entropy property of Gaussians. Taking
 1588 expectation over g gives

$$H(x \mid g) = \mathbb{E}_g[H(x \mid g = g)] \leq \mathbb{E}_g\left[\frac{1}{2} \log((2\pi e)^d \det(\Sigma(g)))\right]. \quad (20)$$

1590 Let $\lambda_1(g), \dots, \lambda_d(g)$ be the eigenvalues of $\Sigma(g)$ (all positive). Then

$$\det(\Sigma(g)) = \prod_{j=1}^d \lambda_j(g), \quad \text{Tr}(\Sigma(g)) = \sum_{j=1}^d \lambda_j(g).$$

1591 By the Arithmetic Mean–Geometric Mean (AM–GM) inequality,

$$\prod_{j=1}^d \lambda_j(g) \leq \left(\frac{1}{d} \sum_{j=1}^d \lambda_j(g)\right)^d = \left(\frac{\text{Tr}(\Sigma(g))}{d}\right)^d,$$

1592 so

$$\log \det(\Sigma(g)) \leq d \log\left(\frac{\text{Tr}(\Sigma(g))}{d}\right).$$

1593 Substituting into equation 20,

$$H(x \mid g) \leq \mathbb{E}_g\left[\frac{1}{2} \log((2\pi e)^d \det(\Sigma(g)))\right] \leq \mathbb{E}_g\left[\frac{d}{2} \log\left(2\pi e \frac{\text{Tr}(\Sigma(g))}{d}\right)\right].$$

1594 Since $\log(\cdot)$ is concave, Jensen’s inequality yields

$$\mathbb{E}_g\left[\log\left(2\pi e \frac{\text{Tr}(\Sigma(g))}{d}\right)\right] \leq \log\left(2\pi e \frac{\mathbb{E}_g[\text{Tr}(\Sigma(g))]}{d}\right).$$

1595 Therefore

$$H(x \mid g) \leq \frac{d}{2} \log\left(2\pi e \frac{\mathbb{E}_g[\text{Tr}(\Sigma(g))]}{d}\right). \quad (21)$$

1596 By Proposition 1, $\mathbb{E}_g[\text{Tr}(\Sigma(g))] = d \xi_g$, so equation 21 becomes

$$H(x \mid g) \leq \frac{d}{2} \log(2\pi e \xi_g).$$

1597 Rearranging,

$$\log(2\pi e \xi_g) \geq \frac{2}{d} H(x \mid g), \quad 2\pi e \xi_g \geq \exp\left(\frac{2}{d} H(x \mid g)\right),$$

1598 which yields equation 19. \square

1620 Note that $H(x)$ —and hence the absolute scale of these lower bounds—is fully determined by the
 1621 underlying dataset distribution and does not depend on teleportation. In our comparisons between
 1622 teleported and non-teleported channels, $H(x)$ cancels and only *differences* or ratios matter.
 1623

1624 0.4 A PARAMETRIC LOWER BOUND ON $H(x|g)$ VIA GAUSSIAN MIXTURES

1626 We now introduce a specific probabilistic model for the gradient signal and derive a tractable
 1627 parametric lower bound on $H(x|g)$. The modelling choices mirror those used for intermediate
 1628 features in Xia et al. (2025), but here are applied to gradients.
 1629

1630 0.4.1 GRADIENT FEATURE AND OBSERVATION MODEL

1632 **Clean gradient feature.** Let $G : \mathbb{R}^d \rightarrow \mathbb{R}^m$ be a deterministic mapping producing a *clean* gradient
 1633 feature from input x . Specifically, let $u = G(x) \in \mathbb{R}^m$ denote a feature derived deterministically
 1634 from (x, y, W) (e.g., the gradient with respect to first-layer pre-activations, or a flattened stack of
 1635 first-layer weight gradients). Thus u is a deterministic function of x once the model and label are
 1636 fixed.

1637 *Assumption 2* (Gaussian Mixture Model (GMM) for u). We assume that the marginal distribution of
 1638 u can be well approximated by a Gaussian mixture

$$1639 \quad u \sim \sum_{i=1}^K \pi_i \mathcal{N}(\mu_i, \Sigma_i), \quad \sum_{i=1}^K \pi_i = 1, \quad \pi_i > 0, \quad \Sigma_i \succ 0. \quad (22)$$

1643 This GMM assumption is standard in information-theoretic analyses of representations Xia et al.
 1644 (2025) and serves as our common surrogate model for gradient features.
 1645

1646 **Noisy gradient observation.** We model the attacker’s baseline observation as a noisy version of u :

$$1648 \quad g_0 = u + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \Sigma_g), \quad \varepsilon \perp (x, u), \quad (23)$$

1650 where $\Sigma_g \succ 0$ is a fixed positive-definite covariance matrix. This captures gradient perturbations due
 1651 to stochastic training, subsampling, or other noise sources; Σ_g is assumed known to the attacker, as
 1652 in Xia et al. (2025). We use this Gaussian channel as the standard abstraction of gradient perturbations
 1653 for the subsequent information-theoretic analysis.

1655 0.4.2 A MUTUAL-INFORMATION IDENTITY FOR DETERMINISTIC FEATURES

1656 We will repeatedly use the following simple lemma for deterministic features.

1658 **Lemma 1** (Mutual information for deterministic feature maps). *Let $u = G(x)$ be a deterministic
 1659 function of x , and let g be a random variable such that $p(g|x, u) = p(g|u)$ (i.e., g depends on
 1660 (x, u) only through u). Then*

$$1661 \quad I(x; g) = I(u; g).$$

1663 Where $I(x; g)$ denotes the mutual information between x and g .

1665 *Proof.* Since u is a deterministic function of x , we have $H(u|x) = 0$ and $H(x, u) = H(x)$.
 1666 Moreover, $p(g|x) = p(g|u)$ by the conditional-independence assumption, so
 1667

$$1668 \quad H(g|x) = \mathbb{E}_x H(g|x=x) = \mathbb{E}_x H(g|u=G(x)) = H(g|u).$$

1670 Therefore

$$1671 \quad I(x; g) = H(g) - H(g|x) = H(g) - H(g|u) = I(u; g). \quad \square$$

1673 We will apply this lemma to both the baseline channel g_0 and the teleported channel g below.

1674 O.4.3 PARAMETRIC GMM-BASED LOWER BOUND ON $H(x | g_0)$
1675

1676 We now adapt the mixture-entropy bound used in Xia et al. (2025) to gradients.

1677 **Theorem 2** (Parametric lower bound on $H(x | g_0)$). *Under Assumption 1 and Assumption 2 and the
1678 channel equation 23, the conditional entropy $H(x | g_0)$ satisfies*

1679
1680
$$H(x | g_0) \geq H(x) - \sum_{i=1}^K \pi_i \left(-\log \pi_i + \frac{1}{2} \log \frac{|\Sigma_i + \Sigma_g|}{|\Sigma_g|} \right). \quad (24)$$

1681
1682

1683 *Proof.* Because $u = G(x)$ is deterministic given x , and g_0 depends on (x, u) only through u
1684 via equation 23, we have $g_0 \perp x | u$ and the conditions of Lemma 1 hold. Thus

1685
$$I(x; g_0) = I(u; g_0),$$

1686 and

1687
$$H(x | g_0) = H(x) - I(x; g_0) = H(x) - I(u; g_0).$$

1688 We bound $I(u; g_0)$ from above using the GMM model. We have

1689
$$I(u; g_0) = H(g_0) - H(g_0 | u).$$

1690

1691 From equation 23, $g_0 | u \sim \mathcal{N}(u, \Sigma_g)$, so

1692
$$H(g_0 | u) = \frac{1}{2} \log((2\pi e)^m |\Sigma_g|).$$

1693 Marginally, g_0 is the convolution of the GMM u with the Gaussian ε , hence

1694
1695
$$g_0 \sim \sum_{i=1}^K \pi_i \mathcal{N}(\mu_i, \Sigma_i + \Sigma_g).$$

1696

1697 For any mixture density $p(z) = \sum_i \pi_i p_i(z)$ with components p_i , the differential entropy satisfies the
1698 standard upper bound

1699
1700
$$H(p) \leq H(\pi) + \sum_i \pi_i H(p_i),$$

1701 where $H(\pi) = -\sum_i \pi_i \log \pi_i$ is the discrete entropy of the mixture weights (this follows by
1702 considering the joint entropy of the component index and the sample). Applying this with Gaussian
1703 components $p_i = \mathcal{N}(\mu_i, \Sigma_i + \Sigma_g)$ yields

1704
1705
$$H(g_0) \leq \sum_{i=1}^K \pi_i \left(-\log \pi_i + \frac{1}{2} \log((2\pi e)^m |\Sigma_i + \Sigma_g|) \right),$$

1706

1707 as in Xia et al. (2025). Therefore

1708
1709
1710
$$I(u; g_0) \leq \sum_{i=1}^K \pi_i \left(-\log \pi_i + \frac{1}{2} \log((2\pi e)^m |\Sigma_i + \Sigma_g|) \right) - \frac{1}{2} \log((2\pi e)^m |\Sigma_g|)$$

1711
1712
1713
$$= \sum_{i=1}^K \pi_i \left(-\log \pi_i + \frac{1}{2} \log((2\pi e)^m |\Sigma_i + \Sigma_g|) \right) + \sum_{i=1}^K \pi_i \left(-\frac{1}{2} \log((2\pi e)^m |\Sigma_g|) \right)$$

1714
1715
1716
$$= \sum_{i=1}^K \pi_i \left(-\log \pi_i + \frac{1}{2} \log((2\pi e)^m |\Sigma_i + \Sigma_g|) - \frac{1}{2} \log((2\pi e)^m |\Sigma_g|) \right)$$

1717
1718
1719
$$= \sum_{i=1}^K \pi_i \left(-\log \pi_i + \frac{1}{2} \log \frac{|\Sigma_i + \Sigma_g|}{|\Sigma_g|} \right).$$

1720
1721

1722 where the $(2\pi e)^m$ terms cancel. Substituting into $H(x | g_0) = H(x) - I(u; g_0)$ yields equation 24.
1723 \square 1724
1725 Theorem 2 yields a parametric lower bound on $H(x | g_0)$ —parametric in the GMM and noise
1726 covariances. Via Theorem 1, this in turn induces a lower bound on the minimal reconstruction MSE
1727 for an attacker observing g_0 . Our teleportation analysis will reuse exactly the same ingredients (GMM
approximation and mixture-entropy bound) so comparisons are on equal footing.

1728 O.5 TELEPORTATION / CHANGE-OF-BASIS NOISE ON GRADIENTS
17291730 We now incorporate teleportation (change-of-basis; CoB) symmetry as a source of private randomness
1731 in the gradient dynamics and analyze its impact on the *same* lower-bound pipeline used for g_0 .
17321733 O.5.1 TELEPORTATION AS PRIVATE MULTIPLICATIVE NOISE
17341735 **Teleportation structure.** For each layer ℓ , let $\tau^{[\ell]}$ denote the corresponding CoB vector (with all
1736 entries nonzero). The teleported gradient at layer ℓ is obtained by column-scaling with $\tau^{[\ell-1]}$ and
1737 row-scaling with $1/\tau^{[\ell]}$, i.e.
1738

1739
$$dV^{[\ell]} = \tau^{[\ell-1]} \bullet dW^{[\ell]} \bullet (1/\tau^{[\ell]}),$$

1740
$$dV_{ij}^{[\ell]} = \tau_j^{[\ell-1]} dW_{ij}^{[\ell]} (1/\tau_i^{[\ell]}),$$

1741 where the left operation multiplies each column of $dW^{[\ell]}$ by the corresponding coordinate of $\tau^{[\ell-1]}$,
1742 and the right operation multiplies each row by the corresponding coordinate of $1/\tau^{[\ell]}$. Consequently,
1743 each gradient entry acquires a multiplicative factor equal to a ratio of CoB coordinates. As such, each
1744 gradient entry picks up a multiplicative factor equal to a ratio of CoB entries. Flattening all gradient
1745 parameters into a single vector, we write the clean gradient feature as u and its teleported version as
1746

1747
$$\tilde{u} = R(\tau) u, \quad (25)$$

1748 where $R(\tau)$ is a diagonal matrix with entries $r_j(\tau) = \tau_{b(j)}/\tau_{a(j)}$ corresponding to the appropriate
1749 input/output channels $(a(j), b(j))$ of coordinate j . In practice, these ratios are constrained by the
1750 underlying channel-wise $\tau^{[\ell]}$ structure; our analysis below treats $\{r_j(\tau)\}$ as effective per-coordinate
1751 scalings induced by that structure.
17521753 **Threat model for teleportation.** We adopt the following threat model.
17541755 *Assumption 3* (Teleportation threat model).

- 1756 (i) The CoB parameters
- τ
- are sampled from a distribution
- P_τ
- that is independent of
- (x, u)
- .
-
- 1757 (ii) Teleportation is applied internally in the training update rule, so that the observable gradient
-
- 1758 feature (e.g., weight differences across a step) is a function of
- \tilde{u}
- rather than
- u
- . Algebraically,
-
- 1759 this yields an observation of the form equation 26 below.
-
- 1760 (iii) The adversary has white-box access to the model architecture and weights but
- does not*
-
- 1761 observe
- τ
- directly. They know the distribution
- P_τ
- .
-
- 1762

1763 Under Assumption 3, the teleported observation channel is
1764

1765
$$g = \tilde{u} + \varepsilon = R(\tau) u + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \Sigma_g), \quad \varepsilon \perp (x, u, \tau). \quad (26)$$

1766 This is the same additive-noise form as in equation 23, applied to a multiplicatively perturbed feature
1767 $R(\tau)u$.
17681769 O.5.2 TELEPORTATION-AWARE ENTROPY LOWER BOUND
17701771 We now derive the teleportation-aware counterpart of Theorem 2, using the same GMM approximation
1772 for u . Here the relevant mutual-information identity is again supplied by Lemma 1.
17731774 **Theorem 3** (Teleportation-aware lower bound on $H(x | g)$). *Under Assumption 1, Assumption 2,
1775 Assumption 3 and the teleported channel equation 26, the conditional entropy $H(x | g)$ satisfies*
1776

1777
$$H(x | g) \geq H(x) - \sum_{i=1}^K \pi_i \left(-\log \pi_i + \frac{1}{2} \mathbb{E}_\tau \log \frac{|R(\tau)\Sigma_i R(\tau)^\top + \Sigma_g|}{|\Sigma_g|} \right), \quad (27)$$

1778 where the expectation is taken w.r.t. $\tau \sim P_\tau$.
17791780 *Proof.* As before, $u = G(x)$ is deterministic given x , and g depends on (x, u) only through (u, τ)
1781 via equation 26. In particular, we have the Markov chain

1782
$$x \rightarrow u \rightarrow (g, \tau) \rightarrow g,$$

1782 and $g \perp x \mid (u, \tau)$. Integrating over the independent τ yields $p(g \mid x, u) = p(g \mid u)$, and hence the
 1783 conditions of Lemma 1 hold, giving
 1784

$$1785 \quad I(x; g) = I(u; g), \quad H(x \mid g) = H(x) - I(x; g) = H(x) - I(u; g).$$

1787 We bound $I(u; g)$ from above. By the chain rule and independence of u and τ ,

$$1789 \quad I(u; g) = I(u; g, \tau) - I(u; \tau \mid g) = I(u; g \mid \tau) - I(u; \tau \mid g) \leq I(u; g \mid \tau),$$

1790 since $I(u; \tau \mid g) \geq 0$. Here $I(u; g \mid \tau)$ is conditional mutual information and can be written as
 1791

$$1792 \quad I(u; g \mid \tau) = \mathbb{E}_\tau [I(u; g \mid \tau = t)].$$

1794 For a fixed realization $\tau = t$, the channel is linear with Gaussian noise:

$$1795 \quad g \mid \tau = t = R(t)u + \varepsilon.$$

1797 Conditionally on mixture component i , $u \mid i \sim \mathcal{N}(\mu_i, \Sigma_i)$, so
 1798

$$1799 \quad g \mid (i, \tau = t) \sim \mathcal{N}(R(t)\mu_i, R(t)\Sigma_i R(t)^\top + \Sigma_g),$$

1800 and $g \mid \tau = t$ is a GMM with components indexed by i . For this fixed t ,

$$1802 \quad I(u; g \mid \tau = t) = H(g \mid \tau = t) - H(g \mid u, \tau = t).$$

1804 Since $g \mid (u, \tau = t) \sim \mathcal{N}(R(t)u, \Sigma_g)$, we obtain

$$1806 \quad H(g \mid u, \tau = t) = \frac{1}{2} \log((2\pi e)^m |\Sigma_g|).$$

1807 Using the same mixture-entropy bound as before, applied to the GMM $g \mid \tau = t$, we have
 1808

$$1809 \quad H(g \mid \tau = t) \leq \sum_{i=1}^K \pi_i \left(-\log \pi_i + \frac{1}{2} \log((2\pi e)^m |R(t)\Sigma_i R(t)^\top + \Sigma_g|) \right).$$

1813 Therefore

$$1814 \quad I(u; g \mid \tau = t) \leq \sum_{i=1}^K \pi_i \left(-\log \pi_i + \frac{1}{2} \log((2\pi e)^m |R(t)\Sigma_i R(t)^\top + \Sigma_g|) \right) - \frac{1}{2} \log((2\pi e)^m |\Sigma_g|)$$

$$1817 \quad = \sum_{i=1}^K \pi_i \left(-\log \pi_i + \frac{1}{2} \log \frac{|R(t)\Sigma_i R(t)^\top + \Sigma_g|}{|\Sigma_g|} \right).$$

1820 Taking expectation over τ yields
 1821

$$1822 \quad I(u; g \mid \tau) = \mathbb{E}_\tau I(u; g \mid \tau = t) \leq \sum_{i=1}^K \pi_i \left(-\log \pi_i + \frac{1}{2} \mathbb{E}_\tau \log \frac{|R(\tau)\Sigma_i R(\tau)^\top + \Sigma_g|}{|\Sigma_g|} \right).$$

1825 Combining $I(u; g) \leq I(u; g \mid \tau)$ with $H(x \mid g) = H(x) - I(u; g)$ gives equation 27. \square
 1826

1828 Theorem 3 is the teleportation analogue of Theorem 2, obtained via the same steps, with Σ_i replaced
 1829 by $R(\tau)\Sigma_i R(\tau)^\top$ and an additional expectation over τ .
 1830

1831 O.6 DIAGONAL APPROXIMATION AND THE ROLE OF THE COB DISTRIBUTION

1833 To make the teleportation effect more interpretable at a per-coordinate level, we now adopt a diagonal
 1834 approximation. This is a modelling simplification, similar in spirit to Xia et al. (2025), and all
 1835 comparisons between teleported and baseline channels will be made *within* this shared surrogate
 approximation.

1836 O.6.1 DIAGONAL APPROXIMATION
18371838 *Assumption 4* (Diagonal covariance approximation). We work in the canonical channel basis in which
1839 teleportation is defined and posit that, in this basis,

1840
$$\Sigma_i = \text{diag}(\sigma_{i,1}^2, \dots, \sigma_{i,m}^2), \quad \Sigma_g = \text{diag}(\gamma_1^2, \dots, \gamma_m^2),$$

1841

1842 and the teleportation matrix has the form

1843
$$R(\tau) = \text{diag}(r_1(\tau), \dots, r_m(\tau)).$$

1844

1845 That is, we adopt a surrogate model in which gradient covariance, observation noise and CoB
1846 factors act coordinatewise in the natural channel basis, rather than attempting to diagonalize arbitrary
1847 covariances and then reinterpret teleportation in that rotated frame. This is not claimed to be an exact
1848 description of real networks, but a structured approximation for per-coordinate interpretation.
1849

1850 Under Assumption 4,

1851
$$R(\tau)\Sigma_i R(\tau)^\top + \Sigma_g = \text{diag}(\gamma_1^2 + r_1(\tau)^2\sigma_{i,1}^2, \dots, \gamma_m^2 + r_m(\tau)^2\sigma_{i,m}^2),$$

1852

1853 and hence

1854
$$\frac{|R(\tau)\Sigma_i R(\tau)^\top + \Sigma_g|}{|\Sigma_g|} = \prod_{j=1}^m \left(1 + \alpha_{i,j} r_j(\tau)^2\right), \quad \alpha_{i,j} := \frac{\sigma_{i,j}^2}{\gamma_j^2}. \quad (28)$$

1855
1856

1857 Taking logs and expectation in equation 27, we obtain

1858
$$\mathbb{E}_\tau \log \frac{|R(\tau)\Sigma_i R(\tau)^\top + \Sigma_g|}{|\Sigma_g|} = \sum_{j=1}^m \psi_{i,j},$$

1859
1860

1861 where we define the per-coordinate quantities
1862

1863
$$\psi_{i,j} := \mathbb{E}_\tau [\log(1 + \alpha_{i,j} r_j(\tau)^2)]. \quad (29)$$

1864

1865 Thus Theorem 3 becomes, under Assumption 4,

1866
$$H(x | g) \geq H(x) - \sum_{i=1}^K \pi_i \left(-\log \pi_i + \frac{1}{2} \sum_{j=1}^m \psi_{i,j} \right). \quad (30)$$

1867
1868
1869

1870 O.6.2 BASELINE (NON-TELEPORTED) DIAGONAL BOUND
18711872 For comparison, if no teleportation is applied, we have $R(\tau) \equiv I$ and $r_j(\tau)^2 \equiv 1$. Under the same
1873 diagonal surrogate,

1874
$$\frac{|\Sigma_i + \Sigma_g|}{|\Sigma_g|} = \prod_{j=1}^m (1 + \alpha_{i,j}),$$

1875
1876

1877 and the GMM-based entropy lower bound equation 24 reduces to

1878
$$H(x | g_0) \geq H_0^{\text{lb}} := H(x) - \sum_{i=1}^K \pi_i \left(-\log \pi_i + \frac{1}{2} \sum_{j=1}^m \log(1 + \alpha_{i,j}) \right). \quad (31)$$

1879
1880
1881

1882 We explicitly introduce H_0^{lb} to denote the analytic lower bound on $H(x | g_0)$ obtained under the
1883 GMM and diagonal surrogate.1884 Similarly, in the teleported diagonal setting equation 30 we define
1885

1886
$$H(x | g) \geq H_{\text{tele}}^{\text{lb}} := H(x) - \sum_{i=1}^K \pi_i \left(-\log \pi_i + \frac{1}{2} \sum_{j=1}^m \psi_{i,j} \right). \quad (32)$$

1887
1888
1889

Both H_0^{lb} and $H_{\text{tele}}^{\text{lb}}$ are computed from exactly the same modelling ingredients and diagonal surrogate.

1890 O.6.3 ENERGY-PRESERVING CoB AND IMPROVEMENT OF THE BOUND
1891

1892 To isolate teleportation as a pure source of *randomization* (rather than a trivial global rescaling of
1893 gradient energy), we consider energy-preserving CoB distributions at the level of the per-coordinate
1894 effective ratios.

1895 *Assumption 5* (Energy-preserving CoB marginals). For each coordinate j , the marginal distribution
1896 of $r_j(\tau)^2$ satisfies $\mathbb{E}_\tau[r_j(\tau)^2] = 1$.

1897 This condition enforces that, on average, teleportation does not inflate or shrink per-coordinate
1898 gradient energy; it only redistributes it stochastically. In practice, the defender controls the sampling
1899 of τ and hence the induced distribution of ratios $\{r_j(\tau)\}$, subject to architectural constraints (shared
1900 channels, etc.). We do not model those constraints explicitly here; we treat $\{r_j(\tau)\}$ as effective
1901 per-coordinate scalings whose marginals can be chosen to satisfy Assumption 5.

1902 We do not assume independence of $r_j(\tau)$ across j , only these marginals.

1903 Define, for each (i, j) ,

$$1905 \Delta\psi_{i,j} := \log(1 + \alpha_{i,j}) - \psi_{i,j} = \log(1 + \alpha_{i,j}) - \mathbb{E}_\tau[\log(1 + \alpha_{i,j}r_j(\tau)^2)]. \quad (33)$$

1906 Subtracting equation 31 from equation 32 yields an exact relation between the two analytic entropy
1907 lower bounds under the diagonal surrogate.

1908 **Corollary 1** (Exact relation between diagonal entropy lower bounds). *Under Assumption 4, the
1909 diagonal entropy lower bounds equation 31–equation 32 satisfy*

$$1911 H_{\text{tele}}^{\text{lb}} = H_0^{\text{lb}} + \frac{1}{2} \sum_{i=1}^K \pi_i \sum_{j=1}^m \Delta\psi_{i,j}, \quad (34)$$

1914 with $\Delta\psi_{i,j}$ defined in equation 33. If, in addition, Assumption 5 holds, then each $\Delta\psi_{i,j}$ is non-
1915 negative, and hence

$$1916 H_{\text{tele}}^{\text{lb}} \geq H_0^{\text{lb}}. \quad (35)$$

1918 *Proof.* Equation equation 34 is obtained by direct subtraction of equation 31 from equation 32 and
1919 using equation 33. For the sign of $\Delta\psi_{i,j}$, fix $\alpha > 0$ and define $\phi_\alpha(t) := \log(1 + \alpha t)$, which is
1920 concave on $t > 0$. Under Assumption 5,

$$1921 \psi_{i,j} = \mathbb{E}_\tau[\phi_{\alpha_{i,j}}(r_j(\tau)^2)] \leq \phi_{\alpha_{i,j}}(\mathbb{E}_\tau[r_j(\tau)^2]) = \phi_{\alpha_{i,j}}(1) = \log(1 + \alpha_{i,j}),$$

1922 so $\Delta\psi_{i,j} \geq 0$ for all (i, j) , implying equation 35. \square

1924 *Remark 1* (Scope and strength of the entropy result). Within the shared modelling assumptions
1925 (GMM, diagonal surrogate, energy-preserving CoB), Corollary 1 shows that teleportation *never*
1926 *decreases* the analytic entropy lower bound:

$$1927 H(x | g_0) \geq H_0^{\text{lb}}, \quad H(x | g) \geq H_{\text{tele}}^{\text{lb}} \geq H_0^{\text{lb}}.$$

1929 We stress that we do *not* claim $H(x | g) \geq H(x | g_0)$ for the true channels. Rather, we compare the
1930 surrogate quantities H_0^{lb} and $H_{\text{tele}}^{\text{lb}}$ arising under the same generative model; under this common lens,
1931 teleportation strictly improves the analytic lower bound on uncertainty about x .

1932 O.7 TELEPORTATION-AWARE RECONSTRUCTION LOWER BOUND
1933

1934 We now translate the entropy bounds into reconstruction MSE lower bounds using Theorem 1.

1936 O.7.1 BASELINE AND TELEPORTED MSE LOWER BOUNDS
1937

1938 From equation 31–equation 32 and Theorem 1, we obtain analytic lower bounds on the minimal
1939 reconstruction MSE for the baseline and teleported channels:

$$1940 \xi_0 := \frac{1}{2\pi e} \exp\left(\frac{2}{d} H_0^{\text{lb}}\right), \quad (36)$$

$$1942 \xi_{\text{tele}} := \frac{1}{2\pi e} \exp\left(\frac{2}{d} H_{\text{tele}}^{\text{lb}}\right). \quad (37)$$

1944 By construction and monotonicity of the exponential,
 1945
 1946 $\xi_{g0} \geq \underline{\xi}_0, \quad \xi_g \geq \underline{\xi}_{\text{tele}},$ (38)

1947 where ξ_{g0} and ξ_g are the true minimal MSEs for the baseline and teleported channels, respectively.
 1948 Again, $H(x)$ is common to both channels and cancels in all *relative* statements about $\underline{\xi}_{\text{tele}}/\underline{\xi}_0$.
 1949

1950 O.7.2 IMPROVEMENT FACTOR ON THE ANALYTIC MSE BOUND

1951 Combining the definitions, the ratio between the teleported and baseline MSE *lower bounds* satisfies

1953
 1954
$$\frac{\underline{\xi}_{\text{tele}}}{\underline{\xi}_0} = \exp\left(\frac{2}{d}(H_{\text{tele}}^{\text{lb}} - H_0^{\text{lb}})\right) = \exp\left(\frac{1}{d} \sum_{i=1}^K \pi_i \sum_{j=1}^m \Delta\psi_{i,j}\right),$$
 (39)

1956 with $\Delta\psi_{i,j}$ as in equation 33.

1958 Under the energy-preserving assumption (Assumption 5), $\Delta\psi_{i,j} \geq 0$, hence the exponential factor
 1959 in equation 39 is at least 1, and the analytic teleportation-aware MSE lower bound is never smaller
 1960 than the baseline one. In other words, teleportation provably raises the information-theoretic floor on
 1961 reconstruction accuracy *as captured by this shared surrogate model*. We do not assert any ordering
 1962 between the true minimal MSEs ξ_{g0} and ξ_g .

1963 *Remark 2* (Interpretation for privacy). Equation equation 39 provides a quantitative, distribution-
 1964 aware guarantee: under the shared assumptions (GMM, diagonal surrogate, energy-preserving CoB),
 1965 teleportation inflates the analytic lower bound on the attacker's reconstruction MSE by a factor given
 1966 by the RHS of equation 39. This factor depends on the CoB distribution only through $\Delta\psi_{i,j}$, which in
 1967 turn are functions of the per-coordinate signal-to-noise ratios $\alpha_{i,j}$ and the marginals of $r_j(\tau)^2$. Thus
 1968 teleportation is not merely a heuristic perturbation: for any attacker whose behaviour is dominated by
 1969 this generative model (in essentially the same sense as in Xia et al. (2025)), there is a formal lower
 1970 bound on how accurately they can reconstruct x .

1971 O.8 LOG-NORMAL COB FAMILY (EFFECTIVE MODEL)

1973 We now specialize the general diagonal analysis to an effective log-normal model for the CoB-induced
 1974 per-coordinate scalings $r_j(\tau)^2$, to make the dependence on CoB variance explicit in the analytic MSE
 1975 lower bounds.

1976 **Log-normal marginal model.** We model each per-coordinate scaling as

1977
$$r_j(\tau)^2 = \exp(Y_j),$$

1979 where

1980
$$Y_j \sim \mathcal{N}\left(-\frac{1}{2}s_j^2, s_j^2\right),$$

1982 so that

1983
$$\mathbb{E}[r_j(\tau)^2] = \mathbb{E}[e^{Y_j}] = \exp\left(-\frac{1}{2}s_j^2 + \frac{1}{2}s_j^2\right) = 1.$$

1984 This ensures the energy-preserving condition $\mathbb{E}[r_j(\tau)^2] = 1$ (Assumption 5), while the parameter
 1985 $s_j^2 \geq 0$ controls the strength of teleportation-induced variability on coordinate j . Practically, the
 1986 defender can aim to implement such marginals by sampling τ so that the induced ratios $r_j(\tau)^2$
 1987 are approximately log-normal; we do not model the exact mapping from channel-wise $\tau^{[\ell]}$ to ratio
 1988 marginals. We emphasize that this is an *effective parametric family* for r_j^2 , chosen for analytical
 1989 clarity; our rigorous inequalities rely only on Assumption 5, while log-normality is used to express
 1990 the dependence on a small number of variance parameters.

1991 Under this model, the per-coordinate quantities $\psi_{i,j}$ and $\Delta\psi_{i,j}$ admit explicit expressions.

1992 **Corollary 2** (Log-normal teleportation and analytic MSE bound improvement). *Under the log-normal*
 1993 *CoB marginal model above, for each mixture component i and coordinate j ,*

1995
$$\psi_{i,j}(s_j^2) = \mathbb{E}_{Y_j \sim \mathcal{N}\left(-\frac{1}{2}s_j^2, s_j^2\right)} [\log(1 + \alpha_{i,j} e^{Y_j})],$$
 (40)

1996 and

1997
$$\Delta\psi_{i,j}(s_j^2) = \log(1 + \alpha_{i,j}) - \mathbb{E}_{Y_j \sim \mathcal{N}\left(-\frac{1}{2}s_j^2, s_j^2\right)} [\log(1 + \alpha_{i,j} e^{Y_j})].$$
 (41)

1998 Let $\underline{\xi}_0$ and $\underline{\xi}_{\text{tele}}$ denote the analytic lower bounds on the minimal reconstruction MSE for the
 1999 non-teleported and teleported channels, respectively, as defined in equation 36–equation 37. Then
 2000

$$\frac{\underline{\xi}_{\text{tele}}(s^2)}{\underline{\xi}_0} = \exp\left(\frac{1}{d} \sum_{i=1}^K \pi_i \sum_{j=1}^m [\log(1 + \alpha_{i,j}) - \psi_{i,j}(s_j^2)]\right), \quad (42)$$

2004 where $s^2 = (s_1^2, \dots, s_m^2)$ collects the log-variance parameters across coordinates.
 2005

2007 *Proof.* The identities equation 40–equation 41 are obtained by substituting $r_j^2 = e^{Y_j}$ with
 2008 $Y_j \sim \mathcal{N}(-\frac{1}{2}s_j^2, s_j^2)$ into the definition equation 29 of $\psi_{i,j}$ and the definition equation 33 of
 2009 $\Delta\psi_{i,j}$. The ratio equation 42 then follows immediately by plugging $\Delta\psi_{i,j}(s_j^2)$ into equation 39,
 2010 which relates the analytic MSE lower bounds $\underline{\xi}_{\text{tele}}$ and $\underline{\xi}_0$ to the $\Delta\psi_{i,j}$. \square
 2011

2012 *Remark 3 (Local small-variance expansion (heuristic)).* To gain intuition about the dependence on
 2013 teleportation strength, it is useful to consider the regime $s_j^2 \ll 1$, where the log-normal marginals are
 2014 close to the degenerate case $r_j^2 \equiv 1$. This section provides a local Taylor expansion for intuition; it is
 2015 not used in our rigorous inequalities, which already follow from Assumption 5.
 2016

2017 For $t_j := r_j^2 = e^{Y_j}$ with $Y_j \sim \mathcal{N}(-\frac{1}{2}s_j^2, s_j^2)$ we have

$$\mathbb{E}[t_j] = 1, \quad \text{Var}(t_j) = \mathbb{E}[t_j^2] - 1 = \exp(s_j^2) - 1.$$

2018 Thus $\text{Var}(t_j) = s_j^2 + O(s_j^4)$ as $s_j^2 \rightarrow 0$. Writing $t_j = 1 + \delta_j$, we have $\mathbb{E}[\delta_j] = 0$ and
 2019 $\text{Var}(\delta_j) = \text{Var}(t_j)$.
 2020

2022 Since log-normal marginals have finite moments of all orders, a second-order Taylor expansion of
 2023 $\phi_\alpha(t) := \log(1 + \alpha t)$ around $t = 1$ yields
 2024

$$\phi_\alpha(1 + \delta) = \log(1 + \alpha) + \frac{\alpha}{1 + \alpha} \delta - \frac{\alpha^2}{2(1 + \alpha)^2} \delta^2 + R_\alpha(\delta),$$

2025 with $|R_\alpha(\delta)| \leq C_\alpha |\delta|^3$ for some constant C_α depending on α . Taking expectations with $\mathbb{E}[\delta] = 0$
 2026 and $\mathbb{E}[\delta^2] = \text{Var}(t_j)$ gives
 2027

$$\mathbb{E}[\phi_\alpha(1 + \delta)] = \log(1 + \alpha) - \frac{\alpha^2}{2(1 + \alpha)^2} \text{Var}(t_j) + O(\mathbb{E}[|\delta|^3]).$$

2033 Applying this with $\alpha = \alpha_{i,j}$ and $t_j = r_j^2$, and recalling that $\psi_{i,j} = \mathbb{E}[\log(1 + \alpha_{i,j} r_j^2)]$, we obtain the
 2034 local approximation
 2035

$$\Delta\psi_{i,j}(s_j^2) = \log(1 + \alpha_{i,j}) - \psi_{i,j}(s_j^2) \approx \frac{\alpha_{i,j}^2}{2(1 + \alpha_{i,j})^2} \text{Var}(t_j),$$

2038 with an error term controlled by $\mathbb{E}[|\delta_j|^3]$. For the log-normal model, $\text{Var}(t_j) = \exp(s_j^2) - 1$, so we
 2039 arrive at the heuristic expression
 2040

$$\Delta\psi_{i,j}(s_j^2) \approx \frac{\alpha_{i,j}^2}{2(1 + \alpha_{i,j})^2} (\exp(s_j^2) - 1), \quad s_j^2 \ll 1.$$

2043 Substituting this into equation 42 yields the corresponding small-variance approximation for the
 2044 logarithm of the analytic MSE bound ratio:
 2045

$$\log \frac{\underline{\xi}_{\text{tele}}(s^2)}{\underline{\xi}_0} \approx \frac{1}{2d} \sum_{i=1}^K \pi_i \sum_{j=1}^m \frac{\alpha_{i,j}^2}{(1 + \alpha_{i,j})^2} (\exp(s_j^2) - 1), \quad s_j^2 \ll 1.$$

2050 This approach highlight that, in the small-variance regime, the teleportation-induced improvement in
 2051 the analytic reconstruction MSE lower bound grows approximately linearly in s_j^2 (via $\exp(s_j^2) - 1$),
 with a slope governed by the per-coordinate signal-to-noise ratios $\alpha_{i,j}$ and the mixture weights π_i

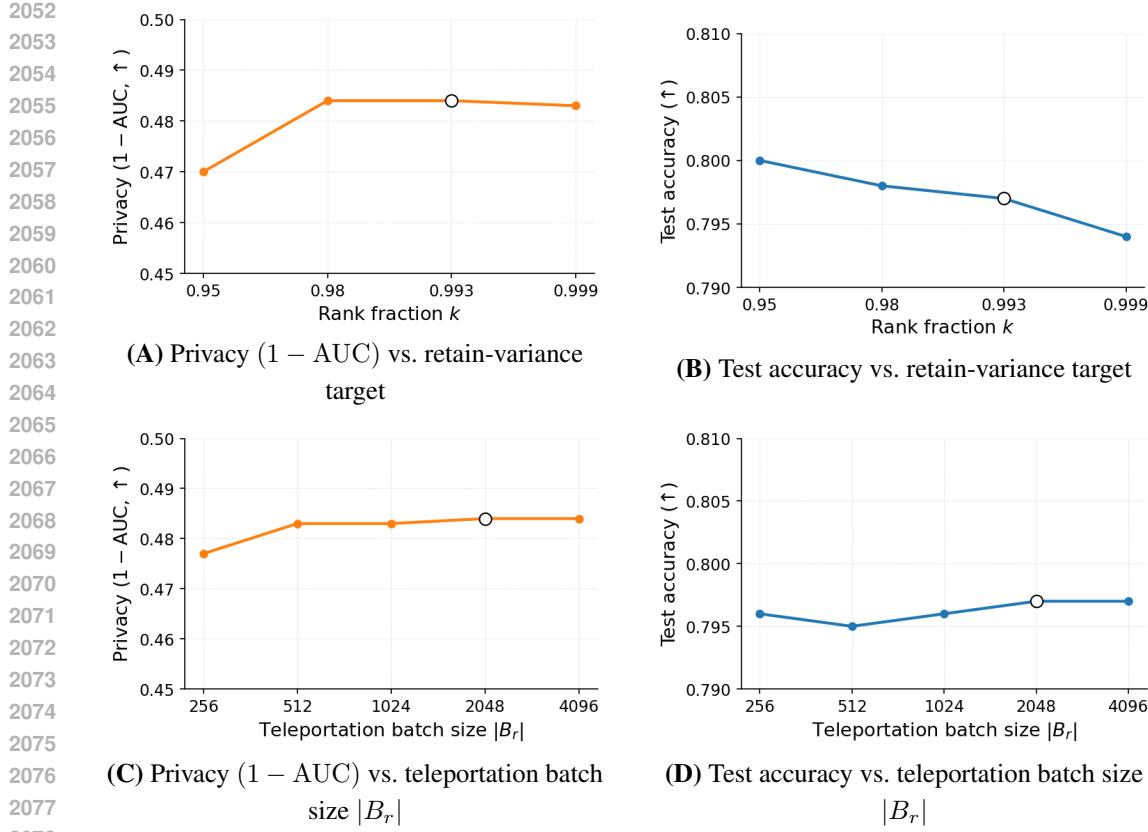


Figure 12: **Sensitivity of teleportation hyperparameters.** Plots (A,B) vary the target retain-variance level used to set the per-layer rank k_ℓ ; plots (C,D) vary the retain minibatch size $|B_r|$ used to estimate the retain subspace. Privacy is measured as $1 - \text{AUC}$ of U-LiRA (higher is better). Markers highlight the configuration used in our main experiments (95.3% retain variance and $|B_r| = 2048$).

P ABLATION: SENSITIVITY OF TELEPORTATION HYPERPARAMETERS

Teleportation introduces a small set of additional hyperparameters that control how strongly we move along symmetry directions. In this section we study the sensitivity of WARP to two core choices: (i) the target retain-variance fraction used to choose the per-layer rank k in the SVD projector (Section 3.2), and (ii) the size of the retain minibatch B_r used to estimate the retain subspace. Both directly govern the geometry of the retain null space and the amount of stochasticity in the teleportation step, and were explicitly highlighted as potential sources of instability.

Setup. We perform a controlled sweep on CIFAR-10 with ResNet-18 and NGP+WARP under the U-LiRA black-box auditor (Section 4.2). For the SVD projector, we vary the target retain-variance level from 95% to 99.9%, which induces different per-layer ranks k_ℓ such that the top singular vectors of $R_\ell(D_r)$ capture the chosen fraction of retain energy. For the retain minibatch, we vary the teleportation batch size $|B_r| \in \{256, 512, 1024, 2048, 4096\}$ while keeping the forget minibatch and unlearning hyperparameters fixed. For each configuration we run the full unlearning pipeline and record test accuracy as well as privacy measured by $(1 - \text{AUC})$ of U-LiRA (higher is better).

Results and discussion. Figure 12 shows that teleportation is *remarkably insensitive* to both hyperparameters in the regime we consider.

Retain-variance target. Increasing the target retain-variance from 95% to 99.9% changes privacy $(1 - \text{AUC})$ by less than 0.015 in absolute terms, while test accuracy varies in a narrow band of $\approx 0.79\text{--}0.80$. Privacy slightly improves as we move from 95% to around 99.3%, after which the curve flattens: very high targets effectively make the retain projector full-rank, leaving less room for

2106 teleportation to move in symmetry directions and yielding diminishing returns. The configuration
 2107 used in the main experiments (target retain-variance $\approx 99.3\%$) lies near this plateau, indicating that
 2108 our chosen rank provides a good privacy–utility compromise.

2109 *Retain minibatch size $|B_r|$.* Varying $|B_r|$ over an order of magnitude has only a minor effect: privacy
 2110 ($1 - \text{AUC}$) shifts by at most ~ 0.01 , and test accuracy remains within $\pm 0.2\%$ points of 0.796. Even
 2111 relatively small batches ($|B_r| = 256$) already provide a sufficiently representative retain subspace for
 2112 teleportation, and larger batches only yield a slight, saturating gain in privacy. This suggests that the
 2113 random retain minibatch need not tightly approximate the full retain set to obtain a stable projector
 2114 and effective defense; in practice, a modest $|B_r|$ balances computational cost with stable subspace
 2115 estimation.

2116 Overall, these ablations show that WARP’s performance does not hinge on fragile hyperparameter
 2117 choices: both privacy and utility are stable across wide ranges of the SVD rank and retain minibatch
 2118 size. Moreover, the small spread in test accuracy ($< 0.6\%$ across all settings) empirically confirms
 2119 that teleportation remains approximately loss-preserving on the retain set, providing an implicit
 2120 bound on worst-case retain-loss drift in our experiments.

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159