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ABSTRACT

Approximate machine unlearning aims to efficiently remove the influence of spe-
cific data points from a trained model, offering a practical alternative to full retrain-
ing. However, it introduces privacy risks: an adversary with access to pre- and
post-unlearning models can exploit their differences for membership inference or
data reconstruction. We show these vulnerabilities arise from two factors: large gra-
dient norms of forget-set samples and the close proximity of unlearned parameters
to the original model. To demonstrate their severity, we propose unlearning-specific
membership inference and reconstruction attacks, showing that several state-of-
the-art methods (e.g., NGP, SCRUB) remain vulnerable. To mitigate this leakage,
we introduce WARP, a plug-and-play teleportation defense that leverages neural
network symmetries to reduce forget-set gradient energy and increase parameter
dispersion while preserving predictions. This reparameterization obfuscates the
signal of forgotten data, making it harder for attackers to distinguish forgotten sam-
ples from non-members or recover them via reconstruction. Across six unlearning
algorithms, our approach achieves consistent privacy gains, reducing adversarial
advantage (AUC) by up to 64% in black-box and 92% in white-box settings, while
maintaining accuracy on retained data. These results highlight teleportation as a
general tool for reducing attack success in approximate unlearning.

1 INTRODUCTION

Machine unlearning (MU) aims to enforce the “right to be forgotten” by updating a trained model
so that a designated forget-set has no influence [Bourtoule et al.| (2021)); |[Zhao et al.| (2024). The
ideal outcome matches retraining from scratch on the remaining retain-set, with both the model’s
parameters and predictions unaffected by the forgotten data, and without degrading generalization. A
primary motivation for machine unlearning is to ensure privacy compliance for sensitive informa-
tion |Wang et al|(2025a). Once personal data is used for training, models may memorize specific
details Ravikumar et al.| (2024a), creating risks of privacy breaches |Bourtoule et al. (202 1)); |Carlini
et al.| (2022b)). Unlearning addresses this by eliminating such traces, preventing exposure. The most
direct solution is retraining from scratch without the forget set, but this is computationally prohibitive.
Exact Unlearning methods such as SISA |Bourtoule et al.|(2021) reduce cost by modifying training
to allow provable deletion, but they require proactive deployment and add overhead. To avoid full
retraining, Approximate Unlearning methods finetune the original model to forget the target data
while preserving utility [Kurmanji et al.[(2023); Chundawat et al.| (2023a)); Golatkar et al.| (2020);
Thudi et al.|(2022), trading computational efficiency against formal guarantees.

At the same time, ML models are vulnerable to privacy attacks Rigaki & Garcia) (2023). In Mem-
bership Inference Attacks (MIA), an adversary determines whether a given sample was part of the
training set Shokri et al.| (2017). In Data Reconstruction Attacks (DRA), the adversary seeks to
recover raw data (or a close approximation) from model outputs or parameters Yin et al.[(2021); |Li
et al.| (2022); Jeon et al.| (2021); [Fang et al.| (2023)). These attacks have been demonstrated in both
black-box (access to outputs) and white-box (access to weights) settings Nasr et al.| (2019).

Ironically, MU itself can leak the very data it aims to erase. Given access to both the original and
unlearned models, an adversary can mount differencing attacks |Hu et al.|(2024); Bertran et al.| (2024),
which substantially improve reconstruction success. Even models previously resistant to MIAs can
become vulnerable once deletion is performed Bertran et al.| (2024); (Chen et al.| (2021). The key
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observation is that the parameter difference between the two models approximates the gradient of
the forgotten sample (up to second-order terms), effectively releasing it to the adversary. Gradient
inversion techniques, as in federated learning |Geiping et al. (2020), can then reconstruct the forgotten
data. Thus, approximate unlearning methods, especially gradient-ascent variants Kurmanji et al.
(2023)), can inadvertently compromise privacy instead of ensuring it.

In this work, we aim to strengthen MU against pri-

vacy attacks by characterizing two key factors driving Larger gradient norm — higher privacy risk
leakage. The first, illustrated in Figure [1] is that a R - .
forgotten sample’s privacy risk correlates with its sy el
gradient norm in the original model. Intuitively, sam- 1301 e /

ples with large gradient magnitudes during training or
finetuning induce stronger parameter changes when
removed, making them more detectable via MIA and
more exploitable for reconstruction |Ye et al.| (2023).
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Second, as shown in prior work |Thudi et al|(2022);
Kurmanji et al.| (2023)), most approximate unlearn- 102 10 101 0 w0
ing methods make minor parameter updates, typi- Gradient norm (log scale)

cally by maximizing the forget-set loss while keep-
ing retain-set accuracy stable. This keeps the un-
learned model close to the original, so the parameter
difference encodes information about the forgotten
data. In gradient-ascent—based methods Kurmanji
et al.|(2023); [Chundawat et al.|(2023a), this difference is essentially the forget-set gradient. Recent
studies confirm that such updates expose information equivalent to a single gradient step on the
forgotten sample [Bertran et al.| (2024)), which attackers can invert to reconstruct it.

Figure 1: Privacy risk vs. gradient norms of
forget-set samples, measured with U-LiRA.

To mitigate these risks, we propose WARP, a plug-and-play defense that integrates into existing
unlearning algorithms without training-time statistics. Our method leverages neural network telepor-
tation |/Armenta et al.| (2023)), exploiting parameter-space symmetries (e.g., rescaling or permutation)
that preserve predictions. By applying selective teleportation steps before or during unlearning,
we reduce forget-set gradient norms while injecting symmetry-preserving randomness. This yields
unlearned models that retain accuracy yet are displaced in parameter space, making it harder for
an attacker to disentangle forgetting from teleportation. Consequently, membership inference and
reconstruction attacks are significantly weakened, as shown in Sections 4.2} [.3] and[4.4]

Our contributions are summarized as follows:

* Tailored privacy attacks. We design MIA and DRA for the unlearning setting, where the
adversary compares pre- and post-unlearning models. These attacks show that leading methods
remain vulnerable, as parameter updates still expose information about the forgez-set.

* Symmetry-based defense. We propose WARP, a plug-and-play defense that, building on existing
teleportation and symmetry constructions, applies loss-preserving transformations to reduce forget-
set gradient norms and increase parameter dispersion, thereby obscuring the signal exploited in
reconstruction and inference, while remaining agnostic to the particular symmetry mechanism
used to realize these transformations. WARP integrates into gradient-based post-hoc unlearning
algorithms without requiring training-time statistics.

* Comprehensive evaluation. We evaluate our attacks and defense across three datasets—CIFAR-10,
Tiny-ImageNet, and ImageNet-1K—using ResNet-18 and ViT-B/16 models under both black-box
and white-box settings. Results across multiple unlearning algorithms show that teleportation
consistently reduces privacy leakage while preserving accuracy on the retain set.

Overall, our work reframes unlearning privacy risk through the lens of gradient norm reduction
and connects it to neural network symmetry, an underexplored optimization principle that lays a
conceptual foundation for more privacy attack—resilient unlearning algorithms. Related works to ours
are discussed in more detail in Appendix |A] The code is available at this link|
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2 THREAT MODEL

We consider a strong adversary performing sample-wise membership inference, distinguishing whether
a sample belongs to the forget-set Dy or the test set Diy. The attacker has access to both the pre- and
post-unlearning models.

Attacker Capabilities. The attacker has full access to both the original §°® and unlearned model
0", as well as complete knowledge of the unlearning algorithm Aunlearn and its hyperparameters
Hunlearn (e.g., optimizer, learning rate, update steps, retain-set size).

We consider two settings: Black-box — the attacker queries outputs f(z;6%). White-box — the
attacker additionally accesses full internals of both models (8¢, 6*), including weights.

Attack Objective Given a sample (z,y) from either the forget-set Dy, or the held-out test set
Diest» the attacker computes a score A’(z, y) and predicts membership as A(z,y) = I[A'(z,y) > 7],
where I[] is the indicator function and 7 is a decision threshold. The attacker seeks a high true
positive rate (TPR) on forgotten samples while maintaining a low false positive rate (FPR) on test
samples. This directly measures privacy risk: if membership can be reliably inferred, incomplete
unlearning is exposed and the forgotten samples identified. Unlike prior work, our goal is to audit
unlearning algorithms from a privacy perspective, rather than evaluating indistinguishability between
approximate and exact unlearning outcomes.

3 METHODOLOGY

3.1 PRIVACY ATTACKS

To systematically evaluate privacy leakage in unlearning, we consider two complementary classes of
attacks: membership inference and data reconstruction.

Black-box (U-LiRA). For the black-box setting, we adopt U-LiRA (Hayes et al., 2025, an
adaptation of LiRA (Carlini et al.|[2022a)) to unlearning. U-LiRA leverages shadow models trained
and unlearned with the same algorithm as the target, yielding a strong adaptive baseline for auditing
privacy. We defer full algorithmic details to Appendix

White-box (Gaussian Gradient-Difference). In the white-box setting, we extend the Gaussian
gradient—difference framework of |[Leemann et al.| (2023) to the unlearning case by contrasting
gradients computed on both the original and unlearned models. This contrast provides a powerful
signal of residual membership leakage when both model versions are available to attacker. The
detailed proposed formulation and test statistic are presented in Appendix [C]

Reconstruction Attack in Unlearning. We develop a white-box reconstruction attack tailored to
approximate unlearning with retain-set updates. Let Af = 0% — §°" be the observed parameter
change after one unlearning stage (possibly aggregating multiple optimizer steps). As in gradient
inversion, we seek an input whose parameter-gradient aligns with a target vector; here the natural
target is A#. Our baseline (single-sample) objective is:

T, € argmin D(Vg@(f(:ﬂ;@org),y), A@), )
aj’y

where £ is the training loss, f(-; 8) the network, and D a distance (e.g., {2 or negative cosine).

With approximate unlearning, the update A6 mixes retain and forget gradients. For a forget example
(xf,ys) and a retain minibatch 5,,

A ~ _n(gr_agf)a 9r= |Blr‘ Z Veg(f(xr;eorg)7yr)7 ngVM(f(xf;Horg),yf)7
2

(17‘ ’yr)EBr
with effective step size 7 and ascent weight o > 0. Directly targeting A6 in equation I]is therefore
confounded by g,.. Even when equation |1|is instantiated with state-of-the-art gradient inversion
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methods, naively inverting the unfiltered update Af remains ineffective, producing low accuracy of
the reconstruction (see Section ] Table [2).

Let Gorg = [g(bs;6°"8)]7 and G,, = [g(b;; 0)]1, be gradient snapshots on a small probe set drawn
from the training distribution. We compute thin SVDs, Gy = UorgEorgVOIg and G, = UuEuVuT,
and keep the top-k left singular vectors to obtain orthonormal bases (columns) for the dominant
gradient subspaces. Define the orthogonal projectors

Horg = Uorg UT

org’

I, =U,U,, It=r1-1I,.

Unlearning attenuates the forget component, so retain gradients are expected to persist in both models,
whereas the forget component is prominent in 6°& but suppressed in 8%. We therefore orthogonalize
the update against the unlearned subspace and keep only directions supported by the original model:

Gy = Moy 11 (—2 06). &)

Intuitively, IT- removes directions consistent with retain gradients that remain after unlearning, while
I, preserves directions active before unlearning where the forget signal resides. If the retain

subspace is well captured, then I g, ~0 and Il 11 (agy) ~ gy, yielding a high-SNR estimate of
the forget gradient.

We reconstruct the forgotten sample by solving the filtered inversion:
Ty, gy € argﬂxliyn D(Vol(f(x;60°8),y), gr) , 4)

with optional priors or constraints on (x,y). In practice, we choose k to retain a fixed fraction
of gradient energy (e.g., 90-95%), which stabilizes the projectors and reliably isolates the forget
component via orthogonalization. We empirically validate that orthogonal subspace filtering boosts
reconstruction success across models and datasets; see Sectionf.4]and Appendix Table [3]

3.2 WARP (TELEPORTATION-BASED DEFENSE)

Motivation I: Parameter closeness increases privacy leakage. We formulate post-hoc unlearning
as minimizing a composite objective that balances forgetting on Dy with utility on D,:

min (0| D) + A 60| D),  A>0, )
’ Forget Retai
orgel etain

where 0 denotes model parameters; /¢ is any differentiable forgetting surrogate that penalizes high
confidence or reduces fidelity on D¢ (e.g., loss-inflation, uniform/soft labels, margin expansion); and
£, is the standard training/consistency loss on D, to preserve performance. The trade-off coefficient A
controls how strongly the unlearning step remains anchored to the retain-set: larger A keeps 6“ closer
to #°"8, preserving accuracy but reducing the parameter shift introduced by forgetting. A first—order
optimizer with mini-batches By C Dy and B, C D, yields the iterative update

O = 00— m (Vold00 | Be) + AVol(01 | By)), (©)

which encompasses common post-training approximate unlearning schemes; for instance, “negative-
gradient” methods are recovered by taking ¢¢(-) = —lyin(+) (i-e., ascent on the standard training
loss over Dr), whereas rehearsal/consistency-based approaches instantiate £, with supervised loss or
distillation on D, Thudi et al.|(2022); Kurmanji et al.|(2023)); Chundawat et al.| (2023al).

Because equation [5]explicitly regularizes utility on Dr and is optimized with small steps and early
stopping on Df, the resulting unlearned parameters 8" typically remain close to the original §°'¢
in parameter space. The displacement Af = 6% — §°'8 is well-approximated (to first order) by a
weighted combination of gradients on the forget-set, mildly contaminated by retain gradients Thudi
et al.[(2022); |[Kurmanji et al.| (2023); Huang et al.|(2024)). This proximity creates a privacy attack
surface: An adversary with access to (6°"8, 0*) can leverage A6 to perform membership inference or
gradient-based reconstruction of D¢ Hu et al.|(2024)); Bertran et al.|(2024)), motivating the defenses
applied over unlearning algorithms.
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Motivation II: Gradient norm and curvature amplify leakage. Recent evidence suggests that the
per-sample gradient trajectory is a strong predictor of privacy vulnerability. Tobaben et al.|(2024) show
that training examples that accumulate larger gradient norms during optimization are significantly
more prone to MIA, reflecting the intuition from differential privacy that each update’s privacy loss
scales with gradient magnitude. Complementing this, Ravikumar et al.| (2024b) demonstrate that
curvature around training samples—captured via local sharpness of the loss—serves as a reliable
discriminator between members and non-members, with sharper regions implying higher membership
exposure. These findings aligns with theoretical analyses such as|Ye et al.| (2023)), who prove that
large per-sample gradients at initialization inflate the KL divergence between neighboring training
trajectories, directly increasing the sample’s privacy risk. Motivated by this, we hypothesize that
approximate unlearning inherits the same vulnerability: samples with higher gradient norms tend
to push parameters towards sharper local extrema during both training and unlearning, thereby
overshooting the target update and leaving a stronger privacy footprint. Our experiments (Fig|[T)
confirm this intuition, revealing a clear correlation between a sample’s gradient norm in the original
model and its susceptibility to membership inference after unlearning.

To simultaneously address (i) the parameter—space proximity that enables differencing and (ii) the
gradient—norm driver of leakage, we leverage loss-invariant symmetries of deep networks.

Symmetry framework. Let G denote a set of symmetry transformations acting on parameters 6
(and, when needed, internal representations) such that the task loss is invariant: £(X,0) = L(¢( X, 6))
for all g € G|Zhao et al.| (2022} [2023); [Armenta et al.| (2023)); [Simsek et al.| (2021). A teleportation
step chooses g and updates 6 < g-6, moving within the loss level set. In our defense, we select g to
reduce the gradient norm of the forget-set while preserving utility on the retain-set:

g* € arggleig{zmy)epf IVol(f(z;9-0),9)ll5 =8 |lg-0—0l3 } )
—_——
shrink forget-set gradients increase parameter dispersion

st. L(g-0|Dr) < £(0]Dy) +e.

with trade-off 5 > 0 and tolerance € > 0. The first term reduces squared gradient norms of forget
examples (Motivation II); the dispersion term adds symmetry-preserving randomness, displacing
parameters from 6°' (Motivation I); the constraint preserves retain performance.

WARP operates on an abstract prediction-preserving symmetry map 75, and any such symmetry
family can instantiate the framework. In practice, we use two concrete realizations—the retain—null-
space projection introduced in the next paragraph, and the change-of-basis teleportation detailed
in Appendix [D}—to illustrate this generality. To complement this algorithmic view, Appendix [O]
develops teleportation-aware information-theoretic bounds on gradient-based reconstruction, showing
how injecting symmetry-induced noise via Ty expands the symmetry orbit and provably increases
the expected reconstruction error for attackers observing (6°*8, 6%).

Primary instantiation: teleportation with retain null-space projection. We first describe one
convenient way to instantiate 7y using retain—null-space projections |Wu et al.|(2025). To optimize
equation 7 efficiently on modern architectures without explicit group actions, we adopt teleportation
with input null-space gradient projection|Wu et al.|(2025) and instantiate it using the recent projector
formulation that keeps updates on the loss-invariant level set by per-layer projections onto the input
null space (thus leaving the task loss unchanged up to numerical error). Concretely, define the
teleportation loss

Loa(0) = Y || Vol(f:0).0)|5 — 816 — 0753,

(z,y)EBs

where Bt is a minibatch from Ds. Let R, be the per-layer representation matrix from a retain
minibatch (layer-¢ inputs), with thin SVD Ry, = U,%, VZT. We keep the top-k left singular vectors
By = Uy 1.1 to span the retain subspace and define the orthogonal projector onto its complement

I} = I — B,B/ . A teleportation step then applies the layer-wise update

W/ W) — e TFH(Vw, Lear(01)) ®)
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which (i) reduces the forget-set gradient norms by descending on Ly, (ii) preserves the function
on the retain-set by restricting motion to the retain-orthogonal subspace. The projection operator
in equation [§|corresponds to the input-null-space projector. This is implemented by subtracting the
component in the subspace of the core gradient, leaving only the residual for the teleport step.

To align the invariance with utility preservation, we compute By only from retain data. Let Ry(D,) =
[p¢()])zen, denote the matrix formed by stacking the layer-¢ inputs for a retain minibatch 5,. Then:

Ry(D,) =USV,",  By=Upx, 1} =1-BB/. ©)

We set k to capture a fixed fraction of retain variance (typically 95%-99%) and apply the resulting
projectors in equation[8] This confines each teleport step to the retain-orthogonal subspace, stabilizing
predictions on D, while suppressing gradient energy on D;. Since I} removes directions spanned
by retain representations, suitable choices of rank k and step size 7] ensure that

’Er(g.9|’l)r)—€r(9|’Dr)| < g,

which matches the constraint below equation [/} in practice, prediction drift on D, remains within
numerical tolerance (see Appendix [P|for hyperparameter sensitivity). To underline that WARP is not
tied to retain—null-space projections, Appendix @]instantiates T4 using the SVD-free change-of-basis
symmetries introduce in|Armenta et al.|(2023)).

Plug-and-play scope. Teleportation is interleaved with the standard unlearning update equation [6}
requiring no training-time per-sample gradients or stored statistics. The update equation §]is applied
atintervalst € K C 0,...,7—1 (e.g., every S steps), keeping forget-set gradient norms low while
preserving retention performance. The full algorithm appears in Appendix

4 EXPERIMENTS

We now empirically evaluate the proposed teleportation-based defense across multiple unlearning
algorithms, datasets, and model architectures. Our experiments are designed to answer the following
research questions: (i) How vulnerable are state-of-the-art unlearning algorithms to privacy attacks
under both black-box and white-box threat models? (ii) To what extent does teleportation reduce
membership and reconstruction leakage without sacrificing utility on the retain-set?

Experimental Setup.  We conduct experiments on CIFAR-10, Tiny-ImageNet, and ImageNet-
1K. On CIFAR-10 we use ResNet-18, while on ImageNet we evaluate ViT-B/16, covering both
convolutional and transformer models. All models are trained with SGD and standard augmentation.
Following prior work Kurmanji et al.|(2023);|Chundawat et al.|(2023a), forget sets D are sampled
as roughly 1% of training data per class, with retain sets D,. comprising the rest.

Baselines. = We benchmark six representative unlearning algorithms—NEGGRAD+ |[Kurmanji
et al.| (2023)), SCRUB Kurmanji et al.| (2023), SALUN |Fan et al.| (2023)), PGU Hoang et al.| (2024),
BADTEACHER (Chundawat et al.|(2023a), and SRF-ON [Huang et al.|(2024)—covering paradigms of
gradient ascent, regularization, saliency, projection, and distillation. Full details are in Appendix [E]

4.1 OVERVIEW EFFECTIVENESS OF WARP

Figure [2] summarizes privacy and utility across six unlearning methods with and without our plug-in
defense. Each radar chart reports black-box membership inference risk (AUC and TPR at low FPR),
accuracy on the most-memorized subset, white-box membership inference risk (AUC and TPR at
low FPR), and standard test accuracy. The most-memorized subset is selected following our U-LiRA
protocol in Sec. [4.2] motivated by prior findings that highly memorized samples carry elevated
unlearning risk Naderloui et al.| (2025)). For visualization, all metrics are min—max normalized across
methods. Privacy metrics in which lower is better are inverted by plotting 1 — metric, so that larger
polygons correspond to stronger privacy, while higher test accuracy remains preferable.

Three key observations emerge. First, no unlearning algorithm dominates across all axes. For
instance, SF performs well under black-box auditing but is weaker under white-box auditing and in
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Figure 2: Comparison of unlearning vs. teleportation across six unlearning methods.

test accuracy, illustrating the necessity of evaluating under both threat models. Second, algorithms
that appear robust under black-box evaluation such as NGP and SF still exhibit substantial leakage
under our white-box test, underscoring the importance of auditing with gradient- or weight-based
evidence. Third, adding our symmetry-based teleportation module, instantiated via retain null-
space projection, consistently improves privacy across both black-box and white-box metrics while
maintaining utility. In some cases, such as BT and SF, teleportation even improves test accuracy. The
only noticeable accuracy drop occurs for NGP (about one percentage point), for which we provide
a detailed privacy—utility trade-off analysis in Appendix [l The runtime overhead of teleportation
is analyzed separately in Appendix [J| and Appendix [P] presents ablations showing that WARP’s
performance does not hinge on fragile choices of teleportation hyperparameters. Overall, these
results demonstrate that the proposed defense empirically reduces attack success consistently and
effectively across a diverse set of unlearning algorithms and threat models. For completeness, we
also compare WARP against the strongest noise-based alternative, namely projected DP-Langevin
unlearning (Chien et al.| (2024b), using its formally calibrated update rule; the full comparison is
provided in Appendix M|

4.2 U-LIRA (BLACK-BOX)

We evaluate our teleportation defense with U-LiRA Hayes et al.| (2025), a state-of-the-art black-
box unlearning auditor. Following Deep Unlearn |Cadet et al.| (2024a), we train T' = 64 shadow
models with 10 random forget sets each. To model a strong adaptive adversary, shadows use the
same unlearning algorithm, teleportation, and hyperparameters as the target, reducing proxy—target
miscalibration [Cretu et al| (2023). Details of U-LiRA appear in Appendix B}

As emphasized in prior work |Carlini et al.| (2022a)), the most informative regime is low false-
positive rates (FPR), where practical attacks must operate. We therefore report AUC as well as
TPR@0.1, TPR@1, and TPR @5, which capture attacker success in this stringent regime. In addition,
following RULINaderloui et al.[(2025)), we stratify the forget-set by memorization (ranked by training
confidence) and evaluate U-LiRA on the most-memorized slice. These points carry elevated privacy
risk, so we report low-FPR TPR on this subset alongside aggregate metrics.

Table[I] shows that adding our teleportation plug-in reduces black-box membership leakage across
all methods, on both the full forger-set and the most-memorized slice, with the largest gains at low
FPR. For example, NGP’s TPR@1 nearly halves (0.030—0.014), SCRUB’s memorized-slice AUC
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Table 1: Privacy (Black-box) with and without WARP. Reported are risks on all forget samples
and the most—memorized 1% (AUC, TPR@0.1/1/5%), plus test accuracy. Each row shows baseline,
WAREP, and relative improvement (%).

All samples (BB) Most-memorized (top 1%) Acc.
Method AUC TPR@0.1 TPR@1 TPR@5 AUC TPR@0.1 TPR@1 TPR@5 Test
NGP (base) 0.545 0.012 0.030 0.077 0.649 0.058 0.157 0.277 0.808
+ WARP 0.516 0.003 0.014 0.055 0.598 0.015 0.082 0.206 0.797

Improvement (%) 64.4 81.8 80.0 81.5 342 75.4 51.0 313 -5.7
SCRUB (base)  0.543  0.020 0.047 0.092 0.710 0.086 0.227 0.397 0.815

+ WARP 0.526 0.015  0.036 0.078 0.610 0.041 0.119 0.213 0.813
Improvement (%) 39.5 26.3 29.7 333 476 529 49.8 53.0 -1.1

PGU (base) 0.636  0.024  0.040 0.098 0.910 0.201 0.511  0.706 0.804
+ WARP 0.631 0.018 0.036 0.104 0.875 0.160 0.431 0.663 0.808

Improvement (%) 3.7 26.1 13.3 -125 85 20.5 16.0 6.6 +2.0
Salun (base) 0.572  0.020 0.062 0.121 0910 0.129 0321  0.520 0.802

+ WARP 0.565 0.019 0.059 0.113 0.826 0.107 0.264 0.487 0.803
Improvement (%) 9.7 5.3 5.8 11.3 205 17.2 18.3 7.0 405
SF (base) 0.509  0.004 0.015 0.056 0.518 0.089 0.034 0.079 0.814
+ WARP 0.506 0.002 0.012 0.051 0.501 0.006 0.026 0.068 0.811
Improvement (%) 33.3 66.7 60.0 833 944 94.3 333 379 -1.6
BT (base) 0.725  0.000 0.177 0.287 0.902 0.119 0.295 0.582 0.816
+ WARP 0.661 0.000 0.137 0.219 0.865 0.113 0.275 0.537 0.818
Improvement (%) 28.4 - 24.0 287 9.2 5.1 7.0 85 +1.1

Method AUC TPR@0.1 TPR@1 TPR@5
NGP (base) 0.642  0.004 0.034  0.139
+ WARP 0.614  0.002 0.021  0.097
Improvement (%) 17.0 50.0 40.6 34.2
% SCRUB (base) 0.700  0.011 0.102  0.287
o + WARP 0.657  0.006 0.061 0.193
% Improvement (%) 14.3 54.5 42.5 33.5
ﬁ?) PGU (base) 0.659  0.007 0.064  0.215
2 + WARP 0.533  0.002 0.025  0.085
Improvement (%) 92.9 83.3 64.5 65.5
Salun (base) 0.721  0.008 0.069  0.230
+ WARP 0.705  0.006 0.062 0.214

s Improvement (%) 9.5 333 10.1 7.0
Pi0 w0 107 SF (base) 0.670 0005 0043 0.161
” ase . . .043 .
False Positive Rate + WARP 0629 0003 0030 0.124
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Figure 3: White-box privacy with and without WARP. Gaussian gradient—diff test on 640 unlearned
models. ROC curves (left) and AUC/TPRs (right); full ROC plots are in Appendix@

drops by 0.10 (0.710—0.610), and SF’s AUC falls to near-random (0.501). Low-FPR TPR gains
are often large even when aggregate AUC shifts are modest, showing that teleportation suppresses
the high-confidence tails attacks exploit. Some methods remain leaky on memorized points, but
teleportation frequently drives this slice close to random without hurting accuracy. Its impact is
strongest on TPR@0.1 and TPR@1, as retain-null-space projection reduces forget gradients and
shrinks extreme margins, weakening the rare signals enabling low-FPR success.

4.3 WHITE-BOX MIA

We evaluate the Gaussian gradient—difference test of Section [Clunder the setup of Section[d] using
ResNet-18 on CIFAR-10 and ViT-B/16 on Tiny-ImageNet (full ViT in Appendix [H). For the null
background we draw m=1000 non-members from D, estimate (/i, f]) with ridge A=1073, and
restrict the test to the top-10% most-variant A(b) coordinates. Figure [3|shows ROC curves with and
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Table 2: Effect of teleportation defense on reconstruction (ImageNet-1K, ResNet-18, NGP).

Variant PSNR (dB) ©+ LPIPS (VGG) | LPIPS (Alex) | SSIM + Test MSE | Feat MSE |
Ours (normal unlearning) 10.74 £0.31  0.56 £+ 0.013 0.34 £0.015 0.12+£0.008 0.10 4 0.007 5.39 4 0.50
Ours + WARP 7.38 £0.40 0.68 +0.01 0.46 £0.02 0.08£0.006 0.21+£0.02 11.28+1.89
Improvement of Defense (%) +45.5 +21.2 +26.1 +31.6 +52.4 +52.2

Original NGP  NGP+WARP | Original NGP NGP+WARP

5

Figure 4: Reconstructions under NGP vs. NGP+WARP.

without teleportation (log—log for low-FPR). Across methods, teleported variants shift toward chance
(TPR = FPR) and flatten between 10~°~10~2 FPR, suppressing high-confidence tails. The strongest
effect appears for BT and PGU, which show the largest AUC drops, while NGP, SF, and SALUN
show smaller but consistent shifts. An exception is SCRUB, where teleportation lowers ROC above
10~ FPR but slightly raises TPR at < 10~2, due to knowledge distillation interacting with symmetry
moves that amplify high-leverage directions. Overall, null-space teleportation reduces white-box
evidence at low FPR, with a narrow corner case for SCRUB.

4.4 RECONSTRUCTION ATTACK RESULTS

‘We evaluate the white-box reconstruction attack of Sectionon ImageNet-1K with ResNet-18,
focusing on NGP. We reconstruct a single forgotten example and average over 100 uniformly sampled
points. For each target we use a retain minibatch of size |B,.| = 5. Subspace projectors are built
per layer from probe gradients: we draw m=100 training samples to form Go.g, G, compute thin
SVDs, and keep rank k preserving 90% gradient energy. We then apply I1;- and IL,,, layerwise to
obtain the filtered target gs. The attacker knows the label ¢ and optimizes equationE]with aTV
regularizer |Geiping et al.|(2020). The matching loss uses masked per-layer gradients: for each layer,

all coordinates are kept and a weighted dot-product alignment is computed [Fang et al.| (2023).

Effect of teleportation. Table 2 and Figure f] compare reconstruction risk under standard NGP
unlearning and its teleported variant using change-of-basis reparameterization. Despite negligible
cost, this symmetry-based randomization disrupts reconstruction: even strong generative-prior
attacks fail to recover meaningful features of forgotten data. Teleportation injects a symmetry
component into A6 that is nearly orthogonal to per-sample gradients Armenta et al.|(2023), reducing
alignment with the true forget gradient g; and driving gradient-matching toward low signal-to-noise
optima. It also undermines our subspace-filtered attack (Eq. 3], since teleportation reshapes gradient
subspaces so Uqe and U, overlap little, leaving the residual HorgHj(—AH/n) small and noisy.
In practice, optimization collapses to the generative prior or class cues, yielding label-consistent
but semantically poor reconstructions (Figure ). Symmetry moves thus decouple updates from
data-dependent directions, removing the geometric handle exploited by white-box reconstruction.
This motivates examining how teleportation reshapes the information relationship between parameters
and training data (forget-set); a stronger symmetry-aware adaptive reconstruction attack is evaluated
in Appendix|N] and Appendix [O] provides complementary information-theoretic bounds showing how
teleportation expands the symmetry orbit and increases expected reconstruction error.
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5 CONCLUSION AND FUTURE WORK

Approximate unlearning provides scalability but introduces privacy risks. We showed that adversaries
with access to original and unlearned models can mount strong membership inference and reconstruc-
tion attacks. These risks stem from two properties: parameter proximity and large forget-set gradient
norms, which amplify leakage.

To counter this, we proposed WARP, a symmetry-based defense that interleaves teleportation
with unlearning. By exploiting network symmetries, WARP reduces forget-set gradient energy
and displaces parameters in symmetry-preserving directions, weakening both membership and
reconstruction leakage while preserving retain performance. Across six unlearning algorithms,
WARP improves privacy, cutting adversarial advantage by up to 64% in black-box and 92% in
white-box settings. We also stress the need for white-box auditing: methods seemingly robust in
black-box mode (e.g., SF|Huang et al.|(2024)) still leak when gradients are exposed. Even simple
teleportation disrupts reconstruction, reducing quality by ~ 45%.

Our findings suggest future directions. First, extending Langevin-based privacy analyses to practical
unlearning with gradient ascent and symmetry moves is promising. Second, recent work shows
approximate unlearning leaves low-rank weight signals, reversible via re-unlearning |Fan et al.| (2025)
or removed by quantization [Zhang et al.|(2024). Exploring teleportation directly on weights may
help obscure these signals and mitigate reversals. Finally, as the study of neural network symmetries
continues to evolve and more efficient estimators and richer invariance families become available,
WARRP can directly inherit these advances by instantiating its symmetry map with stronger or cheaper
symmetry mechanisms, which further strengthens its resistance to unlearning attacks.
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A RELATED WORK

Approximate Unlearning. The removal of training samples was introduced by (Cao & Yang
(20135) in the context of the “right to be forgotten.” Retraining from scratch guarantees deletion but is
infeasible for modern networks Vatter et al.|(2023)). Exact unlearning methods such as SISA [Bourtoule
et al.[(2021)) and Amnesiac Unlearning|Graves et al.|(2021)) lower cost through partitioning or selective
retraining but still require storage and scale poorly [Nguyen et al.| (2022]).

Approximate unlearning directly updates the trained model to erase the forget-set Kurmanji et al.
(2023)); IChundawat et al.| (2023a)); |Golatkar et al.| (2020); Thudi et al.| (2022)). These methods aim to
match the predictive distribution of retraining while preserving retain accuracy, offering a practical
forgetting—utility trade-off with large savings in computation and memory. Related methods target
structured forget sets such as entire classes [Chundawat et al.|(2023b)); Seo et al.| (2025), or tackle the
harder instance-wise setting, where arbitrary samples must be removed Fan et al.|(2024); |(Cha et al.
(2024); |Zhao et al|(2024)). Many approaches rely on training-time side information like per-sample
gradients |Qiao et al.|(2024)); Mehta et al.| (2022)), or assume specialized regimes with adversarial
robustness |Liu et al.| (2023) or differential-privacy noise [Chien et al.[(2024b;a); Sepahvand et al.
(2025). While effective, these assumptions add resource overhead, limiting post-hoc use. Our focus,
therefore, is training-agnostic, instance-wise unlearning that takes only a pretrained classifier and
a designated forget-set, without stored gradients or training modifications [Kurmanji et al.| (2023));
Thudi et al.|(2022).

Privacy Unlearning. The effectiveness of approximate unlearning is accessed by two criteria: (I)
the model should maintain accuracy on non-forgotten data, and (II) its outputs on the forget-set should
be indistinguishable from those of a model with no access to it Naderloui et al.| (2025). In practice,
this is evaluated using MIA |Shokri et al.|(2017)); (Carlini et al.|(2022a)), which test whether a sample
was part of training. Effective unlearning removes this membership advantage on the forget-set.

Most prior work evaluates unlearning by comparing outputs of the unlearned model to a retrained
reference on the forget-set (Cadet et al.|(2024b); [Kurmanji et al.| (2023)); Hayes et al.| (2025)); Georgiev:
et al.| (2024); Naderloui et al.| (2025)). This black-box view ignores parameters, even though in
practice—such as MU on edge devices—an adversary may access both original and unlearned models.
Some studies consider this stronger setting: |Chen et al.| (2021) showed that output-comparison
across models can detect unlearning, while others adapted reconstruction to infer forgotten data
from parameter differencesSalem et al.| (2020); Hu et al.| (2024); Bertran et al.| (2024). These works,
however, are limited to toy models and simplified updates, leaving privacy risk under realistic
conditions unclear. In particular, they do not capture the robustness of recent multi-step approximate
methods such as NGP or SCRUB |[Kurmanji et al.[(2023);|Chundawat et al.| (2023a), where iterative
updates with retain-set supervision weaken inversion of forget-set gradients. We address this gap
with stronger white-box MIAs (SeclC) and DRAs (Sec[3.7) tailored to realistic unlearning.

Neural Network Symmetry. Continuous symmetries in neural networks arise when transformations
of the weights leave the output unchanged. Such invariances, a byproduct of overparameterization,
mean that many distinct weight configurations represent the same function |Gluch & Urbanke| (2021)).
They appear in homogeneous activations |Badrinarayanan et al.| (2015); Du et al.| (2018) and in
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components like softmax and batch normalization Kunin et al| (2020), and have been linked to
both improved optimization and generalization. Neural teleportation leverages these symmetries by
relocating parameters within the loss-invariant level set, yielding equivalent models that accelerate
optimizationArmenta & Jodoin| (2021)); Armenta et al.| (2023). Building on this idea,Zhao et al.
(2022)) introduced symmetry teleportation, which searches for beneficial relocations while providing
a framework for analyzing symmetry-induced minima. More recently, teleportation with null-space
gradient projection [Wu et al.|(2025)) leverages the input null space: moving along projected directions
leaves the function unchanged, directly aligning with the goal of teleportation.

B U-LIRA ALGORITHM

To evaluate sample-wise privacy leakage, we employ the U-LiRA attack [Cadet et al.|(2024a); [Hayes
et al.| (2025), an adaptation of LiRA |Carlini et al.|(2022a)) to the unlearning setting. The attack relies
on shadow models to estimate two distributions for a target sample (z,y): (i) models trained with
(z,y) and subsequently unlearned using the same unlearning algorithm, and (ii) models trained from
scratch without (x, y). By fitting simple parametric models (e.g., Gaussians) to the outputs of these
shadow ensembles, U-LiRA computes the likelihood of the target model’s output under each case
and classifies membership according to a likelihood ratio test.

Crucially, all shadow models are trained with the same unlearning algorithm and hyperparameters as
the audited model. This makes U-LiRA effectively an adaptive attack, since it tailors the proxies
to each specific unlearning method. Such alignment minimizes miscalibration between shadow and
target models and is known to increase attack success|Cretu et al.|(2023). Therefore, U-LiRA serves
as a strong black-box baseline for auditing privacy in unlearning. A complete description of the
algorithm can demonstrated in Algorithm [I]

Algorithm 1 U-LiRA (used for auditing unlearning)

Require: Target model 6*, learning algorithm A, unlearning algorithm U, number of shadows T',
sample (x,y)

Ensure: Prediction: is (z,y) in the forget-set?

1: Initialize empty lists O < {} and O « {}

2: fort =1toT do

3: Sample dataset D containing (x, y)

4 Train ° < A(D)

5: Unlearn 60/ « U(0°, {(x,y)}

6: Retrain 0" <+ A(D \ {(z,y)})

7. Record O[t] « f(x;67),, O] « f(x;67),

8: end for X

9: Fit Gaussian (1, 0?) to O, and (f1,6?) to O
10: Compute o* < f(z;6%),
11: Compute likelihood ratio:

_ N (o*; i, 0%)
Pmember = N(O*; [, 0_2> + N(0*§ ,[147 6’2)

12: if prember > 0.5 then

13: return “member of training”
14: else

15: return “non-member”

16: end if

C WHITE-BOX GAUSSIAN GRADIENT-DIFFERENCE ATTACK ALGORITHM

Guided by the GLiR framework of |[Leemann et al.| (2023)), we formulate sample-wise MIA in the
unlearning setting as a binary hypothesis test that uses both the pre-unlearning and post-unlearning
models. Let A denote the training algorithm, U the unlearning operator, S the original training set,
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and ' C S the forget subset. For a candidate example (z, y), we test
Hy: (z,y) ~ Dest, (0°78,0%) = (A(S), U(A(S),F)) withz ¢ S, « ¢ F,
Hi : (2,y) € Diorg,  (0°%,6") = (A(S), U(A(S),F)) withz € Sand z € F,

i.e., under H; the point participated in the original training and was subsequently targeted by
unlearning, whereas under Hj it was never used. With white-box access, we form the gradient-
difference statistic

A(z) = Vol(f(z;6"),y) — Vol(f(z;6°%),y) € R™.

Assuming access to draws from Dieq, the adversary builds a background set B = {(b;, ;) }7, ~ Dtk
and estimates the null (non-member) distribution of gradient differences via

= AG) =S (AG) - ) (A0 )

Following [Leemann et al.[(2023)), we adopt a Gaussian model for A(z) under H, and compute the
whitened Mahalanobis statistic

s(z) = (A@x)— i) (S+ M) (A®) - a),

with a small ridge A > 0 for numerical stability. Under Hy, s(z) is approximately x2-distributed,
yielding the log-p-value score

Al(x,y) = —log(l —Fxg(s(x))>,

and the final decision rule

Az,y) = I[A'(2,y) > 7],
predicting forgotten when the score exceeds threshold 7. Algorithm 2] provides the full details of the
proposed attack.

Relation to GLiR and unlearning specifics. GLiR aggregates evidence across training steps by
comparing per-step sample gradients to a Gaussian background of batch gradients; our adaptation
replaces the (typically unavailable) per-step trajectory with the two-model contrast A(z). The
geometry is unchanged: Evidence corresponds to the squared norm of the whitened difference,
(3 4 AI)~'/2A(z)||3. Unlike standard MIAs that query a single model, the test exploits white-box
access to 6°'8 and 6" and targets the unlearning-specific alternative H; (membership in both .S and
F), providing a simple and powerful auditor for residual leakage after unlearning.

Algorithm 2 White-box Gaussian Gradient-Difference Attack for Unlearning Audit

Require: Pre-unlearning model §°'8, post-unlearning model §“, candidate sample (z,y), loss ¢,
predictor f(-;6), background sampler Ss (™) that returns m i.i.d. draws from Dieq
Require: Hyperparameters: background size m, repetitions 7', ridge A > 0, decision threshold 7
1: S« 0 > initialize cumulative evidence
2: fort =1to 7T do
3: By = {(bi, 5:)}7 1 + Siest(m) > if labels are unavailable, set §; =arg max f(b;; 6°'8)
for i = 1tomdo
Ai = Vol(f(bi;0),9i) — Vol(f(bi; 0°¢),5:) € RY
end for
fiy < % E:il Ay
S g (A — ) (A — ) T
9: i?t, \ — flt + Ay > ridge for numerical stability
10: Ay« Vol(f(z;0"),y) — Vol(f(x;07%),y)
11: V4 Aw — ﬂt

® XNk

12: Solve 275,/\ w = v for w (e.g., Cholesky); s, < v'w

13: by + —log(1— Fy (st)) > log tail p-value under H
14: S+ S+

15: end for

16: return FORGOTTEN if S > 7; else TEST
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D ALTERNATIVE SYMMETRY: CHANGE-OF-BASIS NEURAL TELEPORTATION.

We also support the “neural teleportation” family of symmetry moves from|Armenta et al.{(2023). Let
Ta > 0 be a scale attached to neuron a. For an edge a — b with weight 6, the teleported weight is
Ly = 2 O, (10)
-

a

and if f; is the activation at neuron d then the teleported activation is
x
ga(x) =7a fa| — |+ (11)
Td

which preserves the function for positively homogeneous activations and extends naturally to batch-
norm scales |Armenta et al.| (2023). In a subset of experiments, we choose 7 to further increase
parameter dispersion under loss invariance (outputs unchanged), thereby weakening the differencing
signal and making reconstruction harder; most results rely on the null space instantiation in equation [§]
In the experimental section, it is explicitly indicated when both mechanisms are enabled.

E BASELINES

We evaluate our teleportation-based defense as a plug-and-play module layered on top of several
state-of-the-art approximate post-hoc unlearning methods. These baselines are representative of the
most widely studied approaches in recent literature, requiring no access to training-time auxiliary
statistics (e.g., per-sample gradients) and operating directly on a pretrained model. Specifically, we
consider:

1. NegGrad+ (NGP) Kurmanji et al.[(2023): An improved variant of GA that incorporates
a regularization term on the retain-set. The method balances ascent on the forget-set with
descent on the retain-set, aiming to preserve model utility while unlearning.

2. SCRUB Kurmanji et al.| (2023)): A knowledge distillation approach that aligns the unlearned
model with the original model on the retain-set via a consistency loss, while simultaneously
removing the forget-set’s influence. SCRUB represents one of the most competitive baselines
in recent evaluations.

3. SalUn Fan et al.[(2023): A saliency-based unlearning method that directs updates to a subset
of weights deemed salient for forgetting, identified via gradient-based weight saliency maps.
By restricting optimization to these salient weights, SalUn enhances stability and efficiency
compared to updating the full parameter set, and aims to reduce the gap to exact retraining.

4. Projected Gradient Unlearning (PGU) |Hoang et al.|(2024)): A method that projects the
gradient ascent update for the forget-set onto a subspace orthogonal to retain-set, thereby
mitigating catastrophic forgetting. PGU is particularly relevant as it addresses gradient-level
entanglement between forget and retain data.

5. BadTeacher (BT) Chundawat et al.|(2023a)): A recent distillation-based unlearning method
where the unlearned model (student) is trained against a deliberately corrupted teacher that
provides noisy or adversarial labels for the forget-set, encouraging the student to erase their
influence while preserving performance on the retain-set.

6. SRF-ON (SF) Huang et al.|(2024): A geometry-aware unlearning method that decomposes
updates into forget ascent, retain descent, and saliency modulation. By embedding updates
into the manifold of retain data and approximating Hessian modulation with a fast—slow
strategy, SRF-ON improves stability—plasticity trade-offs and enables efficient large-scale
unlearning.

These methods span the main paradigms of approximate unlearning—gradient ascent, retain-aware

regularization, distillation, and projection-based updates—making them representative state-of-the-art
baselines.
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Table 3: Reconstruction on ImageNet-1K (ResNet-18), NGP (no defense). Averages over 100
forgotten samples. Higher is better for PSNR/SSIM; lower is better for LPIPS/MSE.

Method PSNR (dB) + LPIPS (VGG)| LPIPS (Alex) | SSIM 1 Test MSE | Feat MSE |
GIFD |Fang et al.|(2023) 8.28 £0.28 0.630 + 0.012 0.448+0.016  0.098 +0.007  0.174+£0.012  6.725 £ 0.506
Ours (subspace-filtered + GFID) 10.74 £0.31  0.564 +£0.013  0.345+0.015 0.117+0.008 0.100 +0.007 5.388 & 0.497
Improvement (%) +29.7 +10.5 +22.9 +19.4 +42.5 +19.9

F ADDITIONAL WHITE-BOX RESULTS ON CIFAR-10

Figure 5| reports the complete ROC curves for the Gaussian gradient—diff test, covering the entire
FPR range. These correspond to the same 640 unlearned models as in Figure 3} shown here without
zoom to provide the full view.

10°
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=
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False Positive Rate
—— Salun —— SCRUB BT Avg Normal
—————— Salun+WARP ------ SCRUB+WARP BT+WARP  ---- Avg WARP
— SF — NGP PGU Optimal
------ SF+WARP ------ NGP+WARP PGU+WARP

Figure 5: Complete ROC curves for the white-box Gaussian gradient—diff test. Averaged over
640 unlearned models, identical to Figure[3] Lower curves (closer to the random-guess diagonal)
indicate stronger privacy.

G RECONSTRUCTION ATTACK BASELINES AND COMPARISON.

Table [3| compares three strategies for unlearning: (i) simple differencing, directly inverting A¢Hu
et al.| (2024); Bertran et al.|(2024); (ii) generative inversion (GIFD)Fang et al.|(2023)) applied to A9,
and (iii) Ours, which adds orthogonal subspace filtering (Eq. equation [3) to a generative backbone.
Results average 100 forgotten samples on ImageNet-1K with ResNet-18 under NGP unlearning.

H ADDITIONAL RESULTS: VIT ON TINY-IMAGENET

To extend the white-box analysis of Section we evaluate Vision Transformer models trained on
Tiny-ImageNet. We adopt ViT-B/16 as the base architecture and follow the same setup described
in Section 4} with the forger-ser constructed by randomly sampling 1% of the training data and the
retain-set consisting of the remainder. All models are trained with SGD and standard augmentations
for ViT training. Unlearning is applied with NGP (NGP) and its teleported variant (NGP+WARP).

As shown in Table 4] and Figure [6] WARP substantially reduces attack success across all thresholds,
with the largest relative gains at low false-positive rates where practical attacks operate. These results
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Table 4: White-box membership inference risk with and without teleportation (ViT, Tiny-
ImageNet). Results are reported as mean =+ standard deviation across five splits. Improvements are

computed as advantage reduction over random guessing.

Method AUC TPR@0.01% TPR@0.1% TPR@1% TPR@5%
NGP (base) 0.792£0.019 0.0019 £0.001  0.0188 £0.009 0.178 £0.072  0.444 £ 0.035
+ WARP 0.755 +0.019 0.0008 =0.000 0.0079 £0.003 0.075+0.027 0.302 £0.054
Improvement (%) 12.7 61.1 61.2 61.2 36.1
1.0 = -
/"/// 107! //
0.8 ,,/‘/ /'/
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E 0.4 /:' g ,/,/
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.' 1073
02 :" ///
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-==- NGP NGP+WARP Optimal

(a) ROC curve (linear scale) (b) ROC curve (log—log scale, low-FPR region)

Figure 6: White-box ROC for the Gaussian gradient-difference test on ViT-B/16 (Tiny-
ImageNet). Each curve is averaged over five different forget-set splits, with shaded regions showing
the standard deviation. Both figures compare NGP and NGP+WARP; (a) presents the full ROC on
a linear axis, while (b) zooms into the low-FPR regime on log—log scale, which is the operational

region for practical attacks.

confirm that the symmetry-based defense proposed in WARP extends effectively to transformer
models, demonstrating applicability beyond convolutional architectures.

I PRIVACY-UTILITY TRADE-OFF

Improving privacy in unlearning often comes at the cost of reduced model accuracy. Since test
accuracy on the retain-set is one of the primary criteria for evaluating unlearning algorithms, it is
critical to examine whether the proposed defense introduces unfavorable trade-offs.

We focus this analysis on NGP, as Figure 2]indicates that teleportation applied to NGP yields the
most noticeable accuracy drop (roughly one percentage point), whereas for other methods accuracy
remains stable or even improves. To probe this trade-off more carefully, we follow the hyperparameter
tuning procedure described in Section[dand select the top 20 trials with the highest validation score.
From this pool we examine: (i) the single best-performing trial reported in Figure 2] (ii) the two trials
with the highest validation accuracy, and (iii) the two trials with the lowest validation attack AUC.

Figure[7]plots test accuracy against privacy (1—AUC of black-box MIA, higher is better) for NGP and
NGP+WARP across the selected hyperparameter trials. The overall trade-off is clear: higher accuracy
typically coincides with lower privacy. Yet teleportation consistently shifts the Pareto frontier upward,
delivering strictly better privacy at nearly every accuracy level. While NGP saturates around privacy
~ 0.455, teleportation extends this frontier up to 0.484, breaking through the baseline ceiling. At
the highest-accuracy setting, teleportation still provides a ~18% reduction in attack advantage over
random, demonstrating that even at stringent accuracy targets the defense yields nontrivial privacy
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Privacy-Utility Frontier for NGP vs. NGP+TP
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Figure 7: Privacy—utility trade-off for NGP with and without WARP. Each point is a hyperparam-
eter trial, with privacy (1-AUC) averaged over 640 shadow models (64 shadows x 10 forget sets)
under the U-LiRA protocol. Points further to the right (higher accuracy) and upward (higher privacy)
indicate better trade-offs.
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Figure 8: Runtime overhead of teleportation. Average runtimes (seconds) of unlearning algorithms
with and without the WARP plugin, evaluated on CIFAR-10 with ResNet-18. Each bar reports the
mean over five runs, with error bars showing standard deviations.

gains. Across the frontier, improvements remain stable, confirming that teleportation meaningfully
reshapes the privacy—utility boundary in favor of the defender.

J  RUNTIME ANALYSIS

In this appendix we focus on the retain—null-space instantiation of i, which is the only variant that
requires explicit SVDs; the change-of-basis teleportation in Appendix [D]is SVD-free and without its
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computational overhead as a result. Moreover, Section E] introduces FastWARP, which replaces full
SVD with randomized low-rank approximations and further reduces this overhead.

We benchmark the runtime of our teleportation defense across unlearning algorithms on a machine
equipped with an NVIDIA GeForce RTX 4090 GPU (24 GB memory) and an Intel 13th Gen Core
19-13900KF CPU (24 cores, 32 threads, base 3.0 GHz, boost up to 5.8 GHz). Each experiment
was repeated five times, and Figure [§]reports averages with standard deviations in the caption. All
algorithms were run with the hyperparameters used in Table [T)and Figure 3] ensuring runtime reflects
the same conditions as our privacy—utility evaluations.

For this particular SVD-based instantiation, teleportation increases runtime by approximately +27%
relative to the baseline on average, reflecting the overhead of constructing the retain subspace. The
main exception is NGP, where teleportation reduces runtime by about —32%, due to more stable
updates that in turn lower the required number of unlearning epochs. Since subspace computation can
be pre-computed offline and does not need to be repeated after every teleportation step, this overhead
can be amortized in practice. While updating the retain subspace less frequently can reduce cost, the
primary computational overhead from full SVD is addressed directly by an approximate low-rank
implementation (Appendix[LJ), which removes the per-step bottleneck entirely.

K TELEPORTATION-BASED UNLEARNING ALGORITHM

In Algorithm E], T4 denotes an abstract symmetry operator; in our experiments we instantiate it
either with retain—null-space teleportation or with change-of-basis teleportation, but any other loss-
preserving symmetry could be used in its place.

Algorithm 3 WARP (retain—null-space instantiation): teleportation-augmented gradient-based un-
learning.

Reqlﬂre: eorg’ Df9 Dra Ef’ Krs >\7 ﬁa {nt}7 ntel’ k’ S or Tgrad, 0-2a 59 T

1: Oy < 0°'8
2: fort=20,...,7T—1do

3: sample By C Dy, B, C D,
4 Oy < 0= (Vole(0: | Br) + AVole(0: | Br))
5: if (t mod S = 0) vV HVQ&(@H_% ‘ Bf)”z > Tgrad then
6: for layer ¢ do
7: build Ry (B,); Re=U;%,V," (SVD)
8: By + Ug,lzk; Hé‘ «— I - BzBér
9: end for
10: Lia(0) = 330 s, Vol (F(:0), )13 — 5110 — 0°]3
11: for layer ¢ do
12: WAL« W,/ T2 — g T (Vi Loa (6, +1)) F V2002 €0y
13: eor ~N(0,1)
14: end for
15: 0t+1 — {Wgt+1}z
16: if 0.(0i41 | By) > £:(60; | By) + € then
17: Opp1 < 0y 1 > backtrack/safeguard
18: end if
19: else
20: Ori1 QH_%
21: end if
22: end for

23: return 0% < O
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L APPROXIMATE NULL-SPACE TELEPORTATION

Low-rank structure of retain representations. For a retain minibatch 5, and layer ¢, let
Ry(D,) € RIB:Ixde denote the matrix whose rows collect the layer-¢ inputs {¢¢(z)}sep,. Em-
pirically, Ry(D,) exhibits strong spectral decay: its spectrum is dominated by a small number of
singular values, and most of the energy lies in a low-dimensional subspace. Such low-rank structure
of activations, gradients and Hessians has been observed repeatedly in modern deep networks (Arora
et al.,[2019; \Ghorbani et al., [2019; [Fort et al., 2020; |Gur-Ar1 et al., [2018)), and is often attributed to
overparameterisation and the implicit regularisation of SGD. In WARP, the retain subspace at layer £
is defined by the top-k left singular vectors of Ry(D;):

Ro(D,) =U%eV,",  By=Usrk, 1f =1-B/B,.

Since only the span of these dominant directions matters for teleportation, exact SVD is not required:
any procedure that recovers a good approximation to the top-% principal subspace suffices.

Covariance-based PCA and subspace iteration. Instead of computing a full thin SVD of Ry(D;),
FASTWARP estimates By via a covariance eigen-decomposition and a small number of subspace-
iteration updates, following classical PCA and online PCA methods (Golub & Van Loan| [2013]; Ojal
1982; 'Warmuth & Kuzmin, 2008} [Mitliagkas et al.,[2013]). We first form the covariance

Cp = XX, e Rexde,

where X, € R%*¥ s a layer-wise input matrix constructed from 3, (for convolutional layers we
use unfolded patches; for batch-norm we aggregate per-channel features). We then compute the
eigen-decomposition Cy = Q,A,Q, and retain the smallest k such that the cumulative explained
variance exceeds a threshold 7:
o . . > max(Xg,;,0) o
k = mln{j : mZT}, By = Q,1:k,

optionally capped by a user-specified ky,.x. For subsequent teleportation steps, we update By using a
few iterations of subspace iteration (Golub & Van Loan, 2013} |Halko et al.,[2011;/[Musco & Muscol
2015; Tropp et al., 2017 [Woodruft, [2014])):

Y + CiBy, [Be, | + ar(Y),
which amounts to an Oja-style streaming PCA update (Oja, |1982) with QR re-orthogonalisation.
This reduces the cost of updating B, for a new minibatch from the O(|B;|d?) cost of a fresh thin

SVD to O(|B;|d¢k) for the covariance application plus O(d,k?) for QR, with k < d,. The resulting
projector HZL =1- BgB; is then used exactly as in the original WARP update.

Algorithm 4 FASTWARP basis update at layer £

Require: dy, retain minibatch B,, B;"" (or NONE), 7 € (0, 1], kmax, Ttrack
: build X, € R“*N from B,

1

2: Og(—X@XJ; Cg%%(Cz—FC;)

3: if B)"®Y = NONE then

4: Co = QeM\eQ/

5: sort Ay in descending order, permute (), accordingly

k

6 kemin{kmax, min{k: Zzzll% ZT}}
7: Bg(—Qg[:,l:k‘]

8: else

9: By + B
10: fort =1,...,Tirack do
11: Y < CyBy
12: [Be, ] « qr(Y)
13: By (—Bg[:,l:k]
14: end for
15: end if

16: Hé‘ — 1, — BZB;
17: return By, I}
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Figure 10: Privacy—utility comparison of
NG+WARP and NG+FASTWARP. The ap-
proximate teleportation method (FASTWARP)
matches the privacy—utility frontier of the exact
variant, achieving nearly identical privacy and

test accuracy.

Runtime and privacy—utility impact. Figure [9] reports the runtime for NG and BT with and
without teleportation on CIFAR-10/ResNet-18. The hatched segments correspond to the teleportation
component. Using full SVD yields a moderate yet visible overhead (e.g., BT+WARP increases
runtime from 30 s to 55 s). Replacing full SVD with the covariance-based PCA and subspace iteration
of Algorithm 4] (FASTWARP) shrinks this overhead substantially: total runtime drops to 29s and 35 s
for NG+FastWARP and BT+FastWARP, corresponding to a 2x—3 x reduction in the teleportation
time. The teleportation component becomes only a small fraction of the overall MU cost.

To measure the effect of this approximation on privacy and accuracy, Figure[I0]compares NG+WARP
and NG+FASTWARP along the privacy—utility frontier. The two curves are nearly indistinguishable:
privacy (1 — AUC) differs by at most 0.3-0.6% across operating points, and test accuracy changes
by at most 0.2-0.3 percentage points. We also track retain-set loss during teleportation and observe
that the relative drift under FASTWARP remains below 2%, indicating that the approximate projector
continues to enforce practical loss invariance. In some configurations, the additional numerical noise
introduced by the approximation yields slightly higher privacy for the same utility. Overall, these
results show that the privacy gains of WARP are robust to approximate PCA, and that FASTWARP
preserves the empirical privacy—utility trade-off while significantly reducing computational overhead.

Scalability to LLMs and calibration of the retain subspace. A natural concern is whether null-
space teleportation remains practical and stable at LLM scale, where layer widths reach dy, ~ 103-10*
and a single minibatch may not span the retain subspace. Empirically, recent compression work
shows that truncated SVD and related low-rank factorizations are already applied efficiently to
full LLM weight matrices with comparable or larger dimensions: SVD-LLM Wang et al.| (2024;
2025b) optimizes singular-value truncation for LLaMA [Touvron et al. (2023)- and GPT |Brown et al.
(2020)-class models while preserving perplexity and throughput, demonstrating that rank-k SVD with
k < dy is tractable in practice on modern hardware. Complementary methods such as ResSVD Bai
et al.[ (2025)) leverage the residual matrix left by truncation to correct the approximation, further
reducing the effective loss of expressivity at fixed rank. Orthogonal lines of work, e.g., weighted
low-rank factorization for LMs, explicitly introduce data-dependent weights in the covariance (or
Gram) operator to bias the recovered subspace toward high-importance tokens or examples, and
report competitive compression ratios on transformer-based LMs |[Hsu et al.| (2022); Sakr & Khailany
(2024)). In our setting, we can adopt the same design principles: instead of forming Ry (B;) from
an arbitrary minibatch, we maintain a small buffer of retain batches with large gradient norm |Sakr|
& Khailany| (2024) or Fisher information, and construct the activation matrix X ¢ from this “high-
influence” pool. This yields a weighted or importance-sampled covariance Cy = X, X ZT whose top-k
eigenspace more faithfully captures the retain subspace seen over the full retain stream, while keeping
the per-teleportation cost at O(|B,|d¢k). Combined with low-rank SVD implementations that are
already optimized for LLM compression, these heuristics make the FastWARP projector construction
compatible with large transformer architectures without breaking the retain loss invariance enforced
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by WARP. We leave the adaptation to large language models for future research. Our contributions
target symmetry-based defenses for generic neural networks and established MU baselines, and do
not address LLM-specific challenges in unlearning, which constitute a distinct line of investigation.

M COMPARISON WITH DP-LANGEVIN NOISE DEFENCES

While our goal is to make neural networks more resilient to privacy attacks post hoc, a natural
question is how WARP compares with defences based on differential privacy (DP). DP is the strongest
known framework for providing indistinguishability guarantees between neighbouring datasets, and
a small number of recent unlearning methods have attempted to translate these guarantees into
certified machine unlearning. Among these, noisy-gradient (Langevin) approaches provide the closest
analogue to our setting; we therefore include them as a comparison point.

Certified unlearning methods such as|Guo et al.| (2020); |Chien et al.|(2024b)) formalise unlearning
as an indistinguishability requirement between (i) a model obtained by training on the full dataset,
and (ii) a counterfactual model that has never seen the forget set. These works build on the principle
that if the training algorithm is itself DP, then suitable post-processing can yield certified removal of
training points. Such guarantees make DP-Langevin the strongest known general-purpose defence
with explicit indistinguishability guarantees, hence a meaningful baseline to evaluate privacy—utility
trade-offs.

What the DP guarantees actually require. The formal guarantees in |Guo et al.| (2020); |Chien
et al.| (2024b)) rely on assumptions that do not hold in the deep, non-convex MU regime we consider:

1. Convexity and strong dissipativity. Both works require (strongly) convex, ¢s—regularised
objectives to bound the stationary distribution of the noisy dynamics. Deep convolutional
networks trained with cross-entropy fundamentally violate these assumptions.

2. DP-trained initial model required. The certified-unlearning guarantee requires that the original
model be obtained using the same noisy-gradient mechanism (noisy SGD or Langevin) applied
throughout training on the full dataset. This is explicitly stated as a necessary condition in|Chien
et al.[(2024b). In contrast, our setting begins from a standard ERM-trained model, which is
non-DP and therefore outside the scope of their certification theorem.

As a result, the “c” obtained from the RDP accountant in our experiments should be interpreted
purely as a calibrated noise level, not as a valid DP guarantee. Our use of Langevin noise is therefore
a strong noise-based defence, not a certified mechanism.

Adapting projected Langevin unlearning to MU. Following Chien et al.|(2024b), we implement
projected Langevin dynamics on top of the same MU objective used throughout the paper. For a
per-sample clipped gradient with radius C' and loss

Lo (0) = o (£:(0) + A0 = 6,]13) — (1 — @) £¢(0),
the DP-Langevin update is

gt = clip(Vg Ly (6y), C), 2
Ori1 = 0p — mge + /20 N &, &~ N0, D), -

where ) is the regularisation parameter entering the RDP privacy analysis. Given a target privacy
level €, we follow the exact Rényi-DP accounting of |Chien et al.| (2024b) to compute the Gaussian
noise standard deviation o required by their Langevin update. In our implementation, three quantities
act as tunable hyperparameters: the learning rate 7, the per-sample gradient-clipping radius C, and
the regularisation coefficient A that appears in the RDP analysis. For any chosen (), C, A) and target
¢, the formulas of (Chien et al.|(2024b) uniquely determine the corresponding noise scale o. To ensure
fairness across baselines, we run the same number of hyperparameter-search trials as for the MU
baselines, jointly sweeping (1, C, \) to obtain the set of reported results in Table

Interpretation under non-convexity. Although the privacy accountant yields a numerical €, none
of the formal conditions needed for DP-certified unlearning hold for our deep ResNet models.
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Table 5: NGP+WARP vs. Langevin noise (U-LiRA, black-box). Reported are risks on all for-
get samples and on the most—-memorized subset (top 5%), plus test accuracy. U-LiRA AUC and
TPR@0.1% (FPR) are shown for each setting.

All samples (BB)  Most-memorized (top 5%)  Acc.

Method AUC TPR@0.1 AUC TPR@0.1 Test
Langevin (¢ = 1) 0.523 0.004 0.671 0.029 0.682
Langevin (¢ = 4) 0.571 0.006 0.766 0.048 0.718
Langevin (¢ = 8) 0.627 0.020 0.912 0.166 0.771
Langevin (¢ = 16)  0.650 0.027 0.935 0.224 0.798
NGP + WARP 0.516 0.003 0.598 0.015 0.797

Consequently, we reiterate that the resulting values should not be interpreted as DP guarantees but
rather as a systematic way of calibrating the magnitude of injected noise. The comparison therefore
isolates the empirical effect of noise injection on forgetting, retention, and attack success.

Empirical privacy—utility trade-off. Table[5|reveals a clear tension between nominal DP guar-
antees and empirical membership privacy. As the target privacy budget for Langevin is relaxed
from € = 1 to € = 16, test accuracy gradually recovers (from 0.682 up to 0.798), but U-LiRA risk
monotonically increases: the all-sample AUC rises from 0.523 to 0.650, and the AUC on the top-5%
most memorised points grows from 0.671 to 0.935, with TPR@0.1% FPR increasing from 0.029
to 0.224. In contrast, NGP+WARP simultaneously achieves competitive utility and strictly lower
attack success: on all forget samples it attains the best AUC and TPR@0.1% (0.516 and 0.003), and
on the most—memorised subset it reduces AUC to 0.598 and TPR@0.1% to 0.015, outperforming
every Langevin configuration by a wide margin. Notably, relative to the lowest-noise setting (¢ = 16),
NGP+WARP matches accuracy (0.797 vs. 0.798) while cutting the memorised AUC from 0.935 to
0.598 and TPR@0.1% from 0.224 to 0.015. For stronger nominal privacy (¢ = 1 or 4), Langevin
noise severely degrades accuracy (down to 0.682) yet still leaves substantially higher attack AUC
and TPR than WARP. Overall, these results suggest that isotropic DP noise is poorly aligned with
the specific memorization patterns exploited by U-LiRA: it injects substantial randomness into all
updates, harming utility without reliably protecting the most vulnerable examples, whereas WARP
reshapes the parameter space in a targeted way that yields a markedly better empirical privacy—utility
frontier.

Taken together, these observations clarify the roles of the two approaches. Langevin noise offers a
principled mechanism for certified unlearning in the restricted setting of convex, DP-trained models,
but its guarantees do not extend to the non-convex MU regime nor to pretrained models obtained
without DP noise. Consequently, applying Langevin updates post hoc to deep networks provides
no formal protection and yields an unfavourable privacy—utility trade-off in practice. By contrast,
WARP operates directly on arbitrary pretrained models, targets the directions most responsible for
memorization, and empirically achieves substantially stronger resistance to membership inference at
comparable accuracy. A compelling direction for future work is to investigate whether the geometric
structure exploited by WARP can be combined with, or serve as a foundation for, certified unlearning
mechanisms that simultaneously handle non-convex objectives and non-DP initialisation—a capability
not supported by current DP-Langevin frameworks.

N ADAPTIVE RECONSTRUCTION WITH SYMMETRY-AWARE ATTACKER

Teleportation acts by composing the unlearning update with a symmetry transform that preserves
predictions but redistributes parameter mass along loss—invariant directions (Section [3.2)). This raises
a natural question: can a stronger white-box adversary, aware of the teleportation family, invert or
compensate for these symmetry moves and recover the residual forget gradient? More concretely, if
the attacker can parameterise and optimize over the change-of-basis (COB) scales 7 used in neural
teleportation (Armenta et al., |2023)), does this restore reconstruction quality and defeat WARP?
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It is worth noting that our privacy evaluation already includes two adaptive—attack families: U-LiRA
and GLiR, both of which instantiate adaptive membership-inference attacks by optimising proxy mod-
els or surrogate loss landscapes. However, the reconstruction attack considered in Section[3.T}—which
directly targets instance-level recovery of the forgotten data—was not adaptive: the attacker opti-
mized only over the dummy image while keeping the teleportation parameters fixed. To fully test the
robustness of symmetry-based teleportation, we now consider a strictly stronger attacker that jointly
optimizes both the dummy image and the teleportation parameters themselves.

Concretely, we study whether an attacker who can parameterise and optimize over the change-of-basis
(COB) symmetry scales 7 used in neural teleportation (Armenta et al.l 2023)) can undo the defender’s
symmetry moves, thereby restoring the clean gradient geometry required for successful reconstruction.
This experiment directly probes whether teleportation is merely hiding the forget gradient behind
a reversible reparameterisation, or whether it fundamentally reshapes the inverse problem faced by
reconstruction attacks.

Attack formulation. In the adaptive setting, we give the attacker full knowledge of the teleportation
family and let them shadow the defender’s operations. Specifically, starting from the original
pretrained weights 6, the attacker first applies a change-of-basis symmetry parametrised by COB
scales 7 = {7, > 0}, obtaining

057) = T (Oorg), (14)

org

where T is the COB teleportation map (Appendix D). They then perform a single gradient step in
parameter space using a dummy image-label pair (z,y):

0 (z,y) = 0570 + e Vol (f(2:057)),y), (15)

with attack step size 7,4+ > 0. The attacker’s goal is to choose (x, 7) so that the shadowed update
in equation [15|closely matches the actual unlearned parameters 6,, produced by WARP. Formally, we
solve

&y, 7 € argmin [D(Q(T) (z,y),0u) + Arv TV (2) + A~ Q(T):| , (16)
where D(-,-) is a parameter-space discrepancy (we use {5 distance over all weights), TV (z) is the
total-variation regulariser on the image, and Q(7) implements a Gaussian prior 7, ~ N (1,02, ) on
each COB scale. We optimize equation [I6]by alternating gradient steps on « and 7, with 7 clipped to
a bounded interval around 1 to avoid degenerate scalings.

Experimental setup. For a fair comparison, we reuse exactly the reconstruction protocol of
Section [4.4] (same model, dataset, forgotten examples, optimizer, and image priors), and only extend
the attack to optimize over the COB parameters 7 via equation [I6] We vary the COB prior variance
Ocob that defines (7), treating each 7, as a scalar random variable centred at 1 with variance o
We sweep ocob € 0,0.1,0.2,0.4, 0.8, where oo, = 0 recovers the non-adaptive attack with fixed
7 = 1, and larger values correspond to stronger dispersion along the symmetry orbit induced by
WARP. Following the evaluation protocol of Table[2] we quantify reconstruction quality using PSNR,
SSIM, LPIPS, and feature MSE, reporting averages over 30 randomly drawn forget examples.

Results and connection to theory. Figure(11|shows how reconstruction quality changes as we
increase the COB prior std o}, that controls the spread of admissible symmetry scales. When
0cob = 0 the symmetry prior collapses around 7, =~ 1, so the attacker effectively searches over a
narrow neighbourhood of the defender’s true teleportation and can partially recover the forgotten
signal: the adaptive attack achieves substantially lower feature MSE and LPIPS than the non—adaptive
WAREP attack (dashed line). However, the attacker never observes the ground-truth COB scales
used by the defender; as oo grows and the symmetry orbit broadens, the optimisation over (z, T)
quickly becomes unstable. Both metrics deteriorate almost monotonically with o.,: already at
moderate variance the gains over the non—adaptive attack largely disappear, and for the largest tested
0cob the adaptive reconstructions are statistically indistinguishable from (or slightly worse than) the
non—adaptive baseline. Importantly, the COB standard deviation is a defender-controlled knob: in
this symmetry family we can raise o1, up to 1.0 without changing the realised network function,
and in our main reconstruction experiments in Table@]we set o¢op = 0.8, already placing the attacker
in a high-variance regime where adaptive reconstruction is strongly impaired.
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Figure 11: Adaptive reconstruction under change-of-basis teleportation (NGP, ImageNet-1K).
(A) Feature MSE and (B) LPIPS (VGG) as a function of the COB standard deviation o.p,. Increasing
the symmetry variance consistently worsens reconstruction quality across both metrics.

This trend is consistent with our theoretical analysis in Appendix (O] which shows that the expected
reconstruction error increases with the variance of the COB scales. Larger o}, expands the symmetry
orbit of 0., and 6, so the update Af admits many symmetry—equivalent decompositions whose
gradients are nearly orthogonal to the true forget gradient g . The optimisation problem in equation@]
thus becomes a highly ill-posed inverse problem over the joint space (x, 7), where many different
configurations of (z,7) produce similar matches in parameter space. Empirically, the adaptive
optimiser drifts toward such low—signal-to-noise solutions that satisfy the symmetry constraints
but no longer encode the specific forgotten example, explaining the systematic degradation in
reconstruction quality as symmetry variance (or std) increases.

Takeaway. Even under a strong white-box threat model—where the attacker knows the teleportation
family and jointly adapts both the dummy input and the symmetry parameter—teleportation continues
to disrupt reconstruction effectively. The injected symmetry components become entangled with
the forget-induced update A#, enlarging the attacker’s search space and destroying the geometric
alignment between parameter differences and the underlying forgotten example. Thus, teleportation
does not merely reparameterise the model in a way that can be inverted; instead, by injecting
symmetry variance into the update, it structurally increases reconstruction error and removes the clean
gradient-based signal that standard reconstruction attacks depend on. This provides empirical and
theoretical evidence that symmetry-based teleportation fundamentally hardens the inverse problem
faced by adaptive adversaries.

O TELEPORTATION-AWARE INFORMATION-THEORETIC BOUNDS ON
GRADIENT-BASED RECONSTRUCTION

0.1 OVERVIEW OF THE THEORETICAL ANALYSIS

This appendix develops an information-theoretic lower bound on the minimal reconstruction mean-
squared error (MSE) achievable by a gradient-based inversion adversary within a shared probabilistic
model for gradients. We first adapt standard entropy—MSE relationships to the case where the
attacker observes gradients rather than intermediate features, closely following the spirit of the
analysis in Xia et al. [Xia et al.| (2025)). We then introduce a Gaussian-mixture model (GMM) for
gradient features and derive a parametric lower bound on the conditional entropy H (z | g), analogous
to the intermediate-feature analysis in Xia et al.| (2025)) but specialized to gradients. Finally, we
incorporate teleportation (change-of-basis) noise as private randomness in the training dynamics
and analyze its impact on the same lower-bound pipeline, under an explicit diagonal approximation
and an energy-preserving design assumption on the change-of-basis distribution. Throughout, we
keep the modelling assumptions identical between the teleported and non-teleported channels, so
any improvement we prove directly reflects a genuine tightening of the analytic lower bound on
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reconstruction error—and hence a provable gain in information-theoretic privacy within this common
generative framework. We emphasize that H (z) is fixed by the dataset distribution, so only relative
differences between the channels are meaningful.

0.2 SETUP AND THREAT MODEL

Data and model. Let 2 € R? denote the d-dimensional input random variable, distributed according
to some unknown data distribution on a measurable subset X C R¢. We assume throughout that
admits a density w.r.t. Lebesgue measure and has finite second moment. (If one wishes to model
discrete or manifold-supported data, the analysis can be recovered by adding an arbitrarily small
Gaussian perturbation to x as is standard in differential-entropy arguments; we implicitly assume
such smoothing has been applied so that conditional covariances below are positive definite.)

Consider a deep network with parameters W € R™*< and first-layer pre-activations
z=Wax eR™,

and a subsequent decoder F;. Let £(-, y) be a loss for a label y, and define the gradient with respect
to z:
9. = Vze(Fd(Z)7 y) e R™.

In the analysis below, the attacker’s observation will be a gradient-based signal g (not necessarily
equal to g, directly) that is deterministically related to (z,y, W) plus noise. In a white-box setting,
for instance, the adversary can observe weight differences across steps, which are affine functions
of the underlying gradient features; since mutual information and our entropy-based bounds are
invariant under fixed invertible affine reparametrizations, it is without loss of generality to work with
a canonical gradient feature g.

Adpversarial objective. An inversion adversary aims to reconstruct x from the observable g. Given
an estimator Z(g), we measure reconstruction quality by the mean-squared error (MSE)

&(2) = éE[Ilm — (g)lI3]- (17)

The minimal MSE &g is the infimum of equation over all measurable estimators 2 (-). We interpret
“information-theoretic robustness” as the regime where the attacker is Bayes-optimal under the
assumed generative model, i.e. has access to the true posterior P(x | ¢g) induced by that model and
implements the Minimum Mean Square Error (MMSE) estimator.

Assumption 1 (Basic regularity). We assume:

(i) z has a density on R? and finite second moment;
(ii) for the observation g, the conditional distribution P(x | ¢g) admits a density with finite
second moment, and its covariance matrix Cov(x | g) is positive definite almost surely;
(iii) all entropies, mutual informations and expectations used below are finite.

These conditions are standard in information-theoretic MMSE analysis (see, e.g., Xia et al.[(2025))
and ensure that all quantities are well-defined and that the maximum-entropy characterization for
Gaussians can be applied without degeneracy.

0.3 MINIMAL MSE FROM GRADIENTS AND AN ENTROPY-BASED LOWER BOUND

Bayes-optimal reconstruction from gradients We first recall the standard MMSE characterization.

Proposition 1 (Minimal reconstruction MSE from gradients). Let x € R? and an observation g

satisfy Consider estimators &(g) of © based on g and define £4(&) as in equation[I7]
Then:

(i) The estimator that minimizes ,(%) is the conditional mean i*(g) = E[z | g].
(ii) The corresponding minimal MSE is

) . 1
& = lril;ffg(l') = 8E9 [Tr(Cov(a: | g))], (18)
where Cov(z | g) denotes the conditional covariance of x given g and E, is expectation

W.EL. g.
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Proof. For any fixed g, the conditional risk E[||z — #(g)||3 | g] is uniquely minimized by #*(g) =
E[z | g] (standard MMSE theory, cf. Xia et al.|(2025))). The minimal conditional risk at g is

Efllz - Elz | g]l3 | 9] = Tr(Cov(z | g)),

since for any random vector X with mean y and covariance ¥ one has E|| X — p||3 = Tr(X). Taking
expectation over g and dividing by d yields equation

Thus, when we refer to the “minimal MSE achievable by an attacker” for a given observation model,
we mean &, as given in equation corresponding to a Bayes-optimal adversary within that model.

An entropy-based lower bound on the minimal MSE We now relate the minimal MSE ¢, to
the conditional entropy H (z | g), generalizing standard entropy~-MMSE inequalities (cf.|Xia et al.
(2025)).

Theorem 1 (Entropy-based lower bound on gradient reconstruction). Under [Assumption 1| let
H(x | g) be the conditional differential entropy of x given the observation g. Then the minimal

reconstruction MSE &, in equation[I8|satisfies

1 2
& = 5—oxp(SH(|g)). (19)

Proof. Fix g and define X(g) := Cov(z | g). Under[Assumption 1| ¥(g) is symmetric and positive
definite almost surely. For each such g, the conditional distribution of  given g has entropy bounded

above by that of a Gaussian with the same covariance:

Hiz|g=g) < log((2re)’ det(2(9))),

with equality iff z | g is Gaussian. This is the usual maximum entropy property of Gaussians. Taking
expectation over g gives

H(w|g) = By[H(x|g=9)] < E,[}log((2re)’ det(X(g)))]. 20)
Let A1(g), ..., Aa(g) be the eigenvalues of 3(g) (all positive). Then

d d
det(3(9)) = [T Ail9), T(Z(9) =D Ai(9)-
=1 j=1

By the Arithmetic Mean-Geometric Mean (AM-GM) inequality,

jﬁlAg‘(g) < @i)\j(g))d_ (@){
SO

TH2(0))

logdet(X(g)) < dlog( 7

Substituting into equation [20]

H(z|g) < E, [% 10g((2ﬂ'e)d det(E(g)))] < E, [g log (27‘(’8%)} .
Since log(+) is concave, Jensen’s inequality yields
E, [log (2we¥(g)))} < log (QWGW) .
Therefore
H(z|g) < glog<2ﬂeW). (21)

By [Proposition 1] E,[Tr(X(g))] = d &g, so equation 21|becomes

d
H(z|g) < §log(27re§g).

Rearranging,
2 2
log(2me&,) > gH(x | 9), 2mey > exp<gH(x | g))7
which yields equation O

30



Under review as a conference paper at ICLR 2026

Note that H (z)—and hence the absolute scale of these lower bounds—is fully determined by the
underlying dataset distribution and does not depend on teleportation. In our comparisons between
teleported and non-teleported channels, H (x) cancels and only differences or ratios matter.

0.4 A PARAMETRIC LOWER BOUND ON H (z|g) VIA GAUSSIAN MIXTURES

We now introduce a specific probabilistic model for the gradient signal and derive a tractable
parametric lower bound on H(z | g). The modelling choices mirror those used for intermediate
features in [Xia et al.| (2025)), but here are applied to gradients.

0.4.1 GRADIENT FEATURE AND OBSERVATION MODEL

Clean gradient feature. Let G : R? — R™ be a deterministic mapping producing a clean gradient
feature from input x. Specifically, let u = G(x) € R™ denote a feature derived deterministically
from (x,y, W) (e.g., the gradient with respect to first-layer pre-activations, or a flattened stack of
first-layer weight gradients). Thus w is a deterministic function of = once the model and label are
fixed.

Assumption 2 (Gaussian Mixture Model (GMM) for u). We assume that the marginal distribution of
u can be well approximated by a Gaussian mixture

K K
un Y m N ), Y m=1 m>0, -0 (22)
i=1 i=1

This GMM assumption is standard in information-theoretic analyses of representations |Xia et al.

(2025) and serves as our common surrogate model for gradient features.

Noisy gradient observation. We model the attacker’s baseline observation as a noisy version of w:
go=u+e, e~N(0,%,), el (z,u), (23)

where Y, > 0 is a fixed positive-definite covariance matrix. This captures gradient perturbations due
to stochastic training, subsampling, or other noise sources; ¥, is assumed known to the attacker, as
in|Xia et al. (2025)). We use this Gaussian channel as the standard abstraction of gradient perturbations
for the subsequent information-theoretic analysis.

0.4.2 A MUTUAL-INFORMATION IDENTITY FOR DETERMINISTIC FEATURES

We will repeatedly use the following simple lemma for deterministic features.

Lemma 1 (Mutual information for deterministic feature maps). Let u = G(z) be a deterministic
Sfunction of x, and let g be a random variable such that p(g | x,u) = p(g | u) (i.e., g depends on
(x,u) only through ). Then

I(z;9) = I(u; g).

Where I(x; g) denotes the mutual information betwen x and g.

Proof. Since w is a deterministic function of x, we have H(u | ) = 0 and H(z,u) = H(x).
Moreover, p(g | ©) = p(g | u) by the conditional-independence assumption, so

H(g|z)=E,H(g|lz=2)=E,H(g|u=G(z)) = H(g|u).

Therefore
I(z;9) = H(g) — H(g | 2) = H(g9) — H(g | u) = I(u; g). O

We will apply this lemma to both the baseline channel gy and the teleported channel g below.
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0.4.3 PARAMETRIC GMM-BASED LOWER BOUND ON H(z | go)

We now adapt the mixture-entropy bound used in Xia et al.[(2025) to gradients.

Theorem 2 (Parametric lower bound on H (z | go)). Under|Assumption I\and|Assumption 2|and the
channel equation the conditional entropy H (x| go) satisfies

K
H(xz|go) > H(m)—Zm( log m; + = log|2|;|2|>. (24)
g

i=1

2

Proof. Because u = G(x) is deterministic given x, and gy depends on (x,u) only through u
via equation we have go L « | u and the conditions of hold. Thus

I(x;90) = I(u; go),
and
H(z | go) = H(x) — I(x;90) = H(z) — I(u; go)-
We bound I(u; go) from above using the GMM model. We have
I(u; 90) = H(go) — H(go | u).
From equation23] go | u ~ N (u, Z,), so

H(go | u) = 1log((2me)™|%,]).
Marginally, g is the convolution of the GMM u with the Gaussian ¢, hence

go ~ Zﬂ'i-j\/(ﬂiazi +Xg).

For any mixture density p(z) = >, m;p;(z) with components p;, the differential entropy satisfies the
standard upper bound

H(p) < H(m)+ ZWiH(pi)v

where H(m) = —3 . m;logm; is the discrete entropy of the mixture weights (this follows by
considering the joint entropy of the component index and the sample). Applying this with Gaussian
components p; = N (u;, X; + X4) yields
i 1
H(go) < Zﬂ'i (— log m; + 5 log((Qﬁe)mmi + EQD) ,
i=1
as in|Xia et al.| (2025)). Therefore

Mx

1
I(u; go) m | —logm; + 10g((27re)m|2 +3 |)> — ilog((Qﬂ'e)m\EgD

1=1

Mw

1 i=1

o
I

(-
m( log m; + 1og((27re)m|2 + %)) >+§:m <;log((27r€)m2g)>
(

Mw

i | —logm; + 10g((27re)m|2 + g]) — flog((27re)m|2 |))
1

.
Il

I
.MN

o (—logm 1 [Zi + %]
7 g 7 |Zg| .

=1

where the (27e)™ terms cancel. Substituting into H (z | go) = H(z) — I(u; go) yields equation
0

Theorem 2| yields a parametric lower bound on H(z | go)—parametric in the GMM and noise
covariances. Via[Theorem I} this in turn induces a lower bound on the minimal reconstruction MSE
for an attacker observing gg. Our teleportation analysis will reuse exactly the same ingredients (GMM
approximation and mixture-entropy bound) so comparisons are on equal footing.
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0.5 TELEPORTATION / CHANGE-OF-BASIS NOISE ON GRADIENTS

We now incorporate teleportation (change-of-basis; CoB) symmetry as a source of private randomness
in the gradient dynamics and analyze its impact on the same lower-bound pipeline used for gg.

0O.5.1 TELEPORTATION AS PRIVATE MULTIPLICATIVE NOISE

Teleportation structure. For each layer ¢, let 7 denote the corresponding CoB vector (with all
entries nonzero). The teleported gradient at layer / is obtained by column-scaling with 71~ and
row-scaling with 1/7[“, i.e.

avll = 71 o qwld o (1/719),

@ _ _[e=1] [ [€]

where the left operation multiplies each column of dWW ¥l by the corresponding coordinate of 7¢~11,
and the right operation multiplies each row by the corresponding coordinate of 1/7!‘/. Consequently,
each gradient entry acquires a multiplicative factor equal to a ratio of CoB coordinates. As such, each
gradient entry picks up a multiplicative factor equal to a ratio of CoB entries. Flattening all gradient
parameters into a single vector, we write the clean gradient feature as u and its teleported version as

= R(1)u, (25)

where R(7) is a diagonal matrix with entries ;(7) = 7(;)/7,(;) corresponding to the appropriate
input/output channels (a(j),b(j)) of coordinate j. In practice, these ratios are constrained by the
underlying channel-wise 71 structure; our analysis below treats {r;(7)} as effective per-coordinate
scalings induced by that structure.

Threat model for teleportation. We adopt the following threat model.
Assumption 3 (Teleportation threat model).
(i) The CoB parameters 7 are sampled from a distribution P; that is independent of (z, u).
(ii) Teleportation is applied internally in the training update rule, so that the observable gradient
feature (e.g., weight differences across a step) is a function of @ rather than u. Algebraically,
this yields an observation of the form equation 26|below.

(iii) The adversary has white-box access to the model architecture and weights but does not
observe 1 directly. They know the distribution P;.

Under [Assumption 3] the teleported observation channel is
g=tu+e=R(r)u+e, e~N(0,%,), el (z,u,r7). (26)
This is the same additive-noise form as in equation [23] applied to a multiplicatively perturbed feature

R(7)u.

0.5.2 TELEPORTATION-AWARE ENTROPY LOWER BOUND

We now derive the teleportation-aware counterpart of| using the same GMM approximation
for u. Here the relevant mutual-information identity is again supplied by

Theorem 3 (Teleportation-aware lower bound on H (z | g)). Under|Assumption 1} |Assumption 2|

and the teleported channel equation the conditional entropy H(x | g) satisfies

K
1 R(NSR(M)T +%
H(z|g) > H(x)—Zm(—logm+2Eflog| ) Z|Z(T|) i “")7
g

=1

27)

where the expectation is taken w.rt. T ~ P..

Proof. As before, u = G(x) is deterministic given z, and g depends on (z, ) only through (u, T)
via equation In particular, we have the Markov chain

x—u—(9,7) =g,
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and g L z | (u, 7). Integrating over the independent 7 yields p(g | 2, u) = p(g | u), and hence the
conditions of hold, giving

I(z;9) = I(u;9), H(x|g)=H(z)—I(x;9) = H(x) - I(u;g).
We bound I (u; g) from above. By the chain rule and independence of  and 7,
I(u;g) = I(u; 9, 7) = I(w; 7 [ g) = I(us g | 7) = I(w; 7 [ g) < I(u;g | 7),
since I(u; 7 | g) > 0. Here I(u; g | 7) is conditional mutual information and can be written as
I(u;g | 7) =B [I(u;g | 7 =1t)].
For a fixed realization 7 = ¢, the channel is linear with Gaussian noise:
glT=t=R({t)u+e.

Conditionally on mixture component i, u | i ~ N (u;, 3;), so

g1 (i.m=1) ~ N(R()pi, ROTRHT +5,),
and g | 7 = t is a GMM with components indexed by 4. For this fixed ¢,

Iug|T=1t)=H(g|7=1t)—H(g|u,7T=1).
Since g | (u, 7 =t) ~ N(R(t)u, X,), we obtain

H(g|u,Tm=t)= %log((Qwe)mng.

Using the same mixture-entropy bound as before, applied to the GMM g | 7 = ¢, we have

K
H(g|T=t) < Zw (= logm; + Llog((2me)™ | R(E:R(t) T +3)) -

Therefore

Mx

I(ujg | T =1) S ; (— log m; + %10g((2ﬂ'e)m\R(t)ZiR(t)T + Eg|)) — %1og((2ﬂ'e)m\§]g|)

1

.
Il

[R®)ZiR(®) " + Eg>
%] '

.M

e <—log7ri + %log
1

?

Taking expectation over 7 yields

K
R(OSR()T + 3
Iujg|7)=EI(wsg | 7=1) < Zm(—logﬂﬂ-éETlog' (N)Z:R(r) " + g|>.
=1

%

Combining I(u; g) < I(u; g | 7) with H(z | g) = H(x) — I(u; g) gives equation 27} O

[Theorem 3|is the teleponatlon analogue of [Theorem 2] obtained via the same steps, with X, replaced
by R(7);R(7) " and an additional expectation over 7.

0.6 DIAGONAL APPROXIMATION AND THE ROLE OF THE COB DISTRIBUTION

To make the teleportation effect more interpretable at a per-coordinate level, we now adopt a diagonal
approximation. This is a modelling simplification, similar in spirit to Xia et al.| (2025), and all
comparisons between teleported and baseline channels will be made within this shared surrogate
approximation.
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0.6.1 DIAGONAL APPROXIMATION

Assumption 4 (Diagonal covariance approximation). We work in the canonical channel basis in which
teleportation is defined and posit that, in this basis,
¥; = diag(o? Tigsenes O'im), Xy = diag(y?,...,7%),

and the teleportation matrix has the form
R(r) = diag(r1(7), ..., 7m(7)).

That is, we adopt a surrogate model in which gradient covariance, observation noise and CoB
factors act coordinatewise in the natural channel basis, rather than attempting to diagonalize arbitrary
covariances and then reinterpret teleportation in that rotated frame. This is not claimed to be an exact
description of real networks, but a structured approximation for per-coordinate interpretation.

Under [ASsumption 9}
R(T)SiR(T)T + 5y = diag(7] + 71(7)%07 1, ..., 72 + 1m(7)%07,,),
and hence
m 2

. T 1]
R(T)EZJIQZ(TI) 5l II (1 T Ofi,ﬂ’j(T)z)» o = 7 (28)
g

j=1
Taking logs and expectation in equation[27] we obtain

R(T)Z;R(r +E
E710g| ( ) ‘E ‘ | Zw’b,]7

where we define the per-coordinate quantities
Yi; = E[log(1+ ai7jrj(7')2)]. (29)
Thus [Theorem 3] becomes, under (Assumption )

m

H(z|g) > H(x) =Y m | —logm + wa. (30)

(R

1=1

0.6.2 BASELINE (NON-TELEPORTED) DIAGONAL BOUND

For comparison, if no teleportation is applied, we have R(7) = I and r;j(7)? = 1. Under the same
diagonal surrogate,

‘EZ +E | m
Ty - e,
g j=1

and the GMM-based entropy lower bound equation 24| reduces to
1 m
b ._
H(z|go) > Hy = H(z)— Em» —logm; + 3 leog(l +aij) |- 3D
= Jj=

We explicitly introduce H{" to denote the analytic lower bound on H(z | go) obtained under the
GMM and diagonal surrogate.

Similarly, in the teleported diagonal setting equation [30] we define
1 m
b ._ N . 4z o
H(w|g) > Hye = H(x) = m bmﬁQEMJ. (32)
j=

Both H and HP

tole are computed from exactly the same modelling ingredients and diagonal surrogate.
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0.6.3 ENERGY-PRESERVING COB AND IMPROVEMENT OF THE BOUND

To isolate teleportation as a pure source of randomization (rather than a trivial global rescaling of
gradient energy), we consider energy-preserving CoB distributions at the level of the per-coordinate
effective ratios.

Assumption 5 (Energy-preserving CoB marginals). For each coordinate 7, the marginal distribution
of ;(7)? satisfies E, [r;(7)?] = 1.

This condition enforces that, on average, teleportation does not inflate or shrink per-coordinate
gradient energy; it only redistributes it stochastically. In practice, the defender controls the sampling
of 7 and hence the induced distribution of ratios {7;(7)}, subject to architectural constraints (shared
channels, etc.). We do not model those constraints explicitly here; we treat {r;(7)} as effective

per-coordinate scalings whose marginals can be chosen to satisfy |[Assumption

We do not assume independence of 7;(7) across j, only these marginals.
Define, for each (4, j),

At o= log(1+ ay ;) — b = log(1+ ;) — Er[log(1+ ai7jrj(7')2)]. (33)
Subtracting equation [31] from equation [32] yields an exact relation between the two analytic entropy
lower bounds under the diagonal surrogate.

Corollary 1 (Exact relation between diagonal entropy lower bounds). Under [Assumption 4} the
diagonal entropy lower bounds equation[31}-equation [32] satisfy

K m
1
Hyge = Hy' + 3 dmi ) Av, (34)
i=1  j=1

with Av; ; defined in equation @ If, in addition, holds, then each Av; ; is non-

negative, and hence
HP. > HP. (35)

tele

Proof. Equation equation[34]is obtained by direct subtraction of equation [31] from equation [32]and
using equation [33] For the sign of A ;, fix a > 0 and define ¢, (t) := log(1 + at), which is

concave on ¢ > 0. Under [Assumption 3|

wi,j = ET[¢ai,j (rj (T)2)] < ¢Uéi,j (ET[Tj(T)Q]) = (bai,j (1) = log(l + ai,j)7
so A ; > 0 for all (4, j), implying equation O
Remark 1 (Scope and strength of the entropy result). Within the shared modelling assumptions

(GMM, diagonal surrogate, energy-preserving CoB), shows that teleportation never
decreases the analytic entropy lower bound:

H(z|g) > Hy’,  H(x|g) > Hge > Hy

tele

We stress that we do not claim H(x | g) > H(x | go) for the true channels. Rather, we compare the

surrogate quantities H}® and Ht”gle arising under the same generative model; under this common lens,

teleportation strictly improves the analytic lower bound on uncertainty about z.

0.7 TELEPORTATION-AWARE RECONSTRUCTION LOWER BOUND

We now translate the entropy bounds into reconstruction MSE lower bounds using

0O.7.1 BASELINE AND TELEPORTED MSE LOWER BOUNDS

From equation [3T}-equation 32] and we obtain analytic lower bounds on the minimal
reconstruction MSE for the baseline and teleported channels:

1 2

€ = 5 eXp(dH(l)b>7 (36)
1 2

étele = Tm exp(dHtHeDle) : (37)
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By construction and monotonicity of the exponential,
o = € & 2 Lo (38)

where £,, and £, are the true minimal MSEs for the baseline and teleported channels, respectively.
Again, H (x) is common to both channels and cancels in all relative statements about & rele /€ o

0O.7.2 IMPROVEMENT FACTOR ON THE ANALYTIC MSE BOUND

Combining the definitions, the ratio between the teleported and baseline MSE lower bounds satisfies
étele 2 1b 1b 1 = -
e oxp( Stk — 1)) = e | 130w > A ) @)
20 i=1 J=1
with A); ; as in equation 33

Under the energy-preserving assumption (Assumption 5)), At); ; > 0, hence the exponential factor
in equation [39]is at least 1, and the analytic teleportation-aware MSE lower bound is never smaller

than the baseline one. In other words, teleportation provably raises the information-theoretic floor on
reconstruction accuracy as captured by this shared surrogate model. We do not assert any ordering
between the true minimal MSEs &4, and ;.

Remark 2 (Interpretation for privacy). Equation equation [39] provides a quantitative, distribution-
aware guarantee: under the shared assumptions (GMM, diagonal surrogate, energy-preserving CoB),
teleportation inflates the analytic lower bound on the attacker’s reconstruction MSE by a factor given
by the RHS of equation This factor depends on the CoB distribution only through At); ;, which in
turn are functions of the per-coordinate signal-to-noise ratios «; j and the marginals of 7;(7)?. Thus
teleportation is not merely a heuristic perturbation: for any attacker whose behaviour is dominated by
this generative model (in essentially the same sense as in Xia et al.|(2025))), there is a formal lower
bound on how accurately they can reconstruct z.

0.8 LOG-NORMAL COB FAMILY (EFFECTIVE MODEL)

We now specialize the general diagonal analysis to an effective log-normal model for the CoB-induced
per-coordinate scalings r;(7)?, to make the dependence on CoB variance explicit in the analytic MSE
lower bounds.

Log-normal marginal model. We model each per-coordinate scaling as

rj(7)? = exp(Y;),
where

1.2 .2
Yj~ N (=35, 57),
so that
E[r;j(7)}] = E[e¥] = exp(—%s? + %S?) =1.

This ensures the energy-preserving condition E[r;(7)?] = 1 (Assumption 5), while the parameter
s? > 0 controls the strength of teleportation-induced variability on coordinate j. Practically, the
defender can aim to implement such marginals by sampling 7 so that the induced ratios r;(7)?

are approximately log-normal; we do not model the exact mapping from channel-wise 7 to ratio
marginals. We emphasize that this is an effective parametric family for rjz, chosen for analytical

clarity; our rigorous inequalities rely only on[Assumption 5] while log-normality is used to express
the dependence on a small number of variance parameters.
Under this model, the per-coordinate quantities v; ; and A1); ; admit explicit expressions.

Corollary 2 (Log-normal teleportation and analytic MSE bound improvement). Under the log-normal
CoB marginal model above, for each mixture component i and coordinate j,

Vis(s)) = By 1 o [los(l+aize)], (40)

and

Aq/)m-(s?) = log(1+ a; ;) — ]E)QNN(—%S’%, ) [log(1 + a; ;e¥7)]. 41)
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Let § and f denote the analytic lower bounds on the minimal reconstruction MSE for the
non- teleported and teleported channels, respectively, as defined in equation[36}-equation[37} Then

§tele(52) 1 = - 2
53wy [log(1 + aig) = wis(sd)] | 42)
& i=1  j=1
where s*> = (s2,...,s2) collects the log-variance parameters across coordinates.

Proof. The identities equation equation are obtained by substituting r?— = €Y with

Y, ~ N (fasj, ?) into the definition equation 29| of 1); ; and the definition equation |33 of
At; ;. The ratio equatiothen follows immediately by plugging Aww-(s?) into equation
which relates the analytic lower bounds § tole And 3 , tothe At ;.

Remark 3 (Local small-variance expansion (heuristic)). To gain intuition about the dependence on
teleportation strength, it is useful to consider the regime s? < 1, where the log-normal marginals are

close to the degenerate case r? = 1. This section provides a local Taylor expansion for intuition; it is
not used in our rigorous inequalities, which already follow from

Fort; = r =¥ with Y} NN(—fs 53) we have

Elt;] =1, Var(t;) = ]E[t?] -1= exp(s?) -1
Thus Var(t;) = s5 + O(s}) as s7 — 0. Writing t; = 1+ d;, we have E[§;] = 0 and
Var(éj) = Var(tj).

Since log-normal marginals have finite moments of all orders, a second-order Taylor expansion of
¢a(t) == log(1 + at) around ¢ = 1 yields

a2

e
1+« 214 «)?

ba(1+06) =log(l +a) + 62 4+ Ro(6),

with | R (5)]

C4|6|? for some constant C,, depending on «. Taking expectations with E[§] = 0
and E[6?] r(t

<
Var(t;) gives
2

Elga(1+9)] =log(1 +0) = 57—

Var(t;) + O(E[8]]).
Applying this with o = cv; j and ¢; = 7, and recalling that ¢; ; = E[log(1 + a; ;77)], we obtain the
local approximation

a2

Al/Ji,j(S?) =log(1 + a; ;) — wi,j(s?) ~ m Var(t;),

with an error term controlled by E[|d;]?]. For the log-normal model, Var(t;) = exp(s3) — 1, so we
arrive at the heuristic expression
2 ai; 2 2
~ i,J
sz,g(%) ~ W (eXp(Sj) — 1), Sj < 1.

Substituting this into equation d2] yields the corresponding small-variance approximation for the
logarithm of the analytic MSE bound ratio:

g (82) 1 K m a2 .
log =tele” ~ ~ — mz ——L— (exp(s7) — 1), 57 < 1.

This approach highlight that, in the small-variance regime, the teleportation-induced improvement in
the analytic reconstruction MSE lower bound grows approximately linearly in s? (via exp(s?) —1),
with a slope governed by the per-coordinate signal-to-noise ratios «; ; and the mixture weights ;
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Figure 12: Sensitivity of teleportation hyperparameters. Plots (A,B) vary the target retain-variance
level used to set the per-layer rank ky; plots (C,D) vary the retain minibatch size |B,.| used to estimate
the retain subspace. Privacy is measured as 1 — AUC of U-LiRA (higher is better). Markers highlight
the configuration used in our main experiments (95.3% retain variance and | B,.| = 2048).

P ABLATION: SENSITIVITY OF TELEPORTATION HYPERPARAMETERS

Teleportation introduces a small set of additional hyperparameters that control how strongly we move
along symmetry directions. In this section we study the sensitivity of WARP to two core choices:
(i) the target retain-variance fraction used to choose the per-layer rank k in the SVD projector
(Section [3.2)), and (ii) the size of the retain minibatch B, used to estimate the retain subspace.
Both directly govern the geometry of the retain null space and the amount of stochasticity in the
teleportation step, and were explicitly highlighted as potential sources of instability.

Setup. We perform a controlled sweep on CIFAR-10 with ResNet-18 and NGP+WARP under the
U-LiRA black-box auditor (Section[4.2). For the SVD projector, we vary the target retain-variance
level from 95% to 99.9%, which induces different per-layer ranks k, such that the top singular
vectors of Ry(D,) capture the chosen fraction of retain energy. For the retain minibatch, we vary the
teleportation batch size | B,.| € {256, 512,1024, 2048, 4096} while keeping the forget minibatch and
unlearning hyperparameters fixed. For each configuration we run the full unlearning pipeline and
record test accuracy as well as privacy measured by (1 — AUC) of U-LiRA (higher is better).

Results and discussion. Figure [I2] shows that teleportation is remarkably insensitive to both
hyperparameters in the regime we consider.

Retain-variance target. Increasing the target retain-variance from 95% to 99.9% changes privacy
(1 — AUC) by less than 0.015 in absolute terms, while test accuracy varies in a narrow band of
~ 0.79-0.80. Privacy slightly improves as we move from 95% to around 99.3%, after which the
curve flattens: very high targets effectively make the retain projector full-rank, leaving less room for
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teleportation to move in symmetry directions and yielding diminishing returns. The configuration
used in the main experiments (target retain-variance ~ 99.3%) lies near this plateau, indicating that
our chosen rank provides a good privacy—utility compromise.

Retain minibatch size | B.|. Varying | B,.| over an order of magnitude has only a minor effect: privacy
(1 — AUC) shifts by at most ~ 0.01, and test accuracy remains within £0.2% points of 0.796. Even
relatively small batches (| B,.| = 256) already provide a sufficiently representative retain subspace for
teleportation, and larger batches only yield a slight, saturating gain in privacy. This suggests that the
random retain minibatch need not tightly approximate the full retain set to obtain a stable projector
and effective defense; in practice, a modest |B,.| balances computational cost with stable subspace
estimation.

Overall, these ablations show that WARP’s performance does not hinge on fragile hyperparameter
choices: both privacy and utility are stable across wide ranges of the SVD rank and retain minibatch
size. Moreover, the small spread in test accuracy (< 0.6% across all settings) empirically confirms
that teleportation remains approximately loss-preserving on the retain set, providing an implicit
bound on worst-case retain-loss drift in our experiments.
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