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Abstract 

Recently, supervised machine learning methods based on re-
mote sensing observations have achieved satisfactory results 
in crop yield prediction. However, supervised learning mod-
els tend to have poor transferability. Due to domain shifts be-
tween observations in different regions, models trained with 
data from one spatial region (i.e., source domain) often lose 
their validity when directly applied to another region (i.e., tar-
get domain). To address this issue, we proposed a Bayesian 
Multi-source Maximum Predictor Discrepancy (BMMPD) 
neural network which is an unsupervised domain adaptation 
(UDA) approach to improve the model’s transferability for 
corn yield prediction at the county level. We proposed to 
maximize the discrepancy between two yield predictors’ out-
puts to detect unlabeled target samples that are far from the 
support of the source domain. A feature extractor then 
learned to align source and target domains by minimizing the 
predictor discrepancy. Moreover, we applied Bayesian learn-
ing to prevent overfitting. A case study was conducted in the 
U.S. corn belt to evaluate the proposed BMMPD model. 
Time-series vegetation indices and weather observations 
were collected and aggregated to the county level and used as 
the input predictors. Experiment results demonstrated that the 
proposed BMMPD has effectively reduced domain shifts and 
outperformed several state-of-art domain adaptation meth-
ods. 

 Introduction   

Accurate crop yield prediction is central to the prevention of 

famine, stability of commodity markets, and sustainable de-

velopment of agriculture (Feng et al., 2020; Johnson 2014; 

Sun et al., 2019). Leading crop yield prediction techniques, 

such as survey-based methods and biophysical simulation 

models, rely heavily on locally sensed data, which are ex-

pensive to collect for economic and manpower reasons. Re-

cently, with the advent of satellite missions and artificial in-

telligence techniques, supervised machine learning models 

have been developed to correlate crop yield with remote 

sensing observations. For example, Johnson (2014) esti-
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mated the U.S. county-level yield for corn and soybean us-

ing tree-based models with sequential satellite vegetation in-

dices (VIs) and weather observations as input variables. 

Khaki and Wang (2019) incorporated weather and soil ob-

servations with a fully connected deep neural network 

(DNN) to forecast U.S. corn yield. Ma et al. (2021a) devel-

oped a Bayesian neural network (BNN) based on multi-

source remote sensing observations, which can predict not 

only corn yield but also the uncertainty associated with the 

prediction.  
Due to the phenomenon known as “domain shift” (Kouw 

and Loog, 2019) caused by spatial heterogeneity of meteor-

ological conditions, soil properties, and farming practice, 

machine learning models established between reference (re-

ported) yields and remote sensing measurements within a 

specific region often lose their validity when directly ap-

plied to new regions. To address this challenge, domain ad-

aptation, a new machine learning technique that transfers 

knowledge learned from a local region with rich ground ref-

erence data to the target region with limited or no ground 

truth data, has become a viable solution. To perform domain 

adaptation for DNNs, a widely used supervised strategy is 

to first pre-train a model on a source domain with abundant 

ground reference data, and then apply it in a target domain 

(e.g., a new region), with the parameters of the pre-trained 

model are fine-tuned using labeled samples from the target 

domain. Despite several successful cases (Russello, 2018; 

Wang et al., 2018), a certain number of labeled data (e.g., 

yield records) from the target domain is still needed to per-

form the fine-tuning. Because collecting yield data can be 

financially expensive, labor-intensive, and time-consuming, 

many agricultural production areas may lack reliable ground 

reference yield data for either directly training or fine-tuning 

supervised transfer learning models. 

To address this issue, unsupervised domain adaptation 

(UDA) has been proposed to improve model transferability 

without requiring any labeled data in the target domain. 

Widely used existing UDA methods include discrepancy-

 



 

 

based methods and adversarial-based methods. Discrep-

ancy-based methods try to align features from source and 

target domains by minimizing the distance between feature 

distributions (Long et al., 2015; Luo et al., 2017). Adversar-

ial-based methods address the domain shift by learning good 

representations that are discriminative for the main learning 

task and indiscriminative between source and target do-

mains (Ganin et al., 2016). While significant progress has 

been made on domain adaptation for image classification 

and segmentation, UDA studies on remote sensing are rare, 

especially for regression tasks such as yield prediction. 

There are three major bottlenecks in applying UDA methods 

to yield prediction with remote sensing observations. First, 

most current UDA methods are used for single-source do-

main adaptation which assumes labeled data are acquired 

from a single region (domain). In practice, labeled training 

samples may be collected from multiple source domains 

with different feature distributions (Zhao et al., 2020). Since 

domain shifts exist not only between source and target but 

also among different source domains, single-source domain 

adaptation methods could have a poor performance when 

samples from different sources interfere with each other 

(Riemer et al., 2019). Second, current UDA methods mostly 

align distributions of source and target without considering 

specific tasks. For remote sensing measurements with sig-

nificant domain shifts, input data are likely to be projected 

to ambiguous feature spaces that lack meaningful infor-

mation. Moreover, since the training set for county-level 

yield prediction is relatively small, overfitting could happen 

during model training.  
To address those issues, inspired by maximum classifier 

discrepancy (Saito et al., 2018) and Bayesian learning (Ma 

et al., 2021a), we proposed a Bayesian Multi-source Maxi-

mum Predictor Discrepancy (BMMPD) neural network 

UDA approach. Specifically, labeled samples collected 

from different regions were grouped into multiple sources 

for multi-source domain adaptation. Then, by using maxi-

mum predictor discrepancy, the BMMPD model aimed to 

align the distributions of source and target domains by con-

sidering task-specific regression models. In addition, Bayes-

ian learning was applied to prevent overfitting. Experiments 

in the U.S. corn belt showed that the proposed method out-

performed state-of-art deep learning models with improved 

model transferability. 

Related Work 

Existing UDA methods mainly focus on the single-source 

scenario, i.e., labeled data samples are assumed to be from 

one source domain. Single-source UDA algorithms com-

monly employ a conjugated architecture with two objectives 

(Zhao et al., 2020). One objective is to learn a task model 

based on the labeled source samples by corresponding task 

losses, such as mean square error loss (MSE) for regression 

(Feng et al., 2021) and cross-entropy loss for classification 

(Wang et al., 2021). The other objective is to reduce the do-

main shift and align the source and target domains. One of 

the most representative single UDA methods is domain ad-

versarial neural networks (DANN) (Ganin et al., 2017), 
which employs an adversarial objective with a domain dis-

criminator to extract domain-invariant features from source 

and target domains. Ma et al. (2021b), for the first time in 

the precision agriculture community, employed the DANN 

model for county-level yield prediction and demonstrated its 

effectiveness. 

Recently, there has been growing interest in multi-source 

UDA. For example, Peng et al. (2019) proposed a multi-

source UDA model named Moment Matching for Multi-

Source Domain Adaptation (M3SDA) for image classifica-

tion. M3SDA reduces source-target divergence and inter-

source divergence by minimizing the moment-related dis-

tance between each domain. Xu et al. (2018) proposed a 

deep cocktail network that uses multi-way adversarial learn-

ing to minimize the discrepancy between the target and 

source domains. Tasar et al. (2020) proposed a Stand-

ardGAN which standardizes multiple source domains and 

target domains for satellite image segmentation. However, 

to our best knowledge, no multi-source UDA studies have 

been conducted for yield prediction which is a regression 

task that differs from classification applications.  

Methodology 

In the scenario of yield prediction, predictors 𝐱 are remote 

sensing observations, and response variable 𝑦 is crop yield. 

Domain shifts exist between the source domain (𝐱𝑠, 𝑦𝑠)~𝒟𝑠 

and the target domain (𝐱𝑡, 𝑦𝑡)~𝒟𝑡. When there are limited 

or even no yield records in the target domain, supervised 

learning models can only be trained with labeled source 

samples and would have poor performance in the target do-

main when they are directly applied without domain adap-

tation. Representative UDA methods, such as DANN and 

M3SDA, try to align source and target domains by adapting 

the marginal distributions 𝑝(𝐱𝑠)  and 𝑝(𝐱𝑡)  under the as-

sumption that 𝑝(𝑦𝑠|𝐱𝐬) and 𝑝(𝑦𝑡|𝐱𝐭) are the same in both 

domains. This assumption could be invalid in the scenario 

of yield prediction since the crop yield response to a given 

remote sensing observations 𝐱 which may be different from 

region to region due to environmental variations (Deines et 

al., 2021).  

To better align 𝑝(𝑦𝑠|𝐱𝐬)  and 𝑝(𝑦𝑡|𝐱𝐭) , we proposed a 

new deep multi-source UDA approach for yield prediction, 

named BMMPD. The innovation of the model is threefold. 

First, the setting of multiple source domains was adopted to 

prevent negative interference between samples from differ-

ent sources. Second, Bayesian learning was incorporated to 

prevent overfitting. Third, a pair of predictors was trained 

for each source and used to measure discrepancy on unla-

beled target samples. 



 
Figure 1. The architecture of BMMPD given three sources. 

 

Specifically, given unlabeled target domain 𝒟𝑡 and N la-

beled source domains 𝒟𝑠 = {𝒟1, 𝒟2, … , 𝒟𝑁}, the BMMPD 

model has a weight-shared feature extractor 𝐺𝑓 and 𝑁 pairs 

of source-specific yield predictors {𝐺𝑝𝑖 , 𝐺𝑝𝑖
′ }

𝑖=1

𝑁
 (Figure 1). 

The feature extractor and yield predictors were designed as 

Bayesian Neural Networks and each predictor has two end-

points to estimate the yield distribution in the form of a nor-

mal distribution (Ma et al., 2021a). 

 
Figure 2. Example of aligning target samples to the 𝑘𝑡ℎ 

source domain by the BMMPD model. 

 

BMMPD is trained recursively by three steps (Figure 2). 

In step 1, labeled data from each source is forwarded 

through the feature extractor and then to the domain-specific 

predictors for yield distribution estimation. The yield pre-

diction loss in each source is calculated using Eq. (2)-(3) 

and the model is updated to minimize the total yield predic-

tion loss in all sources (Eq. (1)): 

min
𝐺𝑓 ,{𝐺𝑝𝑖 ,𝐺𝑝𝑖

′ }
𝑖=1

𝑁
𝐿𝑦(𝒟𝑠) =∑ 𝐿𝑦(𝒟𝑖) + 𝐿𝑦

′ (𝒟𝑖)
𝑁

𝑖=1
 

(1) 

𝐿𝑦(𝒟𝑖) = 𝔼(𝐱𝒔,𝑦𝑠)~𝒟𝑖
[− log 𝑝(𝑦𝑠|𝐺𝑝𝑖(𝐺𝑓(𝐱𝒔)))] (2) 

𝐿𝑦
′ (𝒟𝑖) = 𝔼(𝐱𝒔,𝑦𝑠)~𝒟𝑖

[− log 𝑝(𝑦𝑠|𝐺𝑝𝑖
′ (𝐺𝑓(𝐱𝒔)))] (3) 

In step 2, the feature extractor is fixed while yield predic-

tors are kept trainable. Both labeled source data 𝒟𝑠 and un-

labeled target data 𝒟𝑡 are used for model training. Like step 

1, labeled source data from each source domain are used to 

calculate the prediction loss 𝐿𝑦(𝒟𝑠). Meanwhile, the unla-

beled target data are fed into the feature extractor and then 

forwarded to all predictors. The predictor discrepancy 

𝐿𝑑(𝒟𝑡) is calculated as the KL-divergence between the esti-

mated target yield distributions by each pair of predictors 

(Eq. (5)-(6)). Since each pair of predictors {𝐺𝑝𝑖 , 𝐺𝑝𝑖
′ } is ini-

tialized differently and trained with identical source sam-

ples, they would agree well on their predictions for source 

samples but have random agreement on samples outside the 

support of the source. Therefore, given unlabeled target data 

𝐱𝐭~𝒟𝑡, the prediction discrepancy between 𝐺𝑝𝑖  and 𝐺𝑝𝑖
′  in-

dicates the similarity between 𝑝(𝑦𝑠|𝐱𝐬) and 𝑝(𝑦𝑡|𝐱𝐭). Dur-

ing backpropagation, 𝐺𝑝𝑖  and 𝐺𝑝𝑖
′  are updated to minimize 

the prediction loss while maximizing the discrepancy loss 

(Eq. (4)). By doing this, 𝐺𝑝𝑖 and 𝐺𝑝𝑖
′  are trained to better dis-

criminate target samples with large discrepancy loss while 

keeping low prediction loss on the source domain: 

min
{𝐺𝑝𝑖 ,𝐺𝑝𝑖

′ }
𝑖=1

𝑁
𝐿(𝒟𝑠 , 𝒟𝑡) = 𝐿𝑦(𝒟𝑠) − 𝐿𝑑(𝒟𝑡) 

(4) 

𝐿𝑑(𝒟𝑡) = ∑ 𝐿𝑑𝑖(𝒟𝑡)
𝑁

𝑖=1
 (5) 

𝐿𝑑𝑖(𝒟𝑡) = 𝔼𝐱𝒕~𝒟𝑡
[𝐾𝐿(𝐺𝑓(𝐺𝑝𝑖(𝐱𝒕)), 𝐺𝑓(𝐺𝑝𝑖

′ (𝐱𝒕))))] (6) 

where 𝐾𝐿(𝑝, 𝑞)  denotes the KL-divergence between two 

distributions 𝑝 and 𝑞. 

In step 3, the feature extractor is kept trainable while the 

𝑁 pairs of yield predictors are fixed. Only unlabeled target 

data 𝐱𝐭 is input into the network and used to calculate the 

predictor discrepancy 𝐿𝑑(𝒟𝑡). During backpropagation, the 

feature extractor is updated towards minimizing the predic-

tor discrepancy 𝐿𝑑(𝒟𝑡). By doing this, the feature extractor 

is trained to extract domain-invariant features and align 

source and target distributions in a task-specific way. Fi-

nally, in the testing phase, the final prediction is an ensemble 

result of outputs from each predictor. 

Experiments and Results 

Experimental Setup 

Counties in the study area were grouped into four domains 

according to eco-regions partitioned by National Ecological 

Observatory Network (NEON), a continental-scale research 

platform for understanding ecosystems (Kampe, 2010). 

NEON partitions the U.S. into eco-regions with different 

ecosystem performances. Counties in the U.S. corn belt are 

in seven NEON eco-regions. Since some eco-regions consist 

of very few counties from the study area, we merged small 



 

 

eco-regions and finally resulted in four eco-domains (Figure 

3). In experiments, each eco-domain was alternatively 

treated as the target domain and the other three were treated 

as sources. Reported yield records for each county were col-

lected from USDA National Agricultural Statistics Service 

(NASS) database (USDA, 2020). 

 
Figure 3. Four eco-domains in the study area. 

 

Multi-source remote sensing data from 2006 to 2019 were 

collected and used as input predictors. Specifically, to meas-

ure the biomass, canopy chlorophyll content, and vegetation 

moisture content, three complementary VIs have been ex-

tracted from the daily MODIS MCD43A4 product (Schaaf 

and Wang, 2015), including Enhanced Vegetation Index 

(EVI), Green Chlorophyll Index (GCI), and Normalized 

Difference Water Index (NDWI). In addition, daytime and 

nighttime land surface temperature were collected from the 

MODIS MOD11A2 product (Park et al., 2005). Daily total 

precipitation, maximum air temperature, and mean air tem-

perature were extracted from the PRISM dataset (Daly et al., 

2008). These variables were first aggregated spatially to the 

county level. After that, sequential predictors were aggre-

gated to a 16-day interval from April to October to cover the 

growing season of corn. Finally, time-series predictors and 

yield records were paired for model training. BMMPD was 

compared to three approaches, including DNN, DANN, and 

M3SDA. DNN was trained with all labeled source samples 

and applied directly to the target domain without domain ad-

aptation. When training DANN, three source eco-domains 

were grouped into one source domain since DANN is a sin-

gle-source UDA method. M3SDA was trained following the 

multi-source setting. We used all preceding years since 2006 

for model training and tested models in 2016–2019. Each 

model was evaluated based on root mean square error 

(RMSE) and mean absolute relative error (MARE). 

Experiment Results 

The evaluation results in each target domain were averaged 

over four testing years with the best performing one high-

lighted in bold (Table 1). BMMPD was observed to have a 

better spatial transferability than DNN, DANN, and M3SDA 

in eco-domain A, C, and D. 

 

Table 1. Model comparison results of RMSE (t/ha) and MARE (%) 

in each target eco-domains. 

  

 We further presented the average absolute error maps for 

each model. Although BMMPD performed well in most 

cases, it performed worse than DANN in ecoregion B (Fig-

ure 4), which agrees with the evaluation results in Table 1. 

The degraded performance of BMMPD in ecoregion B is 

due to the training sets from source domains are not large 

enough. When conducting multi-source domain adaptation, 

each domain-specific yield predictor of BMMPD was un-

derfitted due to the small training set from each source do-

main. It demonstrated that sufficient labeled data from 

source domains are required to guarantee the success of the 

multi-source UDA.  

 
Figure 4. The average absolute error maps for model (a) 

DNN, (b) DANN, (c) M3SDA, (d) BMMPD in eco-domain 

(1) A, (2) B, (3) C, (4) D. 

Conclusion 

In this study, we proposed a UDA method named BMMPD 

for corn yield prediction. It aims to accurately predict corn 

yield in the target domain without using any labeled samples 

from that region. By using maximum predictor discrepancy, 

BMMPD could align the distributions of source and target 

domains by considering task-specific regression models. 

The multiple domain setting was adapted to address nega-

tive interference between different sources. Bayesian learn-

ing was applied to prevent overfitting. More datasets will 

be used to further validate the proposed method in the future.  

Target DNN DANN M3SDA BMMPD 

 RMSE MARE RMSE MARE RMSE MARE RMSE MARE 

A 1.15 9.18 1.04 7.84 1.25 10.24 0.96 7.60 

B 1.35 9.76 1.30 9.11 2.19 15.43 1.54 10.75 

C 1.56 12.31 1.56 14.53 1.77 15.60 1.19 9.95 

D 1.36 12.14 1.32 11.22 2.12 17.56 1.13 9.87 
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